8.2《消元——解二元一次方程组》同步练习题(1)及答案
(8.2 第2课时 用加减消元法解方程组)2020年春人教版初中数学七年级下册过关检测试卷附答案
四川绵阳市示范初中(绵阳南山双语学校)2020年春人教版初中数学七年级下册过关检测试卷班级 姓名第八章 二元一次方程组8.2 消元——解二元一次方程组第2课时 用加减消元法解方程组1.用加减法将方程组⎩⎪⎨⎪⎧2x -3y =11,2x +5y =-5中的未知数x 消去后,得到的方程是( )A .2y =6B .8y =16C .-2y =6D .-8y =162.利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×23.用加减消元法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11,下列变形正确的是( ) A .⎩⎪⎨⎪⎧4x +6y =39x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =96x -2y =22 C .⎩⎪⎨⎪⎧4x +6y =69x -6y =33 D .⎩⎪⎨⎪⎧6x +9y =36x -4y =114.(2019·天津)方程组⎩⎪⎨⎪⎧3x +2y =7,6x -2y =11的解是( ) A .⎩⎪⎨⎪⎧x =-1y =5 B .⎩⎪⎨⎪⎧x =1y =2 C .⎩⎪⎨⎪⎧x =3y =-1 D .⎩⎪⎨⎪⎧x =2y =125.解方程组⎩⎪⎨⎪⎧4x -3y =2,4x +3y =1. ①②既可用 消去未知数x ,也可用 消去未知数y.6.(2019·凉山州)方程组⎩⎪⎨⎪⎧x +y =10,2x +y =16的解是 . 7.已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为 . 8.(2019·贺州改编)已知方程组⎩⎪⎨⎪⎧2x +y =3,x -2y =5,则2x +6y 的值是 . 9.(2018·滨州)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -my =5,2x +ny =6的解是⎩⎪⎨⎪⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎪⎨⎪⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是 .10.(2019·眉山)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =k -1,2x +y =5k +4的解满足x +y =5,则k 的值为 .11.解方程组:(1)(2019·广州)⎩⎪⎨⎪⎧x -y =1,①x +3y =9;②(2)⎩⎪⎨⎪⎧x +2y =0,①3x +4y =6;②(3)⎩⎪⎨⎪⎧2x -y =7,①3x +2y =0.②12.解方程组:⎩⎪⎨⎪⎧4x -3y =1,①3x -2y =-1.②13.解方程组:(1)⎩⎪⎨⎪⎧2x +3y =4,①5x +6y =7;②(2)⎩⎪⎨⎪⎧4x +3y =14,①3x +2y =22;②(3)⎩⎪⎨⎪⎧x -y 3=1,①2(x -4)+3y =5.②14.(2019·淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?15.(2019·白银)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?16.已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b 的值.参考答案1.用加减法将方程组⎩⎪⎨⎪⎧2x -3y =11,2x +5y =-5中的未知数x 消去后,得到的方程是(D )A .2y =6B .8y =16C .-2y =6D .-8y =162.利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6,②下列做法正确的是(D )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×23.用加减消元法解方程组⎩⎪⎨⎪⎧2x +3y =3,3x -2y =11,下列变形正确的是(C ) A .⎩⎪⎨⎪⎧4x +6y =39x -6y =11 B .⎩⎪⎨⎪⎧6x +3y =96x -2y =22 C .⎩⎪⎨⎪⎧4x +6y =69x -6y =33 D .⎩⎪⎨⎪⎧6x +9y =36x -4y =114.(2019·天津)方程组⎩⎪⎨⎪⎧3x +2y =7,6x -2y =11的解是(D ) A .⎩⎪⎨⎪⎧x =-1y =5 B .⎩⎪⎨⎪⎧x =1y =2 C .⎩⎪⎨⎪⎧x =3y =-1 D .⎩⎪⎨⎪⎧x =2y =125.解方程组⎩⎪⎨⎪⎧4x -3y =2,4x +3y =1. ①②既可用①-②消去未知数x ,也可用①+②消去未知数y.6.(2019·凉山州)方程组⎩⎪⎨⎪⎧x +y =10,2x +y =16的解是⎩⎪⎨⎪⎧x =6y =4. 7.已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为8. 8.(2019·贺州改编)已知方程组⎩⎪⎨⎪⎧2x +y =3,x -2y =5,则2x +6y 的值是-4. 9.(2018·滨州)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x -my =5,2x +ny =6的解是⎩⎪⎨⎪⎧x =1,y =2,则关于a ,b 的二元一次方程组⎩⎪⎨⎪⎧3(a +b )-m (a -b )=5,2(a +b )+n (a -b )=6的解是⎩⎪⎨⎪⎧a =32b =-12. 10.(2019·眉山)已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =k -1,2x +y =5k +4的解满足x +y =5,则k 的值为2.11.解方程组:(1)(2019·广州)⎩⎪⎨⎪⎧x -y =1,①x +3y =9;②解:②-①,得4y =8,解得y =2,把y =2代入①,得x -2=1,解得x =3.∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =2.(2)⎩⎪⎨⎪⎧x +2y =0,①3x +4y =6;②解:②-①×2,得x =6.把x =6代入①,得6+2y =0,解得y =-3.∴原方程组的解为⎩⎪⎨⎪⎧x =6,y =-3.(3)⎩⎪⎨⎪⎧2x -y =7,①3x +2y =0.②解:①×2+②,得7x =14.解得x =2. 把x =2代入①,得4-y =7.解得y =-3.∴原方程组的解是⎩⎪⎨⎪⎧x =2,y =-3.12.解方程组:⎩⎪⎨⎪⎧4x -3y =1,①3x -2y =-1.②解:②×3-①×2,得x =-5.把x =-5代入①,得-20-3y =1,解得y =-7.∴原方程组的解为⎩⎪⎨⎪⎧x =-5,y =-7.13.解方程组:(1)⎩⎪⎨⎪⎧2x +3y =4,①5x +6y =7;②解:①×2,得4x +6y =8.③②-③,得x =-1.把x =-1代入①,得2×(-1)+3y =4.解得y =2.∴原方程组的解为⎩⎪⎨⎪⎧x =-1,y =2. (2)⎩⎪⎨⎪⎧4x +3y =14,①3x +2y =22;②解:①×2,得8x +6y =28.③②×3,得9x +6y =66.④④-③,得x =38.把x =38代入①,得4×38+3y =14.解得y =-46.∴原方程组的解为⎩⎪⎨⎪⎧x =38,y =-46.(3)⎩⎪⎨⎪⎧x -y 3=1,①2(x -4)+3y =5.②解:原方程整理,得⎩⎪⎨⎪⎧3x -y =3,③2x +3y =13.④③×3+④,得11x =22,解得x =2.把x =2代入③,得6-y =3,解得y =3.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =3. 14.(2019·淮安)某公司用火车和汽车运输两批物资,具体运输情况如下表所示:试问每节火车车皮和每辆汽车平均各装物资多少吨?解:设每节火车车皮装物资x 吨,每辆汽车装物资y 吨,根据题意,得⎩⎪⎨⎪⎧2x +5y =130,4x +3y =218,解得⎩⎪⎨⎪⎧x =50,y =6. 答:每节火车车皮装物资50吨,每辆汽车装物资6吨.15.(2019·白银)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?解:设中性笔和笔记本的单价分别是x 元、y 元,根据题意,得 ⎩⎪⎨⎪⎧12y +20x =112,12x +20y =144,解得⎩⎪⎨⎪⎧x =2,y =6.答:中性笔和笔记本的单价分别是2元、6元.16.已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩⎪⎨⎪⎧3x -y =5,4x -7y =1的解相同,求a ,b 的值.解:⎩⎪⎨⎪⎧3x -y =5,①4x -7y =1.②①×7-②,得17x =34.解得x =2.把x =2代入①,得y =1.∴此方程组的解是⎩⎪⎨⎪⎧x =2,y =1. 把x =2,y =1代入方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6,得 ⎩⎪⎨⎪⎧2a -b =4,2a +b =6,解得⎩⎪⎨⎪⎧a =2.5,b =1.。
8.2.消元--解二元一次方程组(加减法)
由①+②得: 5x=10
两个二元一次方程中同一未知数的系数相反 或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,得到一个一元一次方程, 这种方法叫做加减消元法,简称加减法.
用直接消元法解方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点: 同一个未知数的系数相同或互为相反数 二元 一元
基本思路: 加减消元:
主要步骤: 加减
求解 回代 写解
消去一个未知数后化 为一元一次方程 求出一个未知数的值 代入原方程求出另一个 未知数的值 写出方程组的解
一.填空题:
x+3y=17
1.已知方程组 2x-3y=6 y 分别相加 就可以消去未知数 只要两边 25x-7y=16 两个方程
2.已知方程组
8.2 加减消元 二元一次方程解法
1、根据等式性质填空:
<1>若a=b,那么a±c= b±c .(等式性质1) <2>若a=b,那么ac= bc . (等式性质2)
思考:若a=b,c=d,那么a±c=b±d吗? 2、用代入法解方程的关键是什么? 二元
代入 转化
一元
3、解二元一次方程组的基本思路是什么?
