26章氢原子的量子理论
11-26氢原子的量子理论 第26章-例题
例7.多电子原子中,电子的排列遵循( )原理和( ) 原理。 泡利不相容原理和能量最低原理
例8.当氢原子中的电子处在 n 3, l 2, ml 2, m s 1
的状态时,它的轨道角动量为 l ( l 1) 自旋角动量为 1 ( 1 1) 3 2 2 2
例7 试问氢原子处在 n=2 能级时有多少个不同的状 态?在不考虑电子自旋的情况下,对于各个状态,试 按量子数列出它们的波函数。 解: 氢原子的能量本征值 En 只依赖于主量子数 n ; n 确定后角量子数可取 0,1,2,…… (n-1), 共 n个值; 在给定 l 后磁量子数 m 可取 -l, -l+1,…0,…l-1, l, 共(2l+1) 个值; 属任一能级的量子态ψnlm 的数目为 n2。 据题意,当 n=2 时,可能的波函数为
Lz 0, , 2 , 3
200 ,
211,
210 ,
211 .
例8 讨论氢原子的 200 , 210 , 211 , 211四个状态的宇称。 解: nlm 的宇称取决于 (1)
l
l 为偶数时为偶宇称; l 为奇数时为奇宇称。 故 ψ200 有偶宇称; ψ210, ψ211,ψ21-1 有奇宇称。
属n=2能级的量子态 共有4。 据题意,当 n=2 时,可能的波函数为
200 , 211, 210 , 211.
例2:根据量子力学理论,氢原子中电子的角动量在外 磁场方向上的投影为 Lz ml , 当角量子数 l=2时,Lz
的可能取值为何值。 解: 磁量子数取值为 ml l , l 1, 0,, l 1, l
Байду номын сангаас
大学物理学电子教案 氢原子的量子理论简介
可容纳的电子数为
n1
Nn22l12n2
21
l0
01 sp
2 d
3 f
4 g
5 h
6 i
Nn
1K 2
2
2L 2 6
8
3 M 2 6 10
18
4 N 2 6 10 14
32
5 O 2 6 10 14 18
50
6 P 2 6 10 14 18 22
72
7 Q 2 6 10 14 18 22 26 98
例题:试确定基态氦原子中电子的量子数。
2、角动量量子化及角量子数
求解氢原子波函数的经度方程,可得氢原子中电子的角动量 是量子化的
L ll 1 h ll 1 l 0 ,1 ,2 , ,n 1 2
其中l 叫做轨道角动量量子数或角量子数。
讨论:
•波耳理论的L=nh/2,最小值为h/2;而量子力学得出角
动量的最小值为0。实验证明,量子力学得结论是正确的;
Rnl2r2d r n 2lrdr| n0 |2
径向概率密度为:
pnl
(r)
2 nl
(r)
1s 2s 3s
| n1 |2
2p
| n2 |2
4s r
3p
4p
r
3d 4d
r
15
19-10 多电子原子中的电子分布
一、电子自旋 自旋磁量子数
1、斯特恩-盖拉赫实验
银原子通过狭缝,经 过不均匀磁场后,打
在照相底板上。s 态
23
小结
• 氢原子的量子理论简介 • 氢原子的定态薛定谔方程 • 三个量子数 • 氢原子在基态时的径向波函数和电子的分布概率
• 多电子原子中的电子分布 • 电子自旋 自旋磁量子数 • 四个量子数 • 多电子原子中的电子分布
氢原子量子理论
d 2u 2µ Ze2 l(l + 1) − 2 u=0 + 2 E+ 2 dr ℏ r r
于是化成了一维问题, 于是化成了一维问题,势V(r) 称为等效势, 称为等效势,它由离心势和库 仑势两部分组成。 仑势两部分组成。
l(l + 1)ℏ2 Ze2 V(r) = − 2 2µr r
θ r
r
y
1 ∂ 1 ∂2 Ze2 ℏ2 1 ∂ 2 ∂ ∂ ( ) (r )+ (sinθ )+ − ψ− ψ = Eψ r 2µ r 2 ∂r ∂r sinθ ∂θ ∂θ sin2 θ ∂ϕ 2
x
ϕ 球 坐 标
ˆ ℏ2 L2 Ze ∂ 2 ∂ (r )+ − − 2 2µr 2 r ∂r 2µr ∂r
或: 1 ∂ 1 ∂2 ∂ (sinθ ) + 2 ]Y(θ ,ϕ) = λY(θ ,ϕ) −[ 2 sinθ ∂θ ∂θ sin θ ∂φ
为使 Y(θ,ϕ) 在θ 变化的整个区域(0, π)内都是有限的, Y(θ 变化的整个区域(0, π)内都是有限的 内都是有限的, 则必须满足: 则必须满足: λ = ℓ(ℓ + 1), 其中 ℓ = 0, 1, 2, ...
