高等数学电子教案:10-3(1)
高等数学电子教案:10-5
观察以下曲面的侧 (假设曲面是光滑的)
曲面分上侧和下侧
曲面分内侧和外侧
曲面的分类: 1.双侧曲面; 2.单侧曲面.
典
型 双 侧
n
曲
面
典型单侧曲面: 莫比乌斯带
播放
曲面法向量的指向决定曲面的侧.
决定了侧的曲面称为有向曲面.
曲面的投影问题: 在有向曲面Σ上取一小块
曲面 S, S在xoy面上的投影(S)xy为
n
R( x,
y,
z)dxdy
lim
0
i 1
R( i
,i
,
i
)( Si
) xy
被积函数
积分曲面
类似可定义
n
P(
x,
y,
z)dydz
lim0i 1P ( i,i,
i
)( Si
)
yz
n
Q( x,
y, z)dzdx
lim
0
i
1
Q(
i
,
i
,
i
)(
Si
)
zx
存在条件: 当P( x, y, z),Q( x, y, z), R( x, y, z)在有向光滑曲 面Σ上连续时,对坐标的曲面积分存在. 组合形式:
P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy
物理意义:
P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy
性质:
1. Pdydz Qdzdx Rdxdy 1 2
Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy
Dxy
高等数学教案word版
高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。
函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。
高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。
一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。
2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。
(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。
[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。
(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。
(2)值域:函数值的集合,即{yy?f(x),x?D}。
例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。
《高等数学电子教案》课件
《高等数学电子教案》PPT课件第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,了解函数的图像。
教学内容:函数的定义,函数的性质,函数的图像。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,学会求极限。
教学内容:极限的定义,极限的性质,极限的求法。
第二章:导数与微分2.1 导数的概念与性质教学目标:理解导数的概念,掌握导数的性质,学会求导数。
教学内容:导数的定义,导数的性质,求导数的方法。
2.2 微分的概念与性质教学目标:理解微分的概念,掌握微分的性质,学会求微分。
教学内容:微分的定义,微分的性质,求微分的方法。
第三章:积分与微分方程3.1 不定积分的概念与性质教学目标:理解不定积分的概念,掌握不定积分的性质,学会求不定积分。
教学内容:不定积分的定义,不定积分的性质,求不定积分的方法。
3.2 定积分的概念与性质教学目标:理解定积分的概念,掌握定积分的性质,学会求定积分。
教学内容:定积分的定义,定积分的性质,求定积分的方法。
第四章:向量与线性方程组4.1 向量的概念与性质教学目标:理解向量的概念,掌握向量的性质,学会求向量的运算。
教学内容:向量的定义,向量的性质,向量的运算。
4.2 线性方程组的概念与性质教学目标:理解线性方程组的概念,掌握线性方程组的性质,学会解线性方程组。
教学内容:线性方程组的定义,线性方程组的性质,解线性方程组的方法。
第五章:矩阵与行列式5.1 矩阵的概念与性质教学目标:理解矩阵的概念,掌握矩阵的性质,学会求矩阵的运算。
教学内容:矩阵的定义,矩阵的性质,矩阵的运算。
5.2 行列式的概念与性质教学目标:理解行列式的概念,掌握行列式的性质,学会求行列式的值。
教学内容:行列式的定义,行列式的性质,求行列式的方法。
第六章:级数与泰勒公式6.1 级数的概念与性质教学目标:理解级数的概念,掌握级数的性质,学会求级数的收敛性。
教学内容:级数的定义,级数的性质,求级数的收敛性。
高等数学电子教案
高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种规则,将一个非空数集(定义域)中的每一个元素对应到另一个非空数集(值域)中的唯一元素。
函数的性质:单调性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个确定的值L,称f(x)当x趋近于a时的极限为L,记作:lim(x→a)f(x)=L。
极限的性质:保号性、传递性、夹逼性等。
1.3 极限的计算极限的基本计算方法:代数法、几何法、泰勒公式等。
极限的运算法则:加减法、乘除法、复合函数的极限等。
1.4 无穷小与无穷大无穷小的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于0,称f(x)为无穷小。
无穷大的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于正无穷或负无穷,称f(x)为无穷大。
第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在点x处的导数,记作f'(x)或df/dx,表示函数在该点的瞬时变化率。
导数的几何意义:函数图像在某点处的切线斜率。
2.2 导数的计算基本导数公式:常数函数、幂函数、指数函数、对数函数等的导数。
导数的运算法则:和差法、乘法法、链式法则等。
2.3 微分的概念与计算微分的定义:函数f(x)在点x处的微小变化量,记作df(x)。
