东北大学离散数学复习总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法、知识点总结(知识重点和考题重点)

前三章重点内容(知识重点):

1、蕴含(条件)“→”的真值

P→Q的真值为假,当且仅当P为真,Q为假。

2、重言(永真)蕴涵式证明方法

<1>假设前件为真,推出后件也为真。

<2>假设后件为假,推出前件也为假。

易错

3、等价公式和证明中运用

4、重要公式

重言蕴涵式:P∧Q => P or Q

P or Q => p∨Q

A->B =>(A∧or∨C)->(B∧or∨C)

其他是在此基础上演变

等价公式:幂等律 P∧P=P P∨P=P

吸收律 P∧(P∨Q)=P P∨(P∧Q)=P

同一律 P∨F=P P∧T=P

P∨T=T P∧F=F

P <-> Q = (P->Q)∧(Q->P) = (P∧Q)∨(﹁P∧﹁Q)

5、范式的写法(最方便就是真值表法)

6、派遣人员、课表安排类算法:

第一步:列出所有条件,写成符号公式

第二步:用合取∧连接

第三步:求上一步中的析取范式即可

7、逻辑推理的写法

直接推理论证:其中I公式是指重言蕴涵式那部分

其中E公式是指等价公式部分

条件论证: 形如 ~ , ~, ~ => R->S

R P(附加条件)

... ...

S T

R->S CP

8、谓词基本内容

注意:任意用—> 连接

存在用∧连接

量词的否定公式

量词的辖域扩充公式

量词分配公式

其他公式

9、带量词的公式在论域内的展开

10、量词辖域的扩充公式

11、前束范式的写法

给定一个带有量词的谓词公式,

1)消去公式中的联接词→和←→(为了便于量词辖域的扩充);

2)如果量词前有“﹁?”,则用量词否定公式﹁?”后移。再用摩根定律或求公式的否定公式,将“﹁?”后移到原子谓词公式之前;

3)用约束变元的改名规则或自由变元的代入规则对变元换名(为量词辖域扩充作准备);

4)用量词辖域扩充公式提取量词,使之成为前束范式形式。

简要概括: 1、去 -> , <-> 2、移﹁

3、换元

4、量词辖域扩充

12、谓词演算的推理理论

推理规则:P、T、CP、US、ES、EG、UG 的使用

ES US 去量词

EG UG 添量词

★谨记:ES要在US之前,很重要

添加量词注意事项:

13、集合的幂集(用P表示,也常有花P表示)

A是集合,由A的所有子集构成的集合,称之为A的幂集。记作P(A)或2的A次方

给定有限集合A,如果|A|=n, 则|P(A)|=2的n次方

14、求集合的划分数与等价关系数——相同

15、三种重要集合运算

一、差运算- (相对补集)

二、绝对补集~

三、对称差

前三章重点内容(考题重点):最常考

内容和方法需要看自己课件,前三章考试内容不多且简单

1、命题符号化(包括第一章简单的命题和第二章谓词的命题)

2、逻辑推理(命题逻辑和谓词逻辑两种推理,每章书最后部分)

3、主析取范式与主合取范式(命题逻辑和谓词逻辑中的两种范式写法)

4、真值的判断

后五章重点内容(知识重点):

1、笛卡尔积

定义:设A、B是集合,由A的元素为第一元素, B的元素为第二元素组成序偶的集合,称为A和B 的笛卡尔积,记作A×B

如果A、B都是有限集,且|A|=m, |B|=n,则 |AXB |=mn.

2、域的表示:

定义域dom(关系的第一个元素的范围)

值域 Ran(关系的第二个元素的范围)

3、空关系、完全关系、A上的恒等关系IA的定义

空关系只有点,没有一条边。

4、关系的个数

5、对称、反对称、自反、反自反、传递的判定

6、等价关系、等价类

定义:设R是A上关系,若R是自反的、对称的和传递的,则称R是A中的等价关系

等价关系的个数:划分数;

由等价关系图求等价类:

R图中每个独立子图上的结点,构成一个等价类。

不同的等价类个数=独立子图个数

7、相容关系、相容类

特点:自反、对称。

图的简化:⑴不画环;

⑵两条对称边用一条无向直线代替

相容类:设r是集合X上的相容关系,C?X,如果对于C 中任意两个元素x,y有∈r ,称C是r的一个相容类从简化图找最大相容类:

最大相容类的意义是——一个相容类加多一个点就不是相容类了,所以最大相容类可以是多个而不是唯一的“最大”的概念,定义类似极大线性无关组,但元素个数不同------找最大完全多边形。最大完全多边形:含有结点最多的多边形中,每个结点都与其它结点相联结。

通过最大相容类求完全覆盖:

完全覆盖就是指所有最大相容类构成的集合。

8、关系的分类:

偏序关系定义:R是A上自反、反对称和传递的关系,则称R 是A上的偏序关系。并称是偏序集。

全序关系定义:是偏序集,任何x,y∈A,如果x与y都是可比较的,则称≤是全序关系(线序、链)。

9、偏序集Hasse图的画法

1).用“。”表示A中元素。

2).如果x≤y,且x≠y,则结点y要画在结点x的上方。

3). 如果x≤y,且y盖住x,x与y之间连一直线。

4). 一般先从最下层结点(全是射出的边与之相连(不考虑环)),逐层向上画,直到最上层结点(全是射入的边与之相连)。(采用抓两头,带中间的方法 )

10、重要元素定义(极大小元、最大小元、上下界、最大下界与最小上界)

11、如何求映射是入(单)、满、双射?

第一步:分别求出定义域和值域

第二步:比较就出来了,就那么简单

但是要证明的话:

两者结合得:双射成立

相关文档
最新文档