ρ →∞
αeρ / 2 ρ
→∞
ρ →∞
令
最高幂次项的 νmax = nr
则
注意 此时多项式最高项 的幂次为 nr+ ℓ + 1
bnr ≠ 0 所以
bnr ≠ 0 于是递推公式改写为 bnr +1 = 0
因为 分子
nr + l + 1− β = 0
量子数 取值
§3-3氢原子量子理论电子的概率分布
电子的概率分布
一、电子概率的径向分布
d体积元内的概率应表示为
nlm
nlm
d
Rnl (r)Ylm ( ,) 2 r 2 sindrdd
Rnl (r) 2 r 2dr Ylm ( ,) 2 sindd
在半径为r到r+dr的球壳内发现电子的概率为
wnl (r)dr
π 0
2π 0
(r)]
0
(r为最概然半径 )
可以证明,对于n-l-1 = 0 , n 1, 2,
这与玻尔理论中各能级所对应的圆形轨道半径公
式完全一致 。
二、电子概率的角度分布
立体角d = sin d d内发现电子的概率为
wlm (,)d
0
Rnl
(r)Ylm (,)
2 r 2dr sin
d
d
Ylm (,) 2 sin d d = Ylm (,) 2 d
式中wlm (, )是电子出现在相应立体角内的概率
密度,称为电子概率的角度分布函数。
3
在上式中,由于
Ylm(,) 2 Nl2m[Plm (cos)]2 e-im eim Nl2m[Plm (cos)]2
与无关,所以角度分 布函数wlm(,)是以z轴
Rnl (r)
2 r 2dr Ylm ( ,)
2
s in d d
Rn2l (r )r 2dr
式中wnl (r) Rn2l (r)r2 是电子出现在相应球壳内的概
率密度,称为电子概率的径向分布函数。
1
一些低量子数的径向概率分布曲线
2
对分布函数的一阶导数等于零求得
d dr
wnl
(r)
d dr
氢原子的量子力学理论
角量子数
角量子数(l):描述电子在核周围的角动量,取值范围为0 到n-1的正整数。
角量子数决定了电子的角动量,进而影响电子云的形状和 方向。
磁量子数
磁量子数(m):描述电子在磁场中的取向,取值范围为-l到l的正整数。
磁量子数决定了电子在磁场中的自旋方向和状态,是描述电子自旋状态的量子数 之一。
波函数具有全同性,即对于任意实数a和b,若将波函数中的x替换为ax+b, 其概率幅不变。
波函数具有连续性,即它在整个空间中是连续的,没有跳跃或间断点。
波函数具有周期性,即对于某些特定的能级,波函数可能呈现出周期性振 动的模式。
03
氢原子的波函数
径向波函数
定义
径向波函数描述了电子在核周 围不同半径的分布概率。
氢原子光谱在实验室和天文观测中都有广泛应用。在实验室中,可以通过控制氢原子所处的环境,如 温度、压力等,来研究其光谱特性,进而了解物质的基本性质。在天文学领域,通过对氢原子光谱的 观测和分析,可以研究宇宙中氢气分布、星系演化等重要问题。
原子钟
原子钟是一种利用原子能级跃迁频率 作为计时基准的精密计时仪器。其中, 氢原子钟是其中一种较为精准的原子 钟。
自旋量子数
自旋量子数(s):描述电子的自旋状 态,取值范围为±1/2。
自旋量子数决定了电子的自旋方向, 是描述电子自旋状态的唯一量子数。
能级与能级间距
能级
由主量子数、角量子数、磁量子数和自旋量子数共同决定,不同能级对应不同的能量状 态。
能级间距
相邻能级之间的能量差值,与主量子数和角量子数有关,随着主量子数的增加而减小。
量子力学是描述微观粒子运动规律的 物理学分支。
氢原子的量子力学描述
氢原子是最简单的原子,核外只有一个电子绕核运动,质子和电子之间存在库仑相互作用。
由于质子的质量是电子质量的大约2000倍,一般可以建立一个坐标系,把坐标原点取在质子上。
电子受原子核的库仑场作用,势能函数为:r e r U 024)(πε-=0222=-+∇)r ()]r (U E [m )r ( ψψ0)()4(2)(0222=++∇r r e E m r ψπεψ由于氢原子具有球对称性,可用球坐标系表示定态薛定谔方程:)(sin sin 1)(1222θψθθθψ∂∂∂∂+∂∂∂∂r r r r r 0)4(2sin 10222222=++∂∂+ψπεϕψθr e E m r 其解一般为的函数:ϕθ,,r ),,(ϕθψψr =定态薛定谔方程设波函数为)()()(),,(ϕθϕθψΦΘ=r R r 代入球坐标系的薛定谔方程,在求解波函数时,考虑到波函数应满足的单值、有限、连续以及归一化的标准化条件,可得到氢原子的量子化特征。
我们主要对一些重要的结论进行讨论。
()),3,2,1(12422204 =⋅-=n nme E n πε1. 能量量子化 主量子数求解薛定谔方程,得到氢原子的能量为n — 主量子数注意:⑴ 氢原子能量是一系列离散值 —— 反映能量量子化能级间隔随主量子的增大而减小,↓∆↑⇒E n ⑵ 最低能级对应1=n eV E 6.131-=基态能量eV nE n 26.13-=采用分离变量法,可得到三个常微分方程,分别求解出相应的函数和量子数。