微分的计算:微分的基本公式df(x)=f'(x)dx,以及微分的运算法则。
2.4 微分方程的概念与解法微分方程的定义:含有未知函数及其导数的方程。
微分方程的解法:分离变量法、积分因子法等。
第三章:积分与面积3.1 不定积分的概念与计算不定积分的定义:函数f(x)的不定积分,记作∫f(x)dx,表示f(x)与x轴之间区域的面积。
基本积分公式:幂函数、指数函数、对数函数等的不定积分。
3.2 定积分的概念与计算定积分的定义:函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx,表示f(x)在[a,b]区间上的累积面积。
高等数学电子教案
高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。
函数的性质:单调性、连续性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。
极限的性质:保号性、保不等式性、夹逼定理等。
1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。
无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。
1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。
导数的概念:函数在某一点的导数表示函数在该点的切线斜率。
第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。
导数的计算:基本导数公式、导数的四则运算法则等。
2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。
微分的计算:微分的基本公式、微分的四则运算法则等。
2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。
积分的计算:基本积分公式、积分的换元法、分部积分法等。
2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。
第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。
微分方程的分类:常微分方程、偏微分方程等。
3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。
3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。
第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。
高等数学电子教案(大专版)
高等数学电子教案(大专版)《高等数学》教案第一讲函数与极限1.函数的定义设有两个变量x ,y 。
对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。
记作y=f(x),x ∈D 。
其中x 叫自变量,y 叫因变量。
函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。
例1:设f(x+1)=2x 2+3x-1,求f(x).解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2∴f(x)=2x 2 – x – 2定义域:使函数有意义的自变量的集合。
因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0例2 求函数y=6—2x -x +arcsin712x -的定义域. 解:要使函数有定义,即有:1|712|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或于是,所求函数的定义域是:[-3,-2]Y [3,4].例3 判断以下函数是否是同一函数,为什么?(1)y=lnx 2与y=2lnx (2)ω=u 与y=x解(1)中两函数的定义域不同,因此不是相同的函数. (2)中两函数的对应法则和定义域均相同,因此是同一函数. 2. 初等函数(1)基本初等函数常数函数:y=c(c 为常数) 幂函数:y=μx (μ为常数)指数函数:y=xa (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数)三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx(2)复合函数设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量.例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0,∴sinx ≥0,x ∈[2k π,π+2k π]例5:分析下列复合函数的结构(1)y=2cotx (2)y=1sin 2+x e解:(1)y=u ,u=cosv ,v=2x(2)y=ue ,u=sinv ,v=t ,t=x 2+1例6:设f(x)=2x g(x)=x 2 求f[g(x)] g[f(x)]解:f[g(x)]=f(x 2)=(x 2)2=4x g[f(x)]=g(2x )=22x3. 极限(1)定义函数y=f(x),当自变量x 无限接近于某个目标时(一个数x 0,或+∞或—∞),因变量y 无限接近于一个确定的常数A ,则称函数f(x)以A 为极限。
《高等数学电子教案》课件
