1-4空间连杆机构
6-1-4《平面连杆机构》习题及答案(四)
6-1-4《平⾯连杆机构》习题及答案(四)6-1-4《平⾯连杆机构》练习题(四)?班级姓名学号⼀、填空题:1、平⾯连杆机构是由⼀些刚性构件⽤副和副相互联接⽽组成的机构。
2、平⾯连杆机构能实现⼀些较复杂的运动。
3、当平⾯四杆机构中的运动副都是副时,就称之为铰链四杆机构;它是其他多杆机构的。
4、按接触形式分,铰链四杆机构运动副的接触形式是副接触。
在铰链四杆机构中,能绕机架上的铰链作整周的叫曲柄。
5、在铰链四杆机构中,能绕机架上的铰链在的杆叫摇杆。
6、平⾯四杆机构的两个连架杆,可以有⼀个是,另⼀个是,也可以两个都是或都是。
7、平⾯四杆机构有三种基本形式,即机构、机构和机构。
8、组成曲柄摇杆机构的条件是:最短杆与最长杆的长度之和或其他两杆的长度之和;最短杆的相邻构件为,则最短杆为。
9、在曲柄摇杆机构中,如果将杆作为机架,则与机架相连的两杆都可以作运动,即得到双曲柄机构。
10、在机构中,如果将杆对⾯的杆作为机架时,则与此相连的两杆均为摇杆,即是双摇杆机构。
11、在机构中,最短杆与最长杆的长度之和其余两杆的长度之和时,则不论取哪个杆作为,都可以组成双摇杆机构。
12、曲柄滑块机构是由曲柄摇杆机构的长度趋向⽽演变来的。
13、导杆机构可看做是由改变曲柄滑块机构中的⽽演变来的。
14、将曲柄滑块机构的改作固定机架时,可以得到导杆机构。
15、曲柄摇杆机构产⽣“死点”位置的条件是:摇杆为件,曲柄为件或者是把运动转换成运动。
16、曲柄摇杆机构出现急回运动特性的条件是:摇杆为件,曲柄为件或者是把运动转换成。
17、曲柄摇杆机构的不等于00,则急回特性系数就,机构就具有急回特性。
18、实际中的各种形式的四杆机构,都可看成是由改变某些构件的、或选择不同构件作为等⽅法所得到的铰链四杆机构的演化形式。
19、若以曲柄滑块机构的曲柄为主动件时,可以把曲柄的运动转换成滑块的运动。
20、若以曲柄滑块机构的滑块为主动件时,在运动过程中有“死点”位置。
常用机构(四连杆机构)1
机构演化方法
础
平 改变杆件长度,用移动副取代回转副
面 连 杆
扩大回转副 变更机架等
机
构
连架杆 B
连杆 2
C 连架杆
3
1
A
4
D
机 (1)改变杆件长度 —— 曲柄滑块机构
械
设 计
曲线导轨曲柄滑块机构
基
C
础
C
平
2
面
连
B
杆1
机
构A
4
对CD杆等效转化
B2
3
1
转动副变成移动副 A
4 D
lCD
3 D
e
b+c >a+d 、 b+d >a+c 、 c+d >a+b
B
a
A
并可得: a<b 、 a<c 、 a<d .