A.6x=8 B.6x=18 C.6x=5 D.x=18
三.指出下列方程组求解过程中 有错误步骤,并给予订正: 7x-4y=4 ①
3x-4y=14①
②
5x+4y=2 5x-4y=-4② 解:①-②,得 解 ①-②,得 2x=4-4, -2x=12 x= 0 x =-6 解: ①-②,得 解: ①+②,得 8x=16 2x=4+4, x =2 x= 4
消元: 二元
一元
七年级数学(下)第八章《消元——解二元一次方程组》练习题含答案
七年级数学(下)第八章《消元——解二元一次方程组》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用加减消元法解方程组23537x y x y -=⎧⎨=+⎩①②正确的方法是A .①+②得2x =5B .①+②得3x =12C .①+②得3x +7=5D .先将②变为x -3y =7③,再①-③得x =-2【答案】D【解析】先将②变为x -3y =7③,再①-③得x =-2.故选D . 2.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为x =153y-,再代入①D .先将①变形为5y =2x ,再代入② 【答案】D【解析】由①得:5y =2x ,把5y =2x 代入②即可.故选D . 3.解方程组35237x y x y +=⎧⎨+=⎩①②,错误的解法是A .先将①变形为53x y =+,再代入②B .先将①变形为53x y =-,再代入②C .将-②①,消去yD .将2⨯-①②,消去x 【答案】A【解析】用代入法解二元一次方程组时先将①变形为53x y =-,移项要变号,选项A 错误.故选A .4.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 【答案】D(4)第一个方程转化为x =7-y ,代入第二个方程即可消去未知数x ,用代入法比较适宜.故选D .5.二元一次方程组320x y x y -=-⎧⎨+=⎩的解是A .12x y =-⎧⎨=⎩B . 12x y =⎧⎨=-⎩C .12x y =-⎧⎨=-⎩D .21x y =-⎧⎨=⎩【答案】A【解析】将方程组中的两个方程相加得3x =-3,解得x =-1,将x =-1代入方程组中得任意一个方程可得y =2,所以12x y =-⎧⎨=⎩.故选A .6.已知方程组323()11x y y x y -=⎧⎨+-=⎩,那么代数式3x -4y 的值为A .1B .8C .-1D .-8【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1,将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B . 7.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为 A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩【答案】D【解析】由同类项的定义可得24325y xx y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.8.已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m-n的算术平方根为A.±2 B.2C.2 D.4 【答案】C9.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④【答案】C【解析】①中将51xy=⎧⎨=-⎩代入方程组得534513aa-=-⎧⎨+=⎩,解得:a=2,所以①正确;②中将a=2代入方程组中得326x yx y+=⎧⎨-=⎩①②,①+②得x+y=4,所以②错误;③中将a=1代入方程组得333x yx y+=⎧⎨-=⎩,解得3xy=⎧⎨=⎩,将其代入x-2y=3-2×0=3,所以③正确;④中,将方程组中的两个方程相加得x+y=2+a,所以④错误.故选C.二、填空题:请将答案填在题中横线上.10.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.【答案】32【解析】23523x y x y +=⎧⎨+=-⎩①②,①+②得:442x y +=,即12x y +=,13333()322x y x y +=+=⨯=.故答案为:32. 11.方程组221x y x y +=-=⎧⎨⎩的解是__________.【答案】11x y ==⎧⎨⎩【解析】221x y x y +=⎧⎨-=⎩①②,①+②,得:3x =3,解得x =1,把x =1代入①得,y =1.故方程组的解为:11x y ==⎧⎨⎩,故答案为:11x y ==⎧⎨⎩.12.若关于x 、y 的二元一次方程组59x y kx y k+=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.【答案】3413.已知|2x -3y +4|与(x -2y +5)2互为相反数,则(x -y )2019=__________.【答案】1【解析】由题意,得2|234|(25)0x y x y -++-+=,∴2x −3y +4=0,x −2y +5=0,∴x =7,y =6,∴20192019()(76)1x y -=-=,故答案为:1.14.若方程组42ax by ax by -=⎧⎨+=⎩与方程组234456x y x y +=⎧⎨-=⎩的解相同,则a =__________,b =__________.【答案】3319;112-【解析】解方程组234456x y x y +=⎧⎨-=⎩得1911211x y ⎧=⎪⎪⎨⎪=⎪⎩,将1911211x y ⎧=⎪⎪⎨⎪=⎪⎩代入第一个方程组中得1924111119221111a b a b ⎧-=⎪⎪⎨⎪+=⎪⎩,解得3319112a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3319;112-.三、解答题:解答应写出文字说明、证明过程或演算步骤. 15.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.【解析】(1)将①代入②得,32(402)22x x +-=, 解得x =58,故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③, ①+③得:21x =0, 解得:x =0,将x =0代入②,得y =3, 故原方程组的解为:03x y =⎧⎨=⎩.16.已知关于x ,y 的方程组54522x y ax by +=⎧⎨+=-⎩与2180x y ax by -=⎧⎨--=⎩有相同的解,求a ,b 的值.【解析】由题意可将x +y =5与2x -y =1组成方程组521x y x y +=⎧⎨-=⎩,解得23x y =⎧⎨=⎩,把23x y =⎧⎨=⎩代入4ax +5by =-22,得8a +15b =-22①,把23x y =⎧⎨=⎩代入ax -by -8=0,得2a -3b -8=0②,与②组成方程组,得815222380a b a b +=-⎧⎨--=⎩,解得12a b =⎧⎨=-⎩.17.已知关于,x y 的方程组212x y x y m +=⎧⎨-=⎩①②.(1)若用代入法求解,可由①得:x =__________③,把③代入②解得y =__________,将其代入③解得x =__________,∴原方程组的解为__________;(2)若此方程组的解x y ,互为相反数,求这个方程组的解及m 的值. 【解析】(1)若用代入法求解,可由①得12x y =-③,把③代入②解得14m y -=, 将其代入③解得12m x +=,∴原方程组的解为1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.故答案为:12y -;14m -;12m +;1214m x m y +⎧=⎪⎪⎨-⎪=⎪⎩.(2)∵方程组的解x y ,互为相反数, ∴x y =-③,将③代入①得21y y -+=, ∴1y =, ∴1x =-,∴2123m x y =-=--=-,∴方程组的解是11x y =-⎧⎨=⎩,3m =-.18.小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染325x y x y -=+=⎩∆⎧⎨,“口”和“△”表示被污染的内容,他着急,翻开书后面的答案,这道题的解是21x y ==-⎧⎨⎩,你能帮助他补上“口”和“△”的内容吗?说出你的方法.【解析】把x =2,y =-1代入两方程,得3×2-2×(-1)=8,5×2-1=9. ∴被污染的内容是8和9.。
8.2《消元——解二元一次方程组》同步练习题(2)及答案
。
二. 选择题 10. 若 y=kx+b中,当 x=-1 时,y=1;当 x=2 时,y=-2,则 k 与 b 为( )
k 1 A. b 1
k 1 B. b 0
k 1 C. b 2
k 1 D. b 4
x 1
ax by 0
8.2《消元——解二元一次方程组》同步练习题(2)
知识点:
1、代入法:用代入消元法解二元一次方程组的步骤: (1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用 含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
13. 对于方程组 4x 5y 17 ,用加减法消去 x,得到的方程是(
)
A. 2y=-2
B. 2y=-36 C. 12y=-2 D. 12y=- 36
14.
将方程-
1 2
x+y=1中
x
的系数变为
5,则以下正确的是(
)
A. 5x+y=7
B. 5x+10y=10 C. 5x-10y=10 D. 5x-10y=-10
∴原方程组解为 x 2 y 2
(4)解:由②得:x=3y-7……③ ③代入① :2(3y-7)+5y=8 11y=22 y=2
把 y=2代入③得 x=-1 ∴原方程组解为
x 1 y 2
16. (1)解:②×4-①×3 得:11y=-33 ∴y=-3 把 y=-3 代入①得:4x-9=3 x=3
7. 二元一次方程组 kx 2 y 5 的解是方程 x-y=1的解,则 k=
。
8-2消元——解二元一次方程组(同步练习) (1)
8.2 消元——解二元一次方程组一、单选题1.已知a ,b 满足方程组{2a −b =2a +2b =6,则3a +b 的值是( )A .﹣8B .8C .4D .﹣42.下列方程组中,是二元一次方程组的是( ) A .{3x −y=52y −z=6B .{x+y=2y −2x=4C .{x+3=1y=x 2D .{5x+2y=1xy=−13.已知二元一次方程2x +3y ﹣2=0,当x ,y 的值互为相反数时,x 、y 的值分别为( ) A .2,﹣2B .﹣2,2C .3,﹣3D .﹣3,34.将方程x +2y =11变形为用含x 的式子表示y ,下列变形中正确的是( ) A .y =x−112B .y =11−x 2C .x =2y ﹣11D .x =11﹣2y5.已知方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2 的解是{x =3y =4 ,则关于x ,y 的方程组{a 1x +b 1y =a 1+c 1a 2x +b 2y =a 2+c 2 的解是( ) A .{x =4y =−4B .{x =3y =4C .{x =4y =4D .{x =3y =−46.用加减消元法解二元一次方程组{x −y =5①2x −3y =3②时,下列方法中能消元的是( )A .①×2+①B .①×(−2)−①C .①×3+①D .①×(−3)+①7.表格中上下每对x 、y 的值都是同一个二元一次方程的解,则这个方程为( )x ﹣1 0 1 2 y852﹣1A .5x +y =3B .x +y =5C .2x ﹣y =0D .3x +y =58.方程组{x +2y =33x −2y =5的解是( )A .{x =1y =1B .{x =1y =−1C .{x =2y =12D .{x =2y =329.已知方程组{3x +y =1+3m x +3y =1−m的解满足x +y >0,则m 取值范围是( )A .m >1B .m <-1C .m >-1D .m <110.方程组{2x +3y =m 3x −2y =n 的解是{x =2y =1,则方程组{2(s −5)+3(t +3)=m 3(s −5)−2(t +3)=n的解是( )A .{s =7t =−2B .{s =3t =4C .{s =2t =1D .{s =−3t =−2二、填空题11.加减消元法:当二元一次方程的两个方程中,同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,从而求得方程组的解,这种解方程组的方法叫做_______,简称_______.加减消元法的条件:同一未知数的系数_______或_______.12.已知二元一次方程3x +y =7,若用含x 的代数式表示y ,则y =______. 13.已知二元一次方程组{2x −y =5x −2y =1,则x −y 的值为________.14.若√a +b +5+|2a −b +1|=0,则(b −a )200=______.15.定义一种新运算“①”,规定x ①y =ax +by 2,其中a 、b 为常数,且1①2=5,2①1=3,则2①3=____________.三、解答题 16.解下列方程组: (1){2x −3y =0①5x −7y =2②(2){x2+y3=1x+46−y−23=117.解方程组:{3x +6y =12①2x −3y =9②18.解方程组: (1){x +y =22x −13y =53; (2){2x −y =−44x −5y =−23.19.对下列问题,有三位同学提出了各自的想法:若方程组{a 1x −b 1y =c 1a 2x +b 2y =c 2的解是{x =3y =4,求方程组{3a 1(x −1)−b 1(y +3)=4c 13a 2(x −1)+b 2(y +3)=4c 2的解.甲说:“这个题目的好象条件不够,不能求解”; 乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以4,通过换元的方法来解决”. 请根据他们的讨论,求出第二个方程组的解. 20.解方程(组):(1)4x -2=6x -10 (2)0.2−0.3x 0.1+0.05x−0.070.02=1(3) {y =1−x 3x +y =5(4){x:y =3:55x −2y =−1(5){x+y3+x−y2=13(x +y)−2(x −y)=22 (6){3x +4z =−12x +3y +z =−55x −6y +5z =1221.已知关于x 、y 的方程组{3x +5y =k +22x +3y =k,的解满足﹣2<x+y <5,求k 的取值范围.。
二元一次方程组习题及答案二元一次方程及过程答案(收藏)
