2015届高考数学总复习第四章 平面向量与复数第4课时 复 数课时训练

合集下载

高考数学复习单元检测(文):平面向量与复数【含答案】

高考数学复习单元检测(文):平面向量与复数【含答案】

高考数学复习单元检测(文):平面向量与复数考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间100分钟,满分130分. 4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题 共60分)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数z 满足i z =3+4i ,则|z |等于( ) A .1B .2C.5D .5 答案 D解析 因为z =3+4ii =-(3+4i)i =4-3i ,所以|z |=42+(-3)2=5.2.若z 1=(1+i)2,z 2=1-i ,则z 1z 2等于( ) A .1+iB .-1+iC .1-iD .-1-i 答案 B解析 ∵z 1=(1+i)2=2i ,z 2=1-i , ∴z 1z 2=2i 1-i =2i (1+i )(1-i )(1+i )=-2+2i2=-1+i.3.设平面向量m =(-1,2),n =(2,b ),若m ∥n ,则|m +n |等于( ) A.5B.10C.2D .3 5 答案 A解析 由m ∥n ,m =(-1,2),n =(2,b ),得b =-4,故n =(2,-4),所以m +n =(1,-2),故|m +n |=5,故选A.4.如图所示,向量OA →=a ,OB →=b ,OC →=c ,点A ,B ,C 在一条直线上,且AC →=-4CB →,则( )A .c =12a +32bB .c =32a -12bC .c =-a +2bD .c =-13a +43b答案 D解析 c =OB →+BC →=OB →+13AB →=OB →+13(OB →-OA →)=43OB →-13OA →=43b -13a .故选D.5.设向量a =(x ,1),b =(1,-3),且a ⊥b ,则向量a -3b 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6 答案 D解析 因为a ⊥b ,所以x -3=0,解得x =3,所以a =(3,1),a -3b =(0,4),则cos 〈a -3b ,b 〉=(a -3b )·b|a -3b |·|b |=-434×2=-32,所以向量a -3b 与b 的夹角为5π6,故选D.6.如图,在正方形ABCD 中,E 为DC 的中点,若AD →=λAC →+μAE →,则λ-μ等于( )A .1B .3C .-1D .-3答案 D解析 E 为DC 的中点,故AE →=12(AC →+AD →),所以AD →=-AC →+2AE →,所以λ=-1,μ=2,所以λ-μ=-3,故选D.7.已知向量a =(1,x ),b =(x ,4)则“x =-2”是“向量a 与b 反向”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 若a ∥b ,则x 2=4,解得x =±2,当且仅当x =-2时,向量a 与b 反向,所以“x =-2”是“向量a 与b 反向”的充要条件,故选C.8.在△ABC 中,边BC 的垂直平分线交BC 于点Q ,交AC 于点P ,若|A B →|=1,|AC →|=2,则AP →·BC →的值为( )A .3B.32C.3D.32答案 B解析 由题知QP ⊥BC ,所以QP →·BC →=0,则AP →·BC →=(AQ →+QP →)·BC →=AQ →·BC →+QP →·BC →=12(AB→+AC →)·(AC →-AB →)=12(A C →2-AB →2)=32,故选B.9.已知a =(2,cos x ),b =(sin x ,-1),当x =θ时,函数f (x )=a ·b 取得最大值,则sin ⎝ ⎛⎭⎪⎫2θ+π4等于( )A.7210B.210C .-210D .-7210 答案 D解析 f (x )=a ·b =2sin x -cos x =5sin(x -φ),其中sin φ=15,cos φ=25,θ-φ=2k π+π2,k ∈Z ,解得θ=2k π+π2+φ,k ∈Z ,所以sin θ=cos φ=25,cos θ=-sin φ=-15,所以sin2θ=2sin θcos θ=-45,cos2θ=1-2sin 2θ=-35,所以sin ⎝⎛⎭⎪⎫2θ+π4=22(sin2θ+cos2θ)=-7210,故选D.10.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BE →·CE →=2,BF →·CF →=-1,则BA →·CA →等于( )A .5B .6C .7D .8答案 C解析 BE →·CE →=ED →2-BD →2=4FD →2-BD →2=2,BF →·CF →=FD →2-BD →2=-1,所以FD →2=1,BD →2=2,因此BA →·CA →=AD →2-BD →2=9FD →2-BD →2=7,故选C.11.(2018·西宁检测)定义:|a ×b |=|a ||b |sin θ,其中θ为向量a 与b 的夹角,若|a |=2,|b |=5,a ·b =-6,则|a ×b |等于( )A .6B .-8或8C .-8D .8答案 D 解析 cos θ=a ·b |a ||b |=-610=-35,且θ∈[0,π],则sin θ=45,则|a ×b |=|a |·|b |sin θ=10×45=8,故选D.12.在△ABC 中,CM →=2MB →,过点M 的直线分别交射线AB ,AC 于不同的两点P ,Q ,若AP →=mAB →,AQ →=nAC →,则mn +m 的最小值为( )A .63B .23C .6D .2 答案 D解析 由已知易得,AM →=23AB →+13AC →,∴AM →=23m AP →+13n AQ →.又M ,P ,Q 三点共线, ∴23m +13n=1, ∴m =2n3n -1,易知3n -1>0.mn +m =m (n +1)=2n3n -1·(n +1) =29⎣⎢⎡⎦⎥⎤(3n -1)+43n -1+5≥2, 当且仅当m =n =1时取等号. ∴mn +m 的最小值为2.第Ⅱ卷(非选择题 共70分)二、填空题(本题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若复数(a +i)2在复平面内对应的点在y 轴负半轴上,则实数a 的值是________. 答案 -1解析 因为复数(a +i)2=(a 2-1)+2a i ,所以其在复平面内对应的点的坐标是(a 2-1,2a ). 