高中数学三角函数恒等变形公式

合集下载

高中数学-简单的三角恒等变换

高中数学-简单的三角恒等变换
4 3
= 1 .
7
4
3.(教材习题改编)若(tan α+1)(tan β+1)=2,则α+β=
教材研读 栏目索引
.
答案 +kπ,k∈Z
4
解析 由(tan α+1)(tan β+1)=2可得,
tan α+tan β=1-tan αtan β,则tan(α+β)= tan α tan β =1,则α+β= +kπ,k∈Z.
1 tan α tan β
4
教材研读 栏目索引
4.(2019江苏无锡高三模拟)已知sin2x+2sin xcos x-3cos2x=0,则cos 2x= .
答案 - 4 或0
5
教材研读 栏目索引
解析
∵sin2x+2sin
xcos
x-3cos2x= sin2
x

2sin x cos x sin2x cos2
7 14 7 14 2
考点突破 栏目索引
因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α< ,
2
又β为锐角,所以- <2α-β< ,所以2α-β= .
2
2
3
考点突破 栏目索引
方法技巧
“给值求角”实质上可转化为“给值求值”,即通过求角的某个三角函 数值来求角(注意角的范围),在选取函数时,遵循以下原则:
(2)1+sin α=③

sin
α 2

cos
α 2
2
;
教材研读 栏目索引
1-sin α=④

三角函数恒等变形公式

三角函数恒等变形公式

精品文档
.
精ห้องสมุดไป่ตู้文档
三角函数恒等变形公式
以下总结了三角函数恒等变形公式含倍角公式、辅助角公式、三角和的三角函数、两角和与差的三角函数
两角和与差的三角函数:
cos( α+β)=cos α· cosβ - sin α· sin β cos( α - β)=cos α· cosβ+sin α· sin β sin( α±β )=sin α· cosβ± cosα· sin β tan( α+β)=(tan α+tan β)/(1 - tan α· tan β) tan( α - β)=(tan α - tan β)/(1+tan α· tan β) 三角和的三角函数:
.
cosα· sin β=(1/2)[sin( α+β) - sin( α - β)] cosα· cosβ=(1/2)[cos( α+β)+cos( α - β)] sin α· sin β=- (1/2)[cos( α+β)- cos( α - β)] 和差化积公式: sin α+sin β=2sin[( α+β)/2]cos[( α - β)/2] sin α - sin β=2cos[( α+β)/2]sin[( α - β)/2] cosα+cosβ=2cos[( α+β)/2]cos[( α - β)/2] cosα - cosβ=- 2sin[( α+β)/2]sin[( α - β)/2] 推导公式 tan α+cot α=2/sin2 α tan α - cot α=- 2cot2 α 1+cos2α=2cos2α 1- cos2α=2sin2 α 1+sin α=(sin α/2+cos α/2)2

高中数学必修一 三角恒等变形总结(采百家之长版)

高中数学必修一 三角恒等变形总结(采百家之长版)

一、三角函数公式:辅助角公式的重要作用:合一变形⇒把形如x b x a cos sin +的函数转化为)sin(ϕ+=x A y 的函数,即:两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式tan tan tan 2212ααααβ=-=←−−相除以上是三角函数公式的关系图二、三角恒等变换:一角二名三结构,对角、函数名、式子结构===化异为同三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

常用的数学思想方法技巧如下:(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如:(2余弦是基础,通常化切、割为弦,变异名为同名。

(3)常数代换:在三角函数运算,求值,证明中,有时需要将常数转化为三角函数值,(4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式,一般采用降幂处理的方法。

降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式 (5)公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用。

三、三角函数式的化简运算通常从:“角、名、形、幂”四方面入手;基本规则是:切割化弦,异角化同角,复角化单角,异名化同名,高次化低次,无理化有理,和积互化,特殊值与特殊角的三角函数互化。

化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量 使分母不含三角函数;⑤尽量使被开方数不含三角函数。

四、三角函数的求值类型有三类(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

三角恒等变换和角公式

三角恒等变换和角公式

5
2
3
【习题 4】已知 , 都是锐角, cos 1 , cos( ) 11 ,求 cos 的值.
7
14
【习题 5】已知 tan( ) 3 ,求 tan 的值 4
【习题 6】已知 , 都是锐角,且 sin 5 , sin 10 ,求 。
A. 0
B. 1
C. 1
D. 1 2
【习题 2】已知 (0 , ) ,且 sin 3 ,求 2 cos( ) 的值.
2
5
4
高中数学.三角恒等变换 01 和角公式(A 级).学生版
Page 3 of 4
【习题
3】已知 cos

4


(
,
)
,求 sin(

) 的值。
3
2
A. 15 3
B. 2 3
C. 1 3
D.1
高中数学.三角恒等变换 01 和角公式(A 级).学生版
Page 2 of 4
【例 11】 若 sin x sin y 3 , cos x cos y 4 ,求 cos(x y) 的值.
5
5
【例 12】 已知 3 ,则 (1 tan )(1 tan ) ( ) 4
【例 1】 求下列各式的值
(1) cos80 cos 20 sin 80 sin 20 ; (2) cos2 15 sin2 15 ; (3) 1 cos15 3 sin15 .
2
2
【例 2】 cos 79 cos 34 sin 79 sin 34 ( )
5
5
【例 16】 已知 tan 与 tan 是方程 x2 3x 3 0 的两根, 求 sin2 ( ) 3sin( ) cos( ) 3cos2 ( ) 的值.

三角恒等变形公式

三角恒等变形公式

三角恒等变形公式-余弦和差公式-正弦和差公式-二倍角公式-半角公式-和差化积公式-积化和差公式这些公式在解决三角函数的问题时非常有用,可以帮助我们将一个三角函数转化成其他形式来简化计算和推导。

下面将详细讨论每个变形公式及其应用。

首先是余弦和差公式。

余弦和差公式可以通过三角函数的几何定义得到。

设A和B是两个角,则有:cos(A ± B) = cosAcosB ∓ sinAsinB这个公式在解决三角函数的和差问题时非常有用,可以将一个复杂的三角函数转化为简单的三角函数相乘或相除的形式,进而简化计算。

接下来是正弦和差公式。

正弦和差公式与余弦和差公式类似,可以通过几何定义得到。

设A和B是两个角,则有:sin(A ± B) = sinAcosB ± cosAsinB这个公式也在解决三角函数的和差问题时非常有用,可以将一个复杂的三角函数转化为简单的三角函数相乘或相除的形式。

下面是二倍角公式。

二倍角公式可以通过余弦和正弦的和差公式得到。

设A是一个角,则有:cos2A = cos²A - sin²A= 2cos²A - 1= 1 - 2sin²Asin2A = 2sinAcosA这个公式可以将一个角的二倍角转化为这个角的正余弦的平方形式,便于计算。

再来是半角公式。

半角公式可以通过二倍角公式的变形得到。

设A是一个角,则有:cos(A/2) = ±√[(1 + cosA)/2]sin(A/2) = ±√[(1 - cosA)/2]这个公式可以将一个角的一半角转化为这个角的余弦或正弦形式。

接下来是和差化积公式。

和差化积公式可以通过余弦和正弦的和差公式得到。

设A和B是两个角,则有:cosA + cosB = 2cos[(A + B)/2]cos[(A - B)/2]cosA - cosB = -2sin[(A + B)/2]sin[(A - B)/2]sinA + sinB = 2sin[(A + B)/2]cos[(A - B)/2]sinA - sinB = 2cos[(A + B)/2]sin[(A - B)/2]这个公式可以将两个正弦或余弦的和(或差)转化为另外两个正弦或余弦的积,从而简化计算和推导。

高中数学三角恒等式变形技巧

高中数学三角恒等式变形技巧

高中数学三角恒等式变形技巧在高中数学的学习中,三角恒等式是一个重要的知识点。

学生们常常会遇到需要根据已知的三角恒等式来推导出新的恒等式的情况。

在这个过程中,掌握一些三角恒等式的变形技巧是非常有帮助的。

本文将介绍几种常见的变形技巧,并通过具体的例题进行说明。

一、平方差公式的变形平方差公式是我们在学习三角函数时经常接触到的一个恒等式,即:sin^2x - cos^2x = 1在解题过程中,我们常常需要根据这个公式来进行变形。

例如,以下是一道常见的题目:已知 sin^2x = 1/4,求 cos^2x 的值。

解析:首先,我们可以利用平方差公式将已知条件进行变形:sin^2x - cos^2x = 11/4 - cos^2x = 1然后,我们可以通过移项和化简的方法求解出 cos^2x 的值:cos^2x = 1/4 - 1cos^2x = -3/4通过这个例题,我们可以看到,利用平方差公式进行变形可以帮助我们解决一些关于三角函数平方的问题。