b f
d
C
c
D
曲柄存在的条件: (1)最短杆与最长杆长度之和小于或等于其余两杆长度和。 (2)曲柄是最短杆。
机 曲柄存在的条件:
械 设
(1)最短杆与最长杆长度之和小于或等于其余两杆长度之和
2
BD
b2
c2
2b c cosd
基 础
b
平 面
cosd
b2 c 2 2 a d cosj a 2 d 2
2bc
B
a
j
连 杆
分析
A
机
构 j =0 cos j =1 cos d d min
j =180° cos j = –1 cos d d max
C
d c
d
D
基于MATLAB空间四连杆引纬机构运动仿真
基于MATLAB空间四连杆引纬机构运动仿真徐永康;张雷【摘要】In order to analyze kinematics characteristics of apace four bar linkage weft insertion mechanism, this paper built mathematical models of every parts of the mechanism with algebra analytical method to obtain motion curve through MATLAB programming, as well as studied of quantitative analysis the influence of movement law induced by the change of rotate speed and crank length. The results show that the motion characteristics curve can meet the weft inserting requirements, and it is feasible to optimize motion curve via adjusting the rotate speed and crank length. [Ch,9 fig. 2 tab. 9 ref. ]%为了分析探讨剑杆织机空间四连杆引纬机构参数变化对其运动学特性的影响,通过代数解析的方法建立了该机构各部分数学模型,编制了MATLAB程序对其进行运动仿真,得出了运动特性曲线,同时定量分析了转速和曲柄长度变化对引纬机构运动规律的影响.分析结果表明,所得的运动特性曲线符合所需引纬要求,可以通过调节转速和曲柄长度优化运动规律曲线.【期刊名称】《轻工机械》【年(卷),期】2012(030)003【总页数】5页(P17-21)【关键词】剑杆织机;空间引纬机构;MATLAB;仿真分析;运动规律【作者】徐永康;张雷【作者单位】浙江理工大学机控学院,浙江杭州310018;浙江理工大学机控学院,浙江杭州310018【正文语种】中文【中图分类】TH112.1;TS103.1340 引言无梭织机代替有梭织机已经成为不可逆转的大趋势。
四杆机构的基本型式及其演化w (1)
往复摆动 —— 摇杆
1、铰链四杆机构的基本型式
⑴.曲柄摇杆机构(以最短杆的邻边为机架)
①.特点:
☆ 两连架杆中一个为曲柄, 另一个为摇杆。
曲柄为主动件时, 曲柄的匀速转动
摇杆为主动件时, 摇杆变速往复摆动
摇杆变速往复摆动 曲柄的匀速转动
②.曲柄摇杆机构应用一——雷达天线俯仰机构 关键:以最短杆的邻边为机架
A
100
C
C 50 B
70 70
100
120
D A 60 D
50 C B
90
100
A
70
D
a)
b)
c)
d)
a) 40+110<70+90,又以最短杆为机架,则为双曲柄机构 b) 120+45<100+70,以最短杆邻边为机架,为曲柄摇杆机构 c)50+100>60+70,无论如何都是双摇杆机构 d)50+100<90+70,但以最短杆BC对边为机架,则为双摇杆机构
1.铰链四杆机构的优缺点
⑴优点: 磨损小,寿命长,传递动力大,制造简单, 制造精度较高。
原因:低副连接,面接触,压强小,便于润滑,磨损小,接触 面是圆柱面或平面,易制造,制造精度高
⑵缺点:运动累计误差大。
关键:低副连接(面接触)
第一节 平面机构的类型及其应用