n =1 基态能量eV 6.131-=E eV 6.131=-∞E E n = 2,3,… 对应的能量 称为激发态能量eV 40.32-=E eV 51.13-=E 当 n 很大时,能级间隔消失而变为连续值对应于电子被电离∞=n 当 ,0=∞E ∞=n 11E 232E 3E 454E ∞E ∞2. 角动量(动量矩)量子化 角量子数电子绕核运动 求解薛定谔方程结论:电子绕核运动的转动角动量是量子化的)1(+=l l L 角动量— l 副量子数(角量子数)氢原子的电子电离能为:eV n E n 26.13-=氢原子能量公式)1(,,2,1,0-=n l氢原子中电子的量子态n =1n =2n =3n =4n =5n =6l = 0l = 1l = 5l = 4l = 3l = 2( s )( p )( h )( g )( f )( d )1s 5f 5d 5p 5s 6s 6p 6d 6f 6g 6h 4s 3s 3p 4f 3d 4p 4d 5g 2p 2s )1(+=l l L 共有 n 个可能的取值用,,,,f d p s 分别代表 ,3,2,1,0=l 等各个量子态玻尔的旧量子论与量子力学描述电子运动的角动量量子化的区别注意:若 l = 0有 L = 0电子的概率分布具有球对称性角动量为零)1(,,2,1,0-=n l 角动量(动量矩)量子化3. 空间量子化(空间取向量子化) 磁量子数角动量空间取向是量子化的—— 电子运动具有角动量量子化波函数 电子运动相当于一圆电流圆电流具有一定磁矩 磁矩在外磁场作用下具有一定取向 电子运动的磁矩方向与其角动量方向相反 电子转动角动量方向有确定的空间取向ZB , LθμzL o 经典理论:空间取向连续θ可取π→0的任意值量子力学:空间取向不连续z L ,只取一系列的离散值 m L z =ll l l l m -----=),1(,,2,1, 角动量空间取向是量子化的 m —— 磁量子数对应一个角量子数 l ,角动量有 2 l +1个取值例 11=l 1,0±=m Z B , o -例 22=l 2,1,0±±=m Z B , o- 22- 6)1(=+=l l L 2=L 21=+=)l (l L 例 3 设氢原子处于2 p 态,试分析氢原子的能量、角动量大小及角动量的空间取向?解:2 p 态表示: n = 2, l = 1得eV 40.32-=E 角动量的大小为2)1(=+=l l L 当 l =1 时,磁量子数 m l 的可能值:-1, 0, +1,则角动量方向与外磁场的夹角的可能值为:⎪⎩⎪⎨⎧=+=4324)1(arccos πππθl l m l eV 6.132nE n -=4. 电子云 (Electron cloud )—— 电子的概率分布电子在绕核运动中无固定点、无轨道概念,只能用各处出现的概率来描述电子运动的状态,故用电子云的密度形象地显示概率分布。
2022-2023高中物理竞赛课件:玻尔氢原子量子论
En
1 n2
me4
8
2 0
h
2
ν~nk
me4 1
8
2 0
h3c
(
k
2
1 n2 )
从其它能级到同一能级的跃迁 属于同一谱线系。
5 4 3
2
莱 曼 系
n1
-0.85eV
布
拉 -1.5eV
帕开 邢系
系
-3.39eV
巴 尔 末 系
-13.6eV
例: 在气体放电管中,用能量为12.5eV的电子通过碰撞使氢原子激发, 问受激发的原子向低能级跃迁时,能发射那些波长的光谱线?
3)正确的解释了氢原子及类氢离子(单电子)光谱;
玻尔理论意义与局限性
2、玻尔理论的局限性
1)对稍复杂的原子光谱,定性、定量都不能解释; 2)对氢原子谱线的强度、宽度、偏振等问题无法处理; 3)把微观粒子的运动视为有确定的轨道是不正确的; 4)是半经典半量子理论,玻尔理论的出发点是经典力学,
又加上一些与经典理论不相容的量子化条件来限定稳 定状态,这些条件又不能从经典理论中给出解释, 是一种不自洽的理论。即把微观粒子看成是遵守经典 力学的质点,同时,又赋予它们量子化的特征。 这本身就决定了理论本身的局限性
能量的计算
rn
n2
0h2 me2
1 2
mvn 2
e2
8 0rn
电子在量子数为n的轨道上运动时, 原子系统总能量是:(取无穷远处为静电势能零点)
v n=3
n=2
m
n=1 r
E1 E2
E3
基态能量:
n 1, 2, 3, 这种量子化的能量称为能级
与量子力学的结论一致
玻尔氢原子量子论
氢原子的量子力学
]Θ
=0
(2)
12
用分离变量法解此方程,设解为: = R ( r )Θ (θ )Φ (φ ) ψ ( r,θ ,φ ) 代入方程分别得三个微分方程:
dΦ + m 2 2 lΦ = 0 dt 1 d d Θ l ( l +1) sin [ ( ) + θ sin d θ θ d θ
2 1 d 2dR 2m e r ( ) + 2 2 [E + h r dr dr 4 π ε r
53
=0
量子力学对塞曼效应的解释
dΦ + m 2 (1) 2 lΦ = 0 dt 在求解方程(1)时,Φ (φ ) 必须满足标准 条件,自然得到 m l 只能取0,或正负整数 ml ] 0 2 = Θ sinθ 在求解上述方程时,得到的解要求 m l l
54
2
值。 1 d sin d Θ l ( l +1) [ ( ) + θ sin d θ θ d θ
n =4 4s n =5 5s
4p
5p
4d
5d
4f
5f 5g
31
氢原子内电子的状态 l=0 l=0l=0 l=0 l=0 l=0 (s) (p) (d) (f) (g) (h) n =1 1s n =2 2s n =3 3s 2p 3p 3d
n =4 4s n =5 5s n =6 6s
4p
5p
4d
h μ ν
0
β
B
1 E +μ β B l 0 E l E 1 μβ B
0 0 0
l
E0
f
ν
(μ β =
0
ν
0
eB 4π m
玻尔的氢原子理论
玻尔的氢原子理论
为此,J.汤姆孙在1904年提出了原子结构的枣糕式模型.该模型认 为,原子可以看作一个球体,原子的正电荷和质量均匀分布在球内, 电子则一颗一颗地镶嵌其中.1909年,J.汤姆孙的学生卢瑟福为了验证 原子结构的枣糕式模型,完成了著名的α粒子散射实验.实验发现α粒 子在轰击金箔时,绝大多数α粒子都穿透金箔,方向也几乎不变,但 是大约有1/8 000的α粒子会发生大角度偏转,即被反弹回来.这样的 实验结果是枣糕式模型根本无法解释的,因为如果说金箔中的金原子 都是枣糕式的结构,那么整个金箔上各点的性质应该近乎均匀,α粒 子轰击上去,要么全部透射过去,要么全部反弹回来,而不可能是一 些穿透过去,一些反弹回来.
