四年级图形的面积问题

合集下载

小学四年级数学面积应用题及图形面积题

小学四年级数学面积应用题及图形面积题

小学四年级数学面积应用题及图形面积题
1.这块菜地长37米,宽25米,中间留了宽1米的路。

我们需要把它平均分成4块,每一块的面积是多少呢?
2.教室前面的墙壁长6米,宽3米,上面有一块黑板,面积是3平方米。

现在我们需要粉刷这面墙壁,需要粉刷的面积是多少?
3.学校需要安装教室玻璃。

每块玻璃长40厘米,宽35厘米,每块玻璃的面积是多少平方分米?每平方分米玻璃的价格是2角钱,那么一块玻璃需要多少钱呢?
4.一条人行道长20米,宽4米,面积是多少平方米?如果我们想用面积为25平方分米的水泥砖来铺地,我们需要多少块水泥砖呢?
5.一张写字台的台面长13分米,宽6分米,它的面积是多少平方厘米?
6.在长为8米,宽为5米的土地上,我们要截出一个最大的正方形,那么剩余土地的面积是多少?
7.有一块长为20米,宽为80分米的长方形土地需要铺上地砖,每块地砖的边长是50分米。

那么至少需要多少块地砖才能把这块地铺满呢?
8.有一块长30米,宽20米的长方形土地需要铺上草皮,每块草皮的面积是9平方分米。

那么至少需要多少块草皮才能把这块地铺满呢?
9.一扇防盗门高20分米,宽12分米,我们需要给30扇这样的门涂油漆(涂两面)。

那么一共需要涂多少平方米的油漆呢?
10.一间房间长4米,宽3米。

如果每平方米需要铺9块地砖,那么这间房需要铺多少块地砖呢?
1)计算下图形阴影部分的面积(单位:厘米)。

四年级面积求解题技巧

四年级面积求解题技巧

四年级面积求解题技巧四年级学生面积求解题是数学学习中的重要内容之一。

通过解答面积求解题,学生可以培养自己的逻辑思维能力和问题解决能力。

下面将给出一些四年级面积求解题的技巧,帮助学生更好地完成这些题目。

一、认识面积的概念在讲解面积求解题技巧之前,首先要让学生掌握面积的概念。

面积是指平面上一个图形所占的两维空间的大小。

对于常见的图形,如矩形、正方形、三角形等,可以采用不同的公式来计算其面积。

二、理解面积的计算方法1.矩形的面积计算方法:矩形的面积等于底边的长度乘以高的长度,即S=a×h(a为底边的长度,h为高的长度)。

2.正方形的面积计算方法:正方形的面积等于边长的平方,即S=a×a(a为边长)。

3.三角形的面积计算方法:三角形的面积等于底边的长度乘以高的长度的一半,即S=(1/2)×a×h(a为底边的长度,h为高的长度)。

三、掌握面积求解题的常见算法1.直接计算法:根据题目给出的图形,直接使用相应的面积计算公式计算出面积。

2.分解法:将题目给出的图形分解为一些基本的图形,计算出每个基本图形的面积再求和。

3.相似图形法:根据相似图形的性质,利用已知面积和比例关系求解出未知图形的面积。

四、应用面积求解题技巧来解答问题以下是一些常见的面积求解题,我们可以利用上述技巧来解答。

例题1:一个正方形的边长是5米,求其面积。

解题思路:根据正方形的面积计算方法,直接计算出正方形的面积。

S = a × a = 5 × 5 = 25(平方米)。

所以正方形的面积是25平方米。

例题2:一个矩形的长是12厘米,宽是8厘米,求其面积。

解题思路:根据矩形的面积计算方法,直接计算出矩形的面积。

S = a × h = 12 × 8 = 96(平方厘米)。

所以矩形的面积是96平方厘米。

例题3:一个三角形的底边长是6厘米,高是4厘米,求其面积。

解题思路:根据三角形的面积计算方法,直接计算出三角形的面积。

四年级图形的面积问题

四年级图形的面积问题

图形(一)的面积问题【例题1】人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

思考:还有其它的方法吗?练习1:1.有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2.一块长方形地,长是80米,宽是45米。