一.铰链四杆机构
定义: 全由转动副构成的平面四杆机构 称为平面铰链四杆机构
关键:⑴ 对心曲柄滑块机构: ⑵ 偏置曲柄滑块机构:
e——偏距
2、导杆机构:
① L1< L2:机架短 曲柄转动导杆机构
② L1>L2:机架短 曲柄摆动导杆机构
RSSR空间四连杆机构的设计应用
RSSR空间四连杆机构的设计应用张国柱王惠刚(常熟纺织机械厂有限公司215500)摘要RSSR空间四连杆机构随着实际应用不断变化和发展。
分析机构,用参数描述杆件,应用计算机,使机构的设计计算程序化。
结合应用使机构杆件参数的确定便捷、准确、优化,从而完成RSSR空间四连杆机构的初步设计。
关键词RSSR空间四连杆机构参数解析法机构设计1前言空间连杆机构在纺织、针织、服装等专业机械方面有着广泛的应用。
RSSR空间四连杆机构是众多空间连杆机构中的典型,具有结构紧凑、传动准确可靠等优点,并在实际应用中不断变化和发展。
随着CAD设计和程序设计的普遍应用,解析法设计连杆机构已成为首选方法,结合图解法和结构设计,可以获得准确、优化的机构参数,并使设计进程加快。
本文对夹角为90b的RSSR型空间四连杆机构的相关公式进行了引用推导,并分析说明了用参数描述杆件、推导公式、设计计算程序化的过程。
结合RSSR型空间四连杆机构在共轭凸轮式折入边装置和织带机上的设计应用过程,对RSSR型空间四连杆机构的参数化设计进行说明,通过比对分析杆件的运动规律,便捷、准确、优化地确定杆件参数,完成空间四连杆机构的初步设计。
通过CAD作图和结构设计对机构杆件的材料、截面尺寸、球面副、转动副等细节进行确认,校核机构的动力学性能,并对机构进行实验运行,从而完善机构的应用设计。
2RSSR空间四连杆机构的分析2.1RSSR空间四连杆机构图1为RSSR空间四连杆机构ABCD,AD组成机架,AB杆和CD杆在A、D点组成转动副R,连杆BC分别与AB和CD组成球面副S,点B和C各为球面副的球心。
假定AB为主动杆,CD为从动杆。
通过B和C各作平面V和U分别垂直于主动轴A 和从动轴D,两个平面的交线为ZZ。
由于首末两轴垂直交错,交角等于90b的RSSR空间四连杆机构比较常用,则如图1所示V和U平面的夹角为90b。
将平面V绕ZZ回转90b与平面U重合,得到图2。
铰链四杆机构基本类型优秀课件.ppt
• 图所示的汽车偏转车轮转向机构采用了等腰梯形 双摇杆机构。该机构的两根摇杆AB、CD是等长 的,适当选择两摇杆的长度,可以使汽车在转弯 时两转向轮轴线近似相交于其它两轮轴线延长线 某点P,汽车整车绕瞬时中心P点转动,获得各 轮子相对于地面作近似的纯滚动,以减少转弯时 轮胎的磨损。
铰链四杆机构基本类型优秀课件
铰链四杆机构基本类型优秀课件
特例:平行四边形机构 特征:两连架杆等长且平行,
连杆作平动。
平面连杆机构的类型、特点和分类
AB = CD BC = AD
摄影平台升降机构
机车车轮联动机构
铰链四杆机构基本类型优秀课件
平行四边形机构存在 运动不确定位置。
平面连杆机构的类型、特点和分类
铰链四杆机构基本类型优秀课件
•例 铰链四杆机构ABCD的各杆长度如图2-10所示。 请根据基本类型判别准则,说明机构分别以AB、BC、 CD、AD各杆为机架时属于何种机构。
解:分析题目给出铰链四杆机构知,最短杆为AD = 20,最长 杆为CD = 55,其余两杆AB = 30、BC = 50。
因为 AD+CD = 20+55 = 75 AB+BC = 30+50 = 80 > Lmin+Lmax
▲连架杆之一或机架为最短杆。
当满足杆长条件时,其 最短杆上的转动副都是 整转副。
此时,铰链A、B均为 整转副。
铰链四杆机构基本类型优秀课件
铰链四杆机构基本类型优秀课件
2.压力角和传动角 压力角:作用在从动
平面连杆机构的运动和动力特性
件上的驱动力F与力 作用点绝对速度之间
所夹锐角α。
切向分力 Ft= Fcosα = Fsinγ
铰链四杆机构基本类型优秀课件
连杆机构教学-经典教学教辅文档
E C
E C
A
B
A
B+
D
D
D
在F=1的前提下,六杆、八杆机构均可分解为由一系列的 四杆机构组成。
3. 低副机构具有运动 可逆性