初一数学下8二元一次方程组--试题及答案§8.1二元一次方程组一填空题1二元一次方程4x3y=12,当x=0,1,2,3时,y= 2在x+3y=3中,若用x 表示y ,则y= ,用y 表示x ,则x=3已知方程(k 21)x 2+(k+1)x+(k7)y=k+2,当k=时,方程为一元一次方程;当k=时,方程为二元一次方程。
4对二元一次方程2(5x)3(y2)=10,当x=0时,则y=;当y=0时,则x=。
5方程2x+y=5的正整数解是。
6若(4x3)2+|2y+1|=0,则x+2= 。
7方程组⎩⎨⎧==+b xy a y x 的一个解为⎩⎨⎧==32y x ,那么这个方程组的另一个解是 。
8若21=x 时,关于y x 、的二元一次方程组⎩⎨⎧=-=-212by x y ax 的解互为倒数,则=-b a 2 。
二选择题1方程2x-3y=5,xy=3,33=+yx ,3x-y+2z=0,62=+y x 中是二元一次方程的有( )个。
A1 B2 C3 D42方程2x+y=9在正整数范围内的解有( ) A1个 B2个 C3个D4个3与已知二元一次方程5xy=2组成的方程组有无数多个解的方程是( )A10x+2y=4 B4xy=7 C20x4y=3 D15x3y=6 4若是my x25与2214-++n m n y x同类项,则nm-2的值为 ( )A1 B -1 C -3 D 以上答案都不对5在方程(k 24)x 2+(23k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k 值为( )A2 B-2 C2或 2D 以上答案都不对. 6若⎩⎨⎧-==12y x 是二元一次方程组的解,则这个方程组是( )A ⎩⎨⎧=+=-5253y x y x B⎩⎨⎧=--=523x y x y C⎩⎨⎧=+=-152y x y xD⎩⎨⎧+==132y x yx 7在方程3)(3)(2=--+x y y x 中,用含x 的代数式表示y ,则 ( )A35-=x y B3--=x y C 35+=x yD 35--=x y 8已知x=3-k,y=k+2,则y与x的关系是( )Ax+y=5 Bx+y=1 Cx-y=1 Dy=x-19下列说法正确的是( )A二元一次方程只有一个解 B二元一次方程组有无数个解C二元一次方程组的解必是它所含的二元一次方程的解D三元一次方程组一定由三个三元一次方程组成10若方程组⎩⎨⎧=+=+16156653y x y x的解也是方程3x+ky=10的解,则k的值是( =)Ak=6 = Bk=10 Ck=9 Dk=101三解答题1解关于x 的方程)1(2)4)(1(+-=--x a x a a§8.2消元——二元一次方程组的解法一用代入法解下列方程组(1)⎩⎨⎧=+=-5253y x y x (2) ⎩⎨⎧=--=523x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩⎨⎧+==-1302y x y x (5)⎩⎨⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-qp q p 451332 二用加减法解下列方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x (3)⎩⎨⎧=--=-7441156y x y x(4)⎩⎨⎧-=+-=-53412911y x y x (5)⎪⎩⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+ay x ay x 343525(a为常数)三:用适当的方法解方程: 1⎩⎨⎧=-=+-6430524m n n m 2⎪⎪⎩⎪⎪⎨⎧=--=-323113121y x y x3⎩⎨⎧=-=+110117.03.04.0y x y x 4⎪⎩⎪⎨⎧=+=+-722013152y x y x 5⎩⎨⎧-=+=--cy x cy x 72963112(c 为常数)1代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求5,7-==y x 时代数式by ax -的值。
8-2消元——解二元一次方程组 同步练习
8.2. 消元——解二元一次方程组 同步练习班级:_________ 姓名:_________ 学号:__________一. 选择题(本大题共10小题,在每小题列出的选项中,选出符合题目的一项) 1.下列方程组中,二元一次方程组的个数有( ) ①+3=5+=12x y x y ⎧⎪⎨⎪⎩ ①+=3-=6x xy x y ⎧⎨⎩ ①+=5-=6x y y z ⎧⎨⎩ ①5-2=31+=3x y y x ⎧⎪⎨⎪⎩ ①=0+=5x x y ⎧⎨⎩A .1个B .2个C .3个D .4个 2.方程组282x y x y +=⎧⎨=⎩的解是( )A .21x y =⎧⎨=⎩B .42x y =⎧⎨=⎩ C .12x y =⎧⎨=⎩ D .24x y =⎧⎨=⎩3.已知2429m n m n +=-⎧⎨+=⎩,则代数式m -n 的值是( )A .5-B .5C .13-D .13 4.在解二元一次方程组6326x y x y +⊕=⎧⎨+⊗=-⎩①②时,若①-①可直接消去未知数y ,则⊕和⊗() A .互为倒数 B .大小相等 C .都等于0 D .互为相反数 5.若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为( )A .3B .-3C 3D .3- 6.若方程组()()231114x y k x k y +=⎧⎨-++=⎩的解x 与y 相等,则k 的值为( )A .3B .20C .10D .0 7.已知关于x 、y 的方程x 2m -n -2+ym +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =﹣1 B .m =﹣1,n =1C .m =13,n =﹣43 D .m =﹣13,n =438.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程组522ax by bx ay +=-⎧⎨-=⎩的解,则a +b 的值为( )A .﹣5B .﹣1C .3D .7 9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为( )A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩ 10.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .12二、填空题(本大题共6小题,在横线上填上合理的答案)11.若x +y =2,x ﹣y =4,则xy =_____.12.若2amb 2m +3n 与a 2n ﹣3b 8的差仍是一个单项式,则m +n =_____.13.定义一种新运算“①”,规定:x ①y =ax +by ,其中a ,b 为常数,已知1①2=7,2①(﹣1)=4,则a ①b =_____.14.关于x ,y 的二元一次方程组125x ay x y -=⎧⎨+=⎩的解为正整数,则满足条件的所有整数a 的和为___________.15.已知3x 2a +b ﹣3﹣5y 3a ﹣2b +2=﹣1是关于x 、y 的二元一次方程,则(a +b )b =__.16.已知方程组23325x y m x y m -=+⎧⎨+=-⎩①②,以下说法:①无论m 和y 取何值,x 的值一定等于2:①当3m =时,x 与y 互为相反数;①当方程组的解满足25x y +=时,1m =-;①方程组的解不可能为20x y =-⎧⎨=⎩,其中正确的是____________(填序号). 三、解答题17.解方程组:(1)20328x y x y -=+=⎧⎨⎩; (2)2+13-2-9x y x y =⎧⎨=⎩;(3)237342x y x y +=⎧⎨-=⎩; (4)233210+1-1y x x y +=⎧=⎪⎨⎪⎩.18.解下列方程组:(1)4(1)3(1)22423x y y x y --=--⎧⎪⎨+=⎪⎩; (2)2()1346()4(2)16x y x y x y x y -+⎧-=-⎪⎨⎪+--=⎩.19.已知关于x ,y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求b a -()值.20.已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.21.(1)已知21a -的平方根是3±,31a b +-的算术平方根是4,求2+a b 的平方根; (2)如果某个数x 的平方根是4a 及210a -,求a 与x 的值.22.已知a ,b 为有理数,且满足233231530a b b a +--+-=,试求a ,b 的值。
七年级下册数学同步练习题库:消元——解二元一次方程组(填空题:较易)
消元——解二元一次方程组(填空题:较易)1、二元一次方程组的解是.2、是方程2x-ay=5的一个解,则a=____.3、已知x与y互为相反数,且3x-y=4,则x=______,y=______.4、已知方程组那么b-a的值为____5、已知,则=____.6、已知是实数,且,则的值是____________.7、已知a,b满足方程组,则3a+b的值为__________.8、已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解_____.9、方程组的解是_____.10、由方程组,可得到x与y的关系式是_____.11、已知方程用含的代数式表示为:________.12、已知x=3+t, y=3﹣t,用x的代数式表示y为___________13、方程3x+y=4,用含有y的式子x表示,则x= ________.14、已知方程组,当m__时,x+y>0..15、已知二元一次方程组,则x+y=_______.16、已知二元一次方程组,则____________17、方程组的解是________.18、已知关于、的二元一次方程组,则的值为_______.19、已知关于x、y的方程组的解满足x+y=2,k=________.20、由,可得到用x表示y的式子为y=______21、已知,则x+y=__.22、方程组的解满足方程x+y+a=0,那么 a的值是________.23、已知x,y满足方程组,则x﹣y的值是.24、已知:关于的方程组的解,满足则=_____.25、方程组的解是.26、已知,那么x+y的值为,x﹣y的值为.27、方程组的解是.28、已知方程组,则x+y= .29、单项式3x2m+3n y8与﹣2x2y3m+2n是同类项,则m+n= .30、方程组的解是.31、若,则 .32、已知二元一次方程组的解是,则的值是 .33、若|x-2y+1|+|x+y-5|=0,则2x+y=________.34、方程组的解是.35、孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为,又已知直线y=kx+b过点(3,1),则b的正确值应该是.36、已知方程2x﹣3y﹣1=0,用x表示y,则y=_____________.37、定义运算“”,规定x y=ax+by,其中a,b为常数,且12=5,21=6,则32=_______.38、(2015秋•薛城区校级月考)已知是方程3ax+4y=16的解,则a= .39、若4x2m y m+n与—3x6y2是同类项,则mn= .40、已知,则.41、若方程组的解是,那么|a﹣b|= .42、若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为 .43、(3分)已知方程组,不解方程组,则x+y= .44、已知方程组的解x、y之和为2,则k= .45、(4分)方程组的解为.46、对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.47、由方程组,可得到x与y的关系式是_____.48、已知是关于m,n的方程组的解,则a+b= .49、若方程组的解满足,则m的值为.50、如果实数x,y满足方程组,则x2﹣y2的值为.51、由方程组,可得到x与y的关系式是__________.52、如果实数x、y满足方程组,那么x2– y2= .53、方程组的解是___________.54、方程组的解是.55、若是关于字母,的二元一次方程,则= ,= 。
消元解二元一次方程组练习题(含答案)
《8.2消元解二元一次方程组》同步练习题一、选择题(每小题只有一个正确答案)1.已知二元一次方程组 ,如果用加减法消去n ,则下列方法可行的是( )A. ①×4+②×5B. ①×5+②×4C. ①×5-②×4D. ①×4-②×52.把方程2x+3y ﹣1=0改写成含x 的式子表示y 的形式为( ) A. y=(2x ﹣1) B. y=(1﹣2x ) C. y=3(2x ﹣1) D. y=3(1﹣2x )3.方程组1{ 25x y x y -=+=的解是( )A. 1{ 2x y =-=B. 2{ 1x y ==-C. 1{ 2x y ==D. 2{ 1x y ==4.已知方程组:的解是:,则方程组: 的解是( ) A. B. C. D. 5.用加减消元法解方程组358{ 752x y x y -=+= 将两个方程相加,得( )A. 3x=8B. 7x=2C. 10x=8D. 10x=106.已知二元一次方程2x +3y -2=0,当x ,y 互为相反数时,x ,y 的值分别为( )A. 2,-2B. -2,2C. 3,-3D. -3,37.已知23x y --+(2x +y +11)2=0,则( )A. 2,{ 1x y ==B. 0,{ 3x y ==-C. 1,{ 5x y =-=-D. 2,{ 7x y =-=-二、填空题8.如果方程组的解是方程的一个解,则的值为____________.9.若方程组与有相同的解,则a= ________,b= ________. 10.方程组313{ 3131x y x y +=-=-的两个方程只要两边_______,就可以消去未知数_______. 11.若6{ 20x y x y -=+=,则 32x y +=__________________. 12.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍.如果搭建正三角形和正六边形共用了2016根火柴棍,并且正三角形的个数比正六边形的个数多6个,那么能连续搭建正三角形的个数是__________三、解答题13.解方程组:(1);(2).14.()() 344 {126x y x yx y x y+--=+-+=15.用合适的方法解下列方程组:(1)402{3222y xx y=-+=(2)235{421x yx y+=-=(3)6515{33x yx y+=-=-16.甲、乙两人解关于x, y的方程组,甲因看错a,解得,乙将其中一个方程的b写成了它的相反数,解得,求a、b 的值.。
8.2 消元解二元一次方程组(第2课时 代入消元法简单应用)七年级数学下册同步备课系列(人教版)
把x=20000代入③得:y=50000
∴
x 20000
y
50000
答:这些消毒液应该分装20000大瓶和50000小瓶 .