如果把宽增加5米,要使面积不变,长应减少多少米?【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?【思路导航】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

所以,这个长方形原来的面积是12×9=108平方米。

警示:画图理解更深刻!!练习2:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2.一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。

求这个长方形原来的面积。

【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

【思路导航】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。

而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。

练习3:1、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?3.用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用着墙。

【详解】四年级下第04讲_格点图形面积计算

【详解】四年级下第04讲_格点图形面积计算

第四讲 格点图形面积计算1. 例题1答案:7平方厘米;5平方厘米;11平方厘米详解:如图所示,用分割法、添补法.三个图形的面积分别是:4111127⨯+⨯+⨯=平方厘米; 4⨯⨯÷32⨯⨯÷2. 例题2答案:6;12;4;7;9详解:①:326⨯=平方厘米;②:4312⨯=平方厘米;③:224⨯=平方厘米;3. 例题3答案:6.5平方厘米 详解:内部格点:3个,边界格点:9个.面积=3921 6.5+÷-=平方厘米.4. 例题4答案:34平方厘米详解:内部格点:7个;边界格点:22个.面积:7222234⨯+-=平方厘米.5.例题5答案:19.5平方厘米;31.5平方厘米④: ⑤: 121212+17⨯+⨯+⨯= 或:441313137⨯-⨯-⨯-⨯= 2339⨯+= 或:441212139⨯-⨯-⨯-⨯=详解:可以分割、添补,也可以用公式法:(1)内部格点:4个;边界格点:7个.面积:()7241319.5÷+-⨯=平方厘米;(2)内部格点:8个;边界格点:7个.面积:()7281331.5÷+-⨯=平方厘米.6. 例题6答案:28平方厘米;56平方厘米详解:可以分割、添补,也可以用公式法:(1)内部格点:4个;边界格点:8个.面积:()4282228⨯+-⨯=平方厘米;(2)内部格点:3个;边界格点:10个.面积:()32102456⨯+-⨯=平方厘米.7. 练习1答案:3平方厘米;10平方厘米详解:如图,分别用分割法、添补法.8. 练习2答案:12;20;5;18 详解:①:3412⨯=平方厘米; ②:直接数,每层4个,共5层,4520⨯=9. 练习3答案:13 简答:内部格点:1个,边界格点:13个.面积=()11321213+÷-⨯=.10. 练习4答案:17平方厘米简答:内部格点:1个;边界格点:17个.面积:1217217⨯+-=平方厘米. ③: ④:1112125⨯+⨯+⨯= 122312818⨯+⨯+⨯+=11.作业1答案:6;6.5简答:可用分割或添补法完成.12.作业2答案:7;12简答:使用割补法分别计算.13.作业3答案:56简答:大正三角形的面积是254100⨯=平方厘米,利用添补法可得.14.作业4答案:29简答:综合利用分割法与添补法.也可以用正方形格点图形面积公式计算.注意每个最小正方形面积是2.15.作业5答案:44简答:综合利用分割法与添补法.也可以用三角形格点图形面积公式计算.注意每个最小正三角形面积是2.。

(完整word版)四年级奥数图形面积专题

(完整word版)四年级奥数图形面积专题

(完整word版)四年级奥数图形⾯积专题第四讲:图形(⼀)爱学教育⽼师奥数2015·四年级·竞赛·秋三⾓形种类:⾯积公式:三⾓形的⾼:1、如图,?ABC⾯积是30平⽅分⽶,D是BC的中点,AE的长是ED的2倍。

那么?BED的⾯积是多少平⽅分⽶?2、如图,三⾓形ABC的⾯积是240平⽅厘⽶,D是BC的中点,AD的长是AE的3倍,EF的长BF的3倍,那么三⾓形AEF的⾯积是多少平⽅厘⽶?3、如图,三⾓形ABC中,D、E为两个三等分点,F是AB的中点,若三⾓形DEF的⾯积是12平⽅厘⽶,那么四边形AFEC的⾯积为多少平⽅厘⽶?4、如图,BD=3AD, CE=4AE,三⾓形ADE的⾯积是2平⽅厘⽶,求三⾓形ABC的⾯积?5、如图,在△ABC中,BD=2DC,AE=BE,已知△BDE的⾯积为6平⽅厘⽶,求四边形ACDE 的⾯积。