二、和差化积公式的变形和差化积公式是我们在学习三角函数时另一个重要的恒等式,即:sin(x ± y) = sinxcosy ± cosxsiny在解题过程中,我们可以利用这个公式将已知条件进行变形,从而得到新的恒等式。

例如,以下是一道常见的题目:已知 sin2x = 2sinx,求 cos2x 的值。

解析:首先,我们可以利用和差化积公式将已知条件进行变形:sin2x = 2sinxsin(x + x) = 2sinx然后,我们可以利用和差化积公式的逆向思维,将 sin(x + x) 进行变形:sin(x + x) = sinxcosx + cosxsinx2sinxcosx = 2sinx接着,我们可以通过移项和化简的方法求解出 cos2x 的值:sinxcosx = sinxcos2x = cos^2x - sin^2xcos2x = cos^2x - (1 - cos^2x)cos2x = 2cos^2x - 1通过这个例题,我们可以看到,利用和差化积公式进行变形可以帮助我们解决一些关于三角函数和的问题。

高中数学三角恒等式知识点归纳

高中数学三角恒等式知识点归纳

高中数学三角恒等式知识点归纳三角恒等式是高中数学中的重要知识点,它们在三角函数的运算和证明中起到关键的作用。

下面是一些常见的三角恒等式知识点的归纳:1. 基本恒等式- 正弦函数的平方加上余弦函数的平方等于1:$\sin^2x +\cos^2x = 1$- 正切函数是正弦函数与余弦函数的比值:$\tan x = \frac{\sin x}{\cos x}$- 余切函数是余弦函数与正弦函数的比值:$\cot x = \frac{\cos x}{\sin x}$- 正割函数是1除以余弦函数:$\sec x = \frac{1}{\cos x}$- 余割函数是1除以正弦函数:$\csc x = \frac{1}{\sin x}$2. 倍角与半角公式- 正弦函数的倍角公式:$\sin 2x = 2 \sin x \cos x$- 余弦函数的倍角公式:$\cos 2x = \cos^2x - \sin^2x$- 正切函数的倍角公式:$\tan 2x = \frac{2\tan x}{1 - \tan^2x}$- 正弦函数的半角公式:$\sin^2\frac{x}{2} = \frac{1 - \cosx}{2}$- 余弦函数的半角公式:$\cos^2\frac{x}{2} = \frac{1 + \cosx}{2}$- 正切函数的半角公式:$\tan\frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$3. 和差与积化和差公式- 正弦函数的和差公式:$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$- 余弦函数的和差公式:$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$- 正切函数的和差公式:$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$- 正弦函数的积化和差公式:$\sin x \sin y = \frac{1}{2}[\cos(x - y) - \cos(x + y)]$- 余弦函数的积化和差公式:$\cos x \cos y = \frac{1}{2}[\cos(x - y) + \cos(x + y)]$- 正切函数的积化和差公式:$\tan x \tan y = \frac{1 - \cos(x + y)}{1 + \cos(x + y)}$4. 诱导公式- 正弦函数的诱导公式:$\sin(\pi \pm x) = \mp \sin x$- 余弦函数的诱导公式:$\cos(\pi \pm x) = -\cos x$- 正切函数的诱导公式:$\tan(\pi \pm x) = \mp \tan x$这是一些常见的高中数学中三角恒等式的知识点归纳。

