双因素试验的方差分析(精)
双因素试验的方差分析
i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ
Ⅲ
甲
50 63 52
乙
47 54 42
丙
47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。
双因素试验的方差分析
2
j 1
误差平方和: S
E
i 1
( x ijk X
ij
)
j 1 k 1
③计算自由度
SA的自由度:r-1 SB的自由度:s-1 SA×B的自由度: (r-1)(s-1) Se的自由度:rs(t -1)
ST的自由度:rst-1
(4) F检验
FA
S A /( r 1) S E /( rs ( t 1))
r
j 1 k 1
因素A的效应平方和: 因素B的效应平方和: A,B交互效应平方和:
S A B t
i 1 r
S A st ( X
S B rt ( X
j 1
i
X)
2
i 1 s
j
X )
2
r
s
(X
s
ij
X
t
i
X j X )
X 2 1 1 , X 2 1 2 , ..., X 2 1 t
A2 … Ar
x 221 , x 222 , ..., x 22 t
… … …
…
…
…
X rs 1 , X rs 2 , ..., X rst
X r 11 , X r 12 , ..., X r 1 t X r 2 1 , X r 2 2 , ..., X r 2 t
总和
ST
rs-1
(3)双因素无重复试验方差分析表 双因素无重复试验方差分析表 方差 来源 因素A
平方 和
SA
自由度
r- 1
均方
SA SA r 1
双因素试验的方差分析
双因素试验的方差分析(一)摘要:实际问题中往往要同时考虑两个因素对试验指标的影响,此时即使用双因素方差分析。
主要方法为建立合适的假设,并对分析已有数据的各部分方差平方和、自由度、均方,求得F 比后利用检验方法判断原假设是否成立。
双因素试验的方差分析可分为无重复试验和等重复试验两部分讨论,无重复试验只需检验两个因素对实验结果有无显著影响,等重复试验还要考虑两个因素的交互作用对实验结果有无显著影响。
(二)关键词:双因素 方差分析 EXCEL 应用(三)引言:在科学试验和生产实践中,影响一事物的因素往往是很多的。
每一因素的改变都有可能影响产品的数量和质量。
有些因素影响较大,有些较小,为了优化生产过程,通过进行试验找出对产品质量有显著影响的那些因素。
根据试验结果进行分析,鉴别各个有关因素对实验结果影响的有效方法即为方差分析。
本文双因素方差分析同时考虑两个因素的影响,涉及因素间的交互作用,在实际生产实践中较为实用。
(四)算法原理:双因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A 和因素B 的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A 和因素B 的结合会产生出一种新的效应。
(一)双因素等重复试验的方差分析设有两个因素A ,B 作用于试验的指标。
因素A 有r 个水平,,...,,21r A A A 因素B 有s 个水平.,...,21s B B B 现对因素A,B 的水平的没对组合(j i B A ,),i=1,2,...r,j=1,2,...,s 都作(t ≥2)次试验(称为等重复试验),得到如下表的结果。
因 素A 因素B1B 2B......s B 1AtX X X 11112111...,,,tX X X 12122121...,,,...... sts s X X X 12111...,,,2A t X X X 21212211...,,,t X X X 22222221...,,,...... st s s X X X 22212...,,,........................s Atr r r X X X 11211...,,,tr r r X X X 22221...,,,...... rstrs rs X X X ...,,,21并设),(~2σμij ijk N X ,r i ,...,2,1=;s j ,...,2,1=;t k ,...,2,1=,各ijk X 独立。
论文—双因素试验的方差分析
X ijk ~ N (ij , 2 ) ( ij 和 2 未 知 ), 记 X ijk i = ijk , 即 有
ijk X ij ijk ~ N (0, 2 ), 故 X ijk ijk 可视为随机误差. 从而得到如下数学模型
X ijk ij ijk, ijk ~ N(0, 2), 各 ijk 相互独立, i 1, , r; j 1, , s; k 1, , t;
1 st
1 rt
X
j 1 k 1
r t
s
t
ijk
,i=1,2, ,r,
X
j =
X
i 1 k 1
类似地,引入记号: , i , j , i , j , 易见
i 1
r
i 0 ,
j 1
s
j
0.