《高等数学电子教案》课件一、第1章函数与极限1.1 函数的概念与性质定义域、值域、对应关系奇函数、偶函数、周期函数单调性、连续性、可导性1.2 极限的概念与性质极限的定义(洛必达法则)无穷小、无穷大、极限的存在性极限的运算法则、夹逼定理、单调有界定理二、第2章导数与微分2.1 导数的定义与计算导数的定义(极限比值法)基本导数公式、导数的运算法则高阶导数、隐函数求导、参数方程求导2.2 微分的作用与应用微分的定义、微分的运算法则微分在近似计算、物理应用等方面的作用微分方程的解法与应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算泰勒公式的定义、泰勒级数常见函数的泰勒展开式泰勒公式在近似计算中的应用3.2 不定积分的概念与计算不定积分的定义、基本积分公式换元积分、分部积分积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算定积分的定义、定积分的性质牛顿-莱布尼茨公式、定积分的换元法、分部积分法定积分在几何、物理等方面的应用4.2 反常积分的概念与计算反常积分的定义、无穷区间上的积分瑕点、解析延拓、魏尔斯特拉斯函数反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法微分方程的定义、微分方程的解常微分方程、线性微分方程、非线性微分方程分离变量法、积分因子法、变量替换法5.2 线性微分方程组的概念与解法线性微分方程组的定义、解的结构高阶线性微分方程、齐次线性微分方程特解法、待定系数法、常数变易法六、第6章级数6.1 数项级数的概念与判别法数项级数的定义、收敛性与发散性收敛级数的性质、级数的收敛准则(比较检验、比值检验、根值检验)绝对收敛与条件收敛6.2 幂级数的概念与性质幂级数的定义、收敛半径、收敛区间幂级数的运算、泰勒级数与麦克劳林级数幂级数在函数逼近与数值计算中的应用七、第7章多元函数的极限与连续7.1 多元函数的概念与性质多元函数的定义、偏导数、全微分多元函数的单调性、连续性、可微性方向导数与梯度7.2 多元函数的极限与连续多元函数的极限定义、极限的存在性多元函数的连续性、无穷远点多元函数极限与单变量函数极限的对比八、第8章多元函数的导数与微分8.1 多元函数的导数与微分多元函数的偏导数、全导数高阶偏导数、隐函数求导、参数方程求导微分的概念与性质、微分在多元函数中的应用8.2 多元函数的泰勒公式与不定积分多元函数的泰勒公式、泰勒级数不定积分的概念、多元函数的不定积分积分在多元函数中的应用九、第9章多元函数的定积分与反常积分9.1 多元函数的定积分多元函数定积分的定义、性质多元函数定积分的计算、换元法、分部积分法多元函数定积分在几何、物理等方面的应用9.2 多元函数的反常积分多元函数反常积分的定义、无穷区间上的积分多元函数瑕点、解析延拓、魏尔斯特拉斯函数多元函数反常积分在实际应用中的意义十、第10章向量分析与线性代数10.1 向量分析的概念与方法向量的定义、向量的运算空间解析几何、向量场的概念梯度、散度、旋度、格林公式10.2 线性代数的基本理论向量空间、线性变换、特征值与特征向量矩阵的运算、行列式、特征方程线性方程组、最小二乘法、正交投影重点和难点解析一、第1章函数与极限1.1 函数的概念与性质重点关注函数的奇偶性、周期性及单调性难点解析:奇偶性的判断、周期性的求解、单调性的证明1.2 极限的概念与性质重点关注极限的定义、性质及运算法则难点解析:极限的判断(洛必达法则)、无穷小与无穷大的比较、极限的夹逼定理与单调有界定理二、第2章导数与微分2.1 导数的定义与计算重点关注导数的定义、基本导数公式及导数的运算法则难点解析:导数的计算(隐函数求导、参数方程求导)、高阶导数的应用、导数在实际问题中的应用2.2 微分的作用与应用重点关注微分的定义及微分的运算法则难点解析:微分的应用(近似计算、物理应用)、微分方程的解法及应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算重点关注泰勒公式的定义、常见函数的泰勒展开式难点解析:泰勒公式的应用(近似计算)、泰勒级数的收敛性判断3.2 不定积分的概念与计算重点关注不定积分的定义、基本积分公式及积分方法难点解析:不定积分的计算(换元积分、分部积分)、积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算重点关注定积分的定义、性质及计算方法难点解析:定积分的计算(牛顿-莱布尼茨公式、换元法、分部积分法)、定积分在几何、物理等方面的应用4.2 反常积分的概念与计算重点关注反常积分的定义、性质及计算方法难点解析:反常积分的计算(瑕点、解析延拓、魏尔斯特拉斯函数)、反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法重点关注微分方程的定义、解的结构及解法难点解析:微分方程的解法(分离变量法、积分因子法、变量替换法)、高阶线性微分方程的解法5.2 线性微分方程组的概念与解法重点关注线性微分方程组的定义、解的结构及解法难点解析:线性微分方程组的解法(特解法、待定系数法、常数变易法)、线性微分方程组的应用全文总结与概括:本文针对《高等数学电子教案》课件的十个章节进行了重点和难点的解析。
高等数学教案完整版
包括局部保号性、介值定理、零 点定理等。这些性质为分析和研 究连续函数的性质和行为提供了 重要的依据。
连续函数在数学分析、物理学、 工程学等领域有着广泛的应用。 例如,利用连续函数的性质可以 研究函数的单调性、极值等问题; 利用介值定理可以判断方程根的 存在性等。
PART 03
导数与微分
REPORTING
行列式的计算 利用性质将行列式化为上(下)三角形行列式,然后计算主对角线元素的乘积。
矩阵概念及运算规则
1 2
矩阵的定义 由m×n个数排成m行n列的数表称为m行n列的 矩阵,简称m×n矩阵。
矩阵的运算规则 矩阵的加法、数乘、乘法、转置等运算规则。
3
矩阵的性质
矩阵的加法满足交换律和结合律;数乘满足分配 律;矩阵乘法满足结合律和分配律,但不满足交 换律。
PART 07
线性代数初步
REPORTING
行列式概念及性质
行列式的定义
由n^2个数按一定规则排成的n行n列的数表称为n阶行列式。
行列式的性质
行列式与它的转置行列式相等;互换行列式的两行(列),行列式变号;行列式的某一行(列)的公因子可以提到行列式 外面;若行列式中某一行(列)的元素都是两数之和,则此行列式等于两个行列式的和。
若∑|u_n|收敛,则称原级数绝对 收敛;若原级数收敛但∑|u_n|发 散,则称原级数条件收敛。
比较判别法
通过比较级数与已知收敛或发散 的级数来判断其收敛性。
级数定义
比值判别法与根值判别法
无穷序列的和,表示为∑u_n,其 中u_n为级数的通项。
通过求通项的比值或根值的极限 来判断级数的收敛性。
微分方程与级数应用举例
利用微分方程描述人口
高等数学下电子教案
高等数学下电子教案一、引言1.1 课程简介本课程是高等数学下的电子教案,主要面向大学本科阶段的学生。
通过本课程的学习,学生将掌握高等数学的基本概念、方法和技巧,为后续专业课程的学习和科研工作打下坚实的基础。