又因为该点在y 轴负半轴上,所以有⎩⎪⎨⎪⎧a 2-1=0,2a <0,解得a =-1.14.在△ABC 中,AB =5,AC =7.若O 为△ABC 的外接圆的圆心,则AO →·BC →=________. 答案 12解析 取BC 的中点D ,由O 为△ABC 的外接圆的圆心得OD ⊥BC ,则AO →·BC →=(AD →+DO →)·BC →=AD →·BC →+DO →·BC →=AD →·BC →=12(AC →+AB →)·(AC →-AB →)=12(AC →2-AB →2)=12.15.欧拉在1748年给出了著名公式e i θ=cos θ+isin θ(欧拉公式)是数学中最卓越的公式之一,其中,底数e =2.71828…,根据欧拉公式e i θ=cos θ+isin θ,任何一个复数z =r (cos θ+isin θ),都可以表示成z =r e i θ的形式,我们把这种形式叫做复数的指数形式,若复数z 1=2i 3e π,z 2=i 2e π,则复数z =z 1z 2在复平面内对应的点在第________象限. 答案 四解析 因为z 1=2i 3e π=2⎝⎛⎭⎪⎫cos π3+isin π3 =1+3i ,z 2=i2e π=cos π2+isin π2=i ,所以z =z 1z 2=1+3i i =(1+3i )(-i )i (-i )=3-i.复数z 在复平面内对应的点为Z (3,-1),点Z 在第四象限.16.已知点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0.设△OBC 与△ABC 的面积分别为S 1,S 2,则S 1S 2=______.答案 16解析 设E 为AB 的中点,连接OE ,延长OC 到D ,使OD =4OC ,因为点O 为△ABC 内一点,且满足OA →+OB →+4OC →=0,所以OA →+OB →+OD →=0,则点O 是△ABD 的重心,则E ,O ,C ,D 共线,OD ∶OE =2∶1,所以OC ∶OE =1∶2,则CE ∶OE =3∶2,则S 1=13S △BCE =16S △ABC ,所以S 1S 2=16.三、解答题(本题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)已知向量a =(-3,1),b =(1,-2),c =(1,1). (1)求向量a 与b 的夹角的大小; (2)若c ∥(a +k b ),求实数k 的值. 解 (1)设向量a 与b 的夹角为α, 则cos α=a ·b |a |·|b |=-3-210·5=-22,又α∈[0,π],所以α=3π4,即向量a 与b 的夹角的大小为3π4.(2)a +k b =(-3+k ,1-2k ),因为c ∥(a +k b ),所以1-2k +3-k =0, 解得k =43,即实数k 的值为43.18.(12分)已知a =(3,-2),b =(2,1),O 为坐标原点. (1)若m a +b 与a -2b 的夹角为钝角,求实数m 的取值范围; (2)设OA →=a ,OB →=b ,求△OAB 的面积. 解 (1)∵a =(3,-2),b =(2,1),∴m a +b =(3m +2,-2m +1),a -2b =(-1,-4), 令(m a +b )·(a -2b )<0, 即-3m -2+8m -4<0,解得m <65,∵当m =-12时,m a +b =-12a +b ,a -2b 与m a +b 方向相反,夹角为平角,不合题意.∴m ≠-12,∴若m a +b 与a -2b 的夹角为钝角,m 的取值范围为⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,65. (2)设∠AOB =θ,△OAB 面积为S , 则S =12|a |·|b |sin θ,∵sin 2θ=1-cos 2θ=1-⎝ ⎛⎭⎪⎫a ·b |a |·|b |2, ∴4S 2=|a |2|b |2·sin 2θ =|a |2|b |2-(a ·b )2=65-16=49. ∴S =72.19.(13分)如图,在△OAB 中,点P 为线段AB 上的一个动点(不包含端点),且满足AP →=λPB →.(1)若λ=12,用向量OA →,OB →表示OP →;(2)若|OA →|=4,|OB →|=3,且∠AOB =60°,求OP →·AB →取值范围. 解 (1)∵AP →=12PB →,∴OP →-OA →=12(OB →-OP →),∴32OP →=OA →+12OB →,即OP →=23OA →+13OB →. (2)∵OA →·OB →=|OA →|·|OB →|·cos 60°=6,AP →=λPB →(λ>0), ∴OP →-OA →=λ(OB →-OP →),(1+λ)OP →=OA →+λOB →, ∴OP →=11+λOA →+λ1+λOB →.∵AB →=OB →-OA →,∴OP →·AB →=错误!·(错误!-错误!)=-11+λOA →2+λ1+λOB →2+⎝ ⎛⎭⎪⎫11+λ-λ1+λOA →·OB →=-16+9λ+6-6λ1+λ=3λ-101+λ=3-131+λ.∵λ>0,∴3-131+λ∈(-10,3).∴OP →·AB →的取值范围是(-10,3).20.(13分)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝⎛⎭⎪⎫cos x 4,cos 2x4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫x +π3的值; (2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求f (2A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x4+cos 2x4 =32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12.由f (x )=1,得sin ⎝ ⎛⎭⎪⎫x 2+π6=12,所以cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12.(2)因为(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ).因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0, 所以cos B =12.又0<B <π2,所以B =π3,则A +C =23π,A =23π-C .又0<C <π2,则π6<A <π2,得π3<A +π6<2π3,所以32<sin ⎝⎛⎭⎪⎫A +π6≤1.又因为f (2A )=sin ⎝⎛⎭⎪⎫A +π6+12,故函数f (2A )的取值范围是⎝ ⎛⎦⎥⎤3+12,32.。