运动可逆性:两 构件上任一重合点, 其相对运动轨迹是相 同的,亦即,不论哪 一个构件固定,另一 构件上一点的运动轨 迹都是相同的。
M(M1,M2)
1
2
轨迹线
1 M1
M2 2
A
LAB ≤ 120
3. 设AB为之间杆
即 110 + 60 ≤ LAB + 70
100 ≤ LAB
所以AB杆的取值范围为:
LAB ≤ 20,100 ≤ LAB ≤ 120
C 70
60
110
D
2. 推广 (1) 推广到曲柄滑块机构 a. 对心式
a + LAD∞ ≤ b + LCD∞
a≤b
b. 偏置式
M(M1,M2)
1 M1点轨迹线——摆线
2 M2点轨迹线——渐开线
一、基本类型 1. 构件及运动副名称 构件名称:连架杆——与机架连接的构件
曲柄——作整周回转的连架杆 摇杆——作来回摆动的连架杆 连杆——未与机架连接 的构件 机架 运动副名称: 回转副(又称铰链) 移动副
(avi)
2. 基本 类型
改变运动副类型 移动导杆机构
B A
改变运动副类型 C
C
∞
定为机架 改变机架
θ
双滑块机构
改变构件 相对尺寸 正弦机构
2. 扩大铰链副
B A
C D
B A
C D
B AA
C D
偏心轮机构
机械原理-连杆机构设计图解法_一_
连杆机构设计(图解法)
按给定连杆位置设计四杆机构 按给定两连架杆对应的角位移设计四杆机构
按给定的急回要求设计四杆机构
按给定连杆位置设计四杆机构
按给定连杆位置设计四杆机构
给定连杆三个位置,设计四杆机构
B1
A1
E1
A
2
E2
A3
B2
A0
B0
E3
B3
A0 A1 B1 B0就是所求机构的第一个位置。
m12
N1 M2
n12
M1 M0
动平面上任选两个参考点 M、N——动铰链
N2
12 12
P12
N0
m12上任选M0—定铰链
n12上任选N0—定铰链
引导平面由E1到E2的位置的 四杆机构有无数
两连架杆上动铰链和定铰链与极连线的夹角 相等∠M1 P12 M0= ∠N1 P12 N0= θ 12/2
方法:半角转动法
方法:半角转动法
原理
N1 M1 M2 E1 E2 N2
动平面由E1到E2的位置过程中,动 平面上任意一点都可以视为绕某点 P12转θ 12
P12——转动极(极)
θ 12——有向转动角
E1、E2两个位置一经确定,P12、 θ 12就确定与选择的参考点无关
12
P12
转动极P12 的求法
m12
N1 M2
n12
M1
连接P12M1和P12M2,所夹 的角即为转动角θ 12
N2
12 12
P12
连接P12 N1和P12 N2 ,所 夹的角也为转动角θ 12 ∠M1 P12 M2= ∠N1 P12 N2= θ 12
动平面由E1到E2的位置可由四杆机构实现
平面四连杆受力计算
平面四连杆受力计算
平面四连杆机构是一种空间低副机构,由若干刚性构件通过低副(转动副、移动副)联接而成,各构件上各点的运动平面相互不平行。
对于平面四连杆机构的受力分析计算,可以遵循以下步骤:
1. 作出机构的运动学分析图:包括四根杆件和两个主要连接点。
这个分析图应该体现机构的所有运动组成部分。
2. 建立参考系:设立一个坐标系来测量和规定各部分对于另一部分的位置和速度。
3. 确定加速度和角加速度:在进行受力分析之前,需要先确定机构中各部分的加速度和角加速度(可以通过求导得到)。
4. 计算每个杆件所受的外力:外力包括重力、惯性等。
5. 计算各个接触点处的支持反力:机构中每个连接点处都存在支持反力,通过施加平衡条件,可以得到它们的大小和方向。
6. 确认静平衡条件是否满足:在进行上述计算时,必须保证静平衡条件成立(即合外力为零、合支持反力矩为零),否则需要进行重新整理。
在进行平面四连杆受力计算时,需要根据具体情况选择合适的计算方法,并进行详细的分析和计算。
如果不确定如何进行受力分析计算,建议寻求相关专业人员的帮助。
第三章-曲柄连杆机构1-4节讲义
(1)降低热负荷,避免热应 力过大而开裂
4、材料:(1)铝合金压铸:a、导热性好
(汽油机及少数
b、质量轻
(2)可提高压缩比(汽油机)
柴油机)
c、铸造流动性好(风冷发动机散热片铸造容易)
d、刚度低:易变形导致漏气、漏水
f、强度低:气缸盖螺栓孔易拉毛