1.2 教学目标(1)理解并掌握高等数学的基本概念和原理;(2)培养学生的逻辑思维能力和解决问题的能力;(3)提高学生的数学素养和科学研究的初步能力。
二、极限与连续2.1 极限的概念(1)极限的定义;(2)极限的性质;(3)极限的存在条件。
2.2 极限的计算(1)基础极限公式;(2)无穷小和无穷大的比较;(3)极限的运算法则。
2.3 连续性(1)连续性的定义;(2)连续函数的性质;(3)连续函数的判定定理。
三、导数与微分3.1 导数的概念(1)导数的定义;(2)导数的几何意义;(3)导数的物理意义。
3.2 导数的计算(1)基本导数公式;(2)导数的运算法则;(3)高阶导数。
3.3 微分(1)微分的定义;(2)微分的运算法则;(3)微分在近似计算中的应用。
四、积分与面积4.1 不定积分(1)不定积分的概念;(2)基本积分公式;(3)积分的换元法和分部法。
4.2 定积分(1)定积分的概念;(2)定积分的性质;4.3 面积计算(1)平面区域的面积计算;(2)曲线的面积计算;(3)旋转体的体积计算。
五、微分方程5.1 微分方程的基本概念(1)微分方程的定义;(2)微分方程的解法;(3)微分方程的应用。
5.2 线性微分方程(1)线性微分方程的定义;(2)线性微分方程的解法;(3)线性微分方程的解的存在性定理。
5.3 非线性微分方程(1)非线性微分方程的定义;(2)非线性微分方程的解法;(3)非线性微分方程的应用。
六、级数6.1 级数的基本概念(1)级数的定义;(2)级数的收敛性;6.2 幂级数(1)幂级数的概念;(2)幂级数的收敛半径;(3)幂级数的运算。
6.3 泰勒级数和麦克劳林级数(1)泰勒级数的概念;(2)泰勒级数的展开;(3)麦克劳林级数。
高等数学电子教案(大专版)(2024)
02
函数与极限
2024/1/28
8
函数概念及性质
2024/1/28
函数定义
设$x$和$y$是两个变量,$D$是一个数集。如果存在一种对应法则$f$,使得对于$D$中 的每一个数$x$,按照某种对应法则$f$,在数集$M$中都有唯一确定的数$y$与之对应, 则称$f$为从$D$到$M$的一个函数,记作$y = f(x), x in D$。
向量的坐标表示法
详细讲解向量的坐标表示法,包括向量在空间直角 坐标系中的表示方法、向量的模和方向余弦的坐标 计算公式等。
向量的运算与坐标计算
介绍向量的加法、减法、数乘和点积、叉积 等运算在坐标计算中的实现方法,以及这些 运算的几何意义和性质。
2024/1/28
30
平面与直线方程
2024/1/28
平面的方程
导数的定义
导数描述了函数在某一点处的切线斜 率,反映了函数值随自变量变化的快 慢程度。
导数的几何意义
导数在几何上表示曲线在某一点处的 切线斜率,即函数图像在该点的倾斜 程度。
13
导数的计算法则
基本初等函数的导数公式
包括常数函数、幂函数、指数函数、对数函数 、三角函数等的基本导数公式。
导数的四则运算法则
2024/1/28
全微分的定义
如果函数$z=f(x,y)$在点$(x,y)$的全 增量$Delta z=f(x+Delta x,y+Delta y)-f(x,y)$可以表示为$Delta z=ADelta x+BDelta y+o(rho)$,其 中$A$和$B$不依赖于$Delta x$和 $Delta y$而仅与$x$和$y$有关, $rho=(Delta x^2+Delta y^2)^{frac{1}{2}}$,则称函数 $z=f(x,y)$在点$(x,y)$处可微,而 $ADelta x+BDelta y$称为函数 $z=f(x,y)$在点$(x,y)$处的全微分。
《高等数学》课程电子教案
《高等数学》课程电子教案本课程为我校第二批精品课程建设立项项目,学院为此专门抽调各教研室骨干教师组成课程组,充分发挥和强化其建设与改革职能,前期建设所取得的成果要紧表达在以下几个方面:一、师资队伍建设本课程组共12名成员,其中正副教授5人,讲师3人,助教5人,其中具有博士学位3人,具有硕士学位6人,已初步建立一支数量充足、结构合理、素养优良、充满生气与活力的专任教师队伍。
二、教材建设考虑到师范院校属性及相关学科的教学特点,构建融会贯穿的课程体系,我们差不多编写出下述《高等数学》系列教材:1. 孙国正主编,高等数学,安徽大学出版社20032. 刘树德编,高等数学,校科类基础课,教材,已申请出版3. 刘树德编,高等数学续论,选修课教材,校内胶印使用三、教学改革1. 加强教学内容的整合力度,以社会进展的新科技、新成果充实教学内容,提高教学起点。
2. 深入进行教学方法改革,多用启发式、讨论式、研究式教学方法,从改变教师的教学方式之入手,达到转变学生的学习方式之目的。
3. 运用现代教育手段提升教学水平。
为教师制作CAI课件,使用多媒体授课,加快运算机辅助教学软件的开发积极制造条件。
四、教学研究项目1. 省高校教学研究项目, 高等数学课程的优化设计,1999-2002;2. 校教材建设基金资助项目,出版校科类基础课教材《高等数学》, 20063. 校第二批精品课程建设立项项目, 《高等数学》,2005-2008课程建设是一项长期困难的工作,今后我们要连续努力,加快建设的步伐。
2005.12《高等数学》课程电子教案(节选)授课人:刘树德教学内容:1、微积分学的差不多定理与差不多公式;2、定积分的换元积分法与分部积分法。
教学目的:1、明白得微积分学的差不多定理与差不多公式的涵义和重要性;2、熟练把握和运用定积分的换元积分公式与分部积分公式。
教学重点:定积分的换元积分法与分部积分法教学难点:微积分学的差不多定理与差不多公式教学手段:讲授§6.2 微积分学的差不多定理与差不多公式若已知f(x)在[a,b]上的定积分存在,如何样运算那个积分值呢?假如利用定积分的定义,由于需要运算一个和式的极限,能够想象,即使是专门简单的被积函数,那也是十分困难的。
高等数学电子教案
高等数学电子教案(最新版)第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,对于每一个自变量值,都有唯一确定的因变量值与之对应。
函数的性质:奇偶性、单调性、周期性等。
1.2 极限的概念极限的定义:当自变量趋向于某个值时,函数值趋向于某个确定的值,这个确定的值称为极限。
极限的性质:保号性、传递性等。
1.3 极限的计算基本极限:\(\lim_{x \to 0} \frac{sin x}{x} = 1\), \(\lim_{x \to \infty} e^x = \infty\) 等。