3.设未知数 4.列方程组
5.解方程组
6.检验 7.作答
解:设这些消毒液应该分装x大瓶、y小瓶
3.设未知数
根据题意可列方程组:550x0x2y250 y 22500000
解:设这些消毒液应该分装x大瓶、y小瓶
根据题意可列方程组:550x0x2y250 y 22500000
① ②
由①得:y 5 x ③ 2
把③代入②得:500x 250 5 x 22500000 2
解得:x=20000
把x=20000代入③得:y=50000
∴
x 20000
y
50000
答:这些消毒液应该分装20000大瓶和50000小瓶 .
审题:等量关系: (1)大2×瓶小数瓶:小数瓶=5数×大=瓶2数:5 (2)大瓶所装消毒液总量 +小瓶所装消毒液总量 = 22.5吨
1.审题 2.找等量关系
解:设这些消毒液应该分装x大瓶、y小瓶
根据题意可列方程组:550x0x2y250 y 22500000
① ②
由①得:y 5 x ③ 2
把③代入②得:500x 250 5 x 22500000 2
x y 30 ① 2x 4 y 84 ②
解得
x 18
y
12
.
答:这个笼中的鸡有18只,兔有12只.
2. 小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝 码重量如图所示.问:这两个苹果的重量分别为多少克?
解:根据题意,得:
解二元一次方程组(第二课时 加减消元法)(练习)七年级数学下册同步课堂(人教版)(解析版)
第八章二元一次方程组8.2解二元一次方程组(第二课时加减消元法)精选练习答案基础篇一、单选题(共10小题)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为()A .﹣4B .4C .﹣2D .2【答案】B 【详解】试题解析:512{34a b a b +=-=①②,①+②:4a+4b=16则a+b=4,故选B .2.若|321|20x y x y --++-=,则x ,y 的值为()A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D 【详解】详解:∵32120x y x y --++-,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选D .3.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详解】解:解方程组21x yx y+=⎧⎨-=⎩,得1.50.5xy=⎧⎨=⎩,∴点(1.5,0.5)在第一象限.故选:A.4.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.5.方程组3276211x yx y+=⎧⎨-=⎩,的解是()A.15xy=-⎧⎨=⎩,B.12xy=⎧⎨=⎩,C.31xy,=⎧⎨=-⎩D.212xy=⎧⎪⎨=⎪⎩,【答案】D 【详解】解:327 6211x yx y+=⎧⎨-=⎩①②,①+②得:9x=18,即x=2,把x=2代入②得:y=1 2,则方程组的解为:212 xy=⎧⎪⎨=⎪⎩,故选D.6.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A .1B .3C .14-D .74【答案】D 【详解】解:3,354,x y x y +=⎧⎨-=⎩①②+①②,得447x y -=,所以74x y -=,因为,,x a y b =⎧⎨=⎩所以74x y a b -=-=.故选D.7.若方程组31331x y ax y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为()A .﹣1B .1C .0D .无法确定【答案】A 【详解】方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A .8.用加减法解方程组2333211x y x y +=⎧⎨-=⎩时,有下列四种变形,其中正确的是()A .4669633x y x y +=⎧⎨-=⎩B .6396222x y x y +=⎧⎨-=⎩C .6936411x y x y +=⎧⎨-=⎩D .4639611x y x y +=⎧⎨-=⎩【答案】A 【详解】解:若消去x ,则有:6996422x y x y +=⎧⎨-=⎩;若消去y ,则有:4669633x y x y +=⎧⎨-=⎩;∴用加减消元法正确的是A ;9.关于x ,y 的方程组2318517ax y x by +=⎧⎨-+=⎩(其中a ,b 是常数)的解为34x y =⎧⎨=⎩,则方程组2()3()18()5()17a x y x y x y b x y ++-=⎧⎨+--=-⎩的解为()A .34x y =⎧⎨=⎩B .71x y =⎧⎨=-⎩C . 3.50.5x y =⎧⎨=-⎩D . 3.50.5x y =⎧⎨=⎩【答案】C 【详解】详解:由题意知:3{4x y x y +=-=①②,①+②,得:2x =7,x =3.5,①﹣②,得:2y =﹣1,y =﹣0.5,所以方程组的解为 3.50.5x y =⎧⎨=-⎩.故选C .10.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是()A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【详解】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩,对照方程组111222a x b y c a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,提升篇二、填空题(共5小题)11.已知x 、y 满足方程组3123x y x y +=-⎧⎨+=⎩,则x y +的值为__________.【答案】1【详解】解:3123x y x y +=-⎧⎨+=⎩①②①2⨯得:262x y +=-③③-②得:55,y =-1,y ∴=-把1y =-代入①:31,x ∴-=-2,x ∴=所以方程组的解是:2,1x y =⎧⎨=-⎩1.x y ∴+=故答案为:1.12.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为.【答案】2【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==,∴139m 3n 3855+=+⨯=33m 3n 82+,故答案为2.13.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m-7n 的算术平方根是_________.【答案】4【详解】根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为4.14.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.【答案】15x y =⎧⎨=⎩【详解】627x y x y +=⎧⎨+=⎩①②,②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为15x y =⎧⎨=⎩15.已知32x y =⎧⎨=-⎩是方程组37ax by bx ay +=⎧⎨+=-⎩的解,则代数式(a+b)(a-b)的值为_________【答案】−8【详解】解:把32x y =⎧⎨=-⎩代入方程组得:323 327a b b a -=⎧⎨-=-⎩①②,①×3+②×2得:5a =−5,即a =−1,把a =−1代入①得:b =−3,则(a+b)(a-b)=a 2−b 2=1−9=−8,故答案为−8.三、解答题(共2小题)16.解二元一次方程组(1)31529x y x y +=⎧⎨-=⎩(2)3523153232x y x y x+=⎧⎪-+⎨-=-⎪⎩【答案】(1)12x y =⎧⎨=-⎩(2)2345x y ⎧=-⎪⎪⎨⎪=⎪⎩【详解】(1)31529x y x y +=⎧⎨-=⎩①②,将①式×2+②得6529x x +=+,1111x =,解得1x =,将1x =代入①得:2y =-,故解为:12x y =⎧⎨=-⎩(2)3523153232x y x y x +=⎧⎪-+⎨-=-⎪⎩,将方程组整理得:()()35223135312x y x y x +=⎧⎪⎨--+=-⎪⎩即35231510x y x y +=⎧⎨--=-⎩①②,①+②得:108y -=-,解得:45y =,将45y =代入①得:23x =-,∴解为2345x y ⎧=-⎪⎪⎨⎪=⎪⎩17.用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下:解法一:解法二:由②,得3(3)2x x y +-=,③由①-②,得33x =.把①代入③,得352x +=.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“⨯”.(2)请选择一种你喜欢的方法,完成解答.【答案】(1)解法一中的计算有误;(2)原方程组的解是12x y =-⎧⎨=-⎩【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:33x -=,解得:1x =-,把1x =-代入①,得:135y --=,解得:2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
初一数学消元——二元一次方程组的解法试题答案及解析
初一数学消元——二元一次方程组的解法试题答案及解析1.若方程组的解是,那么、的值是().A.B.C.D.【答案】A【解析】本题考查的是二元一次方程组的解的定义由题意得,解得,故选A。
2.若方程是关于、的二元一次方程,则、的值是(). A.B.C.D.【答案】C【解析】本题考查的是二元一次方程的定义根据二元一次方程的定义即可得到结果。
由题意得,,解得,故选C。
3.在等式中,当时,,当时,,则这个等式是(). A.B.C.D.【答案】B【解析】本题考查的是二元一次方程的解的定义根据题意即可得到关于的方程组,解出即得结果。
由题意得,解得,则这个等式是,故选B。
4.方程组的解是()A.B.C.D.【答案】C【解析】本题考查的是方程组的解两方程相加即得的值,两方程相减即得的值,从而得到方程组的解。
两方程相加得,,两方程相减得,,故选C。
5.解方程组:(用代入法)【答案】【解析】本题考查的是二元一次方程组的解法先把原方程组整理为不含括号的形式,把①变形成含的代数式表示,再把其代入②便可消去y,解出x的值,再把x的值代入变形后的式子,即可得到y的值.方程组整理得,由①得:③,把③代入②得:,解得把代入③得:,∴方程组的解为:6.解方程组:【答案】【解析】本题考查的是二元一次方程组的解法由即可消去求得的值,再代入即可求得的值,即可方程组的解。
得,解得,把代入得,解得,方程组的解为。
7.既是方程的解,又是方程的解是()A.B.C.D.【答案】B【解析】本题主要考查了二元一次方程组的解. 根据题意即可得到方程组:,解方程组即可求解解:根据题意得:①×4+②得:x=2,把x=2代入①得:y=1.则方程组的解是:.故选B.8.若和是方程的两组解,则_____,_____.【答案】,【解析】本题主要考查了二元一次方程的解. 将两组解分别代入方程,得m,n的方程组,解方程组求m,n的值.解:把和分别代入方程mx+ny=3,得解得.9.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:求该商场购进A、B两种商品各多少件;【答案】200件和120件【解析】本题主要考查了由实际问题抽象出二元一次方程组.等量关系,即“两种商品总成本为36万元”和“共获利6万元”,根据这两个等量关系,可列出方程组,再求解.设购进A种商品件,B种商品件.根据题意,得化简,得解之,得答:该商场购进A、B两种商品分别为200件和12010.用加减法解下列方程组较简便的消元方法是:将两个方程_____,消去未知数____.毛【答案】相加,【解析】本题考查的是加减法解方程组根据两个方程中的字母的系数互为相反数,即可相加得到结果。
初一数学下册春季班培优讲义.教师版.8.2 消元——解二元一次方程组-测试题(含答案)【精品】
第八章二元一次方程组【精品】8.2 消元——解二元一次方程组1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K知识参考答案:1.消元2.加减法K—重点代入法或加减法解二元一次方程组K—难点用适当的方法解二元一次方程组K—易错解二元一次方程组时看错系数一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y=ax+b(或x=ay+b),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y xx y=-⎧⎨-=⎩时,代入正确的是A.x-2-x=4 B.x-2-2x=4C.x-2+2x=4 D.x-2+x=4【答案】C【解析】124y xx y=-⎧⎨-=⎩①②,把①代入②得:x-2(1-x)=4,整理得:x-2+2x=4.故选C.二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:693 6416 x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.1.方程组1325y xx y+=⎧⎨+=⎩的解是A.32xy=⎧⎨=-⎩B.34xy=-⎧⎨=⎩C .32x y =⎧⎨=⎩D .32x y =-⎧⎨=-⎩2.用加减消元法解方程组231354y x x y +=⎧⎨-=-⎩①②,①-②得A .2y =1B .5y =4C .7y =5D .-3y =-33.用加减消元法解方程组358752x y x y -=⎧⎨+=⎩将两个方程相加,得A .3x =8B .7x =2C .10x =8D .10x =104.解关于x y ,的方程组239x y mx y m+=⎧⎨-=⎩,得2x y +的值为A .12mB .0C .2m -D .7m5.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩,比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 6.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩7.由方程组63x m y m +=⎧⎨-=⎩①②可得出x 与y 的关系式是A .9x y +=B .3x y +=C .3x y +=-D .9x y +=-8.小亮解方程组2212x y x y +=∆⎧⎨-=⎩的解为5x y =⎧⎨=∑⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数∆和∑,则两个数∆和∑的值为A .82∆=⎧⎨∑=⎩B .82∆=⎧⎨∑=-⎩C .82∆=-⎧⎨∑=⎩D .82∆=-⎧⎨∑=-⎩9.若二元一次方程组2143221x y x y +=⎧⎨-+=⎩的解为x ay b =⎧⎨=⎩,则a +b 值为A .19B .212C .7D .1310.