高中数学三角函数的恒等变形

高中数学三角函数的恒等变形

知识框架三角 恒 等 变 换和差化积公式sin sin 2sin cos 22αβαβαβ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+-+= sin sin 2cos sin 22αβαβαβ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+--= cos cos 2cos cos 22αβαβαβ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+-+=cos cos 2sin sin 22αβαβαβ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭+--=- 两角和与差的公式正弦公式::sin()sin cos cos sin :sin()sin cos cos sin S S αβαβαβαβαβαβαβαβ+-+=+⎧⎪⎨-=-⎪⎩余弦公式:()()+C :cos cos cos sin sin C :cos cos cos sin sin αβαβαβαβαβαβαβαβ-⎧+=-⎪⎨-=+⎪⎩正切公式:tan tan tan tan :tan();:tan()1tan tan 1tan tan T T αβαβαβαβαβαβαβαβ+-+-+=-=-⋅+⋅221cos 1cos :sin;:cos2222S C αααααα-+=±=±21cos sin 1cos :tan21cos 1cos sin T αααααααα--=±==++ 半角公式二倍角公式2:sin 22sin cos S αααα=22222:cos2cos sin 2cos 112sin C αααααα=-=-=-222tan :tan 21tan T αααα=-积化和差公式()()1sin cos sin sin 2αβαβαβ⎡⎤⎣⎦=++- ()()1cos sin sin sin 2αβαβαβ⎡⎤⎣⎦=+-- ()()1cos cos cos cos 2αβαβαβ⎡⎤⎣⎦=++- ()()1sin sin cos cos 2αβαβαβ⎡⎤⎣⎦=-+--三角函数的恒等变形三角函数 的恒等变形要求层次重难点两角和与差的正弦、余弦、正切公式C 掌握两角和与差的三角函数公式,掌握二倍角公式;能运用这些公式进行三角化简,求值等有关运算问题能正确地运用三角函数的有关公式进行三角函数式的求值,化简与恒等式的证明.二倍角的正弦、余弦、正切公式 C 简单的恒等变形B(一)知识内容1.两角和与差的三角函数公式:sin()sin cos cos sin αβαβαβ±=± cos()cos cos sin sin αβαβαβ±=tan tan tan()1tan tan αβαβαβ±±=2.倍角公式 sin 22sin cos ααα=;2222cos 2cos sin 12sin 2cos 1ααααα=-=-=-22tan tan 21tan ααα=-3sin 33sin 4sin ααα=-;3cos34cos 3cos ααα=-;323tan tan tan 313tan αααα-=-3.半角公式1cos sin22αα-=±1cos cos 22αα+=± 1cos 1cos sin tan21cos sin 1cos ααααααα--=±==++ 4.万能公式22tan2sin 1tan 2ααα=+;221tan 2cos 1tan 2ααα-=+;22tan2tan 1tan 2ααα=-5.积化和差公式例题精讲高考要求1sin cos [sin()sin()]2αβαβαβ=++-;1cos sin [sin()sin()]2αβαβαβ=+--;1cos cos [cos()cos()]2αβαβαβ=++-;1sin sin [cos()cos()]2αβαβαβ=-+--6.和差化积公式 sin sin 2sincos22αβαβαβ+-+=;sin sin 2cossin22αβαβαβ+--=;cos cos 2cos cos 22αβαβαβ+-+=;cos cos 2sin sin 22αβαβαβ+--=-【说明】这里的三倍角公式、万能公式、积化和差公式、和差化积公式都属于了解内容,不要求必须掌握.不建议大家去记这些公式,首先sin()sin cos cos sin αβαβαβ+=+这个公式比较容易记,而且如果大家不记其他公式不记其他公式的话,应该很容易了.下面给出其他公式通过这个公式的推导过程: 2.公式的推导:sin()sin[()]sin cos()cos sin()αβαβαβαβ-=+-=-+-sin cos cos sin αβαβ=- cos()sin[()]sin[()()]22ππαβαβαβ+=-+=-+-sin()cos()cos()sin()cos cos sin sin()22ππαβαβαβαβ=--+--=+- cos cos sin sin αβαβ=-cos()sin[()]sin[()]22ππαβαβαβ-=--=-+ sin()cos cos()sin cos cos sin sin 22ππαβαβαβαβ=-+-=+ sin()sin cos cos sin tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-两边同时除以cos cos αβ可得tan()αβ+=tan tan 1tan tan αβαβ+-tan tan()tan tan tan()tan[()]1tan tan()1tan tan a αβαβαββαβαβ+---=+-==--+然后把上面各式中的β代换为α,则可得到二倍角公式sin 2sin()sin cos cos sin 2sin cos ααααααααα=+=+=22cos2cos()cos cos sin sin cos sin ααααααααα=+=⋅-⋅=-再利用22sin cos 1αα+=,可得:2222cos2cos sin 2cos 112sin ααααα=-=-=-()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==-⋅-sin 2tan2cos 2ααα===sin 2sinsin1cos 222tan2sin cos 2sin cos 222ααααααααα-=== sin2cossinsin 222tan21cos cos 2cos cos 222ααααααααα===+【说明】这里没有考虑cos sin 022αα==,实际处理题目的时候需要把等于0的情况分出来单独讨论一下.建议大家刚学的时候自己每次推导一下要用的公式,这样比较容易记忆,加深对公式的理解,让自己能够更熟练的使用公式.同时告诉大家数学没有需要记忆的东西,大家在学习数学时不要有任何记忆的想法,要去理解它,才能掌握它,把它变成自己的东西,每学一个东西就像知道一个常识一样的去对待.如果靠记忆来学习数学的话,你学的仍然是别人的东西,而且用起来必然不够熟练.(二)主要方法1.倍角、半角、和差化积、积化和差等公式的运用(1)并项功能:2221sin 2sin cos 2sin cos (sin cos )ααααααα±=+±=± (2)升次功能2222cos 2cos sin 2cos 112sin ααααα=-=-=-(3)降次功能221cos 21cos 2cos ,sin 22αααα+-== (4)一个重要的构造22sin cos cos )ba b a b αααα+=++令sin β=,则cos β=cos cos sin )αβαβ+(sin β=)可知:sin cos a b αα+2.三角变换中常用的数学思想方法技巧有:⑴角的变换:和、差、倍、半、互余、互补的相对性,有效沟通条件与结论中角的差异, 比如:3015453060452︒︒=︒-︒=︒-︒=, ()()22αααββαββ=-+=+-=⋅()()()()ππ2()()44ααβαβαββααα=++-=+--=+--()()222βαβαβαααβα⎛⎫-=-+=-=-- ⎪⎝⎭ππππππ244362αααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-=++-=++-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭π3ππ2ππ5ππ443366αααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++-=++-=++-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⑵函数名称的变换:三角变形中,常常需要变函数名称为同名函数,在三角函数中正余弦是基础,通常化切为弦,变异名为同名;有时可以使用万能公式将所有函数名化为正切; ⑶常数代换:在三角函数运算、求值、证明中,有时需要将常数转化为三角函数值, 例如:2222ππππ1sin cos sec tan sintan 2sin 2sin 2464αααα=+=-====; ⑷幂的变换:降幂是三角变换时常用的方法,常用的降幂公式有:21cos2cos 2αα+=,21cos2sin 2αα-=但降幂并非绝对,有时也需要对某些式子进行升幂处理,比如:221cos22cos ,1cos22sin αααα+=-=;21sin 2(sin cos )ααα±=±;⑸公式变形:三角公式是变换的依据,应熟练掌握三角公式的顺用,逆用及变形应用, 例如:tan tan tan()(1tan tan )αβαβαβ±=±⋅⋅; ⑹辅助角公式的运用:在求值问题中,要注意辅助角公式 ()22 sin cos sin y a b a b αααϕ=+=++的应用,其中tan baϕ=,ϕ所在的象限由,a b 的符号确定.(三)典例分析:【例1】 运用两角和与差的三角函数公式推导倍角公式:sin 2,cos 2,tan 2ααα.【例2】 若04παβ<<<,sin cos a αα+=,sin cos b ββ+=,判断,a b 的大小关系及求ab 的范围.板块一:三角函数中角的变换【变式】 已知sin cos αα+=,则求tan cot αα+的值.【点评】解题时有时根据已知条件很难找到和要求问题的关系,这时候可以从要求的问题出发,进行推导,化简可能就会得到已知条件能够得到的简单形式.这是数学解题常用的一种方法.【变式】 若04παβ<<<,sin cos ,sin cos a b ααββ+=+=,求,a b 的大小关系及ab 的范围.【例3】 若三角形的两个内角,αβ满足cos cos sin sin αβαβ⋅>⋅,试判断此三角形的形状.【变式】 若三角形的两个内角,αβ满足tan tan 1αβ>,试判断这个三角形的形状.【变式】 在三角形ABC 中,如果22sin sin sin()A B A B +=+,且,A B 都是锐角,求A B +的值.【变式】 关于x 的方程22cos cos cos02Cx x A B --=有一根为1,判断ABC ∆的形状.【例4】 已知α为锐角,且π5cos 613α⎛⎫+= ⎪⎝⎭,求cos α的值.【变式】 已知π2π63α<<,πcos (0)3m m α⎛⎫+= ⎪⎝⎭≠,求2πtan 3α⎛⎫- ⎪⎝⎭的值.【例5】 ⑴α、β均为锐角,且sin cosαβ==,则αβ+=____.⑵已知2π1tan(),tan 544αββ⎛⎫+=-= ⎪⎝⎭,则πtan 4α⎛⎫+= ⎪⎝⎭____.【例6】 已知π02α<<,4sin 5α=. ⑴求tan α的值;⑵求πcos2sin 2αα⎛⎫++ ⎪⎝⎭的值.【例7】 (2008山东卷)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭,则7πsin 6α⎛⎫+ ⎪⎝⎭的值是( )A .BC .45-D .45【例8】 求tan 20tan 30tan 30tan 40tan 40tan 20︒⋅︒+︒⋅︒+︒⋅︒的值.【例9】 ()2cos 40sin101⎤︒+︒︒⎦的值.【例10】 已知π3cos 45α⎛⎫+= ⎪⎝⎭,π3π22α≤≤,则πcos 24α⎛⎫+= ⎪⎝⎭ .【解析】 已知1cos 7α=,13cos()14αβ-=,且π02βα<<<.⑴求tan 2α的值. ⑵求β.【例11】 已知1tan()2αβ-=,1tan 7β=-,,(0,π)αβ∈,求2αβ-的值.【点评】此题的角的范围容易产生以下错解.∵tan[2()]tan[()()]αβαβαβ-=-+-22tan()41tan ()3αβαβ-==--,∴tan(2)tan[2()]αβαββ-=-+tan[2()]tan 1tan[2()]tan αββαββ-+=--⋅41()371411()37+-==-⨯-. ∵,(0,π)αβ∈,∴022πα<<,π0β-<-<,∴π22παβ-<-<,∴2αβ-的值为3π4-或π4或5π4.【变式】 已知π,0,4αβ⎛⎫∈ ⎪⎝⎭且3sin sin(2)βαβ=+,24tan 1tan 22αα=-,求αβ+的值.【变式】 若,αβ为锐角,且满足43cos ,cos()55ααβ=+=,则求sin β的值.【变式】 已知sin sin sin 0αβγ++=,cos cos cos 0αβγ++=,则求cos()αβ-的值.【变式】 把x x x x 4cos 3cos 2cos cos +++化成积的形式.【例12】 已知53)4πcos(=-α,1312)45πsin(-=+β,且)4π0(,∈β,)43π4π(,∈α 求)sin(βα+.【变式】 已知π432π<<<αβ,1312)cos(=-βα,53)sin(-=+βα,求α2sin ..【变式】 求︒︒︒︒70sin 50sin 30sin 10sin 的值.【变式】 已知βα,为锐角,54cos =α,31)tan(-=-βα,求βcos 的值.【变式】 已知αtan 与βtan 是一元二次方程02532=-+x x 的2个根,且︒<<︒900α,︒<<︒18090β.(1)求βα+的值;(2)求)cot(βα-的值.【变式】 求+︒+︒40tan 220tan ︒-︒70tan 10tan 4的值.【例13】ππππtan 2tan tan 2tan tan()tan 6363θθθθθθ⎛⎫⎛⎫⎛⎫-+-+--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭_________.【变式】 已知π4αβ+=,求(1tan )(1tan )αβ++的值;【变式】 求(1tan1)(1tan 2)(1tan3)(1tan 45)+︒+︒+︒+︒的值.【变式】 已知2tan()t x y t--=,tan tan 1x y t ⋅=-,2tan ()4x y +=,求实数t 的值.【变式】 已知tan()tan()k αβαβ-=⋅+,求证:sin 21.sin 21k kαβ+=-(一) 知识内容本板块主要是对三角函数的求值与化简以及辅助角公式的应用,并讲解一类特殊问题,即同时含有sin cos αα+及sin cos αα这类题目的处理办法.1.三角函数求值问题一般有三种基本类型:(1)给角求值,即在不查表的前提下,求三角函数式的值;(2)给值求值,即给出一些三角函数,而求与这些三角函数式有某种联系的三角式的值;(3)给值求角,即给出三角函数值,求符合条件的角.2.三角函数式的化简要求:通过对三角函数式的恒等变形使最后所得到的结果中:①所含函数和角的名类或种类最少;②各项的次数尽可能地低;③出现的项数最少;④一般应使分母和根号不含三角函数式;⑤对能求出具体数值的,要求出值.3.三角恒等式的证明要求:利用已知三角公式通过恒等变形,论证所给等式左、右相等.(二)主要方法1.寻求角与角之间的关系,化非特殊角为特殊角;2.正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值;3.一些常规技巧:“1”的代换、切割化弦、和积互化、异角化同角等.4.三角函数式的化简常用方法是:异名函数化为同名三角函数,异角化为同角,异次化为同次,切割化弦,特殊值与特殊角的三角函数互化.5.三角恒等式的证明:三角恒等式包括有条件的恒等式和无条件的恒等式.板块二:三角函数的化简与求值化为“同”;②有条件的等式常用方法有:代入法、消去法、综合法、分析法等.(三)典例分析【例14】 已知函数()sin cos f x a x b x =-(a ,b 为常数,0a ≠,x ∈R )在π3x =处取得最小值2-,则函数π3f x ⎛⎫- ⎪⎝⎭=_______________.【解析】 (1)化简6161π()cos π2cos π22(,)333k k f x x x x x k +-⎛⎫⎛⎫⎛⎫=++-++∈∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭R Z , (2)求函数()f x 的值域和最小正周期.【解析】若cos 2sin αα+tan α=( )A .12B .2C .12- D .2-【例15】 函数2()sin cos f x x x x =在区间ππ,42⎡⎤⎢⎥⎣⎦上的最大值是( ) A .1 BC .32D.1 【变式】 已知sin sin cos )x y y x +-,π,0,2x y ⎛⎫∈ ⎪⎝⎭,则______x y -=.【例16】 已知π02x -<<,1sin cos 5x x +=. ⑴求sin cos x x -的值; ⑵求223sin 2sin cos cos 2222tan cot x x x x x x -++的值.【变式】 已知1sin cos 5x x +=,π3π,62x ⎛⎫∈- ⎪⎝⎭.求tan x 的值.【例17】 已知π0,2x ⎡⎤∈⎢⎥⎣⎦,求函数sin cos 2sin cos 1y x x x x =+++的最大值和最小值,并求出此时x 的值.【变式】 已知02a ≤≤,求函数(sin )(cos )y x a x a =++的最值.【变式】 求函数()sin cos 3sin cos f x x x x x =-+⋅的值域.【例18】 设函数2πππ()sin 2cos 1468x x f x ⎛⎫=--+ ⎪⎝⎭. ⑴求()f x 的最小正周期.w .w .w .k .s .5.u .c .o .m⑵若函数()y g x =与()y f x =的图像关于直线1x =对称,求当403x ⎡⎤∈⎢⎥⎣⎦,时()y g x =的最大值.【变式】 设θ是锐角,求θ2sin )31(+=y θ2cos )31(-+的最大值及此时θ的值.【变式】 将1块圆心角为︒120,半径为20 cm 的扇形铁片截成1块矩形,如图1-13有2种裁法:让矩形1边在扇形的1条半径OA 上,或让矩形1边与弦AB 平行.请问哪种裁法能得到最大面积的矩形,并求出这个最大值.【变式】 化简ββαβα2sin )cos()cos(+-+.【变式】 求证:︒=︒-︒10sin 3240cos 140sin 322.【变式】 求证tan(60)tan(60)tan tan(60)tan tan(60)3A A A A A A +︒-︒++︒+-︒=-【变式】 已知:a A A A =++5sin 3sin sin ,b A A A =++5cos 3cos cos .求证:(1)当0≠b 时,ba A =3tan ;(2)222)2cos 21(b a A +=+.【变式】 已知222tan -=θ,π22π<<θ,求)2πsin(21sin 2cos 22+--θθθ的值.【例19】 求函数()()()43sin 43cos f x x x =--的值域。