极限的运算法则:加减乘除、乘方等。
1.4 无穷小与无穷大无穷小的概念:当自变量趋向于某个值时,函数值趋向于0。
无穷大的概念:当自变量趋向于某个值时,函数值趋向于正无穷或负无穷。
第二章:导数与微分2.1 导数的定义导数的定义:函数在某一点的导数是其在该点的切线斜率。
导数的几何意义:函数图像在某一点的切线斜率。
2.2 导数的计算基本导数公式:\( (x^n)' = nx^{n-1} \), \( (sin x)' = cos x \), \( (cos x)' = -sin x \) 等。
导数的运算法则:和差、乘积、商、复合函数等。
2.3 微分微分的定义:微分是导数的一个线性近似。
微分的计算:对函数进行微分,即将自变量的增量转化为微分的形式。
2.4 应用求函数的极值:求导数,令导数为0,解出x值,再代入原函数求出极值。
求函数的单调区间:求导数,判断导数的正负,确定函数的单调性。
第三章:泰勒公式与导数的应用3.1 泰勒公式泰勒公式的定义:用函数在某一点的导数信息来近似表示函数本身。
泰勒公式的应用:求解函数在某一点的近似值。
3.2 洛必达法则洛必达法则的定义:当函数在某一点的导数为0时,可以用该点的其他导数信息来求解函数值。
洛必达法则的应用:求解函数在某一点的极限值。
3.3 泰勒展开泰勒展开的定义:将函数在某一点的泰勒公式展开,得到函数在该点的多项式近似。
高等数学电子教案(最新版
解决方案
理解向量的基本概念和运算规则,掌握向量的数量积、 向量积、混合积的计算方法;理解空间曲线和曲面的几 何性质,掌握空间曲线和曲面的参数方程和一般方程。
THANKS
感谢观看
高等数学的重要性与应用
总结词
高等数学在科学、工程、经济等领域有 着广泛的应用,是许多学科的基础工具 。
VS
详细描述
高等数学在科学研究、工程技术和经济发 展等领域中发挥着重要的作用。它是许多 学科的基础工具,如物理、化学、工程学 、经济学等都需要用到高等数学的知识。 通过学习高等数学,人们能够更好地理解 和分析各种复杂的现象和问题,为科学研 究和技术创新提供支持。
不定积分与定积分
不定积分的概念与性质
不定积分是微分学的逆运算,用于求函数的原函数。不定积分具有一些重要的性质,如线性性质、积 分常数性质等。
定积分的概念与性质
定积分是积分学的核心概念,用于计算平面图形面积和体积等。定积分具有一些重要的性质,如可加 性、区间可加性等。
级数与幂级数
级数的概念与性质
级数是无穷序列的和,分为收敛级数和发散 级数。级数具有一些重要的性质,如正项级 数、交错级数、几何级数等。
重积分与线积分
• 总结词:重积分与线积分是高等数学中的重要概念,它研究的是对积分区域进行积分的方法。 • 详细描述:重积分主要研究的是对二维或更高维度的区域进行积分的方法,而线积分主要研究的是对一维曲线
进行积分的方法。这些积分方法在解决实际问题中具有广泛的应用,如物理学中的质量分布问题、工程学中的 流体动力学问题等都可以用重积分与线积分来解决。 • 总结词:重积分与线积分在解决实际问题中具有广泛的应用,如物理学中的力学和热学等问题;工程学中的机 械设计和流体动力学等问题;经济学中的成本和收益等问题。 • 详细描述:在物理学中,重积分与线积分被广泛应用于描述物体的运动轨迹和质量分布
高等数学教育教案(电子版)
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作∅,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
高等数学电子教案
高等数学电子教案(最新版)第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个非空数集A中的每一个元素在非空数集B中都有唯一确定的元素和它对应。
函数的性质:单调性、奇偶性、周期性等。
1.2 极限的概念极限的定义:当自变量x趋向于某一数值a时,函数f(x)趋向于某一数值L,我们称f(x)当x趋向于a时的极限为L,记作:lim(f(x),a)=L。
1.3 极限的运算极限的四则运算法则:1)lim(f(x)+g(x),a)=lim(f(x),a)+lim(g(x),a)2)lim(f(x)g(x),a)=lim(f(x),a)lim(g(x),a)3)lim(f(x)/g(x),a)=lim(f(x),a)/lim(g(x),a) (g(x)≠0)4)lim(cu(x),a)=lim(c,a)lim(u(x),a) (c为常数,u(x)可导)1.4 无穷小与无穷大无穷小的定义:当自变量x趋向于某一数值a时,如果存在一个正数M,使得对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)|<M,则称f(x)为无穷小。
无穷大的定义:当自变量x趋向于某一数值a时,如果存在一个正数M,使得对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)|>M,则称f(x)为无穷大。
第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在x处的导数定义为f'(x)=lim(f(x+Δx)-f(x),Δx)=lim(Δx,0)f'(x+Δx)。
2.2 导数的运算导数的四则运算法则:1)(f(x)+g(x))'=f'(x)+g'(x)2)(f(x)g(x))'=f(x)g'(x)+f'(x)g(x)3)(f(g(x)))'=f'(g(x))g'(x)4)(cu(x))'=c'u(x)+cu'(x) (c为常数,u(x)可导)2.3 微分微分的定义:函数f(x)在x处的微分定义为df(x)=f'(x)Δx。
高等数学电子教案word
高等数学电子教案word【篇一:同济第六版《高等数学》教案word版-第01章函数与极限】第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。
2、了解函数的奇偶性、单调性、周期性和有界性。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形。
5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
6、掌握极限的性质及四则运算法则。
7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质。