为水平 B j 的效应. 这样可以将
仍称 为总平均,称 i 为水平 A i 的效应,称 成
ij
j
ij
表示
= + i + j +
ij
( i 1, , r; j 1, , s ) ,
(3)
与无重复试验的情况类似,此类问题的检验方法也是建立在偏差平方和的分解上的。 2. 偏差平方和及其分解 引入记号: X =
1 rst
X
i 1 j 1 k 1
r
s
t
ijk
,
X
ij =
1 X ijk ,i=1,2, ,r,j=1,2, ,s, t k 1
t
X
i =
试 验 结 因 素 果 A 因 素 B
3-2双因素方差分析
s
因子B的偏差平方和 SB r(x j x)2 j 1
反映了因素B的水平间的差异引起的波动。
rs
误差平方和 Se
(xij xi x j x)2
i1 j1
反映了随机误差引起的波动。
在H01,H02为真时
1
2
St
~
2 (rs
均方 44.88 3.53 2.19
36.0
35.5
34.3
36.1
35.8
32.8
28.5
29.4
F 值 显著性
20.49
**
1.61
查表得临界值F0.05(4,12)=3.26,F0.01(3,12)=5.95。由于 FB<F0.05(4,12),故认为地块不同对收获量无显著影响。 由于FA>F0.01(3,12),故认为品种不同对收获量影响极显著。
F比
FA
Se
SA /(s
/(r 1) 1)(r 1)
FB
Se
SB /(s
/(s 1) 1)(r 1)
对给定的显著性水平,当
FA>F(r-1, (s-1)(r-1))时拒绝H01, FB>F(s-1, (s-1)(r-1))时拒绝H02 .
例3 将土质基本相同的一块耕地分成均等的五个地块,每块又 分成均等的四个小区。有四个品种的小麦,在每一地块内随机分 种在四个区上,每小区的播种量相同,测得收获量如下表(单位: 公斤),试以显著性水平α1=0.05,α2=0.01考察品种和地块对收获 量的影响是否显著。
地块
品种
B1
B2
B3
B4
B5
双因素重复试验方差分析
Se W R
ST W P S I R QA QB P
双因素重复试验方差分析表 误差来源 因素 A 因素 B 平方和
S A QA P S B QB P
自由度
均方
S MS A A r 1
F值
显著性
r 1
s 1
MS A FA MS E
FB MS B MSe
(3)
S A /(r 1) 从而有FA ~ F (r 1, rs(l 1)) Se /(rs(l 1)) S 2 当H 02成立时, B ~ ( s 1).且S B与Se相互独立 2
S B /( s 1) 从而有FB ~ F ( s 1, rs(l 1)) Se /(rs(l 1)) SI (4) 当H 03成立时, 2 ~ 2 ((r 1)( s 1)).且S I 与Se相互独立
燃料(A)
A2 A3 A4
双因素重复试验的方差分析
设有两个因素 A和 B, 因素 A有 r个不同的 水平 A1 , A2 , , Ar , 因素B 有s 个不同的水平 B1 ,
B2 , , Bs , 这样共有 r s 个不同的水平搭配
对每个搭配 Ai B j , 作 l 次独立重复试验,
共获得 n r s l 个观察值, 列表如下:
i 1 j 1 k 1 r s l i 1 s
r
S B ( X j X ) rl ( X j X ) 2
2 i 1 j 1 k 1 j 1
S I ( X ij X i X j X ) 2
i 1 j 1 k 1 s
第k次试验的结果列表如下:
B1 A1 A2 Ar
6-2双因素方差分析
• H0:m1=m2=m3=m4=m5 (地区对销售量无显著影响) • H1:mj (j =1,2,…,5) 不全相等 (有显著影响)
【例】有4个品牌的彩电在5个地区销售,为分析彩电的品牌( 品牌因素)和销售地区(地区因素)对销售量的影响,对每显著 个品牌在各地区的销售量取得以下数据。试分析品牌和销售 地区对彩电的销售量是否有显著影响?(=0.05)
5. 误差项平方和: SSE SST SSR SSC SSRC
SST=SSR+SSC+SSRC+SSE
可重复双因素方差分析表
(基本结构)
误差来源 平方和 自由度
(SS)
(df)
均方 (MS)
F值
P值
F 临界值
行因素 列因素 交互作用
误差
SSR SSC SSRC SSE
k-1 MSR FR r-1 MSC FC (k-1)(r-1) MSRC FRC kr(m-1) MSE
replication)
3. 如果除了行因素和列因素对试验数据的单
独影响外,两个因素的搭配还会对结果产 生一种新的影响,这时的双因素方差分析
称为有交互作用的双因素方差分析或可重 复 双 因 素 方 差 分 析 (Two-factor with
replication )
双因素方差分析的基本假定
1. 每个总体都服从正态分布 ▪ 对于因素的每一个水平,其观察值是来自正态分布
不同品牌的彩电在5个地区的销售量数据
品牌因素 地区1
地区因素 地区2 地区3 地区4
品牌1
365
350
343
340
品牌2
345
368
363
双因素试验方差分析
SS E df E
SST
注意
df E dfT df A f B , SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SS A DA p, SSB DB p
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。 例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。 统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。 我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
X 11 ... X a1
B2
X 12 ... X a2
... Bb
... ... ... X 1b ... X ab
Ti. X ij X i. T b i.