玻尔的氢原子理论
二、 原子结构模型
1897年,J.汤姆孙发现了电子.在此之前,原 子被认为是物质结构的最小单元,是不可分的,可 是电子的发现却表明原子中包含带负电的电子.那 么,原子中必然还有带正电的部分,这就说明原子 是可分的,是有内部结构的.执着的科学家就会继 续追问:原子的内部结构是什么样的?简洁的里德 伯光谱公式是不是氢原子内部结构的外在表现?
玻尔的氢原子理论
三、 玻尔的三点基本假设
为了解决原子结构有核模型的稳定性和氢原子光谱的分 立性问题,玻尔提出以下三个假设:
(1)定态假设.原子中的电子绕着原子核做圆周运动, 但是只能沿着一系列特定的轨道运动,而不能够任意转动, 当电子在这些轨道运动时,不向外辐射电磁波,原子系统处 于稳定状态,具有一定的能量.不同的轨道,具有不同的能 量,按照从小到大的顺序记为E1、E2、E3等.
玻尔的氢原子理论
可是这个模型却遭到很多物理学家的质疑.因为按照当时的物 理理论(包括经典力学、经典电磁理论及热力学统计物理),这 样一个模型是根本不可能的,原因有以下两个:
量子力学中的氢原子结构分析
量子力学中的氢原子结构分析量子力学是一个让人感到神秘的学科,从微观角度研究原子和分子的行为和相互作用。
氢原子是量子力学中最简单的单电子原子,其结构对于研究其他多电子原子和分子具有重要意义。
本文将介绍氢原子结构的量子力学理论和现实应用。
1. 氢原子的波函数和能级量子力学中,波函数是用来描述粒子在空间中波动和存在的函数。
氢原子中电子的波函数可以用Schrodinger方程求解,得到如下公式:$\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{l,m}(\theta,\phi)$其中,$n$为主量子数,$l$为角量子数,$m$为磁量子数,$r$为离子半径,$Y_{l,m}$为球谐函数。
氢原子的能级也可以根据波函数求得。
具体方法是计算氢原子中电子的哈密顿算符在波函数上的期望值,得到:$E_n=-\frac{me^4}{8\epsilon_0^2h^2n^2}$其中,$m$为电子质量,$e$为电子电荷,$\epsilon_0$为真空介电常数,$h$为普朗克常数。
这个公式称为Bohr模型,与实验值相比,精度较高,但仍会有误差。
2. 氢原子的谱线和光谱学氢原子发射光线的频率可以通过与氢原子内部能级的差值相对应。
这些频率形成了光谱线,分为巴尔末系(Balmer series)、洪特姆系(Lyman series)、帕舍尼亚系(Paschen series)等。
巴尔末系中电子从$n\geq3$的能级跃迁到$n=2$的电子能级,所产生的光谱线包括Bα、Bβ等。
这些线可以被用来确定物质的组成和温度等特征。
除了发光谱线,氢原子还可以吸收谱线。
在光谱学中,通过测量吸收谱线的强度和波长,可以确定物质的成分和性质。
而通过对氢原子谱线的研究和分析,可以深入了解物质和电磁辐射之间的相互作用。
3. 氢原子的电离和激发氢原子被电离(即,从基态跃迁到自由电子状态)所需要的能量称为氢原子的电离能。
氢原子的电离能是一个常见的物理量,被用来描述和比较物质的化学性质。
玻尔原子量子论
巴尔末系的特点: 巴尔末系的特点: 1. 每条谱线都占有确定的位置,即具有确定的波长 每条谱线都占有确定的位置, 2. 相临两条谱线的波长差是确定的 相临两条谱线的波长差沿着短波方向递减, 3. 相临两条谱线的波长差沿着短波方向递减,即谱线分布 沿着短波方向越来越密. 沿着短波方向越来越密. 4. 以上的特点是确定的,与实验条件无关. 以上的特点是确定的,与实验条件无关.