g、不耐高温:超过350C,强度急剧降低
(2)灰铸铁或合金铸铁: a 、刚度、强度高 (大部分柴油机) b 、耐高温 c 、导热性差:缸盖底面鼻梁区易开裂 d 、质量重
3
3、摩擦力:忽略不计。
五、总结:曲柄连杆机构(包括机体组)各有关零件受到压缩、拉伸、弯
曲和扭转作用。
第二节 机体组
机体组由气缸体(有的发动机有曲轴箱)、气缸盖和油底壳组成。
一、气缸体
水冷发动机的气缸体与曲轴箱常铸成一体,简称气缸体,有的水冷发动
机的气缸体象风冷发动机的气缸体一样,将气缸体与上曲轴箱(其内腔为曲
2、往复惯性力与离心力:活塞加速度:在上止点前后活塞加速度是正值,往 复惯性力朝上;在下止点前后活塞加速度是负值,往复惯性力朝下。如图 (3-2)。
偏离曲轴轴线的曲柄、曲柄销和连杆大头绕曲轴轴线旋转,产生旋转惯 性力,其方向沿曲柄半径向外。
曲轴转速愈高,往复惯性质量和旋转惯性质量愈大,则往复惯性力与离 心力愈大,惯性力使曲柄连杆机构的各零件和所有轴颈(轴承)受周期性变 化的附加负荷,加快磨损。若不加以平衡,惯性力传到气缸体外,引起发动 机的振动。
压配在气缸体内孔中。其优点是:密封性好,气缸体刚性好,不易变形。缺点
是:
a 、制造成本增加:气缸体内孔、缸套外圆亦需精加工,且薄壁缸套刚性差,
加工装夹时易变形。
b、热负荷增加:缸套外圆与气缸体内孔理论上是完全接触,但加工误差使
第1讲四连杆机构运动仿真
第1讲四连杆机构运动仿真一、建立连接1.设置工作目录选择【文件】→【设置工作目录】打开工作目录选取面板,如图1所示,选择如图所示2的文件夹为工作目录。
图1设置工作目录图2 选择文件夹2.建立新的装配文件打开PROE软件,点击'文件',选择‘新建’,有如下对话框弹出(如图3所示),在类型项选择‘组件’,子类型项选择‘设计’,名称改为‘2009109120’,不使用缺省模板,点击‘确定’。
有下对话框弹出(如图4所示),在模板中选择‘mmns -asm -design’,直接点击‘确定’开始进入制图过程。
图3 新建组件图4 选择单位二、装配文件1.机架的放置(1)进入PROE的主界面,点击右下角图标‘’,有如下对话框弹出(如图5所示),选择运动仿真四连杆中1ground.prt,单击打开。
图5 载入文件在主界面出现一行任务栏,在‘自动’选项中选择,再在右边单击‘’,如图6所示。
图6 机架1(2)再点击右下角图标‘’,选择运动仿真四连杆中1-ground-prt,单击‘打开’,则在主界面中出现一行任务栏,如图7所示。
图7 机架2用鼠标左键选择两平面对齐,如图8所示。
图8 平面对齐在选择两侧面对齐,在任务栏中选择,如图9所示,再单击右边''。
图9 侧面对齐2.曲柄的装配在单击右下角‘’,在运动仿真四连杆中选择‘2-crank-prt',单击‘打开’。
在主界面出现一行任务栏:,在用户定义栏中有选择'’,在操作区中选择曲柄的轴线与机座的轴线重合,如图10所示。
图10 曲柄面匹配再选择曲柄与该机座的一端面配对,如图11所示。
在任务栏中点击‘’,和‘’,完成该次联结。
图11 轴对齐3.摇杆的装配单击右下角‘’,运动仿真四连杆中选择‘4rocker-prt’,单击‘打开’。
任务栏:,同理在用户定义中选择‘’把第4摇杆与另一机座的轴线重合连结,如图12所示。
图12 轴对齐再将该摇杆与机座的端面配对连结,如图13所示。
四连杆机运动学分析
栏杆机四杆机构运动学分析1 四杆机构运动学分析机构运动分析的任务、目的和方法曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。
对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。
还可以根据机构闭环矢量方程计算从动件的位移偏差。
上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。
机构运动分析的方法很多,主要有图解法和解析法。
当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。
而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。