j 1
b
A1 ... Aa
a b i 1 j 1
1 b i ij i 水平Ai对试验结果的效应 a j 1 1 a j ij j 水平Bj对试验结果的效应 b i 1 试验误差 ij X ij ij
特性:
i 1
a
i
0;
j 1
b
j
0; ij ~ N 0,
双因素试验方差分析课件
未来将结合其他统计方法,如回归 分析、聚类分析等,以更全面地揭 示多因素对试验结果的影响。
THANKS
感谢您的观看
重复原则
在相同条件下重复进行试 验,提高试验的可靠性和 准确性。
对照原则
设置对照组,以消除非试 验因素的影响,突出试验 因素的作用。
试验的分类
STEP 02
STEP 03
多因素试验
同时考虑多个因素对试验 结果的影响。
STEP 01
双侧双因素试验
同时考虑两个因素对试验 结果的影响。
单侧双因素试验
只考虑两个因素中的一个 因素对试验结果的影响。
结果解释
根据方差分析的结果,解释各因素 对观测值的影响程度和显著性,得 出结论。
双因素试验方差分析的注意事项
数据的正态性和同方差性
样本量和试验精度
在进行方差分析之前,需要检验数据 是否符合正态分布和同方差性,以确 保分析结果的准确性。
适当增加样本量可以提高试验精度和 降低误差,对方差分析的结果产生积 极影响。
方差分析的步 骤
01
02
03
04
计算平均值和方差
计算各组的平均值和方差。
检验假设条件Βιβλιοθήκη 检查是否满足方差分析的假设 条件。
进行方差分析
使用适当的统计软件或公式进 行方差分析,并解释结果。
结论与建议
根据分析结果得出结论,并提 出相应的建议。
双因素试验方差分析
双因素试验方差分析的步骤
确定试验因素
明确试验的两个因素,并确定每个 因素的取值水平。
试验设计
根据试验目的和因素水平进行试验 设计,确保每个因素的每个水平都 被充分考虑。
数据收集
第二节双因素试验的方差分析详解
11
可以证明,
r
r
i i r r r 0 ,
i 1
i 1
s
s
j j s s s 0 ,
j 1
j 1
rs
rs
r
s
ij
ij s i r j rs rs rs rs rs 0 .
i1 j 1
于水平 Ai 的效应 i 和 B j 的效应 j 之和.我们把效应
ij 减去 Ai 的效应 i 和 B j 的效应 j 所得到差 ij
称为 Ai 和 B j 对试验指标的交互作用的效应,简称交互
效应.在多因素试验中,通常把因素 A 与因素 B 对试验
指标的交互效应设想为某一新因素的效应.这个新因素
看作是取自正态总体 Xij ~ N ij , 2 中的容
量为 t 的样本.将这些数据列成下表
5
B 因素 各水平 B1
A 因素 各水平
A1
X111, X112, , X11t
A2
X 211, X 212, , X 21t
B2
X121, X122, , X12t X 221, X 222, , X 22t
2
设在某项试验中有两个因素 A , B 在变化.因素 A 有 r
个不同的水平
A1, A2, , Ar , 因素 B 有 s 个不同水平
B1, B2, , Bs .
在水平组合 Ai , Bj 下的试验结果用 X ij 表示.