3. 广义的巴尔末公式:(氢原子光谱的其它线系) 广义的巴尔末公式:(氢原子光谱的其它线系) :(氢原子光谱的其它线系
~ ν = R( 12 − 12 ) k = 1,2,3,L n = k + 1, k + 2,L k n
其中: 2 其中: R 和 R 称为光谱项 2 称为光谱项 k n
经典理论解释所碰到的困难: 二、用卢瑟福的核式模型+经典理论解释所碰到的困难: 1897年J.J汤姆孙发现了电子 原子结构的研究真正开始 年 汤姆孙发现了电子 原子结构的研究真正开始. 汤姆孙发现了电子,原子结构的研究真正开始 1. 汤姆孙原子结构模型 他假定,原子中的正电荷和原子 他假定 原子中的正电荷和原子 质量均匀地分布在半径为10 质量均匀地分布在半径为 -10m 的球体范围内,而原子中的电子则 的球体范围内 而原子中的电子则 浸于此球体中—葡萄干蛋糕模型 葡萄干蛋糕模型. 浸于此球体中 葡萄干蛋糕模型 2. α粒子散射实验 F 实验装置图 R S θ • 粒子入射在金箔F上 α粒子入射在金箔 上, α粒子 O 被散射后打在荧光屏P上 被散射后打在荧光屏 上 金箔 显微镜T观测 粒子数. 观测α 显微镜 观测α粒子数
T P
实验结果: 实验结果 绝大多数α粒子穿透金箔后沿原方向运动,但有八千分之 绝大多数α粒子穿透金箔后沿原方向运动 但有八千分之 一的粒子的散射角θ大于90º.甚至有散射角接近 甚至有散射角接近180º的. 一的粒子的散射角θ大于 甚至有散射角接近 的 汤姆孙模型不能偏转角解释θ 的情况. 汤姆孙模型不能偏转角解释θ>90º的情况. 的情况
氢原子量子力学理论
由此得到三个量子数 n、l、m
确定氢原子定态波函数的三个量子数n、l、m
(1)主量子数 n
me e4 1 En , n 1, 2, 3, 2 2 2 2(4 0 ) n
(2)角量子数 l 对于一个确定的 n 值,l = 0,1,2,…,n - 1,λ = l(l+1) 氢原子系统的轨道角动量 p l (l 1)
角量子数:
l 0,1, 2,3,..., n 1, 共n个值
氢原子的基态波函数:
1 r a0 100 (r ) e a03 2 三个量子数n, l, m:
n:主量子数; l:角量子数; l 0,1, 2,3,..., n 1, 共n个值 m:磁量子数; m 0, 1, 2,..., (l 1), 共2l 1个值
2 Wnl (r) Rnl (r)r 2
ቤተ መጻሕፍቲ ባይዱ
电子的角分布
Wlm ( , ) | Ylm ( , ) |2
设在空间(r,θ ,φ )处体积元 dV 处发现电 子的几率为 Wnlm (r, , )dV
Wnlm (r , , )r sin drd d | nlm (r , , ) | r sin drd d
氢原子的量子力学理论
1926年,Erwin Schrodinger给出了 一个微观粒子在势场U(r,t)低速时波函数满 足的方程,称为薛定谔方程
2 2 i (r , t ) U (r , t ) (r , t ) t 2m
玻恩给出了波函数的概率解释
氢原子是两体问题,可以通过坐标的选取化 为折合质量为m=memp/(me+mp)的单体问题, 从而给出其薛定谔方程。 氢原子中的电子在核电场中运动,其电势能为:
氢原子的量子理论
1)
R
0
(1) (2)
(3)
其中 m 和 l 是引入的常数。
解此三个方程,并考虑到波函数应满足的
标准化条件,即可得到波函数 (r, , )
并且可得到: 能量量子化 角动量量子化 角动量空间量子化
三个量子数
1.能量量子化和主量子数
求解方程(3) ,并使 R ( r ) 满足标准化条件,求得 E必等于
32 2022
1 n2
L l(l 1)
Lz m
对于给定的 n ,l 可以有n 个值
对于给定的 l ,m 可以有 2l+1 个值
对于给定的 n ,可能的波函数(状态)数量
n1
N (2l 1) n2 简并度
l 0
n 1, 2 , 3 ,
K, L, M, N, …… 壳层
l 0,1, 2 , , n 1
26.5.2.原子的壳层结构
原子中的电子 n , l , m , ms
壳层 n 1, 2,3, K, L, M, N, …… 壳层
次壳层 l 0, 1, 2 , , n 1 s, p, d, f, g, …… 次壳层
如:n = 3, l = 0, 1, 2 分别称为3s态,3p态,3d态
电子在原子内的分布 多电子原子系统中,核外电子在不同的壳层上
r 2 r r r 2 sin
r 2 (sin )2 2
同乘 r 2/RY,并且移项
1 R
d dr
(r 2
dR ) dr
K 2r2
Y
1 sin
(sin
Y
)
Y
1 (sin
)2
2Y
2
1 R
d dr
(r 2
《氢原子的量子理论》课件
2 自旋标度符号
解释自旋标度符号和自旋 的相对性质,以及它们在 波函数描述中的作用。
3 自旋磁量子数
探索氢原子自旋磁量子数 和简并度,及其对态的能 量和性质的影响。
结论
1 氢原子量子理论的应用
总结氢原子量子理论在原子物理和量子力学研究中的重要应用和意义。
2 未来研究方向
探讨氢原子量子理论未来可能的发展方向和研究领域。
讨论氢原子能级的计算方法和能量本征值的物理意义。
2
能级简并
解释氢原子能级简并现象的原因和如何计算简并度。
3
能量本征函数
介绍氢原子的能量本征函数及其在波函数中的应用。
氢原子的辐射
发射光谱
吸收光谱
探索氢原子的发射光谱现象,解 释辐射能级跃迁和光谱线的产生。
讲解氢原子的吸收光谱,如何分 析和应用能级的吸收特性。