高中数学三角恒等变换

高中数学三角恒等变换
§1.1 简单的三角恒等变换
Page
1
知识梳理
1.两角和与差的余弦、正弦、正切公式 cos(α-β)=cos αcos β+sin αsin β,(C(α-β))
cos(α+β)=cos αcos β-sin αsin β ,(C(α+β))
sin(α-β)= sin αcos β-cos αsin β ,(S(α-β))
7 - 5
.
答案
解析

2 2 cos α - sin α cos 2α = =cos α-sin α, π 2 2 2sinα+ 2 sin α+ cos α 4 2 2 3 π ∵sin α= ,α∈( ,π), 5 2 4 7 ∴cos α=- ,∴原式=- . 5 5
Page 6
(2)在△ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为 答案
2 A.- 2 2 B. 2 1 C. 2 1 D.- 2
解析
由tan Atan B=tan A+tan B+1,
tan A+tan B 可得 =-1,即 tan(A+B)=-1, 1-tan Atan B 3π 又 A+B∈(0,π),所以 A+B= , 4 π 2 则 C= ,cos C= . 4 2
Page 16
引申探究
θ θ 1+sin θ-cos θsin -cos 2 2 化简: (0<θ<π). 解答 2-2cos θ
θ π θ ∵0< < ,∴ 2-2cos θ=2sin , 2 2 2
例2 2 5 A. 25 5 3 (1)设 α、β 都是锐角,且 cos α= ,sin(α+β)= ,则 cos β 等于 5 5
答案 解析

高一数学 三角函数的恒等变形

高一数学 三角函数的恒等变形

高一数学 三角函数的恒等变形【基本公式】1、三角函数的诱导公式:(一) sin (k ·360°+α)=sin α cos (k ·360°+α)=cos α tan (k ·360°+α)=tan α(二) sin (180°+α)= -sin α cos (180°+α)=-cos α tan (180°+α)=tan α(三) sin (-α)=-sin α cos (-α)=cos α tan (-α)=-tan α(四) sin (180°-α)=sin α cos (180°-α)=-cos α tan (180°-α)=-tan α(五) sin (90 °-α)=cos α cos (90 °-α)=sin α tan (90 °-α)=cot α(六) sin (90 °+α)=cos α cos (90 °+α)=-sin α tan (90 °+α)=-cot α(七) sin (270 °-α)=-cos α cos (270 °-α)=-sin α tan (270 °-α)=cot α(八) sin (270 °+α)=-cos α cos (270 °+α)=sin α tan (270 °+α)=-cot α 记忆规律:“奇变偶不变,符号看象限”:90⋅=k β°α±的三角函数值,若k 是奇数则α是β的余名三角函数,若k 是偶数则α是β的同名三角函数;假设α为锐角,符号由β对应三角函数所在象限决定。

使用原则:“负化正,大化小,化到锐角就行了” 2、同角三角函数的基本关系式:倒数关系: 1csc sin =⋅αα 1sec cos =⋅αα 1cot tan =⋅αα商数关系: αααcos sin tan = αααsin cos cot = 平方关系: 1cos sin 22=+αα αα22sec tan 1=+ αα22csc cot 1=+3、和角公式、差角公式:sin (α+β)=sin αcos β+cos αsin β sin (α-β)=sin αcos β-cos αsin β cos (α+β)=cos αcos β-sin αsin β cos (α-β)=cos αcos β+sin αsin β tan (α+β)=βαβαtan tan 1tan tan -+ tan (α-β)=βαβαtan tan 1tan tan +-4、倍角公式、半角公式: (1)二倍角公式:αααcos sin 22sin =ααααα2222s i n 211c o s 2s i n c o s 2c o s -=-=-=ααα2tan 1tan 22tan -= (2)三倍角公式:)60tan()60tan(tan tan 31tan tan 33tan )60cos()60cos(cos 4cos 3cos 43cos )60sin()60sin(sin 4sin 4sin 33sin 2333ααααααααααααααααααα-+=--=-+=-=-+=-= (3)升幂公式、降幂公式:22cos 1sin sin 22cos 122αααα-=⇔=- 22cos 1cos cos 22cos 122αααα+=⇔=+(4)万能公式:(5)半角公式:5、积化和差、和差化积公式: (1)积化和差公式:(2)和差化积公式:6、重要结论: (1),tan ),sin(cos sin 22abb a b a =++=+ϕϕααα)所在象限决定所在象限由(b a ,ϕ (2)2)2cos2(sin sin 1ααα+=+ 2)2cos2(sinsin 1ααα+=-(3)ααα2sin 2cot tan =+ ααα2cot 2cot tan -=-(4)αααπαπtan 1tan 1)4cot()4tan(+-=+=- αααπαπt a n 1t a n 1)4c o t ()4t a n (-+=-=+(5)βαβαβα22sin sin sin(sin(-=-+)) βαβαβα22s i n c o s c o s (c o s (-=-+))(6)βαβαβαcos cos )sin(tan tan ±=±(7)43cos cos cos cos ,43sin sin sin sin ,1202222=++=-+︒=+βαβαβαβαβα则若 43cos cos cos cos ,43sin sin sin sin ,602222=-+=++︒=+βαβαβαβαβα则若(8)γβαγβαππγπγβαtan tan tan tan tan tan ,2,=+++≠=++则若k k(9))cos(sin cos )sin(cos tan sin ααααααα<<⇒<<是第一象限角,则若【方法技巧】 1、 角的范围:(1)根据已知角的范围确定未知角的范围:21x x x 〈〈 2211y x y x y x +〈+〈+21y y y 〈〈 1221y x y x y x -〈-〈-(2)根据已知三角函数值确定未知角的范围:①由某个角的三角函数值的符号确定该角所在象限,从而确定和角(或差角)的范围: 如:已知)23,2(,ππβα∈,0tan 〉α,0tan 〈β,则23παπ〈〈,πβαπβπ〈-〈⇒〈〈02②由两角的三角函数值的大小关系,根据三角函数的单调性确定和角(或差角)的范围: 如:已知)2,0(,πβα∈,βαsin sin < ,则βα<02〈-〈-⇒βαπ③由某个角的三角函数值与特殊角的三角函数值的大小关系,确定该角的范围,从而确定和角(或差角)的范围:如:已知53cos =A ,135sin =B ,则312ππ<-<B A④由三角函数的值域,确定未知角的范围。