6、将三⾓形ABC的BA延长1倍到D,CB边延长2倍到E,AC边延长3倍到F。

若三⾓形ABC的⾯积是1平⽅厘⽶,求三⾓形DEF的⾯积?7、如图,三⾓形ABC是正三⾓形,D、E分别是AB、BC的中点,已知三⾓形BDE的⾯积是6平⽅厘⽶,求三⾓形ABC的⾯积。

8、已知三⾓形ABC的⾯积为180平⽅厘⽶,D、E把三⾓形分成两部分,BD=3AD,CE=2AE,求三⾓形ADE的⾯积。

9、如图,在平⾏四边形BCEF中,有⼀个直⾓△ABC,BC=8厘⽶,AC=7厘⽶,阴影部分⾯积⽐△ADH⼤12平⽅厘⽶,求AH的长度。

10、如图所⽰,已知⼀个四边形的两条边的长度和三个⾓,求这个四边形的⾯积是多少?11、如图,边长为20厘⽶和30厘⽶的两个正⽅形拼在⼀起,求阴影△ABC的⾯积。

●家庭作业●1、如图,在三⾓形ABC中,CD=2BD,CE=3AE,阴影部分的⾯积是20平⽅厘⽶,求三⾓形ABD与三⾓形EDC⾯积之和是多少平⽅厘⽶?2、如图,在三⾓形ABC中,D是BC的中点,E、F是AC的三等分点。

四年级奥数第三讲:图形面积问题

四年级奥数第三讲:图形面积问题

第三讲:图形面积问题
姓名:
例1、一块长方形铁板,长18分米,宽15分米。

若长和宽分别减少3分米,面积比原来减少多少平方分米?
练习1、人民路小学操场长90米,宽45米,改造后,场合宽分别增加10米。

现在操场面积比原来增加了多少平方米?
练习2、一块长方形地,长80米,宽45米,如果把宽增加5米,要使面积不变,长应该减少多少米?
例2、一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。

问这个长方形原来的面积时多少平方米?
练习1、一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。

求这个长方形花圃原来的面积时多少平方米?
例3、右图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?
练习1、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
例4、街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?
练习1、有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长是多少米?
例5、一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如下图所示),这样面积就比原来的正方形减少了181平方分米。

原来正方形的边长是多少分米?
练习1、一个正方形一条边减少6分米,另一条边减少10分米后变成一个长方形,这个长方形的面积比正方形的面积少260平方分米,求原来正方形的边长是多少分米?。

四年级求面积图形题 铺地毯

四年级求面积图形题 铺地毯

四年级求面积图形题铺地毯
1:把一个长18米,宽9米的长方形的宽增加9米,可以得到一个什么图形?它的面积是多少平方米?
分析:在遇到这类题时,可以在练习本上画出图形,将已知条件标注到图形上去,在图形结合帮助我们分析和判断。

有时有同学觉得画图太麻烦,况且题目很简单,就是不画图分析也可以做出来。

但是画图图形可以直观地帮助我们建立模型,当模型建立起来后就可以不用再画图,直接在脑海里调用即可。

这道题已知宽为米9,将宽增加9米,得到的新的宽是:9+9=18(米)。

宽和长相等,因此得到的新的图形是一个正方形。

再求正方形的面积,这道题就迎刃而解了。

解:
宽:9+9=18(米)
面积:18×18=324(平方米)
综合列式:(9+9)×18=324(平方米)
答:可以得到一个正方形,它的面积是324平方米。

2:一个长方形周长是40分米,且宽比长短2分米,求长方形的面积是多少?
分析:长方形的周长公式为:周长=(长+宽)×2,容易知道:长+宽=周长÷2,在这道题目中,长加宽的和为:40÷2=20。