教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;5、闭区间上连续函数性质的应用。
1. 1 映射与函数一、集合1. 集合概念集合(简称集): 集合是指具有某种特定性质的事物的总体. 用a, b, c….等表示.元素: 组成集合的事物称为集合的元素. a是集合m的元素表示为a m.集合的表示:列举法: 把集合的全体元素一一列举出来.例如a={a, b, c, d, e, f, g}.描述法: 若集合m是由元素具有某种性质p的元素x的全体所组成, 则m可表示为 a={a1, a2, ? ? ?, an},m={x | x具有性质p }.例如m={(x, y)| x, y为实数, x2+y2=1}.几个数集:n表示所有自然数构成的集合, 称为自然数集.n={0, 1, 2, ? ? ?, n, ? ? ?}. n+={1, 2, ? ? ?, n, ? ? ?}.r表示所有实数构成的集合, 称为实数集.z表示所有整数构成的集合, 称为整数集.z={? ? ?, -n, ? ? ?, -2, -1, 0, 1, 2, ? ? ?, n, ? ? ?}.q表示所有有理数构成的集合, 称为有理数集.p q={|p∈z,q∈n+且p与q互质} q子集: 若x∈a, 则必有x∈b, 则称a是b的子集, 记为a?b(读作a包含于b)或b?a .如果集合a与集合b互为子集, a?b且b?a, 则称集合a与集合b相等, 记作a=b.若a?b且a≠b, 则称a是b的真子集, 记作a?≠b . 例如, n?≠z?≠q?≠r.不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集.2. 集合的运算设a、b是两个集合, 由所有属于a或者属于b的元素组成的集合称为a与b的并集(简称并), 记作a?b, 即a?b={x|x∈a或x∈b}.设a、b是两个集合, 由所有既属于a又属于b的元素组成的集合称为a与b的交集(简称交), 记作a?b, 即a?b={x|x∈a且x∈b}.设a、b是两个集合, 由所有属于a而不属于b的元素组成的集合称为a与b的差集(简称差), 记作a\b, 即a\b={x|x∈a且x?b}.如果我们研究某个问题限定在一个大的集合i中进行, 所研究的其他集合a都是i的子集. 此时, 我们称集合i为全集或基本集. 称i\a为a 的余集或补集, 记作ac.集合运算的法则:设a、b、c为任意三个集合, 则(1)交换律a?b=b?a, a?b=b?a;(2)结合律 (a?b)?c=a?(b?c), (a?b)?c=a?(b?c);(3)分配律 (a?b)?c=(a?c)?(b?c), (a?b)?c=(a?c)?(b?c);(4)对偶律 (a?b)c=ac ?bc, (a?b)c=ac ?bc.(a?b)c=ac ?bc的证明:x∈(a?b)c?x?a?b?x?a且x?b?x∈a c且x∈bc ?x∈ac ?bc, 所以(a?b)c=ac ?bc.直积(笛卡儿乘积):设a、b是任意两个集合, 在集合a中任意取一个元素x, 在集合b 中任意取一个元素y, 组成一个有序对(x, y), 把这样的有序对作为新元素, 它们全体组成的集合称为集合a与集合b的直积, 记为a?b, 即 a?b={(x, y)|x∈a且y∈b}.例如, r?r={(x, y)| x∈r且y∈r }即为xoy面上全体点的集合, r?r常记作r2.3. 区间和邻域有限区间:设ab, 称数集{x|axb}为开区间, 记为(a, b), 即(a, b)={x|axb}.类似地有[a, b] = {x | a ≤x≤b }称为闭区间,[a, b) = {x | a≤xb }、(a, b] = {x | ax≤b }称为半开区间.其中a和b称为区间(a, b)、[a, b]、[a, b)、(a, b]的端点, b-a称为区间的长度.无限区间:[a, +∞) = {x | a≤x }, (-∞, b] = {x | x b } , (-∞, +∞)={x | | x | +∞}.区间在数轴上的表示:邻域: 以点a为中心的任何开区间称为点a的邻域, 记作u(a).二、映射1. 映射的概念定义设x、y是两个非空集合, 如果存在一个法则f, 使得对x中每个元素x, 按法则f, 在y中有唯一确定的元素y与之对应, 则称f为从x 到y的映射, 记作f : x→y ,其中y称为元素x(在映射f下)的像, 并记作f(x), 即y=f(x),而元素x称为元素y(在映射f下)的一个原像; 集合x称为映射f的定义域, 记作d f, 即d f=x ;x中所有元素的像所组成的集合称为映射f的值域, 记为r f, 或f(x), 即r f=f(x)={f(x)|x∈x}.需要注意的问题:(1)构成一个映射必须具备以下三个要素: 集合x, 即定义域d f=x; 集合y, 即值域的范围: r f ?y; 对应法则f, 使对每个x∈x, 有唯一确定的y=f(x)与之对应.(2)对每个x∈x, 元素x的像y是唯一的; 而对每个y∈r f, 元素y的原像不一定是唯一的; 映射f的值域r f是y的一个子集, 即r f ?y, 不一定r f=y .例1设f : r→r, 对每个x∈r, f(x)=x2.显然, f是一个映射, f的定义域d f=r, 值域r f ={y|y≥0}, 它是r的一个真子集. 对于r f 中的元素y, 除y=0外, 它的原像不是唯一的. 如y=4的原像就有x=2和x=-2两个.例2设x={(x, y)|x2+y2=1}, y={(x, 0)||x|≤1}, f : x →y, 对每个(x, y)∈x, 有唯一确定的(x, 0)∈y与之对应.显然f是一个映射, f的定义域d f=x, 值域r f =y. 在几何上, 这个映射表示将平面上一个圆心在原点的单位圆周上的点投影到x轴的区间[-1, 1]上.(3) f :[-, ]→[-1, 1], 对每个x∈[-, ], f(x)=sin x . 2222f是一个映射, 定义域d f =[-, ], 值域r f =[-1, 1]. 22满射、单射和双射:设f是从集合x到集合y的映射, 若r f =y, 即y中任一元素y都是x 中某元素的像, 则称f为x到y上的映射或满射; 若对x中任意两个不同元素x 1≠x 2, 它们的像f(x 1)≠f(x 2), 则称f为x到y的单射; 若映射f既是单射, 又是满射, 则称f为一一映射(或双射).