三角恒等式与公式

三角恒等式与公式

三角恒等式与公式三角函数是数学中非常重要的概念之一,它们在解决几何和物理问题中起着关键的作用。

在三角函数的推导和运用中,我们经常会遇到一些恒等式和公式。

这些恒等式和公式是我们在解决问题时必须熟悉和掌握的基础知识。

本文将介绍一些常见的三角恒等式和公式,帮助读者更好地理解和运用三角函数。

1. 正弦恒等式正弦恒等式是我们在解决三角函数问题时经常会使用到的基本恒等式之一,它表明正弦函数的一些基本性质。

正弦恒等式可以表示为:sin^2θ + cos^2θ = 1这个恒等式表明,在一个直角三角形中,对于任意的θ值,正弦函数的平方加上余弦函数的平方等于1。

这个恒等式是根据勾股定理得出的,它也是三角函数的基本性质之一。

2. 余弦恒等式余弦恒等式是另一个重要的三角恒等式,它描述了余弦函数的一些基本性质。

余弦恒等式可以表示为:1 + tan^2θ = sec^2θ这个恒等式表明,在一个直角三角形中,对于任意的θ值,1加上正切函数的平方等于割函数的平方。

这个恒等式也是根据勾股定理推导得出的。

3. 正切恒等式正切恒等式是三角函数中的又一个重要恒等式,它描述了正切函数的一些基本性质。

正切恒等式可以表示为:sinθ/cosθ = tanθ这个恒等式表明,在一个直角三角形中,对于任意的θ值,正弦函数除以余弦函数等于正切函数。

这个恒等式是根据正弦函数和余弦函数的定义得出的。

4. 二倍角公式二倍角公式是一类非常常用的三角公式,它可以通过角的加倍运算来计算与原角度相对应的新角度的三角函数值。

常见的二倍角公式有:sin(2θ) = 2sinθcosθcos(2θ) = cos^2θ - sin^2θ这些二倍角公式在数学运算和解决问题时经常会用到,对于掌握和理解三角函数的运用具有重要意义。

5. 转化公式转化公式是用来将一个三角函数转化为另一个三角函数的公式。

常见的转化公式有:sinθ = cos(π/2 - θ)cosθ = sin(π/2 - θ)tanθ = cot(π/2 - θ)这些转化公式在解决问题时经常会用到,它们可以帮助我们简化计算和推导过程。

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧

高中数学中的三角恒等变换常用恒等变换公式总结与应用技巧在高中数学中,三角函数是一个重要的概念,而三角恒等变换则是在解决三角函数方程和简化三角函数式子时经常用到的重要工具。

本文将总结常用的三角恒等变换公式,并介绍其应用技巧。

一、基本恒等变换公式1. 余弦函数的基本恒等变换(1) 余弦函数的平方形式:cos²θ + sin²θ = 1(2) 二倍角公式:cos2θ = cos²θ - sin²θ(3) 余弦函数的和差角公式:cos(θ ± φ) = cosθcosφ - sinθsinφ2. 正弦函数的基本恒等变换(1) 正弦函数的平方形式:sin²θ + cos²θ = 1(2) 二倍角公式:sin2θ = 2sinθcosθ(3) 正弦函数的和差角公式:sin(θ ± φ) = sinθcosφ ± cosθsinφ3. 正切函数的基本恒等变换(1) 正切函数的平方形式:tan²θ + 1 = sec²θ1 + cot²θ = cosec²θ(2) 二倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)二、常用恒等变换公式1. 互余公式:sin(π/2 - θ) = cosθcos(π/2 - θ) = sinθtan(π/2 - θ) = cotθ2. 余角公式:sin(π - θ) = sinθcos(π - θ) = -cosθtan(π - θ) = -tanθ3. 倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)4. 积化和差公式:sinθsinφ = (1/2)[cos(θ - φ) - cos(θ + φ)]cosθcosφ = (1/2)[cos(θ - φ) + cos(θ + φ)]sinθcosφ = (1/2)[sin(θ + φ) + sin(θ - φ)]三、恒等变换的应用技巧1. 解三角函数方程:利用恒等变换可以将复杂的三角函数方程转化为简单的等式,从而更容易求解。

高中三角恒等变换公式

高中三角恒等变换公式

高中三角学习中不可避免的一个重点是恒等变换公式。

这些公式可以帮助我们在解决各种三角函数的问题时,简化计算过程,提高效率。

本文将详细介绍高中三角恒等变换公式。

一、正弦、余弦恒等变换公式正弦、余弦恒等变换公式是最基本的恒等变换公式之一,它们可以用来将三角函数的某一个角度表示为另一个角度的函数形式。

具体来说,正弦恒等变换公式为:$$\sin(\pi/2 - x) = \cos(x)$$而余弦恒等变换公式为:$$\cos(\pi/2 - x) = \sin(x)$$这些公式通常用于求正弦、余弦的补角。

二、正切、余切恒等变换公式与正弦、余弦恒等变换公式类似,正切、余切恒等变换公式也可以通过将三角函数的角度表示为其他角度的函数形式简化计算。

具体来说,正切恒等变换公式为:$$\tan(\pi/2 - x) = \cot(x)$$而余切恒等变换公式为:$$\cot(\pi/2 - x) = \tan(x)$$这些公式通常用于求正切、余切的补角。

三、和差公式和差公式常常被用来化简三角函数的和差,使得它们更容易计算。

对于正弦和余弦来说,和差公式为:$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$$$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$对于正切和余切来说,它们的和差公式则为:$$\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x) \tan(y)}$$$$\cot(x \pm y) = \frac{\cot(x)cot(y) \mp 1}{\cot(y) \pm \cot(x)}$$四、倍角公式倍角公式用来表示一个角度的两倍与它自身的关系,它们在三角函数的求解中也很常用。

对于正弦和余弦,倍角公式的形式如下:$$\sin(2x)= 2\sin(x)\cos(x)$$$$\cos(2x)= \cos^2(x) - \sin^2(x)$$对于正切和余切,则分别为:$$\tan(2x)= \frac{2\tan(x)}{1- \tan^2(x)}$$$$\cot(2x)= \frac{\cot^2(x)-1}{2\cot(x)}$$五、半角公式半角公式可以表示一个角度的一半与它自身的关系,也是三角函数的量角公式之一,它的形式如下:$$\sin^2(x/2) = \frac{1-\cos(x)}{2}$$$$\cos^2(x/2) = \frac{1+\cos(x)}{2}$$$$\tan(x/2) = \frac{1-\cos(x)}{\sin(x)} = \frac{\sin(x)}{1+\cos(x)}$$$$\cot(x/2) = \frac{\sin(x)}{1-\cos(x)} = \frac{1+\cos(x)}{\sin(x)}$$无论是在三角函数的理论研究还是在实际应用中,上述五类高中三角恒等变换公式都是不可或缺的工具。

三角函数的恒等变换的推导

三角函数的恒等变换的推导

三角函数的恒等变换的推导三角函数是数学中的重要概念,它们在解决几何和物理问题中具有广泛的应用。

而三角函数的恒等变换则是指通过一些等式的推导和变形,使得原本复杂的三角函数表达式可以简化成更简单的形式,从而方便我们在计算和应用中的使用。

本文将对三角函数的恒等变换进行详细的推导和解释。

一、正弦函数的恒等变换1. 倍角公式:正弦函数的倍角公式是三角函数恒等变换中的一项重要公式,其表达式如下:sin 2θ = 2sinθcosθ这个公式可以通过利用三角函数的定义和三角函数的和差公式来推导。