这道题还告诉了“宽比长短2分米”,也就是知道长与宽的和,以及长与宽的差,是一个简单的和差问题。

宽(较小数):(20-2)
÷2=9(分米),长(较大数):20-9=11(分米)。

解:
宽:(20-2)÷2=9(分米)
长:20-9=11(分米)
面积:9×11=99(平方分米)
答:长方形的面积是99平方分米。

四年级举一反三第十五周图形问题

四年级举一反三第十五周图形问题

四年级举一反三第十五周图形问题人教网分享(人教网分享)专题简析:解答有关“图形面积”问题时,应注意以下几点:1,细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2,从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

人教网分享例1:人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?分析与解答:用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)某(45+5)=5000平方米,操场原来的面积是90某45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

练习一1,有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?2,一块长方形铁板,长18分米,宽13分米。

如果长和宽各减少2分米,面积比原来减少多少平方分米?3,一块长方形地,长是80米,宽是45米。

如果把宽增加5米,要使面积不变,长应减少多少米?人教网分享例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?分析与解答:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

所以,这个长方形原来的面积是12某9=108平方米。

练习二1,一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2,一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。

这个长方形原来的面积是多少平方米?3,一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。

苏教版四年级奥数 第15周 图形面积问题

苏教版四年级奥数 第15周  图形面积问题

第15周图形面积问题专题简析:解答有关图形面积问题时,应注意以下几点:1、细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利解答。

2、从整体上来观察图形特征,掌握图形本质,结合必要的分析、推理和计算,使隐蔽的数量关系明朗化。

例1:一块长方形铁板,长18分米,宽15分米。

若长和宽分别减少3分米,面积比原来的减少多少平方分米?练习一:1、人民小学操场长90米,宽45米,改造后,长和宽分别增加10米。

现在操场面积比原来增加了多少平方米?2、有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?3、一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?例2:一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。

问这个长方形原来的面积是多少平方米?练习二:1、一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

问这个长方形原来的面积是多少平方米?3、一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。

求这个长方形原来的面积?例3:右图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?练习三:1、右图是某个养鸡专业户用一段长13米的篱笆围成一个长方形的养鸡场,则养鸡场的占地面积有多大?2、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?3、用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用围墙。

如果每边的长度都是整数,怎样才能使围成的面积最大?例4:街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?练习四:1、有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。

小学四年级必会图形求面积的10个方法

小学四年级必会图形求面积的10个方法

我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形;;那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了.例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米求阴影部分的面积.一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和;;例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12厘米.;;解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2.所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米).例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米.如右图那样重合.求重合部分(阴影部分)的面积;;一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形.总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有1相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积;;;一句话:半圆的面积+正方形的面积=总面积2相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如:下图,求阴影部分的面积.一句话:先求出正方形面积再减去里面圆的面积即可.3直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积.例如:下图,求阴影部分的面积.一句话:通过分析发现阴影部分就是一个底是2、高是4的三角形.4重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如:下图,求阴影部分的面积.一句话:拆开图形,使阴影部分分布在正方形的4个角处,如下图.5辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.例如:下图,求两个正方形中阴影部分的面积.一句话:此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便(如下图)根据梯形两侧三角形面积相等原理(蝴蝶定理),可用三角形丁的面积替换丙的面积,组成一个大三角ABE,这样整个阴影部分面积恰是大正方形面积的一半.6割补法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如:下图,若求阴影部分的面积.一句话:把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.一句话:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形.8旋转法这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如:下图(1),求阴影部分的面积.一句话:左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.9对称添补法这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如:下图,求阴影部分的面积.一句话:沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积.10重叠法这种方法是将所求的图形看成是两个或两个以上图形的重叠部分.例如:下图,求阴影部分的面积.一句话:可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分.。

四年级图形的面积问题

四年级图形的面积问题

四年级图形的面积问题 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT图形的面积问题【例题1】人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

思考:还有其它的方法吗练习1:1.有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米2.一块长方形地,长是80米,宽是45米。

如果把宽增加5米,要使面积不变,长应减少多少米【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米【思路导航】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

所以,这个长方形原来的面积是12×9=108平方米。

警示:画图理解更深刻!!练习2:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米2.一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。