上述三例各是什么映射?2. 逆映射与复合映射设f是x到y的单射, 则由定义, 对每个y∈r f , 有唯一的x∈x, 适合f(x)=y, 于是, 我们可定义一个从r f 到x的新映射g, 即g : r f →x,对每个y∈r f , 规定g(y)=x, 这x满足f(x)=y. 这个映射g称为f的逆映射, 记作f -1, 其定义域df-1=r f , 值域rf-1=x .按上述定义, 只有单射才存在逆映射. 上述三例中哪个映射存在逆映射?设有两个映射g : x→y 1,f : y 2→z,其中y 1?y 2. 则由映射g和f可以定出一个从x到z的对应法则, 它将每个x∈x映射成f[g(x)]∈z . 显然, 这个对应法则确定了一个从x 到z的映射, 这个映射称为映射g和f构成的复合映射, 记作f o g, 即f o g: x →z,(f o g)(x)=f[g(x)], x∈x .应注意的问题:映射g和f构成复合映射的条件是: g的值域r g必须包含在f的定义域内, r g?d f . 否则, 不能构成复合映射. 由此可以知道, 映射g和f 的复合是有顺序的, f o g有意义并不表示g o f也有意义. 即使f o g 与g o f都有意义, 复映射f o g与g o f也未必相同.例4 设有映射g : r→[-1, 1], 对每个x∈r, g(x)=sin x,映射f : [-1, 1]→[0, 1], 对每个u∈[-1, 1], f(u)=-u2.则映射g和f构成复映射f o g: r→[0, 1], 对每个x∈r, 有(f g)(x)=f[g(x)]=f(sinx)=-sin2x=|cosx|.三、函数1. 函数概念定义设数集d?r, 则称映射f : d →r为定义在d上的函数, 通常简记为y=f(x), x∈d,其中x称为自变量, y称为因变量, d称为定义域, 记作d f, 即d f=d.应注意的问题:记号f和f(x)的含义是有区别的, 前者表示自变量x和因变量y之间的对应法则, 而后者表示与自变量x对应的函数值. 但为了叙述方便,习惯上常用记号“f(x), x∈d”或“y=f(x), x∈d”来表示定义在d上的函数, 这时应理解为由它所确定的函数f .函数符号: 函数y=f(x)中表示对应关系的记号f也可改用其它字母, 例如“f”, “?”等. 此时函数就记作y=? (x), y=f(x).函数的两要素:函数是从实数集到实数集的映射, 其值域总在r内, 因此构成函数的要素是定义域d f及对应法则f . 如果两个函数的定义域相同, 对应法则也相同, 那么这两个函数就是相同的, 否则就是不同的.函数的定义域:函数的定义域通常按以下两种情形来确定: 一种是对有实际背景的函数, 根据实际背景中变量的实际意义确定.求定义域举例:1 求函数y=-x2-4的定义域. x要使函数有意义, 必须x≠0, 且x2 - 4≥0.解不等式得| x |≥2.所以函数的定义域为d={x | | x |≥2}, 或d=(-∞, 2]?[2, +∞]).单值函数与多值函数:【篇二:同济第六版《高等数学》教案word版-第02章导数与微分】第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
高等数学》标准教案
《高等数学》标准教案一、教学目标1. 知识与技能:使学生掌握高等数学的基本概念、理论和方法,培养学生运用数学知识解决实际问题的能力。
2. 过程与方法:通过实例分析、问题探讨、数学建模等方式,引导学生主动探究、合作交流,培养学生的数学思维和解决问题的能力。
3. 情感态度与价值观:激发学生对高等数学的兴趣,培养学生勇于挑战、追求真理的精神,提高学生的综合素质。
二、教学内容1. 第一章:极限与连续1.1 极限的概念与性质1.2 极限的运算1.3 无穷小与无穷大1.4 函数的连续性2. 第二章:导数与微分2.1 导数的概念与性质2.2 导数的运算2.3 高阶导数2.4 微分法则3. 第三章:积分与不定积分3.1 积分的基本概念3.2 积分的运算3.3 不定积分的基本性质与方法3.4 定积分的应用4. 第四章:定积分与微分方程4.1 定积分的基本性质4.2 定积分的计算4.3 微分方程的基本概念4.4 常微分方程的求解方法5. 第五章:级数5.1 数项级数的概念与性质5.2 级数的收敛性判定5.3 幂级数的概念与性质5.4 函数的幂级数展开三、教学方法1. 采用案例教学法,通过典型实例分析,使学生掌握高等数学的基本概念和理论。
2. 运用问题驱动法,引导学生主动探究、解决问题,培养学生的数学思维能力。
3. 利用数学建模方法,让学生参与实际问题的探讨,提高学生运用数学知识解决实际问题的能力。
4. 采用小组讨论与合作交流的方式,培养学生的团队合作意识和沟通能力。
四、教学评价1. 平时成绩:包括课堂表现、作业完成情况、小组讨论等,占总评的40%。
2. 期中考试:考察学生对高等数学基本概念、理论和方法的掌握程度,占总评的30%。
3. 期末考试:全面测试学生的综合素质,包括知识运用、数学思维、解决问题等能力,占总评的30%。
五、教学资源1. 教材:《高等数学》及相关辅导书籍。
2. 课件:教师自制的PPT课件。
3. 网络资源:数学论坛、在线教程、相关学术文章等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CBE
CAE
d
x 1( y)
Q( x, y)dy Q( x, y)dy
CBE
EAC
c
LQ( x, y)dy
o
同理可证
D
P y
dxdy
L
P
(
x
,
y
)dx
E D
C
x 2( y)
x
两式相加得
D
(
Q x
P y
)dxdy
L
Pdx
Qdy
证明(2)
L3 D3
若区域D 由按段光
滑的闭曲线围成.如图,
将D 分成三个既是X 型又是 L1 D1
x
D {( x, y)1( x) y 2( x),a x b}
D {( x, y)1( y) x 2( y),c y d }
Q dxdy
d
dy
2 ( y) Qdx
D x
c
1 ( y) x
d
c
Q(
2
(
y),
y)dy
d
c
Q(
1(
y),
y)dy
y
Q( x, y)dy Q( x, y)dy
四、小结
1.连通区域的概念;
2.二重积分与曲线积分的关系
D
(Q x
P y
)dxdy
L
Pdx
Qdy
——格林公式;
3. 格林公式的应用.