具体推导过程如下:根据三角函数的定义,sinθ = y/r,其中y为三角形的对边长度,r为斜边长度。

设一个角2θ,则根据三角函数的定义,sin2θ = y'/(2r),其中y'为角2θ对应的三角形的对边长度,2r为角2θ对应的三角形的斜边长度。

根据三角形的定义,可以得到y' = 2y,即:sin2θ = (2y)/(2r) = y/r = sinθ进一步变换得:sin2θ = 2sinθcosθ (符合正弦函数的倍角公式)2. 余弦函数的平方公式:余弦函数的平方公式也是三角函数恒等变换中常用的公式之一,其表达式如下:cos²θ = 1/2 (1 + cos2θ)这个公式可以通过利用三角函数的定义和三角函数的和差公式来推导。

具体推导过程如下:根据三角函数的定义,cosθ = x/r,其中x为三角形的邻边长度,r 为斜边长度。

设一个角2θ,则根据三角函数的定义,cos2θ = 2x'/(2r),其中x'为角2θ对应的三角形的邻边长度。

根据三角形的定义,可以得到x' = 2xcosθ,即:cos2θ = (2xcosθ)/(2r) = x/r = cosθ进一步变换得:cos²θ = 1/2 (1 + cos2θ) (符合余弦函数的平方公式)二、余弦函数的恒等变换1. 倍角公式:余弦函数的倍角公式是三角函数恒等变换中的一项重要公式,其表达式如下:cos 2θ = cos²θ - sin²θ这个公式可以通过利用三角函数的定义和三角函数的和差公式来推导。

高中数学三角函数恒等变形公式

高中数学三角函数恒等变形公式

高中数学三角函数恒等变形公式高中数学中,三角函数是一个重要的概念和工具,通过恒等变形公式,可以将三角函数的式子进行等价的变换,使得计算更加简化。

本文将介绍一些常用的三角函数恒等变形公式。

首先,我们来介绍几个基本的三角函数公式:1.正余弦函数的平方和恒等式:$$\sin^2 x + \cos^2 x = 1$$这个公式是最常见的三角函数公式之一,它表示:对于任意一个角度$x$,它的正弦值的平方和余弦值的平方等于12.余弦函数的和差公式:$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$这个公式可以表示两个角度的和或差的余弦值与各个角度的余弦值和正弦值的乘积之间的关系。

3.正弦函数的和差公式:$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$这个公式可以表示两个角度的和或差的正弦值与各个角度的正弦值和余弦值的乘积之间的关系。

4.正弦函数的二倍角公式:$$\sin(2x) = 2\sin x \cos x$$这个公式表示角度$2x$的正弦值等于角度$x$的正弦值和余弦值的乘积的两倍。

5.余弦函数的二倍角公式:$$\cos(2x) = \cos^2 x - \sin^2 x$$这个公式表示角度$2x$的余弦值等于角度$x$的余弦值的平方减去正弦值的平方。

以上是一些基础的三角函数公式,下面我们来介绍一些与这些公式相关的恒等变形。

首先是与正弦函数和余弦函数相关的变形公式:1.正弦函数的倒数公式:$$\frac{1}{\sin x} = \csc x$$这个公式表示正弦函数的倒数可以用余割函数来表示。