求这个长方形原来的面积。

【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

【思路导航】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。

而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。

小学四年级数学面积应用题及图形面积题

小学四年级数学面积应用题及图形面积题

1.有一块菜地长37米,宽25米。

菜地中间留了宽1米的路,把菜地平均分成4块,每一块的面积是多少?
2.教室前面的墙壁,长6米,宽3米,墙上有一块黑板面积是3平方米,现在要粉刷这面墙壁,要粉刷的面积是多少?
3.学校安装教室玻璃。

每块玻璃长40厘米,宽35厘米。

每块玻璃的面积是多少平方分米?
每平方分米玻璃是2角钱,一块玻璃多少钱?
4.一条人行道长20米,宽4米。

面积是多少?合多少平方分米?用面积是25平方分米的水泥砖铺地,需要这样的水泥砖几块?
5.一张写字台的台面长是13分米,宽是6分米。

他的面积是多少?合多少平方厘米?
6.在长为8米,宽为5米的土地上截一个最大的正方形,剩余土地的面积是多少?
7.有一块长为20米,宽为80分米的长方形土地要铺上地砖,每块地砖的边长是50分米。

至少需要多少块这样的地砖才能把这块地铺满?
8.有一块长30米,宽20米的长方形土地要铺上草皮,每块草皮的面积是9平方分米。

至少要多少块这样的草皮才能把这块地铺满?
9.一扇防盗门高20分米,宽12分米。

要给30扇这样的门涂油漆。

(涂两面)一共要涂多
少平方米?
10.一间房间长4米,宽3米。

如果每平方米铺9块地砖,那么这间房需铺几块地砖?
四、(1)计算下面图形阴影部分的面积。

(单位:厘米)
3.如图:已知三角形的面积是60平方厘米,求梯形面积。

(阴影部分)(单位:厘米)。

四年级数学上册面积应用题

四年级数学上册面积应用题

四年级数学上册面积应用题一、长方形和正方形面积基础计算类(1 10题)1. 一个长方形花坛,长是12米,宽是8米,这个花坛的面积是多少平方米?解析:长方形的面积 = 长×宽,已知长为12米,宽为8米,所以花坛的面积= 12×8 = 96(平方米)。

2. 正方形手帕的边长是15厘米,它的面积是多少平方厘米?解析:正方形的面积 = 边长×边长,手帕边长15厘米,所以面积 = 15×15 = 225(平方厘米)。

3. 有一块长方形菜地,长18米,宽比长少6米,求这块菜地的面积。

解析:首先求出宽,宽比长少6米,那么宽 = 18 6 = 12(米)。

长方形面积= 长×宽,所以这块菜地的面积 = 18×12 = 216(平方米)。

4. 一个正方形的周长是48分米,它的面积是多少平方分米?解析:正方形的周长 = 边长×4,已知周长48分米,那么边长 = 48÷4 = 12(分米)。

正方形面积 = 边长×边长,所以面积 = 12×12 = 144(平方分米)。

5. 一间教室长9米,宽6米,如果用边长为3分米的地砖铺地,需要多少块地砖?解析:先算出教室的面积,教室面积 = 长×宽 = 9×6 = 54(平方米),54平方米 = 5400平方分米。

地砖为正方形,其面积 = 边长×边长 = 3×3 = 9(平方分米)。

需要地砖的块数 = 教室面积÷地砖面积 = 5400÷9 = 600(块)。

6. 一个长方形的长是15分米,宽是9分米,这个长方形的面积是多少平方分米?如果长增加3分米,宽不变,面积增加多少平方分米?解析:长方形原来的面积 = 长×宽 = 15×9 = 135(平方分米)。