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为xD .先将①变形为5y =2x ,再代入② 11.不解方程组,下列与237328x y x y +=+=⎧⎨⎩的解相同的方程组是A .2836921y x x y =-+=⎧⎨⎩B .283237y xx y =+=+⎧⎨⎩CD12.方程组221x yx y+=-=⎧⎨⎩的解是__________.13.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.14.若方程组35ax byax by-=-⎧⎨+=⎩与23144516x yx y+=⎧⎨-=-⎩的解相同,则a=__________,b=__________.15.解方程组:学科=网(1)23328y xx y=-⎧⎨+=⎩(代入法);(2)223210x yx y+=⎧⎨-=⎩(加减法);(3)357 425 x yx y-=⎧⎨+=⎩;(4)2()1343()2(2)8x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩.16.数学课上老师要求学生解方程组:213 3113a bb a=-+⎧⎨=-⎩.同学甲的做法是:213 3113a bb a=-+⎧⎨=-⎩①②,由①,得a=-12+32b.③把③代入②,得3b=11-3(-12+32b),解得b=53,把b=53代入③,解得a=2,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.老师看了同学甲的做法说:“做法正确,但是方法复杂,要是能根据题目特点,采用更加灵活简便的方法解此题就更好了.”请你根据老师提供的思路解此方程组.17.3()2()5 4(2)3x y x yx y x y-++=⎧⎨-+-=-⎩.18.已知23x yx y-=⎧⎨+=⎩,则xy的值是A.2 B.1 C.-1 D.219.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩①②正确的方法是A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-220.用加减法解方程组326231x yx y+=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是(1)966462x yx y+=⎧⎨+=⎩(2)9618462x yx y+=⎧⎨-=⎩(3)9618462x yx y+=⎧⎨+=⎩(4)6412693x yx y+=⎧⎨+=⎩A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)21.已知方程组323()11x yy x y-=⎧⎨+-=⎩,那么代数式3x-4y的值为A.1 B.8 C.-1 D.-822.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④23.若方程组(31)2y kx by k x =+=-+⎧⎨⎩有无穷多组解,则2k +b 2的值为A .4B .5C .8D .1024.已知甲、乙两人的收入比为32∶,支出之比为74∶,一年后,两人各余400元,若设甲的收入为x元,支出为y 元,可列出的方程组为ABCD25.若关于x 、y 的二元一次方程组59x y kx y k +=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.26.若方程组7353x y x y +=⎧⎨-=-⎩,则3()(35)x y x y +--的值是__________.27.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.28.已知方程组82x y x y +∆=⎧⎨∆-=⎩WW 中,y x 、的系数部已经模糊不清,但知道其中W 表示同一个数,∆也表示同一个数,⎩⎨⎧-==11y x 是这个方程组的解,你能求出原方程组吗?29.解方程组:6323()2()28x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩.30.请你根据萌萌所给的如图所示的内容,完成下列各小题.(1)若m ※n =1,m ※2n =-2,分别求m 和n 的值;(2)若m 满足m ※2≤0,且3m ※(-8)>0,求m 的取值范围.31.(2018·怀化)二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩32.(2018·天津)方程组10216x y x y +=⎧⎨+=⎩的解是A .64x y =⎧⎨=⎩B .56x y =⎧⎨=⎩C .36x y =⎧⎨=⎩D .28x y =⎧⎨=⎩33.(2018·台湾)若二元一次联立方程式73838x y x y -=⎧⎨-=⎩的解为x =a ,y =b ,则a +b 之值为何?A .24B .0C .-4D .-834.(2018·桂林)若|321|20x y x y --+-=,则x ,y 的值为A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩35.(2018·常德)阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是 A .21732D ==--B .14x D =-C .27yD =D .方程组的解为23x y =⎧⎨=-⎩36.(2018·无锡)方程组225x y x y -=⎧⎨+=⎩的解是__________.37.(2018·福建)解方程组:1410x y x y +=⎧⎨+=⎩.38.(2018·湘西州)解方程组:335x y x y +=⎧⎨-=⎩.39.(2018·武汉)解方程组:10216x y x y +=⎧⎨+=⎩.40.(2018·宿迁)解方程组:20 346 x yx y+=⎧⎨+=⎩.41.(2018·舟山)用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.1.【答案】A【解析】1325y xx y+=⎧⎨+=⎩22233+252x y xx y y⎧+==⎧⇒⇒⎨==⎨-⎩⎩,故选A.2.【答案】C【解析】两式相减得,7y=5.故选C.3.【答案】D【解析】将两个方程相加,得:10x=10,故选D.4.【答案】A【解析】将方程组中的两个方程相加得(x+2y)+(x-y)=3m+9m,合并同类项得2x+y=12m.故选A.6.【答案】D【解析】由同类项的定义可得24325y x x y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.7.【答案】A【解析】由①得:m=6-x,∴6-x=y-3,∴x+y=9.故选A.8.【答案】B【解析】把5 xy=⎧⎨=∑⎩代入方程组可得,101012+∑=∆⎧⎨-∑=⎩,解得82∆=⎧⎨∑=-⎩,故选B.10.【答案】D【解析】由①得:5y=2x,把5y=2x代入②即可.故选D.11.【答案】A【解析】∵在A选项中,方程283y x=-可化为:238x y+=;方程6921x y+=可化为:237x y+=,∴A选项中的方程组和原方程组的解相同,故选A.12.【答案】11xy==⎧⎨⎩【解析】221x yx y+=⎧⎨-=⎩①②,①+②,得:3x=3,解得:x=1.把x=1代入①得,y=1,故方程组的解为:11xy==⎧⎨⎩.故答案为:11xy==⎧⎨⎩.13.【答案】32【解析】23523x yx y+=⎧⎨+=-⎩①②,14.【答案】1;1【解析】解方程组23144516x yx y+=⎧⎨-=-⎩,得14xy=⎧⎨=⎩.把它代入方程组35ax byax by-=-⎧⎨+=⎩,得4345a ba b-=-⎧⎨+=⎩,解之,得a=1,b=1.故答案为1;1.15.【解析】(1)23328y xx y=-⎧⎨+=⎩①②,将①代入②得:3x+4x-6=8,解得x=2,将x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩.(2)223210x yx y+=⎧⎨-=⎩①②,①×2+②得:7x=14,解得x=2,将x=2代入①得:y=-2,则方程组的解为22 xy=⎧⎨=-⎩.(3)357 425x yx y-=⎧⎨+=⎩①②,①×2+②×5得:26x=39,即x=32,将x=32代入②得:y=-12,则方程组的解为3212xy⎧=⎪⎪⎨⎪=-⎪⎩.(4)方程组化简,得51112058x yx y-+=⎧⎨=-⎩①②,把②代入①,得14y-28=0,解得y=2,把y=2代入②,得x=2,方程组的解为22 xy=⎧⎨=⎩.16.【解析】213 3113a bb a=-+⎧⎨=-⎩①②,把②代入①,得2a=-1+(11-3a),解得a=2,把a=2代入①,解得b=53,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.17.【解析】原方程整理为55593x yx y-=⎧⎨-=-⎩①②,①-②,得8y=8,解得,y=1.把y=1代入①得,5x-1=5,解得,x=65,所以,方程组的解为651xy⎧=⎪⎨⎪=⎩.18.【答案】B【解析】23x yx y-=⎧⎨+=⎩①②,②-①得,y=1③,将③代入①,得x=1,则xy=1,故选B.19.【答案】D【解析】先将②变为x-3y=7③,再①-③得x=-2,故选D.20.【答案】C【解析】①3⨯和②2⨯转化为(3);或者①2⨯和②3⨯转化为(4).故选C . 21.【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1, 将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B .23.【答案】B【解析】根据方程组有无穷多组解,可知方程组中的两个方程相同, 所以b =2,3k -1=k , 解得:k =12,b =2, ∴2k +b 2=1+4=5.故选B . 24.【答案】C【解析】根据甲的收入-甲的支出400=元,得方程400=-y x , 根据乙的收入-乙的支出400=元,得方程4007432=-y x , 则可列方程组为4002440037x y x y -=⎧⎪⎨-=⎪⎩,故选C . 25.【答案】34【解析】59x y k x y k +=⎧⎨-=⎩①②,①+②得:2x =14k ,即x =7k ,将x =7k 代入①得:7k +y =5k ,即y =-2k , 将x =7k ,y =-2k 代入2x +3y =6得:14k -6k =6, 解得:k =34,故答案为:34. 26.【答案】24【解析】将方程组中的两个方程看作整体代入得:3(x +y )-(3x -5y )=3×7-(-3)=24. 故答案为:24.27.【解析】(1)将①代入②得,32(402)22x x +-=,解得x =58,将x =58代入①,得:y =-76,故原方程组的解为:5876x y =⎧⎨=-⎩.(2)①×2得,4x +6y =10③,③-②得:8y =9,y =98, 将y =98代入①,得:1316x =, 故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③,①+③得:21x =0,解得:x =0, 将x =0代入②得:y =3,故原方程组的解为:03x y =⎧⎨=⎩.28.【解析】由题意得82x y x y +∆=⎧⎨∆-=⎩W W ,解得53=⎧⎨∆=-⎩W,则原方程组为538352x y x y -=⎧⎨--=⎩.29.【解析】原方程组整理得536528x y x y -=⎧⎨+=⎩①②,由②得y x 528-=③,把③代入①得36)528(5=--y y ,解得4=y , 把4=y ③代入③得,8=x ,∴方程组的解为84x y =⎧⎨=⎩.30.【解析】(1)∵m ※n =1,m ※2n =-2,∴431462m n m n -=⎧⎨-=-⎩,解得11n m =⎧⎨=⎩.(2)∵m ※2≤0,3m ※(-8)>0,∴46012240m m -≤⎧⎨+>⎩,解得-2<m ≤32. 31.【答案】B【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得:2x =0, 解得:x =0,把x =0代入①得:y =2,则方程组的解为02x y =⎧⎨=⎩,故选B . 32.【答案】A【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得x =6,把x =6代入①,得y =4,原方程组的解为64x y =⎧⎨=⎩.故选A .33.【答案】A【解析】73838x y x y -=⎧⎨-=⎩①②,①-②×3,得:-2x =-16, 解得:x =8,将x =8代入②,得:24-y =8,解得:y =16,即a =8,b =16,则a +b =24,故选A .34.【答案】D【解析】∵|321|0x y --=,∴321020x y x y --=⎧⎨+-=⎩, 将方程组变形为3212x y x y -=⎧⎨+=⎩①②, ①+②×2得,5x =5,解得x =1, 把x =1代入①得,3-2y =1,解得y =1,∴方程组的解为11x y =⎧⎨=⎩.故选D . 35.【答案】C【解析】A 、D =2132-=2×(-2)-3×1=-7,故A 选项正确,不符合题意; B 、D x =11122-=-2-1×12=-14,故B 选项正确,不符合题意;C、D y=21312=2×12-1×3=21,故C选项不正确,符合题意;D、方程组的解:x=147xDD-=-=2,y=217yDD=-=-3,故D选项正确,不符合题意,故选C.36.【答案】31 xy=⎧⎨=⎩【解析】225 x yx y-=⎧⎨+=⎩,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31 xy=⎧⎨=⎩,故答案为:31 xy=⎧⎨=⎩.37.【解析】1410x yx y+=⎧⎨+=⎩①②,②-①得:3x=9,解得:x=3,把x=3代入①得:y=-2,则方程组的解为32 xy=⎧⎨=-⎩.38.【解析】①+②得:4x=8,解得:x=2,把x=2代入①得:2+y=3,解得:y=1,所以原方程组的解为21x y =⎧⎨=⎩. 39.【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩.41.【解析】(1)解法一中的计算有误(标记略).(2)用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下: 由①-②,得33x -=,解得1x =-,把1x =-代入①,得135y --=,解得2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
《8.2代入 消元——解二元一次方程组》修改1
8.2 消元——解二元一 次方程组(1)
【情景引入】
问题1、 篮球联赛中,每场比赛都要分出胜负,每队胜
1场得2分,负1场得1分.某队在10场比赛中得到16分, 那么这个队胜负场数分别是多少? ⑴如果设, x ,负的场数是
y,
可得一元一次方程 2x 10 x 16 ;
⑵如果设胜的场数是
x y 10, 可得二元一次方程组 2 x y 16.