4-3第三节 平面向量数量积与平面向量应用举例2015年高考总复习)

4-3第三节 平面向量数量积与平面向量应用举例2015年高考总复习)
答案 B
考源教学资源网
第16页
返回导航
第四章
第三节
高考总复习模块新课标
新课标A版数学
4.已知向量 a 和向量 b 的夹角为 30° ,|a|=2,|b|= 3,则向 量 a 和向量 b 的数量积 a· b=________.
3 解析 a· b=2× 3× 2 =3.
考源教学资源网
第2页
返回导航
第四章
第三节
高考总复习模块新课标
新课标A版数学
高考这样考 1.直接利用数量积进行平面向量的运算. 2.利用平面向量的数量积计算两个向量的夹角问题. 3.利用平面向量的数量积解决垂直问题.
考源教学资源网
第3页
返回导航
第四章
第三节
高考总复习模块新课标
新课标A版数学
备考这样做 1.理解数量积的意义,掌握求数量积的各种方法. 2.理解数量积的运算性质. 3.利用数量积解决向量的几何问题.
考源教学资源网
第4页
返回导航
第四章
第三节
高考总复习模块新课标
新课标A版数学
D 读教材· 抓基础
考源教学资源网
第23页
返回导航
第四章
第三节
高考总复习模块新课标
新课标A版数学
【答案】
(1)-25
5 (2) 2
【规律方法】 求两个向量的数量积有三种方法:利用定义; 利用向量的坐标运算;利用数量积的几何意义.本题从不同角度 创造性地解题,充分利用了已知条件.
考源教学资源网
考源教学资源网
第26页
返回导航
第四章
第三节
高考总复习模块新课标
新课标A版数学
→ → 方法 2:由图知,无论 E 点在哪个位置,DE在CB方向上的投 影都是 CB=1,

复数知识点归纳及习题

复数知识点归纳及习题

复数一.知识网络图二.复数中的难点(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.(3)复数的辐角主值的求法.(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.三.复数中的重点(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.(4)复数集中一元二次方程和二项方程的解法.四.基础知识1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除等运算。

便产生形如a+bi (a,b ∈R )的数,称为复数。

所有复数构成的集合称复数集。

通常用C 来表示。

(1) z =a +bi ∈R ⇔b =0 (a,b ∈R )⇔z=z ⇔ z 2≥0;(2) z =a +bi 是虚数⇔b ≠0(a ,b ∈R );(3) z =a+b i 是纯虚数⇔a =0且b ≠0(a,b ∈R )⇔z +z =0(z≠0)⇔z 2<0;(4) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R );2.复数的几种形式。