2.余弦函数的倒数公式:$$\frac{1}{\cos x} = \sec x$$这个公式表示余弦函数的倒数可以用正割函数来表示。

3.余弦函数的平方公式:$$\cos^2 x = 1 - \sin^2 x$$这个公式表示余弦函数的平方可以用正弦函数的平方的补给来表示。

高二数学上学期知识点

高二数学上学期知识点

高二数学上学期知识点 第一部分:三角恒等变换 1.两角和与差正弦、余弦、正切公式:=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1 注意正用、逆用、变形用.例如:tanA+tanB=tan<A+B><1-tanAtanB>2.二倍角公式:sin2α=ααcos sin 2⋅,cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tan 2α=αα2tan 1tan 2-.3.升幂公式是:2cos 2cos 12αα=+2sin2cos 12αα=-.4.降幂公式是:22cos 1sin 2αα-=22cos 1cos 2αα+=.5.万能公式:sin α=2tan 12tan22αα+cos α=2tan 12tan 122αα+-tan α=2tan 12tan22αα-6.三角函数恒等变形的基本策略:〔1〕常值代换:特别是用"1〞的代换,如1=cos2θ+sin2θ〔2〕项的分拆与角的配凑.如分拆项:sin2x+2cos2x=<sin2x+cos2x>+cos2x=1+cos2x ;配凑角:α=〔α+β〕-β,β=2βα+-2βα-等.〔3〕降次与升次.2sin2cos 12αα=-,22cos 2sin sin 1⎪⎭⎫ ⎝⎛+=+ααα,sin α ,cos α可凑倍角公式;22cos 2sin sin 1⎪⎭⎫ ⎝⎛-=-ααα等.〔4〕化弦〔切〕法.将三角函数利用同角三角函数基本关系化成弦〔切〕.注意函数关系,尽量异名化同名、异角化同角.〔5〕引入辅助角.asin θ+bcos θ=22b a +sin<θ+ϕ>,ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=a b确定.7.注意点:三角函数式化简的目标:项数尽可能少,三角函数名称尽可能少,角尽可能小和少,次数尽可能低,分母尽可能不含三角式,尽可能不带根号,能求出值的求出值. 第二部分:解三角形1.边角关系的转化:〔ⅰ〕正弦定理:A a sin =B b sin =C csin =2R<R 为外接圆的半径>;注:〔1〕a=2RsinA;b=2RsinB;c=2RsinC;〔2〕a:b:c=sinA:sinB:sinC;<3>三角形面积公式S=12absinC=12bcsinA=12acsinB;〔ⅱ〕余弦定理:a 2=b 2+c 2-2bc A cos ,bc a c b A 2cos 222-+=2.应用:〔1〕判断三角形解的个数;〔2〕判断三角形的形状;<3>求三角形中的边或角;〔4〕求三角形面积S ;注:三角形中 ①a>b ⇔A>B ⇔sinA>sinB ;②内角和为180︒;③两边之和大于第三边;④在△ABC 中有-tanC B)+tan(A -cosC B)+cos(A sinC=B)+sin(A ==,2cos 2sinC B A =+,2sin 2cos CB A =+在解三角形中的应用.3.解斜三角形的常规思维方法是:〔1〕已知两角和一边〔如A 、B 、c 〕,由A+B+C = π求C,由正弦定理求a 、b .〔2〕已知两边和夹角〔如a 、b 、C 〕,应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后利用A+B+C= π,求另一角.〔3〕已知两边和其中一边的对角〔如a 、b 、A 〕,应用正弦定理求B,由A+B+C = π求C,再由正弦定理或余弦定理求c 边,要注意解可能有多种情况.〔4〕已知三边a 、b 、c,应用余弦定理求A 、B,再由A+B+C = π,求角C .〔5〕术语:坡度、仰角、俯角、方位角〔以特定基准方向为起点〔一般为北方〕,依顺时针方式旋转至指示方向所在位置,其间所夹的角度称之.方位角α的取值X 围是:0°≤α<360. 第三部分:数列 证明数列{}n a 是等差〔比〕数列〔1〕等差数列:①定义法:对于数列{}n a ,若da a nn =-+1<常数>,则数列{}n a 是等差数列. ②等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列.注:后两种方法仅适用于选择、填空:③n a pn q =+〔形如一次函数〕④2n S An Bn=+〔常数项为0的二次〕〔2〕等比数列:①定义法:对于数列{}n a ,若)0(1≠=+q q a a n n ,则数列{}n a 是等比数列.②等比中项法:对于数列{}n a ,若212++=n n n a a a )0(≠n a ,则数列{}n a 是等比数列2.求数列通项公式na 方法 <1>公式法:等差数列中an=a1+<n-1>d 等比数列中an= a1qn-1; (0)q ≠<2>⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n 〔 注意 :验证a1是否包含在an 的公式中〕 〔3〕递推式为1n a +=n a +f<n> <采用累加法>;1n a +=n a ×f<n> <采用累积法>;例已知数列{}n a 满足11a =,n n a a n n ++=--111(2)n ≥,则n a =________〔答:1n a =〕〔4〕构造法;形如n n a pa q =+,1nn n a ka b -=+〔,k b p,q 为常数且p ≠q 〕的递推数列,可构造等比数列{}na x +,例 ①已知111,32n n a a a -==+,求na 〔答:1231n n a -=-〕; 〔5〕涉与递推公式的问题,常借助于"迭代法〞解决:an =〔an -an-1〕+<an-1-an-2>+……+〔a2-a1〕+a1 ; an =1122n 1n 1n n a a a a a a a ---⋅〔6〕倒数法形如11n n n a a ka b --=+的递推数列如①已知1111,31n n n a a a a --==+,求n a 〔答:132n a n =-〕;3.求数列前n 项和n S .常见方法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构.〔1〕公式法:等差数列中Sn=dn n na 2)1(1-+=2)(1n a a n + ;等比数列中 当q=1,Sn=na1 当q≠1,Sn=q q a n --1)1(1=q q a a n --11〔注:讨论q 是否等于1〕. 〔2〕分组法求数列的和:如an=2n+3n ; 〔3〕错位相减法:nn n c b a ⋅=,{}{}成等比数列成等差数列,n n c b ,如an=<2n-1>2n ;〔注1q ≠〕〔4〕倒序相加法求和:如①在等差数列{}n a 中,前4项的和为40,最后4项的和为80,所有各项的和为720,则这个数列的项数n=______;<答:48>;②已知22()1x f x x =+,则111(1)(2)(3)(4)((()234f f f f f f f ++++++=___〔答:72〕〔5〕裂项法求和:)11(1))((1CAn B An B C C An B An a n +-+-=++=,如求和:1111122334(1)n n ++++⨯⨯⨯+=_________〔答: 1n n +〕〔6〕在求含绝对值的数列前n 项和nS 问题时,注意分类讨论与转化思想的应用,总结时写成分段数列.4.nS 的最值问题方法〔1〕在等差数列{}n a 中,有关Sn 的最值问题——从项的角度求解:①当01>a ,d<0时,满足⎩⎨⎧≤≥+001m m a a 的项数m 使得取最大值.②当01>a ,d>0时,满足⎩⎨⎧≥≤+001m m a a 的项数m 使得取最小值.〔2〕转化成二次函数配方求最值〔注:n 是正整数,若n 不是正整数,可观察其两侧的两个整数是否满足要求〕.如①等差数列{}n a 中,125a =,917S S =,问此数列前多少项和最大?并求此最大值.〔答:前13项和最大,最大值为169〕;②若{}n a 是等差数列,首项10,a >200320040a a +>,200320040a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是___ 〔答:4006〕5.求数列{an}的最大、最小项的方法〔函数思想〕:①an+1-an=……⎪⎩⎪⎨⎧<=>000如an= -2n2+29n-3②⎪⎩⎪⎨⎧<=>=+1111 n n a a <an>0> ,如an=n n n 10)1(9+③ an=f<n> 研究函数f<n>的增减性 如an=1562+n n6.常用性质:〔1〕等差数列的性质:对于等差数列{}n a ①.dm n a a m n)(-+=〔n m ≤〕②.若q p m n +=+,则q p m n a a a a +=+.③.若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,kk S S 23-成等差数列.④.设数列{}n a 是等差数列,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和,则有如下性质:<i>奇数项da a a 2,,,531成等差数列,公差为⋯<ii>偶数项da a a 2,,,642成等差数列,公差为⋯⑤.若等差数列{}n a 的前12-n 项的和为12-n S ,等差数列{}n b 的前12-n 项的和为21n T -,则2121n n n n a S b T --=.〔应用于选择、填空,要会推导,正用、逆用〕 〔2〕等比数列性质:在等比数列{}n a 中①.mn m n q a a -=〔n m ≤〕;②.若m+n=p+q,则aman=apaq ;如〔1〕在等比数列{}n a 中,3847124,512a a a a +==-,公比q 是整数,则10a =___〔答:512〕;〔2〕各项均为正数的等比数列{}n a 中,若569a a ⋅=,则3132310log log log a a a +++=〔答:10〕.③.若数列{}n a 是等比数列且q≠-1,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等比数列.如:公比为-1时,4S 、8S -4S 、12S -8S、…不成等比数列7.常见结论:〔1〕三个数成等差的设法:a-d,a,a+d ;四个数成等差的设法:a-3d,a-d,,a+d,a+3d ;〔2〕三个数成等比的设法:a/q,a,aq ; 〔3〕若{an}、{bn}成等差,则{kan+tbn}成等差;〔4〕若{an}、{bn}成等比,则{kan}<k≠0>、⎭⎬⎫⎩⎨⎧n b 1、{anbn}、⎭⎬⎫⎩⎨⎧n n ba 成等比;〔5〕{an}成等差,则 <{}na c c>0>成等比. 〔6〕{bn}<bn>0>成等比,则{logcbn}<c>0且c ≠1>成等差.第四部分 不等式1.两个实数a 与b 之间的大小关系—作差法或作商法2.不等式的证明方法〔1〕比较法〔2〕综合法.〔3〕分析法注:一般地常用分析法探索证题途径,然后用综合法3. 解不等式〔1〕一元一次不等式)0(≠>a b ax 的解法①⎭⎬⎫⎩⎨⎧>>a b x x a ,0②⎭⎬⎫⎩⎨⎧<<a b x x a ,0〔2〕一元二次不等式)0(,02>>++a c bx ax 的解法〔三个二次关系〕 判别式ac b 42-=∆0>∆0=∆0<∆二次函数c bx ax y ++=2的图象一元二次方程 相异实根相等实根没有实根21x x <a b x x 221-==02=++c bx ax 的根02>++c bx ax 解集{}12x x x x x <>或⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 02<++c bx ax 解集{}21x x x x <<φφ注:)(02≥>++c bx ax 解集为R,〔02>++c bx ax 对R x ∈恒成立〕 则〔Ⅰ〕⎪⎩⎪⎨⎧≤∆<∆>)0(00a 〔Ⅱ〕若二次函数系数含参数且未指明不为零时,需验证0=a若02<++c bx ax 解集为R 呢?如:关于x 的不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值X 围.略解〔Ⅰ〕成立时,042<-=a 〔Ⅱ〕 ⎩⎨⎧<=∆<-002a 〔3〕绝对值不等式 如果a >0,那么|x|a x a a x a 22<<-<<;⇔⇔ 〔4〕分式不等式若系数含参数时,须判断或讨论系数00<=>,化负为正,写出解集.主要应用:1.解一元二次不等式;2.解分式不等式;3.解含参的一元二次不等式〔先因式分解,分类讨论,比较两根的大小〕;4恒成立问题〔注:①讨论二次项系数是否为0;②开口方向与判别式〕;5.已知12x y -≤-≤,3235x y ≤-≤,求45x y -的取值X 围;〔①换元法;②线性规划法〕.4.简单的线性规划问题应用:〔1〕会画可行域,求目标函数的最值与取得最值时的最优解〔注:可行域边界的虚实〕;〔2〕求可行域内整数点的个数;〔3〕求可行域的面积;〔4〕根据目标函数取得最值时最优解〔个数〕求参数的值〔参数可在线性约束条件中,也可在目标函数中〕;〔5〕实际问题中注意调整最优解〔反代法〕.原命题若p 则q 逆命题若q 则p互逆互否5.常用的基本不等式和重要的不等式〔1〕ab b a R b a 2,,22≥+∈则〔2〕+∈R b a ,,则ab b a 2≥+;注:几何平均数算术平均数,----+ab ba 2〔3〕),()2(222R b a b a b a ∈+≥+〔4〕),(22222+∈+≤+≤≤+R b a b a b a ab b a ab ;6.