那么怎样解这个二元一次方程组呢?
学习目标
1、会用代入法解二元一次方程 组。
2、体会解二元一次方程组的基 本思想 是“消元”。
【问题2】
问题2、 把下列方程改写成用含有一个未知数的代 数式表示另一个未知数的形式: ⑴ x 4y 8;
练习:
1.把下列方程改写成用含 x 的式子表示 y 的形式: ⑴ 2x y 3 ; ⑵ 3x y 1 0 .
2.用代入法解下列方程组:
y 2 x 3, ⑴ 3x 2 y 8.
2 x y 5, ⑵ 3x 4 y 2.
3、 在解下列方程组时,你认为选择 哪个方程进行怎样的变形比较简便?
x 8 x 8 4y 或 y ; 4 ⑵ 2x y 1 0 ;
y 1 x 2 或
y 2 x 1;
⑶ 3x y 5 . 5 y x 或 y 3x 5 . 3
⑴
1、用代入消元法解下列方程组 3x-2y=9 x=4 y=2x
x+y=12
y=8
⑵
4 x 3 y 22, ① ⑴ 8 x y 36. ②
4 x y 18, ① ⑵ x 3 y 15. ②
(8.2 第1课时 用代入消元法解方程组)2020年春人教版初中数学七年级下册过关检测试卷附答案
四川绵阳市示范初中(绵阳南山双语学校)2020年春人教版初中数学七年级下册过关检测试卷班级 姓名第八章 二元一次方程组8.2 消元——解二元一次方程组第1课时 用代入消元法解方程组1.将方程2x +y =1改写成用含x 的式子表示y 的形式,正确的是( )A .y =-2x +1B .y =1+2xC .-y =2x +1D .y -1=2x2.用代入法解方程组⎩⎪⎨⎪⎧y =1-x ,①x -2y =4②时,将方程①代入方程②正确的是( )A .x -2-2x =4B .x -2+2x =4C .x -2+x =4D .x -2-x =43.(2018·北京)方程组⎩⎪⎨⎪⎧x -y =3,3x -8y =14的解为( ) A .⎩⎪⎨⎪⎧x =-1y =2 B .⎩⎪⎨⎪⎧x =1y =-2C .⎩⎪⎨⎪⎧x =-2y =1D .⎩⎪⎨⎪⎧x =2y =-14.方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是( ) A .⎩⎪⎨⎪⎧x =2y =3 B .⎩⎪⎨⎪⎧x =4y =3C .⎩⎪⎨⎪⎧x =4y =8 D .⎩⎪⎨⎪⎧x =3y =65.若⎩⎪⎨⎪⎧x =3-m ,y =1+2m ,则用含x 的式子表示y 为( )A .y =2x +7B .y =7-2xC .y =-2x -5D .y =2x -56.方程组⎩⎪⎨⎪⎧x =y +5,2x -y =5的解满足x +y +a =0,则a 的值是() A .5 B .-5C .3D .-37.用含有x 或y 的式子表示y 或x :(1)已知x +y =5,则y = ;(2)已知x -2y =1,则y = ;(3)已知x +2(y -3)=5,则x = ;(4)已知2(3y -7)=5x -4,则x = .8.(2019·常德)二元一次方程组⎩⎪⎨⎪⎧x +y =6,2x +y =7的解为 .9.用代入法解下列方程组:(1)⎩⎪⎨⎪⎧y =2x -4,①3x +y =1;②(2)⎩⎪⎨⎪⎧3m =5n ,①2m -3n =1.②10.解方程组:⎩⎪⎨⎪⎧-8x -3y =7,①6x +y =1.②解:由②,得y =1-6x.③将③代入②,得6x +(1-6x)=1.即1=1.所以原方程组有无数组解.上面的解答正确吗?若不正确,请说明理由,并写出正确的解答过程.11.用代入法解下列方程组:(1)⎩⎪⎨⎪⎧5x +2y =15,①8x +3y =-1;②(2)⎩⎪⎨⎪⎧3(y -2)=x -17,2(x -1)=5y -8.12.已知⎩⎪⎨⎪⎧x =2,y =-1是方程组⎩⎪⎨⎪⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值.13.(2019·海南)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果.若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?14.如图,将10块相同的小长方形地砖拼成一个大长方形,其中大长方形的宽为60 cm,求其中每一个小长方形的面积.15.先阅读材料,然后解方程组.材料:解方程组:⎩⎪⎨⎪⎧x -y -1=0,①4(x -y )-y =5.②由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1.把y =-1代入③,得x =0.∴原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组:⎩⎪⎨⎪⎧2x -3y -2=0,①2x -3y +57+2y =9.②参考答案1.将方程2x +y =1改写成用含x 的式子表示y 的形式,正确的是(A ) A .y =-2x +1 B .y =1+2xC .-y =2x +1D .y -1=2x2.用代入法解方程组⎩⎪⎨⎪⎧y =1-x ,①x -2y =4②时,将方程①代入方程②正确的是(B )A .x -2-2x =4B .x -2+2x =4C .x -2+x =4D .x -2-x =43.(2018·北京)方程组⎩⎪⎨⎪⎧x -y =3,3x -8y =14的解为(D ) A .⎩⎪⎨⎪⎧x =-1y =2 B .⎩⎪⎨⎪⎧x =1y =-2 C .⎩⎪⎨⎪⎧x =-2y =1 D .⎩⎪⎨⎪⎧x =2y =-1 4.方程组⎩⎪⎨⎪⎧y =2x ,3x +y =15的解是(D ) A .⎩⎪⎨⎪⎧x =2y =3 B .⎩⎪⎨⎪⎧x =4y =3C .⎩⎪⎨⎪⎧x =4y =8D .⎩⎪⎨⎪⎧x =3y =6 5.若⎩⎪⎨⎪⎧x =3-m ,y =1+2m ,则用含x 的式子表示y 为(B ) A .y =2x +7 B .y =7-2xC .y =-2x -5D .y =2x -56.方程组⎩⎪⎨⎪⎧x =y +5,2x -y =5的解满足x +y +a =0,则a 的值是(A ) A .5 B .-5C .3D .-37.用含有x 或y 的式子表示y 或x :(1)已知x +y =5,则y =5-x ;(2)已知x -2y =1,则y =12(x -1); (3)已知x +2(y -3)=5,则x =11-2y ;(4)已知2(3y -7)=5x -4,则x =6y 5-2. 8.(2019·常德)二元一次方程组⎩⎪⎨⎪⎧x +y =6,2x +y =7的解为⎩⎪⎨⎪⎧x =1y =5. 9.用代入法解下列方程组:(1)⎩⎪⎨⎪⎧y =2x -4,①3x +y =1;②解:把①代入②,得3x +2x -4=1.解得x =1.把x =1代入①,得y =-2.∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =-2.(2)⎩⎪⎨⎪⎧3m =5n ,①2m -3n =1.② 解:将①变形为m =5n 3.③ 把③代入②,得2×5n 3-3n =1. 解得n =3.把n =3代入③,得m =5×33=5. ∴原方程组的解为⎩⎪⎨⎪⎧m =5,n =3.10.解方程组:⎩⎪⎨⎪⎧-8x -3y =7,①6x +y =1.② 解:由②,得y =1-6x.③将③代入②,得6x +(1-6x)=1.即1=1.所以原方程组有无数组解.上面的解答正确吗?若不正确,请说明理由,并写出正确的解答过程. 解:不正确.理由:用代入消元法解方程时,不能将变形所得的方程代入原方程中.正确过程为:由②,得y =1-6x.③将③代入①,得-8x -3(1-6x)=7.解得x =1.将x =1代入③,得y =-5.所以原方程组的解为⎩⎪⎨⎪⎧x =1,y =-5.11.用代入法解下列方程组:(1)⎩⎪⎨⎪⎧5x +2y =15,①8x +3y =-1;② 解:由①,得x =3-25y.③ 把③代入②,得8(3-25y)+3y +1=0. 解得y =125.把y =125代入③,得x =-47.∴原方程组的解是⎩⎪⎨⎪⎧x =-47,y =125. (2)⎩⎪⎨⎪⎧3(y -2)=x -17,2(x -1)=5y -8. 解:原方程组变形为⎩⎪⎨⎪⎧x =3y +11,①2x -5y =-6.② 将①代入②,得2(3y +11)-5y =-6.解得y =-28.把y =-28代入①,得x =-73.∴原方程组的解是⎩⎪⎨⎪⎧x =-73,y =-28.12.已知⎩⎪⎨⎪⎧x =2,y =-1是方程组⎩⎪⎨⎪⎧ax +y =b ,4x -by =a +5的解,求a ,b 的值. 解:把⎩⎪⎨⎪⎧x =2,y =-1代入⎩⎪⎨⎪⎧ax +y =b ,4x -by =a +5,得 ⎩⎪⎨⎪⎧2a -1=b ,①8+b =a +5.②把①代入②,得8+(2a -1)=a +5.解得a =-2.把a =-2代入①,得2×(-2)-1=b.解得b =-5.∴a=-2,b =-5.13.(2019·海南)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果.若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元? 解:设“红土”百香果每千克x 元,“黄金”百香果每千克y 元,由题意,得⎩⎪⎨⎪⎧2x +y =80,x +3y =115,解得⎩⎪⎨⎪⎧x =25,y =30.答:“红土”百香果每千克25元,“黄金”百香果每千克30元.14.如图,将10块相同的小长方形地砖拼成一个大长方形,其中大长方形的宽为60 cm ,求其中每一个小长方形的面积.解:设小长方形的长为x cm ,宽为y cm .根据拼图可知 ⎩⎪⎨⎪⎧x =4y ,①x +y =60.②将①代入②,得4y +y =60.解得y =12.∴x=4y =48.∴xy=12×48=576.答:每一个小长方形的面积为576 cm 2.15.先阅读材料,然后解方程组.材料:解方程组:⎩⎪⎨⎪⎧x -y -1=0,①4(x -y )-y =5.② 由①,得x -y =1.③把③代入②,得4×1-y =5,解得y =-1. 把y =-1代入③,得x =0.∴原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1. 这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组:⎩⎪⎨⎪⎧2x -3y -2=0,①2x -3y +57+2y =9.② 解:由①,得2x -3y =2.③把③代入②,得2+57+2y =9.解得y =4. 把y =4代入③,得2x -3×4=2.解得x =7.∴原方程组的解为⎩⎪⎨⎪⎧x =7,y =4.。
8.2消元——解二元一次方程组(一) 同步练习习题 2020-2021学年七年级数学人教版下册