机构的工作原理在平面四杆机构中,其具有曲柄的条件为:a.各杆的长度应满足杆长条件,即:最短杆长度+最长杆长度≤其余两杆长度之和。
b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。
三台设备测绘数据分别如下:第一组(2代一套)四杆机构L1=,L2=, L3=,L4=最短杆长度+最长杆长度+ <其余两杆长度之和+最短杆为连架杆,四杆机构为曲柄摇杆机构图1-1 II-1型栏杆机机构测绘及其运动位置图第二组(2代二套)四杆机构L1=,L2=,L3=,L4=最短杆长度+最长杆长度+ <其余两杆长度之和+最短杆为连架杆,四杆机构为曲柄摇杆机构图1-2 II-2型栏杆机机构测绘及其运动位置图第三组(3代)四杆机构L1=,L2=,L3=150mm,L4=最短杆长度+最长杆长度+ <其余两杆长度之和(150+最短杆为连架杆,四杆机构为曲柄摇杆机构图1-3 III型栏杆机机构测绘及其运动位置图在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。
平面四杆机构的三种基本类型判断标准(一)
平面四杆机构的三种基本类型判断标准(一)平面四杆机构的三种基本类型判断标准引言平面四杆机构是一种常见的机械结构,广泛应用于机械工程领域。
它由四个连杆组成,能够实现不同的运动,并具有一定的机械优势。
本文将介绍平面四杆机构的三种基本类型判断标准,帮助读者更好地理解和应用这一机械结构。
1. 条件1:连杆数目平面四杆机构的第一个判断条件是连杆数目。
根据连杆数量的不同,平面四杆机构可以分为以下三种基本类型:•4杆1驱动:由一个驱动连杆和三个被动连杆组成,驱动连杆通过轴承或摩擦连接到驱动装置上。
这种类型的机构常用于基本的传动和夹持功能。
•3杆1驱动:由一个驱动连杆和两个被动连杆组成,驱动连杆通过轴承或摩擦连接到驱动装置上。
这种类型的机构在工程领域应用广泛,能够实现特定的运动轨迹和力学优势。
•2杆2驱动:由两个驱动连杆和两个被动连杆组成,每个驱动连杆都通过轴承或摩擦连接到驱动装置上。
这种类型的机构可实现复杂的运动,例如平移和旋转的组合。
2. 条件2:连杆长度比较平面四杆机构的第二个判断条件是连杆长度的比较。
通过比较不同连杆的长度,可以判断机构是否为平面四杆机构。
这里有两种情况:•互为相反数:连杆的长度之比为-1。
若连杆的长度满足这个条件,则可以判断该机构为平面四杆机构。
•乘积为1:连杆的长度之比为1。
若连杆的长度满足这个条件,则可以判断该机构为平面四杆机构。
3. 条件3:杆件连接方式平面四杆机构的第三个判断条件是杆件连接方式。
根据连杆连接方式的不同,可以判断机构是否为平面四杆机构。
这里有两种情况:•直接连接:连杆之间直接连接,形成闭合的杆件结构。
这种连接方式常见于平面四杆机构中。
•间接连接:连杆之间通过其他杆件或连接件连接。
如果连杆之间具有间接连接的情况,则不能判断该机构为平面四杆机构。
结论在判断平面四杆机构的类型时,我们可以从连杆数目、连杆长度比较和杆件连接方式三个方面入手。
通过对这三个判断标准的分析,可以准确判断出平面四杆机构的类型。
四连杆机构
二、平面四杆机构的设计方法
1)实验法 2)几何法
3)解析法
三、平面四杆机构的设计(几何法)
1、根据给定连杆上两铰链中心的位置设计四杆 机构。 C2 B2 C3 B1 B3
A
C1
D
2、按给定行程速度变化系数设计四杆机构 C1 C2
其实,世上最温暖的语言,“ 不是我爱你,而是在一起。” 所以懂得才是最美的相遇!只有彼此以诚相待,彼此尊重, 相互包容,相互懂得,才能走的更远。 相遇是缘,相守是爱。缘是多么的妙不可言,而懂得又是多么的难能可贵。否则就会错过一时,错过一世! 择一人深爱,陪一人到老。一路相扶相持,一路心手相牵,一路笑对风雨。在平凡的世界,不求爱的轰轰烈烈;不求誓 言多么美丽;唯愿简单的相处,真心地付出,平淡地相守,才不负最美的人生;不负善良的自己。 人海茫茫,不求人人都能刻骨铭心,但求对人对己问心无愧,无怨无悔足矣。大千世界,与万千人中遇见,只是相识的 开始,只有彼此真心付出,以心交心,以情换情,相知相惜,才能相伴美好的一生,一路同行。 