长增加3分米后变为15 + 3 = 18分米,此时面积 = 18×9 = 162(平方分米)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考:还有其它的方法吗?
练习1:1.有一块长方形的木板,长22分米,宽8分米。如果长和宽分别减少10分米、3分米,面积比原来减少多少平方分米?
2.一块长方形地,长是80米,宽是45米。如果把宽增加5米,要使面积不变,长应减少多少米?
【例题2】一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。这个长方形原来的面积是多少平方米?
练习:下图的长方形被分割成5个正方形,已知原长方形的面积为120平方厘米,求原长方形的长与宽。
【例题7】一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米,则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?
【思路导航】通过画图可以算出:小正方形的面积为:30×30=900平方米。用增加的面积减去小正方形的面积就得到增加的两个长方形的面积之和,9900-900=9000平方米。而增加的两个长方形的面积相等,于是其中一个长方形的面积为9000÷2=4500平方米。
练习:小孙同学用编号为 , , , , 的大小不同的正方形拼出一个长方形,如右图所示,则中间阴影部分正方形的周长是多少厘米?
1.如图是由5个相同的小长方形拼成的大长方形,大长方形的周长是44厘米,求大长方形的面积。
2.一个正方形,相邻的两个边长增加4厘米,面积就增加96平方厘米,求原正方形的面积?
【思路导航】把水泥路分成四个同样大小的长方形(如右图)。因此,一个长方形的面积是12÷4=3平方米。因为水泥路宽1米,所以小长方形的长是3÷1=3米。从图中可以看出正方形花坛的边长是小长方形长与宽的差,所以小正方形的边长是3-1=2米。中间花坛的面积是2×2=4平方米。
练习4:1.四个完全相同的长方形和一个小正方形拼成了一个大正方形(如图),大正方形的面积是64平方米,小正方形的面积是4平方米,长方形的短边是多少米?
2.一个长方形,如果它的长减少3米,或它的宽减少2米,那么它的面积都减少36平方米。求这个长方形原来的面积。
【例题3】下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。
【思路导航】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。
2.已知大正方形比小正方形的边长多4厘米,大正方形的面积比小正方形面积大96平方厘米(如图)。问大小正方形的面积各是多少?
【例题5】一块正方形的钢板,先截去宽5分米的长方形,又截去宽8分米的长方形(如图),面积比原来的正方形减少181平方分米。原正方形的边长是多少?
【思路导航】把阴影部分剪下来,并把剪下的两个小长方形拼起来(如图),再被上长、宽分别是8分米、5分米的小长方形,这个拼合成的长方形的面积是181+8×5=221平方分米,长是原来正方形的边长,宽是8+5=13分米。所以,原来正方形的边长是221÷13=17分米。
【例题6】有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长。
【思路导航】
从图上可以知道,小长方形的长的4倍等于宽的5倍,所以长是宽的5÷4=1.25倍。每个小长方形的面积为45÷9=5平方厘米,所以1.25×宽×宽=5,所以宽为2厘米,长为2.5厘米。
3.如图a有一大一小两块正方形试验田,他们的周长相差 米,面积相差 平方米,那么小正方形试验田的面积是多少平方米?
【思路导航】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。所以,这个长方形原来的面积是12×9=108平方米。
警示:画图理解更深刻!!
练习2:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。这个长方形原来的面积是多少平方米?
练习:喜阳阳小学的操场长90米,宽45米。改造后,长增加10米,宽增加5米。现在操场面积比原来增加了多少平方分米?
【例题7】如下图,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大长方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是多少?
【思路导航】如果标号为5的正方形的边长是a,那么1号比2号大a, 号比3号大a,所以1号比3号大2a,又因为2号和 号的边长之和是14,1号和2号的边长之和是18,所以1号比3号大18-14=4。
练习5:
1.一个正方形一条边减少6分米,另一条边减少10分米后变为一个长方形,这个长方形的面积比正方形的面积少260平方米,求原来正方形的边长。
2.一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形。求原来长方形的面积。
3.一块正方形的的玻璃,长、宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?
图形的面积问题
【例题1】人民路小学操场长90米,宽45米。改造后,长增加10米,宽增加5米。现在操场面积比原来增加了多少平方米?
【思路导航】用操场现在的面积减去操场原来的面积,就得到增加的面积。操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。所以,现在的面积比原来增加5000-4050=950平方米。
练习3:1、用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?
3.用15米长的栅栏沿着围墙围一个种植花草的长方形苗圃,其中一面利用着墙。如果每边的长度都是整数,怎样才能使围成的面积最大?
思考:由练习3的两个题你得到了什么规律?
【例题4】街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米?
相关文档
最新文档