均值不等式的应用——求最值〔可能出现在实际应用题〕设,0x y >,则2x y xy +≥〔1〕若积P y x P xy 2(有最小值定值),则和+=〔2〕若和22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大. 注:运用均值定理求最值的三要素:"一正、二定、三相等〞技巧:①凑项,例122y x x =+-〔x>2〕②凑系数 ,例 当时,求的最大值;〔答:8〕③添负号,例12(2)2(2)y x x x =-+>-;④拆项,例 求2710(1)1x x y x x ++=>-+的最小值〔答:9 〕⑤构造法,例 求22()(0)1xf x x x =>+21x x =+的最大值〔答:1〕.⑥"1〞的灵活代换,若0,0x y >>且191x y +=,则x y +的最小值是________<答:16>〔3〕若用均值不等式求最值,等号取不到时,需用定义法先证明单调性,后根据单调性求最值,例 求2211y x x =++.第五部分 简易逻辑逻辑联结词,命题的形式:p 或q<记作"p ∨q 〞 >;p 且q<记作"p ∧q 〞 >;非p<记作"┑q 〞 > . 2、"或〞、 "且〞、 "非〞的真值判断〔1〕"非p 〞形式复合命题的真假与F 的真假相反;〔2〕"p 且q 〞形式复合命题当P 与q 同为真时为真,其他情况时为假;〔3〕"p 或q 〞形式复合命题当p 与q 同为假时为假,其他情况时为真.4常见结论的否定形式原结论 否定词 原结论 否定词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于不大于至少有n 个至多有〔1n -〕个小于不小于至多有n 个至少有〔1n +〕个对所有x ,成立存在某x ,不成立p 或q p ⌝且q ⌝ 对任何x ,不成立 存在某x ,成立p 且qp ⌝或q ⌝5、四种命题:原命题:若P 则q ; 逆命题:若q 则p ;否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下关系:<原命题⇔逆否命题> ①、原命题为真,它的逆命题不一定为真.②、原命题为真,它的否命题不一定为真.③、原命题为真,它的逆否命题一定为真.7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件. 若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q. 8.命题的否定只否定结论;否命题是条件和结论都否定.9、反证法:从命题结论的反面出发〔假设〕,引出<与已知、公理、定理…>矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法.第六部分 圆锥曲线定义、标准方程与性质 〔一〕椭圆 1.定义:若F1,F2是两定点,P 为动点,且21212F F a PF PF >=+ 〔a 为常数〕则P 点的轨迹是椭圆.注:〔1〕若2a 小于|1F 2F |,则这样的点不存在;〔2〕若2a 等于|1F 2F |,则动点的轨迹是线段1F 2F .<3>21F PF ∆中经常利用余弦定理、三角形面积公式将有关线段1PF 、2PF 、2c,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系求出1PF 、2PF 的值.注意题目中椭圆的焦点在x 轴上还是在y 轴上.2.椭圆的标准方程:12222=+b y a x 〔a >b >0〕,12222=+b x a y 〔a >b >0〕<注:222a b c =+>.〔1〕.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上.〔2〕.求椭圆的标准方程的方法:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a 、b.3.椭圆的几何性质:线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.离心率:椭圆的焦距与长轴长的比a ce =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆.4.点与椭圆的位置关系〔1〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b ⇔+<. 〔2〕点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b ⇔+>〔二〕双曲线 1.定义:若F1,F2是两定点,21212F F a PF PF <=-〔a 为非零常数〕,则动点P 的轨迹是双曲线.注:〔1〕若2a=|1F 2F |,则动点的轨迹是两条射线;〔2〕若2a >|1F 2F |,则无轨迹.〔3〕若去掉绝对值号,动点M 的轨迹仅为双曲线的一个分支.2.双曲线的标准方程:12222=-b y a x 和12222=-b x a y 〔a >0,b >0〕注:〔1〕222c a b =+〔与椭圆比较〕〔2〕双曲线的标准方程判别方法是:如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.〔3〕求双曲线的标准方程,应注意两个问题:⑴ 定位——正确判断焦点的位置;⑵ 定量——设出标准方程后,运用待定系数法求解a,b.3.双曲线的简单几何性质双曲线12222=-b y a x 为例 实轴长为2a,虚轴长为2b,离心率a c e =>1,离心率e 越大,双曲线的开口越大.双曲线的方程与渐近线方程的关系〔1〕若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x a b y ±= 〔2〕若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x 〔0λ≠〕〔3〕若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x 〔0λ≠,若0>λ,焦点在x 轴上,若0<λ,焦点在y轴上〕.特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x 〔0λ≠〕.〔4〕方程221x y m n -=(0,0)m n ≠≠表示双曲线的充要条件是0mn >.〔5〕注意21F PF ∆中结合定义aPF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来.〔三〕抛物线 1.定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线.定点F 叫抛物线的焦点,定直线l 叫抛物线的准线.注:〔1〕点F 在直线l 外,〔2〕点F 在直线l 上,其轨迹是过点F 且与l 垂直的直线,而不是抛物线.2.抛物线的标准方程有四种类型:px y 22=、px y 22-=、py x 22=、py x 22-=.注:〔1〕方程中的一次项变元决定对称轴和焦点位置;〔2〕一次项前面的正负号决定曲线的开口方向;3.抛物线的几何性质,以标准方程22y px =(0)p >为例:p :焦准距〔焦点到准线的距离〕;焦点: )0,2(p 准线: 2p x -=通径p AB 2= 焦半径:,2px CF += 过焦点弦长p x x p x p x CD ++=+++=212122 y1y2=-p2,x1x2=42p ;注:只适合求过焦点的弦长,对于其它的弦,只能用"弦长公式〞来求.4.直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x 2+bx+c=0,当△≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果直线和抛物线只有一个公共点,除相切外,还有直线是抛物线的对称轴或是和对称轴平行,此时,不能仅考虑△=0. 注意:>抛物线px y 22=上的动点可设为P ),2(2y p y 或或)2,2(2pt pt P P px y y x 2),(2=其中5.求轨迹的常用方法:〔1〕直接法:直接通过建立x 、y 之间的关系,构成F<x,y>=0,是求轨迹的最基本的方法;〔2〕待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;〔3〕代入法〔相关点法或转移法〕:若动点P<x,y>依赖于另一动点Q<x1,y1>的变化而变化,并且Q<x1,y1>又在某已知曲线上,则可先用x 、y 的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;〔4〕定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; 〔5〕点差法,处理圆锥曲线弦中点问题常用代点相减法,主要用于求斜率.〔注意:验证判别式大于零.〕〔6〕参数法:当动点P 〔x,y 〕坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量〔参数〕表示,得参数方程,再消去参数得普通方程.注:①轨迹方程与轨迹的区别,②限制X 围,③根据曲线方程研究曲线类型时注意椭圆与圆的区别,注意次数和符号,④.涉与圆锥曲线的问题勿忘用定义解题. 〔四〕解析几何中的基本公式1.两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB |x2-x1| . y //AB 轴, 则=AB |y2-y1| .2.平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221B A C C d +-=注意点:①x,y 对应项系数应相等,②方程化成一般式.3.点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:22B A CBy Ax d +++=4.直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F b kx y 消y :02=++c bx ax 〔务必注意0∆>,k 为直线的斜率.〕.若l 与曲线交于A ),(),,(2211y xB y x 则:2122))(1(x x k AB -+==或AB12||y y =-="设而不求〞的解题思想;〕特殊的直线方程: ①垂直于x 轴且截距为a 的直线方程是x=a,y 轴的方程是x=0.②垂直于y 轴且截距为b 的直线方程是y=b,x 轴的方程是y=0.注:判断直线与圆锥曲线的位置关系时,优先讨论二次项系数是否为零,然后再考虑判别式与韦达定理. 第七部分 能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力,以与应用意识和创新意识. 1.运算求解能力:能够根据法则和公式进行正确运算、变形;能够根据问题的条件,寻找并设计合理、简捷的运算方法;能够根据要求对数据进行估计和近似计算.2.数据处理能力:能够收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确判断;能够根据所学知识对数据进行进一步的整理和分析,解决所给问题.3.空间想象能力:能够根据条件作出正确的图形,根据图形想象出直观形象;能够准确地理解和解释图形中的基本元素与其相互关系;能够对图形进行分解、组合;能够运用图形与图表等手段形象地揭示问题的本质和规律.4.抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断.5.推理论证能力:能够根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性.6.应用意识:能够综合运用所学知识对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学思想和方法解决问题,并能用数学语言正确地表述和解释.7.创新意识:能够独立思考,灵活和综合地运用所学的数学知识、思想和方法,创造性地提出问题、分析问题和解决问题.。

三角函数恒等变

三角函数恒等变

三角函数恒等变
三角函数恒等变形公式是cos(α +β )=cosα.cosβ。

三角函数是数学中属于初等函数中的超越函数的函数。

它们的本质是任何角的集合与一个比值的集合的变量之间的映射。

通常的三角函数是在平面直角坐标系中定义的。

90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。

90°的偶数倍+α的三角函数与α的三角函数绝对值相同。

也就是“奇余偶同,奇变偶不变”。

将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。

也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。

常见的三角函数包括正弦函数、余弦函数和正切函数。

在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

倍角公式,是三角函数中非常实用的一类公式。

就是把二倍角的三角函数用本角的三角函数表示出来。

在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

和差化积公式:包括正弦、余弦、正切和余切的和差化积公式,是三角函数中的一组恒等式,和差化积公式共10组。

在应
用和差化积时,必须是一次同名(正切和余切除外)三角函数方可实行。

若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档