3 社会意义
思考氢原子量子理论对社会和技术的影响,以及潜在的实际应用。
氢原子的波函数
讨论氢原子的波函数表达和 意义,以及如何计算和解释 波函数。
氢原子的波函数
1 主量子数
介绍氢原子主量子数及其在波函数中的作用和意义。
2 角量子数
解释氢原子角量子数的概念和用途,以及与轨道形状的关系。
3 磁量子数
探讨氢原子磁量子数的含义和作用,以及在磁场中的行为。
氢原子的能级
1
能量本征值
等相球面模型
介绍氢原子的等相球面模型,解 释电子在不同能级之间的跃迁规 律。
氢原子的旋磁量子数
1定则和跃迁的概率。
2 符号约定
解释氢原子量子数的符号约定,如何表示和计算旋磁量子数。
3 柯塞特定理
介绍柯塞特定理和它在解析解中的应用,以及旋转对称性的影响。
氢原子的量子力学模型概念
氢原子的量子力学模型概念在量子力学中,氢原子是一种重要的原子,描述它需要将它的物理原理应用到量子力学理论中。
氢原子的量子力学模型允许人们通过描述电子在能量状态下的运动,来推导出它的特性和性质。
本文将着重讨论氢原子模型的概念,用来解释氢原子在空间和动量空间的分布特性。
首先,要讨论氢原子的量子力学模型,就必须先知道原子的构成。
氢原子由一个质子和一个电子组成,它们由核周围的电磁力或强程度来绑定。
由于电子的电荷,它们会在电场的影响下产生动量。
此外,由于粒子的反离子性,它们在原子核周围会形成一个轨道系统。
因此,它们也会影响原子在空间上的分布特性。
其次,之后要讨论氢原子的量子力学模型,必须从氢原子能量状态开始。
根据量子力学的波函数原理,电子的能量状态表示其在空间的活动情况。
根据该原理,可以确定电子的能量状态,以及其对应的波函数。
当电子处于一定的能量状态时,它就会具有一定的动量特性;而当电子能量状态发生变化时,它们的波函数也会改变,从而影响其在空间和动量空间的分布特性。
再次,在探究氢原子模型的概念时,还需要关注能级在空间中的分布特性。
根据量子力学原理,电子所处的能级在空间中有一定的分布模式。
通常,电子会处于介于原子核和原子轨道的位置,即“环”的位置。
由于电子的运动轨迹有一定的循环特性,这个位置可以分解成电子轨道的半径和角度。
每个能级都有一定的半径,它们都按照一定的规律组合在原子核周围,从而构成空间分布模式。
最后,要解释氢原子模型的概念,就需要介绍动量空间的分布特性。
根据量子力学的精确的规律,可以将氢原子的运动状态分解成氢原子的动量k。
根据Schrdinger方程,氢原子的动量在空间中可以分解为两个分量,即有限的点动量和无限的连续动量。
连续动量k的分布特性取决于氢原子的总能量,而点动量k的分布特性则取决于电子在能量状态上的变化。
因此,要深入理解氢原子模型的概念,就要对电子在能量状态上的变化和它们在动量空间中的分布特性做出精确的说明与描述。
近代物理量子5-氢原子的量子理论,电子自旋
l = 0, 1, 2, 3, …, n-1 称为角量子数(副量子数)。
对同一个 n , 角动量有n个不同的值
定义L为角动量是因为 h 具有角动量的量纲, 并不需要有轨道的概念。
当n 1时,l 0,L 0,即电子处于 基态时角动量为零。 玻尔理论:
L n h n
2
n 1,2,3...
5.求出概率密度分布及其他力学量
一、氢原子的量子力学处理
1.氢原子的定态薛定谔方程
[
22Βιβλιοθήκη U (r )]( r )
E (r )
2m
氢原子中电子的电势能 U e2
4π 0 r
U和方向无关 为中心力场U( r )
z
球坐标 x r sin cos
y r sin sin
z r cos
y
x
在球坐标中的薛定谔方程
而且计算得到的两条沉积线之间的距离 也与实验符合得很好。
讨论 四个量子数 • 电子的状态用量子数 n , l , ml 描述
考虑自旋后 还有2种可能 相当于还需一个自由度来表征
• 所以 电子的状态应用n,l,ml ,ms描述
(1)主量子数 n:n =1,2,3……,可以大体上决
定原子中电子的能量。
1900-1958 1945年诺贝尔物理
学奖获得者
半年后,荷兰物理学家埃斯费斯特的两个学生乌仑贝克和 高斯密特在不知上述情形下,也提出了同样的想法,并写了 一篇论文,请埃斯费斯特推荐给“自然”杂志。接着又去找 洛仑兹,一周后,洛仑兹交给他们一叠稿纸。并告诉他们, 如果电子自旋,其表面速度将超过光速,但论文已寄出,他 们后悔不已。
1921年史特恩---盖拉赫进行的实验是证明角动量空间量 子化的首例实验,是原子物理学最重要的实验之一 。
氢原子的量子理论作业含答案
氢原⼦的量⼦理论作业含答案第26章氢原⼦的量⼦理论习题 (初稿)⼀、填空题1. 氢原⼦的波函数可以写成如下形式(,,)()(,)l l nlm nl lm r R r Y ψθ?θ?=,请给出电⼦出现在~r r dr +球壳内的概率为___________,电⼦出现在(),θ?⽅向⽴体⾓d Ω内的概率为_______________。
2. 泡利不相容原理是指 ______________,原⼦核外电⼦排布除遵循泡利不相容原理外,还应遵循的物理规律是 __________ 。
3. 可以⽤⽤ 4 个量⼦数描述原⼦中电⼦的量⼦态,这 4 个量⼦数各称和取值范围怎样分别是:(1) (2) (3) (4) 。
4. 根据量⼦⼒学原理,如果不考虑电⼦⾃旋,对氢原⼦当n确定后,对应的总量⼦态数⽬为_ _个,当n 和l 确定后,对应的总量⼦态数⽬为__ __个5. 给出以下两种元素的核外电⼦排布规律:钾(Z=19): 铜(Z=29): ___ __6. 设有某原⼦核外的 3d 态电⼦,其可能的量⼦数有个,分别可表⽰为 ____________________________。