第八章 二元一次方程组8.2 消元——解二元一次方程组(一)【笔记】1.将未知数的个数由多化少,逐一解决的思想,叫做 思想.2.我们把 , 再代入另一个方程,实现消元,进而求出方程组的解的方法,叫做 ,简称代入法.【训练】1.用代入法解方程组{x =2y,①y −x =3,②下列说法正确的是()A.直接把①代入②,消去yB.直接把①代入②,消去xC.直接把②代入①,消去yD.直接把②代入①,消去x 2.用代入法解方程组{3x +4y =2,①2x −y =5,②最好的变形是 ()A.由①得x =2−4y3 B.由①得y =2−3x4C.由②得x =y+52D.由②得y =2x -53.方程y =1-x 与3x +2y =5的公共解是 ( )A.{x =3,y =2B.{x =−3,y =4C.{x =3,y =−2D.{x =−3,y =−24.(临沂中考)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是()A.{x +y =78,3x +2y =30B.{x +y =78,2x +3y =30C.{x +y =30,2x +3y =78D.{x +y =30,3x +2y =785.如图所示,点O 在直线AB 上,OC 为射线,∠1比∠2少60°,则∠1,∠2分别为 ( )A.70°,110°B.60°,120°第5题图C.50°,130°D.40°,140°6.如果x ∶y =5∶2,且满足x -3y =-7,那么x ,y 中较小的值是 ( )A.35B.-14C.-35D.147.已知方程2x -3y =4,用含x 的式子表示y = ,用含y 的式子表示x = . 8.若-2x m -n y 2与3x 4y2m +n是同类项,则m -3n 的立方根为 .9.在一本书上写着方程组{x +py =2,x +y =1的解是{x =0.5,y =□,其中,y 的值被墨渍盖住了,不过,我们可得出p = .10.关于x ,y 的方程y =kx +b 中,当x =2时,y =0,当x =-1时,y =5,则当x =0时,y = . 11.加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人参加这两道工序,怎样安排人力,才能使每天第一、第二道工序所完成的件数相等?若设x 名工人完成第一道工序,y 名工人完成第二道工序,则可列方程组:.12.解下列方程组: (1){y =4x,①2x +y =5;②(2){x −2y =−3,①3x +y =2.②13.如果{x =3,y =−2是方程组{ax +by =1,ax −by =5的解,求a 2021+2b 2021的值.14.(乐山中考)方程组x 3=y2=x +y -4的解是 ( )A.{x =−3,y =−2 B.{x =6,y =4 C.{x =2,y =3D.{x =3,y =215.关于x ,y 的方程组{x +y =a,x +2y =a +5,那么y 是 ()A.5B.2a +5C.a -5D.2a16.已知y =x 2+px +q ,当x =1时,y 的值为2;当x =-2时,y 的值为2.求当x =-3时,y 的值.17.已知方程组{ax +by =1,2x −y =1和{ax −by =5,x +2y =3的解相同,求a 和b 的值.18.(海南中考)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元,则这两种百香果每千克的价格各是多少元?19.先阅读,然后解方程组{x −y −1=0,①4(x −y)−y =5.②解方程组时,可由①得x -y =1③,然后再将③代入②得4×1-y =5,求得y =-1,从而进一步求得{x =0,y =−1.这种方法被称为“整体代入法”. 请用这样的方法解方程组{2x −y −2=0,6x−3y+45+2y =12.参考答案8.2 消元——解二元一次方程组(一)【笔记】 1.消元2.二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来 代入消元法 【训练】1.B2.D3.C4.D5.B6.D7.2x−433y+42 8.2 9.3 10.10311.{x +y =7,900x =1200y12.(1)把①代入②得2x +4x =5,解得x =56,把x =56代入①得,y =103.∴原方程组的解为{x =56,y =103. (2)由①得x =2y -3,把x =2y -3代入②得:3(2y -3)+y =2,解得y =117,把y =117代入x =2y -3得x =17, ∴原方程组的解是{x =17,y =117.13.把{x =3,y =−2代入方程组得{3a −2b =1,3a +2b =5,解得{a =1,b =1.∴a 2021+2b 2021=1+2=3.14.D 15.A 16.6 17.由{2x −y =1,x +2y =3,得{x =1,y =1.将{x =1,y =1代入{ax +by =1,ax −by =5, 得{a +b =1,a −b =5,解得{a =3,b =−2.18.设每千克“红土”百香果的价格是x 元,每千克“黄金”百香果的价格是y 元. 根据题意,得{2x +y =80,x +3y =115,解得{x =25,y =30.答:每千克“红土”百香果的价格是25元,每千克“黄金”百香果的价格是30元. 19.{2x −y −2=0,①6x−3y+45+2y =12.②由①得2x -y =2③,将③代入②得3×2+45+2y =12,解得y =5,把y =5代入③得x =72.则方程组的解为{x =72,y =5.。
8_2二元一次方程组的解法同步练习AB卷(含解析)
8.2 消元———二元一次方程组的解法A1.由方程4x+5y=9,能够用含x 的代数式表示y ,则y=( );94.5x A - 95.4y B - 95.4x C - 94.5yD - 2. 用代入法解方程组⎩⎨⎧-=+=+11871365y x y x 得( )A. ⎩⎨⎧-=-=210y x B.⎩⎨⎧==85y x C. ⎩⎨⎧-==25y x D. ⎩⎨⎧==210y x 3.用加减法解方程组3, 231.23x yx y ⎧-=⎪⎪⎨⎪+=⎪⎩得( )A. 43x y =⎧⎨=-⎩ B.⎩⎨⎧==85y x C. ⎩⎨⎧-==25y x D. ⎩⎨⎧==210y x 4.已知方程组42ax by ax by -=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则2a -3b 的值为( ).A .4B .6C .-6D .-45.已知二元一次方程组27,28.x y x y +=⎧⎨+=⎩,则x -y ,x+y 分别为( ).A .1,-5B .-5,1C .5,-1D .-1,5 6.设⎩⎨⎧=+=.04,3z y y x ()0≠y 则=z x ( )A .12;B .;121-C .;12-D ..121 7.班委会决定,由小敏、小聪两人负责选购圆珠笔、钢笔共22支,•送给结对山区学校的同学.他们去了商场,看到圆珠笔每支5元,钢笔每支6元,若他们购买圆珠笔、钢笔刚好用去120元,则圆珠笔、钢笔各买了多少支?( )A .圆珠笔,钢笔分别买了12支和10支.B .圆珠笔,钢笔分别买了14支和8支.C .圆珠笔,钢笔分别买了10支和12支.D .圆珠笔,钢笔分别买了11支和11支. 8.在等式n mx x y ++=2中,当3.5,3;5,2=-=-===x y x y x 则时时时,=y ( ). A .23; B .-13; C .-5; D .13 9.已知方程组35223x y m x y m+=+⎧⎨+=⎩的解适合x+y=8,求m 的值.( )A .8B .6C .12D .10 10.已知4330,30,x y z x y z --=⎧⎨--=⎩,求得2222xy yzx y z ++-的值( ). A ..1116 B ..116 C ..611 D ..1218.2 消元———二元一次方程组的解法B1. 由方程4x+5y=9,能够用含y 的代数式表示x ,则x=( ).94.5x A - 95.4y B - 95.4x C - 94.5yD - 2.用代入法解方程组y 1x 2432x-31y ++==⎧⎪⎨⎪⎩得( )A. ⎩⎨⎧-=-=210y xB.⎩⎨⎧==810y x C. 733x y =-=-⎧⎪⎨⎪⎩D. ⎩⎨⎧==210y x 3.用加碱法解方程组15149-42010.3(2)1x y x y +-+--==⎧⎪⎪⎨⎪⎪⎩A. 43x y =⎧⎨=-⎩ B.42x y ==⎧⎪⎨⎪⎩ C. 33x y =⎧⎨=-⎩ D.816x y =-⎧⎨=-⎩ 4.设方程组()⎩⎨⎧=--=-.433,1by x a by ax 的解是⎩⎨⎧-==.1,1y x 那么b a ,的值分别为( )A .;3,2-B .;2,3-C .;3,2-D ..2,3- 5.若a -b=2,a -c=12,则(b -c )3-(b -c )+94=( ). A .0 B .38C .2D .-46.方程82=+y x 的正整数解的个数是( )A .4;B .3;C .2;D .1 7.下表是某一周A ,B 两种股票每天的收盘价:星期一 星期二 星期三 星期四 星期五 A 12 12.5 12.9 12.45 12.75 B13.513.313.913.413.15某人在一周内持有A ,B 两种股票,若按照两种股票每天收盘计算(不计手续费、•税费等),此人账户上星期二比星期一获利200元,星期三比星期二获利1300元,•则该人持有A ,B 两种股票各多少股?( )A .A ,B 两种股票分别为1 000股和5 00股 B .A ,B 两种股票分别为1 000股和15 00股C .A ,B 两种股票分别为1500股和1 000股D .A ,B 两种股票分别为15 00股和5 00股8.一副三角板按如图摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到的方程组为( )A .⎩⎨⎧=+-=18050y x y xB .⎩⎨⎧=++=18050y x y xC .⎩⎨⎧=+-=9050y x y x D .⎩⎨⎧=++=9050y x y x9.a 取何值时,方程组534,52,x y a x y a -=-⎧⎨+=+⎩的解互为相反数,求出方程组的解( ).A .1,1x y =-⎧⎨=⎩ B .⎩⎨⎧-==11y x C .⎩⎨⎧-==55y x D .⎩⎨⎧=-=55y x10.若│m+n -5│+(2m+3n -5)2=0,求(m+n )2的值( ).A .225B .25C .125D .50参考答案8.2 消元———二元一次方程组的解法A1.由方程4x+5y=9,能够用含x 的代数式表示y ,则y=( );94.5x A - 95.4y B - 95.4x C - 94.5yD - 知识点:用代数式表示一个字母知识点的描述:用含x 的代数式表示y ,就是把y 写成只含字母x 和数字的式子 解:由方程4x+5y=9得5y=9-4x ,y=945x- 答:A2. 用代入法解方程组⎩⎨⎧-=+=+11871365y x y x 得( )A. ⎩⎨⎧-=-=210y x B.⎩⎨⎧==85y x C. ⎩⎨⎧-==25y x D. ⎩⎨⎧==210y x 知识点:用代入法解二元一次方程组。