3
我们假定
X ij i 1, 2, , r ; j 1, 2, , s
17
为构造检验统计量,我们仿造单因素试验方差分析 的做法,记
《双因素方差分析》课件
同样地,因素B对因变量的影响也是显著的,表 明在不同水平下,因变量的均值存在显著差异。
3
交互作用
分析结果表明,因素A和因素B之间存在显著的 交互作用,这种交互作用对因变量产生了显著影 响。
对未来研究的建议
扩大样本量
为了更准确地评估双因素方差分析的结果,建议在未来研究中扩大样本量,以提高分析 的稳定性和可靠性。
数据筛选
检查数据是否满足方差分析的前提假设,如正 态分布、方差齐性等。
数据编码
对分类变量进行适当的编码,以便在分析中使用。
模型拟合
确定模型
根据研究目的和数据特征,选择合适的双因素方差分析模型。
拟合模型
使用统计软件(如SPSS、SAS等)进行模型拟合,得到估计参数和模型拟合指标。
假设检验
检验主效应
考虑其他影响因素
除了因素A和因素B外,可能还有其他未考虑的因素对因变量产生影响。因此,未来的 研究可以考虑纳入更多的变量,以更全面地了解因变量的影响因素。
深入研究交互作用
双因素方差分析结果表明因素A和因素B之间存在交互作用。为了更深入地了解这种交 互作用的机制和效果,建议进行更详细的研究和探讨。
实际应用价值
主效应和交互效应检验
使用双因素方差分析来检验两个实验因素的 主效应和它们之间的交互效应。
结果解释
根据分析结果,解释实验因素对因变量的影 响以及交互作用的存在与否。
05 结论与建议
研究结论
1 2
因素A对因变量的影响
通过双因素方差分析,发现因素A对因变量的影 响显著,说明在因素A的不同水平下,因变量的 均值存在显著差异。
双因素方差分析的数学模型
双因素方差分析涉及两个实验因素,通常表示为A和B。
双因素方差分析方法
(
)
dfT , df A , df B , df E ,则
SS A df A MS A = ~ F ( ( a 1) , ( a 1)( b 1) ) FA = SS E df E MS E
SS B df B MS B = ~ F ( ( b 1) , ( a 1)( b 1) ) FB = SS E df E MS E
结论:工人对产品的产量有显著影响, 结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响. 机器对产品的产量有极显著影响.
例1的上机操作 的上机操作
原始数据,行因素水平, 原始数据,行因素水平,列因素水平
对应例1 对应例 的数据输入方式
工人对产品产量有显著影响,而机器对产品产量的影响极显著. 工人对产品产量有显著影响,而机器对产品产量的影响极显著.
1 b 水平A α i = ∑ ij = i i 水平 i对试验结果的效应 a j =1 1 a 水平 β j = ∑ ij = i j 水平Bj对试验结果的效应 b i =1 试验误差 ε ij = X ij ij
特性: 特性:
∑ α i = 0;
i =1
a
β j = 0; ε ij ~ N ( 0, σ 2 ) ∑
SST = ∑∑ X ij X
i =1 j =1
a
b
(
)
2
可分解为: 可分解为:SST = SS A + SS B + SS E
SS A = b∑ X i. X
SS B = a ∑ X . j X
j =1 a b
a
i =1 b
(
)
2
称为因素A的离差平方和, 称为因素 的离差平方和, 的离差平方和 对试验指标的影响. 反映因素 A 对试验指标的影响. 称为因素B的离差平方和, 称为因素 的离差平方和, 的离差平方和 对试验指标的影响. 反映因素 B 对试验指标的影响.
双因素试验的方差分析
设:
X ijk ~ N ij , 2 , i 1,2,, r, j 1,2,, s, k 1,2,, t ,
各
X ijk
独立, ij , 2 均为未知参数。或写成:
2 ijk ~ N 0, , 各 ijk 独立 i 1,2,, r , j 1,2,, s, k 1,2,, t.
双因素试验的方差分析
影响试验结果的因素不止一个,要用双因素
或 多因素的方差分析;
确定哪些因素是主要的,它们对试验结果的
影响是否显著; 它们之间是否有交互作用。
(一)双因素等重复试验(有交互作用)的方差分析设有两个因
素A,B作用于试验的指标。 因素A有r个水平
因素B有s个水平
A1 , A2 ,, Ar
X . j.
1 r t X ijk , j 1,2,, s. rt i 1 k 1
总偏差平方和(称为总变差)
ST X ijk X .
2 i 1 j 1 k 1 r s t
ST写成:
S T X ijk X
i 1 j 1 k 1 s t r
1 1319 .82 2 2 2 S A B 110.8 91.9 90.1 2 24 S A S B 1768 .69250 , S E ST S A S B S A B 236.95000 .
得方差分析表如下:
表9.11 例1的方差分析表 方差来源 平方和 自由度 均 方 F 值
A1 A2
X 121 , X 122, , X 12t
…
X 211 , X 212, X 221 , X 222, , X 21t , X 22t
双因素无重复试验方差分析
r i1
s
ij ,
j1
记
i•
1 s
s
ij ,
j 1
• j
1 r
r i1
ij ,
ai
i•
,i
1, 2,
,r,
bj • j , j 1, 2, , s.