然而,生活不仅是诗和远方,更要面对现实。如果曾经的拥有,不能天长地久,那么就要学会华丽地转身,学会忘记。 忘记该忘记的人,忘记该忘记的事儿,忘记苦乐年华的悲喜交集。 人有悲欢离合,月有阴晴圆缺。对于离开的人,不必折磨自己脆弱的生命,虚度了美好的朝夕;不必让心灵痛苦不堪, 弄丢了快乐的自己。擦汗眼泪,告诉自己,日子还得继续,谁都不是谁的唯一,相信最美的风景一直在路上。 人生,就是一场修行。你路过我,我忘记你;你有情,他无意。谁都希望在正确的时间遇见对的人,然而事与愿违时, 你越渴望的东西,也许越是无情无义地弃你而去。所以美好的愿望,就会像肥皂泡一样破灭,只能在错误的时间遇到错的人。 岁月匆匆像一阵风,有多少故事留下感动。愿曾经的相遇,无论是锦上添花,还是追悔莫及;无论是青涩年华的懵懂赏 识,还是成长岁月无法躲避的经历……愿曾经的过往,依然如花芬芳四溢,永远无悔岁月赐予的美好相遇。 其实,人生之路的每一段相遇,都是一笔财富,尤其亲情、友情和爱情。在漫长的旅途上,他们都会丰富你的生命,使 你的生命更充实,更真实;丰盈你的内心,使你的内心更慈悲,更善良。所以生活的美好,缘于一颗善良的心,愿我们都能 善待自己和他人。 一路走来,愿相亲相爱的人,相濡以沫,同甘共苦,百年好合。愿有情有意的人,不离不弃,相惜相守,共度人生的每 一个朝夕……直到老得哪也去不了,依然是彼此手心里的宝,感恩一路有你!
§4-1 平面连杆机构的工作原理和分类
2.已知四杆机构如图所示。四根杆的长度分别为LCD=500mm, LAD=240mm,LAB=600mm,LBC=400mm,试证明当取杆LAB 为机 架时有否曲柄存在?若分别以LBC和LAD为机架时各得到什么 机构?
卢红41平面连杆机构的工作原理和分类?一连杆机构的组成和分类?连杆机构是用转动副和移动副将构件相互连接而成的机构以实现运动变换和动力传递
§4-1 平面连杆机构的工作原理和分类
一、连杆机构的组成和分类
连杆机构是用转动副和移动副将构件相互连接而成的 机构,以实现运动变换和动力传递。 按构件间相对运动的性质不同可分为: 空间连杆机构----各构件间的相对运动不在同一 平面 平面连杆机构----各构件间的相对运动均在同一 平面或相互平行的平面内
答:四杆机构中,要有曲柄存在,必须同时满足下列 两个条件:
1.当最长杆和最短杆的长度之和小于等于其他两杆长度 之和;
2.最短杆为曲柄
(四)课堂练习
1. 试判别下面二个图分别属于什么类型 并说明连架杆的名称?
B
20
C
∵15+30>20+18 ∴此机构属于双摇杆机构
15
A
18 30
D
其中AB、CD都为摇杆
b
C
c
D
a
A
与最短杆相邻的杆AD固定,此时为: 曲柄摇杆机构
C
B
a
A
c d
D
最短杆AB固定,此时为 : 双曲柄机构 与最短杆相对的杆CD固定,此时为: 双摇杆机构
B
b d
C
a
A
c
D
2.当a+d>c+b时:
B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RSSP机构 机构
PRSR机构 机构
球面4R机构 球面 机构
平面连杆机构存在制造安装误差和构 件受力变形,出现运动不很灵活甚至卡住 现象。 空间连杆机构,从动件的运动可为任 意空间位置。结构紧凑,运动多样,灵活 可靠。
• 万向联轴节:传递两相交 轴的动力和运动,而且在 传动过程中两轴之间的夹 角可变。 • 单万向联轴节:输入输出 轴之间的夹角180-α,特 殊的球面四杆机构。 • 主动轴匀速转动,从动轴 作变速转动。随着α的增 大,从动轴的速度波动也 增大,在传动中将引起附 加的动载荷,使轴产生振 动。 • 为消除这一缺点,采用双 万向联轴节。
• 双万向联轴节:1个中间轴和两个单万向联 轴节。中间轴采用滑键连接,允许轴向距 离有变动。
本章重点小结
一、平面四杆机构的基本形式和演化手段
曲柄摇杆(双曲柄、曲柄滑块、双摇杆摆动摇杆) 曲柄摇杆(双曲柄、曲柄滑块、双摇杆摆动摇杆)机构
二、平面四杆机构的运动和动力特性
曲柄存在条件、急回特性、压力角(死点) 曲柄存在条件、急回特性、压力角(死点)