《用代入消元法解二元一次方程组》同步练习1(北京课改七年级下)
用代入消元法解二元一次方程组同步练习【主干知识】认真预习教材,尝试完成下列各题:1.我们把________,从而求出方程组的解的方法,叫做代入消元法,简称代入法.2.用代入法解二元一次方程组的步骤是:(1)把方程组中的一个方程变形,写出_________的形式;(2)把它_________中,得到一个一元一次方程;(3)解这个__________;(4)把求得的值代入到_________,从而得到原方程组的解.3.在方程2x+3y-6=0中,用含x的代数式表示y,则y=_______,用含y的代数式表示x,则x=_______.4.•用代入法解方程组最好是先把方程______•变形为________,•再代入方程_______求得_______的值,最后再求______的值,最后写出方程组的解.5.用代入法解方程组.【点击思维】1.用代入法解二元一次方程组时,•要把一个未知数用含另一个未知数的代数式来表示,你认为应该选择哪一个方程来变形?2.检验方程组的解时,必须将求得的未知数的值代入________方程,看左右两边的值是否相等.3.方程4(3x-y)=x-3y,用含x的代数式表示,则y=________.【典例分析】例1解方程组思路分析:本例这两个方程中①较简单,且x、y的系数均为1,故可把①变形,•把x 用y表示,或把y用x来表示皆可,然后将其代入②,消去一个未知数,化成一元一次方程,进而再求出方程组的解.解:把①变形为y=4-x ③把③代入②得:-=1即-=1,=-1,=∴x=把x=代入③得y=4-=3所以原方程的解是.若想知道解的是否正确,可作如下检验:检验:把x=,y=3代入①得,左边=x+y=+3=4,右边=4.所以左边=右边.再把x=,y=3代入②得左边=-=1,右边=1.所以左边=右边.所以是原方程组的解.【基础能力训练】1.方程-x+4y=-15用含y的代数式表示,x是()A.-x=4y-15 B.x=-15+4y C.x=4y+15 D.x=-4y+152.将y=-2x-4代入3x-y=5可得()A.3x-2x+4=5 B.3x+2x+4=5 C.3x+2x-4=5 D.3x-2x-4=53.判断正误:(1)方程x+2y=2变形得y=1-3x ()(2)方程x-3y=写成含y的代数式表示x的形式是x=3y+ ()4.将y=x+3代入2x+4y=-1后,化简的结果是________,从而求得x的值是_____.5.当a=3时,方程组的解是_________.6.把方程7x-2y=15写成用含x的代数式表示y的形式,得()A.x=7.用代入法解方程组较为简便的方法是()A.先把①变形 B.先把②变形C.可先把①变形,也可先把②变形 D.把①、②同时变形8.已知方程2x+3y=2,当x与y互为相反数时,x=______,y=_______.9.若方程组的解x和y的值相等,则k=________.10.已知x=-1,y=2是方程组的解,则ab=________.11.把下列方程写成用含x的代数式表示y的形式:①3x+5y=21 ②2x-3y=-11; ③4x+3y=x-y+1 ④2(x+y)=3(x-y)-112.如果是方程2mx-7y=10的解,则m=_______.13.下面方程组的解法对不对?为什么?解方程组解:把①代入②得3x+2x=5,5x=5,所以x=1是方程组的解.14.已知方程组(1)求出方程①的5个解,其中x=0,,1,3,4;(2)求出方程②的5个解,其中x=0,,1,3,4;(3)求出这个方程组的解.15.若x-3y=2x+y-15=1,则x=______,y=_______.16.用代入法解下列方程组:(1)【综合创新训练】17.在y=kx+b中,当x=1时,y=2;当x=2时,y=4,那么k=_______,b=_______.18.已知的解,求a、b的值.19.若│x+y-2│+(x-y)2=0,那么x=________,y=________.20.请思考:方程组的解是不是方程8x-10y=6的一个解.21.已知二元一次方程组的解为x=a,y=b,则│a-b│=()A.1 B.11 C.13 D.1622.已知x=5-t,y-3=2t,则x与y之间的关系式是_______.【探究学习】苏步青巧解数学趣题的启示我国著名数学家苏步青在访问德国时,德国一位数学家给他出了这样一道题目:甲、乙二人相对而行,他们相距10千米,甲每小时走3千米,乙每小时走2千米,甲带着一条狗,狗每小时跑5千米,狗跑得快,它同甲一起出发,碰到乙的时候向甲跑去,碰到甲的时候又向乙跑去,问当甲、乙两人相遇时,这条狗一共跑了多少千米?苏步青教授很快就解出了这道题目.同学们,你知道他是怎么解的吗?这道题最让人迷惑不解的是甲身边的那条狗.•如果我们先计算狗从甲的身边跑到乙的身边的路程s,再计算狗从乙的身边跑到甲的身边的路程s,……,•显然把狗跑的路程相加,这样很繁琐,笨拙且不易计算.苏教授从整体着眼,根据甲、乙出发到相遇经历的时间与狗所走的时间相等,即10÷(3+2)=2(小时),•这样就不难求出狗一共跑的路程是:5×2=10(千米).苏步青教授在解题时,把注意力和着眼点放在问题的整体结构上,从而能触及问题的实质:狗从出发到甲、乙两相遇所用的时间,恰好是甲、乙二人相遇所用的时间,从而使问题得到巧妙的解决.苏教授这种解决问题的思想方法实际上就是数学中的整体思想的应用.对于某些数学问题,灵活运用整体思想,常可化难为易,捷足先登.•在解二元一次方程组时,也要注意这种思想方法的应用.比如解方程组解:把②代入①得x+2×1=4,所以x=2把x=2代入②得2+2y=1,解之,得y=所以方程组的解为同学们,你会用同样的方法解下面两个方程吗?试试看!(1)答案:【主干知识】1.通过“代入”消去一个未知数2.(1)用一个未知数表示另一个未知数的代数式.(2)代入到另一个方程中(3)一元一次方程(4)变形的的方程中,求得另一个未知数的值3.或y=2-x 或3-y4.② x=4+2y ① y x 5.【点击思维】1.选一个较简单的方程.最好该方程中有一个未知数的系数为1或-1,比如是3x-y=4,应把y变成用含x的代数式来表示,即y=3x-4,若未知数的系数不是1或-1,•将会出现分数,例如3x-y=4,若把x变出为用含y的代数式来表示,是x=,将会给解题带来很大的麻烦.2.方程组中的每一个解析:只有方程组中每个方程左、右两边的值相等了,•它才是各个方程的解,即它们的公共解,从而是原方程组的解.3.y=11x 解析:去括号,得12x-4y=x-3y,移项得12x-x=4y-3y,•合并同类项,•得11x=y 即y=11x.【基础能力训练】1.C 2.B 3.(1)×(2)×4.4x=-13 - 5.6.C 7.B 8.-2 2 9.11 10.-1511.①y=或y=(x-1)12.1213.不对,方程组的解应是一对未知数的值,不能求出一个就完了,还得求出y•的值,并且把这一对x、y的值用大括号括起来.14.(1)x=0,,1,3,4时,y=-1,-,1,5,7;(2)x=0,,1,3,4时,y=-,-,-,-,-;(3)方程组的解是15.7 216.(1)【综合创新训练】17.2 0 解析:把x=1,y=2及x=2,y=4分别代入到y=kx+b中,•得到一个方程组.18.把代入到方程组中得19.-1 -1 解析:由│x+y+2│+(x-y)2=0得│x+y+2│=0及(x-y)=0 即得方程组所以,x=-1,y=-1.20.是解析:先求出的解为,把代入到方程8x-10y=6中,左边=8×2-10×1=6,•右边=6,所以方程组的解是方程8x-10y=6的解.21.B 解析:先求出方程组,根据题意得a=5,b=16,所以│a-b│=│5-•16│=11.选B.22.y=13-2x 解析:需把t消去,由x=5-t得t=5-x把它代入到y-3=2t中得y-3=•2(5-x),变形得y=13-2x或2x+y=13.【探究学习】(1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2《消元——解二元一次方程组》同步练习题(1)
知识点:
1、代入法:用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数.
(3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.
2、加减法: 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
同步练习:
一、用代入法解下列方程组
(1)⎩⎨
⎧=+=-5253y x y x (2) ⎩⎨⎧=--=5
23x y x y (3)⎩⎨⎧=+=-152y x y x (4)⎩
⎨⎧+==-1302y x y x
(5)⎩⎨
⎧-=+=-14329m n n m (6)⎩⎨⎧=+-=-q p q p 451332
二、用加减法解下列方程组
(1)⎩⎨
⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x
(3)⎩⎨
⎧=--=-7441156y x y x (4)⎩⎨⎧-=+-=-5
3412911y x y x
(5)⎪⎩
⎪⎨⎧=-=+2.03.05.0523151y x y x (6)⎩⎨⎧=+=+a y x a y x 343525( 其中a 为常数)
三、解答题
1、代数式by ax +,当2,5==y x 时,它的值是7;当5,8==y x 时,它的值是4,试求
5,7-==y x 时代数式by ax -的值。
2、求满足方程组⎩
⎨⎧=-=--20314042y x m y x 中的y 值是x 值的3倍的m 的值,并求y x xy + 的值。
3、列方程解应用题
一个长方形的长减少10㎝,同时宽增加4㎝,就成为一个正方形,并且这两个图形的面积相等,求员长方形的长、宽各是多少。
8.2《消元——解二元一次方程组》同步练习题(1)答案:
1、⎪⎪⎩⎪⎪⎨⎧-==75720y x
2、⎩⎨⎧-=-=118y x
3、⎩⎨⎧-==12y x
4、⎩⎨⎧-=-=21y x
5、⎪⎪⎩
⎪⎪⎨⎧-==196
195y x 6、⎪⎪⎩
⎪⎪⎨⎧=-=75
673y x 二、1、⎪⎩⎪⎨⎧==212n m 2、⎪⎪⎩⎪⎪⎨⎧-==2123y x 3、⎪⎪⎩⎪⎪⎨⎧-==221163y x 4、⎪⎩⎪⎨⎧==733y x 5、⎪⎪⎩
⎪⎪⎨⎧==17121714y x 6、⎩⎨⎧==0y a x 三、1、⎩⎨⎧-==43b a 2、3 3、长3216、宽322。