7. 电⼦⾃旋与其轨道运动的相互作⽤是何种性质的作⽤。
8. 类氢离⼦是指___________________,⾥德伯原⼦是指________________。
9. 在主量⼦数为n=2,⾃旋磁量⼦数为s=1/2的量⼦态中,能够填充的最⼤电⼦数是________。
10. 1921年斯特恩和格拉赫实验中发现,⼀束处于s 态的原⼦射线在⾮均匀磁场中分裂为两束,对于这种分裂⽤电⼦轨道运动的⾓动量空间取向量⼦化难于解释,只能⽤_________来解释。
⼆、计算题11. 如果⽤13.0 eV 的电⼦轰击处于基态的氢原⼦,则: (1)氢原⼦能够被激发到的最⾼能级是多少?(2)氢原⼦由上⾯的最⾼能级跃迁到基态发出的光⼦可能波长为多少? (3)如果使处于基态的氢原⼦电离,⾄少要多⼤能量的电⼦轰击氢原⼦?12. 写出磷的电⼦排布,并求每个电⼦的轨道⾓动量。
量子力学:氢原子理论2
S N
P
e Pm L 2m B Fz Pmz z
m
应无偏转
• • •
轨道运动磁矩 不均匀磁场 (2l+1)
基态银原子l=0 L 0, LZ 0, PmZ 0
实验结果有两条偏转线。射线的偏转表明: 设自旋角量子数为S 即:
电子还应具有自旋角动量 写成 (2l+1)
2
方程成立条件是两边同为一常数, 令:m
1 d 2 得: ml2 d 2
2 l
⑴
( )
1 2
e
iml
sin d 2 dR 2m 2 2 e (r ) 2 r sin ( E ) R dr dr 4 0 r
2 2
1 d d sin (sin ) ml2 d d
同一主壳层内有2n2个可能的量子态 简并度:
Z
l n 1 l 0
2 (2l 1) 2n 2
泡利不相容原理: 多电子的原子系统中,不可能有两个电子具 有相同的状态。也就是说,描述电子状态的两组 量子数(n1l1ml1ms1)和(n2l2ml2ms2)不完全相同的。 能量最小原理: 能量最小的状态是原子的最稳定的状态, 即原子的基态。电子在原子诸壳层中必须这样 分配,使得原子的能量为最小值。 电子的排布表达方法: 如:Z=18,氩 1s 2 2s 2 2 p 6 3s 2 3 p 6 不正常,可容 1s 2 2s 2 2 p 6 3s 2 3 p 5 Z=17 纳10个电子 Z=11 1s 2 2s 2 2 p 6 3s1 1s 2 2s 2 2 p 6 3s 2 3 p 6 3d 6 4s 2 Z=26铁
L
l( l 1 )
l 0 ,1 ,2( n 1 )
2大学物理量子力学的氢原子理论四个量子数 (1)
综上
电子状态:由 n, l, ml , m四s 个量子数决定。
轨道能量:由 n, l两个量子数决定。
(1) 主量子数 n : n =1,2,3,… 决定电子能量的
大小
(2) 角量子数 l : l =0,1,2,…, n-1。决定电子轨道
角动量的大小。
(3) 磁量子数 m:l ml 0 ,1,2, ,l
2
2
采用分离变量法求解,令
(r,,) R(r) ()()
(1)径向波函数方程
1 r2
d dr
(
r2
dR dr
)
2me 2
E
e2
4
0r
l(
l 1)
r2
R
0
(2)轨道角动量波函数方程
1
sin
d
d
(sin
d d
1 2
,
1 2
状态数为14, n大于等于4.
例:试问氢原子处于 n=2 能级有多少个不同的 状态?并列出各个状态的量子数。
解:n=2 时的状态数为 2n2 个8。 l 可能取
值为 0,1两个值。
当 l 0 时, ml 0,
1 ms 2
or
1 ms 2
当 l 1 时,可能有
第六节
量子力学的 氢原子理论
一、氢原子的定态薛定谔方程
势能分布
U (r) e2
4 0 r
属定态问题,符合定态薛定谔方程
h2
2me
2
U (r)
E
球坐标中的拉普拉斯算符:
2
1 r2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n =2,3,4, 时,得氢原子的其它激发态能量
2.角动量量子化和角量子数
求解方程 时,要使方程有确定的解,电子绕核运动的角动量 必须满足量子化条件,
L l (l 1) 式中 l 称为角量子数或副量子数.
l 0,1, 2 (n 1)
17
3.角动量空间量子化和磁量子数 电子绕核运动的角动量的方向在空间的取向只能取一些特定的 方向,即角动量在外磁场方向的投影必须满足量子化条件:
哈密顿算符
角动量算符
z
E Hˆ
p2
2pˆ2 2
U(r )
U(r )
H
LLˆ
2
2
2
rp
rirpˆ
U (r )
Lˆ x
i(
y
z
z
y
)
Lˆ y
i(z
x
x
z
)
Lˆ z
i( x
y
y
x
)
r x2 y2 z2
x
y
x r sin cos
x2 y2
arctan
y r sin sin
例
R10 (r) 2
P10 (r)
4 a03
4
a03
e2r
r e2 2r / a0
/
a0
1) 径向函数的节点数 nr n l 1
例如 3s 曲线有两个节点 nr 2
nr为 0( l =n-1)的态
称为圆轨道:1s,2p,3d
曲线 Pn,n1r 极大值位置为
rn
如基态
n1s2a态0 -有- 最概r1然半a0径2p态有r2
d
d
sin
d
d
l(l
1)
ml2
sin 2
0
(2)
把一定的 ml 值代入方程 (2)求解,又使 ()能满足标准 化条件,就得出 l 只能取 0,1,2,3 等正整数值。 对于一定的 m l,必定有 l ml .