思考题
y
若区域 如图为
复连通域,试描述格
D
C
G
林公式中曲线积分中LE的方向。源自oAFBx
D
Q x
P y
dxdy
L
Pdx
Qdy
思考题解答
围成的面积.
解 ONA为直线 y 0.
M
曲线AMO 由函数
A(a,0) N
y ax x, x [0,a]表示,
A
1 2
L
xdy
ydx
1
2 ONA
xdy
ydx
1
2 AMO
xdy
ydx
1
2 AMO
xdy
ydx
M
N
A(a,0)
1 2
0
a
x(
2
a ax
1)dx
(
ax x)dx
a a
40
xdx 1 a2 . 6
L3
E C
F
L1
A
{ } (Pdx Qdy) AB L2 BA AFC CE L3 EC CGA
( )(Pdx Qdy)
L2
L3
L1
Pdx Qdy L
(L1,L2 , L3对D来说为正方向)
格林公式的实质: 沟通了沿闭曲线的积分与
二重积分之间的联系.
则 Q P e y2 , x y
A
x
1
应用格林公式,有
e y2dxdy
xe y2 dy
D
OA AB BO
xe y2dy 1 xex2dx
OA
0
1 (1 e1 ). 2
例3
计算
L
xdy x2
ydx y2
,其中L
为一条无重点,
分段光滑且不经过原点的连续闭曲线,L 的方
向为逆时针方向.
L Pdx Qdy
L3 D3
( L1, L2 , L3对D来说为正方向) L1 D1
D2 L2
L
证明(3)
G
若区域不止由一条闭曲
线所围成.添加直线段 AB,CE.
则D 的边界曲线由 AB,L2 ,BA, AFC,CE, L3 , EC 及 CGA 构成.
D
L2
B
由(2)知
D
(
Q x
P y
)dxdy
D
OA xdy AB xdy BO xdy,
由于 OA
xdy
0,
BO xdy 0,
xdy dxdy 1 r2.
AB D
4
2. 简化二重积分
y
例 2 计算
e y2 dxdy ,其中D 是
B 1
D
D
以O(0,0), A(1,1), B(0,1)为顶点
的三角形闭区域.
o
解 令P 0, Q xe y2 ,
便于记忆形式:
x ydxdy L Pdx Qdy.
DP Q
三、简单应用
1. 简化曲线积分
例 1 计算 xdy ,其中曲 AB
线 AB是半径为r 的圆在
第一象限部分.
y
A
D
oL
Bx
解 引入辅助曲线L , L OA AB BO
应用格林公式, P 0, Q x 有
dxdy L xdy
解 记L所围成的闭区域为D ,
令P
y x2 y2
,
Q
x2
x
y2
,
则当 x2
y2
0时,
有Q x
(
y2 x2
x2 y2 )2
P .
y
y
(1) 当(0, 0) D时,
由格林公式知
L
xdy x2
ydx y2
0
D
o
(2) 当(0,0) D时,
L x
作位于D 内圆周 l : x2 y2 r 2, y L
一、区域连通性的分类
设D为平面区域, 如果D内任一闭曲线所 围成的部分都属于D, 则称D为平面单连通区 域, 否则称为复连通区域.
D D
单连通区域
复连通区域
设空间区域G, 如果G内任一闭曲面所围成
的区域全属于G, 则称G是空间二维单连通域;
如果G内任一闭曲线总可以张一片完全属于 G的曲面, 则称G为空间一维单连通区域.
格林公式:
D
(
Q x
P y
)dxdy
L
Pdx
Qdy
取P y, Q x, 得 2 dxdy L xdy ydx
D
闭区域D 的面积
A
1
2 L
xdy
ydx .
取P 0, Q x, 得 A L xdy 取P y, Q 0, 得 A L ydx
例 4 计算抛物线( x y)2 ax(a 0)与x 轴所
G
G
G
一维单连通 二维单连通
一维单连通 二维不连通
一维不连通 二维单连通
二、格林公式
定理1 设闭区域D 由分段光滑的曲线L 围
成,函数P( x, y)及Q( x, y)在D 上具有一阶连
续偏导数, 则有
D
( Q x
P y
)dxdy
L
Pdx
Qdy
(1)
其中L 是D 的取正向的边界曲线,
公式(1)叫做格林公式.
L1
D
L2
L1
D
L2
L由L1与L2连成
L由L1与L2组成
边界曲线L的正向: 当观察者沿边界行走时,区 域D总在他的左边.
证明(1)
若区域D 既是X 型 又是Y 型,即平行于 坐标轴的直线和L 至
多交于两点.
y
d x 1( y)
A c oa
E y 2(x)
D
B
x 2( y)
Cy 1(x) b
记D1由L 和l 所围成,
应用格林公式,得
l D1
or
x
L
xdy x2
ydx y2
l
xdy x2
ydx y2
0
L
xdy x2
ydx y2
l
xdy x2
ydx y2
y
L
D1
l
or
x
2r 2
0
cos2
r2
r2
sin2
d
2 .
( 其 中l 的 方 向 取逆时针方向)
(注意格林公式的条件)
3. 计算平面面积
Y 型的区域D1,D2 ,D3 .
Q P
Q P
( )dxdy
( )dxdy
D x y
x D1 D2 D3 y
D2 L2
D L
Q P
Q P
Q P
(
D1
x
y
)dxdy
(
D2
x
y
)dxdy
(
D3
x
y
)dxdy
L1 Pdx Qdy L2 Pdx Qdy L3 Pdx Qdy