称为总平均
ai称为水平 Ai 的效应
bj 称为水平 Aj 的效应
r
s
显然, ai 0, bj 0
i1
j 1
并且,ij 可表示为
Xi• X 2
i1 j1
i1
r s
2
s
2
SB
X•j X r X•j X
i1 j1
j1
X• j
1 r
r i1
X ij
.
可以证明: ST Se SA SB
定理 对前面给定的模型有
(1)
Se ~ 2 ((r 1)(s 1)). 2
(2)
当H
成立时,
01
SA
2
~
2(r
1).且S A与Se相互独立
双因素无重复试验的方差分析
检验两个因素的交互效应,对两个因素的每一 组合至少要做两次试验.
如果已知不存在交互作用,或已知交互作用对 试验的指标影响很小,则可以不考虑交互作用.
对两个因素的每一组合只做一次试验,也可以 对各因素的效应进行分析——双因素无重复试验 的方差分析.
设试验结果受两个因素 A, B 的影响,因素 A有r 个水平 A1, A2, , Ar ;因素 B有s个水平 B1, B2, , Bs.在两个因素 的每一个组合 Ai Bj 作一次试验,所得试验结果为
1)
ST R P rs 1
双因素重复试验方差分析
S I /((r 1)( s 1)) 从而有FB ~ F ((r 1)( s 1), rs (l 1)) Se /(rs(l 1))
对给定的显著性水平 ,拒绝域分别为
WA {FA : FA F ((r 1), rs(l 1))} WB {FB : FB F (( s 1), rs(l 1))} WI {FI : FI F ((r 1)( s 1), rs(l 1))}
行面和-平方-和-均值
列面和-平方-和-均值
纵向和-平方-和-均值 总平方和
1 R xijk l i 1 j 1 k 1
r s l
2 W xijk i 1 j 1 k 1 r s l
2
可以证明:
S A QA P S B QB P
r
s
l
l ( X ij X i X j X ) 2
i 1 j 1
r
ST [( X ijk X ij ) ( X i X ) ( X j X )
i 1 j 1 k 1
r
s
l
( X ij X i X j X )]2
第k次试验的结果列表如下:
B1 A1 A2 Ar
B2
Bs X 1sk X 2 sk X rsk
X 11k X 12 k X 21k X 22 k X r 1k X r 2 k
假设 X ijk ~N ( ij , 2 ), i 1,, r , j 1,, s, k 1,, t .
(3)
S A /(r 1) 从而有FA ~ F (r 1, rs(l 1)) Se /(rs(l 1)) S 2 当H 02成立时, B ~ ( s 1).且S B与Se相互独立 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 双因素试验的方差分析
实验目的:1掌握单因素实验方差分析的方法与步骤;
2正确分析输出结果中的各参数,并得出正确结论。
试验内容:
某种火箭使用4种燃料,3种推进器进行射程试验。
在每种燃料与每种推进器的组合下火箭各发射两次,射程数据见表3.1。
表3.1 火箭的射程数据
试在水平05.0=α下,检验不同燃料(因素)A 、不同推进器(因素)B 下射程是否有显著差异?交互作用是否显著?
操作步骤:
1.在excel 的工作表中输入如表3.1所示的的样本数据。
2.点击“工具—数据分析—方差分析:可重复双因素方差分析”,在弹出对话框的输入区域,拖动鼠标选择样本值A1:D9;每一样本的行数,输入2;显著性水平α设置为0.05,如图
3.1所示。
图3.1 应用excel“数据分析”功能求双因素等重复方差分析的有关参数3.点击确定,输出参数的窗口如图3.2所示。
图3.2 应用excel“数据分析”功能求双因素等重复方差分析的有关参数结果分析:
图3.2 中仅列示了输出结果中的方差分析表。
“样本”即燃料因子,“列”即推进器因子,“交互”为燃料和推进器因子的交互作用,SS 为平方和;df 是自由度;P-value 为P 值,即所达到的临界显著水平;F crit 是Fα(t-1,N-t)的值。
由方差分析表可知,因子A (燃料)的作用是一般显著的(P-value的值为0.025969<0.05);因子B(推进器)的作用是高度显著的(P-value的值为0.003506<0.01);而交互作用是极其显著的(P-value的值为6.15E-05<<0.01),这说明燃料的作用于与推进器之间有着密切的关系,也即每种推进器都有各自最合自得最佳燃料。