对于一定的 l , ml 的最大值只能取到 l ,即
ml 0,1,2,,l
eiml 2 1
即 cos(ml 2 ) i sin(ml 2 ) 1
cos(ml 2 ) 1 和 sin(ml 2 ) 0
ml 0,1,2,
12
d 2
d 2
ml2
0
(1)
对方程 (1)求解,而又使()能满足标准化条件,就自然 得出 ml 只能取 0,1,2,3 等整数值。
1
sin
求得 E必等于
En
me4
32 2022
1 n2
me4
8 0 2 h 2
1 n2
式中 n 称为主量子数,且只能取 n l+1的正整数,
对于一定的 n, l 只能取 0,1,2 (n-1)共n个整数1值4 。
Rn,l (r)
R1,0
2
3
er / a0
a0 2
R2,0
1 (2a0 )3/ 2
(2
4a0
电子径向概率分 布
3d态有 r3 9a201
2)径向位置概率分布曲线
有 (n l)个极大 值峰,
在有心力场中运动 的 粒子,角动量守恒,能量守恒。
由不确定关系发现:粒子的能量、角动量的平方、角动量沿Z方向的 分量可以同时精确测定。
角动量的三个分量中的任意两个都不能同时 精确测定。
∴选用能量、角动量的平方、角动量沿Z方向的分量 为体系守恒量完全集
角动量大小,角动量在任何方向的投影,能量可以完全描述体系状态。
cos
sin
1 r
cos sin
)(sin
sin
r
1 r
cos
sin
1 r
cos sin
)
(cos 1 sin ) (cos 1 sin )
r r
r r
1 r2
r
(r 2
) r
1
r 2 sin
(sin
)
1
r 2(sin )2
2
6
2
x r sin cos
拉普拉斯算符
z
z r cos
arctan
y x
1
可求出
Lx
ih
sin
ctg
cos
Ly
ih
cos
ctg
sin
Lz ih
Lˆ i r
L2
h2
1
sin
sin
1 sin 2
2
2
比较;
2
1 r2
r
r
2
r
r2
1
sin
sin
r2
1
sin2
2
2
2
1 r2
r
r 2
13
1 r2
d dr
r 2
dR dr
2m
2
E
e2
40r
l(l r2
1)
R
0
(3)
把一定的 l 值代入方程 (3)对 R(r)求解,分为两种情况:
(a) E>0,电子已不再受氢核的束缚,E可取连续值。 氢原子处于电离状态。自由电子。
(b) E 0,求解方程 (3),并使 R ( r ) 满足标准化条件,
O
r x2 y2 z2 x r sin cos
arccos(
z x2 y2 z2)
y r sin sin
x
y
x
arctg( y )
z r cos
4
x
x r sin cos y r sin sin z r cos
r2 x2 y2 z2
cos z
r
两边对x求偏导
13.6 赖曼系
m 1
100
3000
n=1
(4) 电子跃迁时辐射光频率
2000 200
/ nm
/(1012 Hz)
v
En
2
Em
Rc(
1 m2
1 n2
)
20
四. 电子概率分布
定义径向概率密度为P(r),则
P(r)dr ( 2 sindd)r2dr Rnl (r) 2 r2dr
P(r) Rnl (r) 2 r 2
r
1 r
cos sin
r cos 1 sin
z z r z z
r r
2
2 x2
2 y2
2 z 2
x
x
y
y
z
z
(sin
cos
r
1 r
cos
cos
1 r
sin sin
)
(sin
cos
r
1 r
cos
cos
1 r
sin sin
)
(sin
sin
r
1 r
K
2
2m 2
(E
e2
4 0 r
)
得
1 r2
d dr
r2
dR dr
2m
2
E
e2
40r
l
(l r2
1)
R
0
(3)
1
sin
(sin
Y
)
1 sin 2
2Y
2
l(l 1)Y
0
令Y(.) ( )() 代入上式
d (sin d) d 2 l(l 1) 0
sin d
d sin 2 d 2
同乘 sin 2
sin
d
d
(sin
d) l(l
d
1)sin2
1
d 2
d 2
m2 l10
m sin
d
d
(sin
d) l(l 1) sin2 d
1
d 2
d 2
2 l
分别得
d 2
d 2
ml2
0
1
sin
d
d
sin
d
d
l(l
1)
ml2
sin 2
0
前面已经得到
1 r2
n,l,ml (r, ,) Rn,l (r)Yl,ml ( ,)
例 1,0,0
1 er /a0
a03/2
2
1,0,0
1 e2r / a0
a03
15
通常,一个力学量A对应多个本征波函数(简并),所以一个力学量不 能完全确定体系状态。完全集的力学量数等于体系的自由度数。
在有心力场中运动 的 粒子有三个自由度,应该有三个力学量 来描述其状态
0.544 0.85 1.51
3.4
n=5 布喇开系 n=4
帕邢系 m 4 n=3
m3
巴尔末系
n=2
m2
En
mee4 32202
2
1 n2
(1) En随 n 的增加而增高; (2) 能级间距随 n 增加而减小;
(3) 当 n , E 0
开始电离,基态电子能量
E1 13.60ev
其绝对值等于氢原子电离能 I
(它们有共同的本征波函数,且同时有确定值)
能量与r,θ有关
角动量的平方和角动量沿Z方向的分量与θ,φ有关
16
二 .量子化条件和量子数
1.能量量子化和主量子数
求解方程 ,并使 R ( r ) 满足标准化条件,求得 E必等于
En
mee4 32202
2
1 n2
式中 n 称为主量子数.
n 1, 2,3
能量是量子化的。n =1时得氢原子的基态能量 E1=-13.6eV