对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。

2015届高考数学(人教,理科)大一轮复习配套讲义:第四章 平面向量、数系的扩充与复数的引入

2015届高考数学(人教,理科)大一轮复习配套讲义:第四章 平面向量、数系的扩充与复数的引入

第四章平面向量、数系的扩充与复数的引入第一节平面向量的概念及其线性运算(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算平行四边形法则3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa .1.作两个向量的差时,要注意向量的方向是指向被减向量的终点; 2.在向量共线的重要条件中易忽视“a ≠0”,否则λ可能不存在,也可能有无数个;3.要注意向量共线与三点共线的区别与联系. [试一试]1.若向量a 与b 不相等,则a 与b 一定( ) A .有不相等的模 B .不共线C .不可能都是零向量D .不可能都是单位向量答案:C2.若菱形ABCD 的边长为2,则|AB -CB+CD |=________.解析:|AB -CB +CD |=|AB +BC +CD |=|AD|=2. 答案:21.向量的中线公式若P 为线段AB 的中点,O 为平面内一点,则OP OP =12(OA +OB). 2.三点共线等价关系A ,P ,B 三点共线⇔AP =λAB(λ≠0)⇔OP =(1-t )·OA +t OB (O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP =x OA +y OB(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).[练一练]1.D 是△ABC 的边AB 上的中点,则向量CD等于( ) A .-BC +12BAB .-BC -12BAC .BC -12BAD .BC +12BA答案:A2.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________.解析:由题意知a +λb =k [-(b -3a )], 所以⎩⎨⎧λ=-k ,1=3k ,解得⎩⎪⎨⎪⎧k =13,λ=-13.答案:-131.给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB =DC是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤解析:选A ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB =DC ,∴|AB |=|DC |且AB ∥DC, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,则AB ∥DC 且|AB |=|DC |,因此,AB =DC. ③正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.⑤不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是②③.故选A.2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( )A .0B .1C .2D .3解析:选D 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.[类题通法]平面向量中常用的几个结论(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)向量可以平移,平移后的向量与原向量是相等向量.解题时不要把它与函数图像的平移混为一谈.(3)a |a |是与a 同向的单位向量,a -|a |是与a 反向的单位向量.[典例] (1)如图,在正六边形ABCDEF 中,BA +CD +EF=( )A .0B . BEC .ADD . CF(2)(2013·江苏高考)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.[解析] (1)如图,∵在正六边形ABCDEF 中,CD =AF,BF =CE,∴BA +CD +EF =BA +AF +EF =BF +EF =CE+EF =CF.(2)由题意DE =CE +BE =12AB +23BC =12AB +23(BA +AC )=-16AB+23AC,所以λ1=-16,λ2=23,即λ1+λ2=12. [答案] (1)D (2)12解析:∵CD =CA +AD ,CD =CB +BD ,∴2CD =CA +CB +AD +BD .又∵AD=2CE , ∴2CD =CA +CB +13AB =CA +CB +13(CB -CA )=23CA+43CB .∴CD =13CA +23CB ,即λ=23. 答案:23 [类题通法]在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.[针对训练]若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB +CD =BC +DA ;②AC +BD =BC+AD ; ③AC -BD =DC +AB.其中正确的有( ) A .0个B .1个C .2个D .3个解析:选C ①式的等价式是AB -BC =DA -CD ,左边=AB +CB,右边=DA +DC ,不一定相等;②式的等价式是AC -BC =AD -BD ,AC+CB=AD +CE =AB 成立;③式的等价式是AC -DC =AB +BD ,AD =AD成立.[典例] 设两个非零向量a 与b 不共线,(1)若AB=a +b ,BC =2a +8b ,CD =3(a -b ), 求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线.[解] (1)证明:∵AB=a +b ,BC =2a +8b ,CD =3(a -b ),∴BD =BC +CD =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB. ∴AB ,BD共线, 又∵它们有公共点B , ∴A ,B ,D 三点共线. (2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), 即k a +b =λa +λk b . ∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0, ∴k 2-1=0.∴k =±1. [类题通法]1.共线向量定理及其应用(1)可以利用共线向量定理证明向量共线,也可以由向量共线求参数的值. (2)若a ,b 不共线,则λa +μb =0的充要条件是λ=μ=0,这一结论结合待定系数法应用非常广泛.2.证明三点共线的方法若AB=λAC ,则A 、B 、C 三点共线. [针对训练]已知a ,b 不共线,OA =a ,OB =b , OC =c , OD =d , OE=e ,设t ∈R ,如果3a =c,2b =d ,e =t (a +b ),是否存在实数t 使C ,D ,E 三点在一条直线上?若存在,求出实数t 的值,若不存在,请说明理由.解:由题设知,CD =d -c =2b -3a ,CE=e -c =(t -3)a +t b ,C ,D ,E 三点在一条直线上的充要条件是存在实数k ,使得CE =k CD,即(t -3)a +t b =-3k a +2k b ,整理得(t -3+3k )a =(2k -t )b .因为a ,b 不共线,所以有⎩⎨⎧t -3+3k =0,t -2k =0,解之得t =65.故存在实数t =65使C ,D ,E 三点在一条直线上.第二节平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模: 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB=(x 2-x 1,y 2-y 1),|AB|3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.1.若a 、b 为非零向量,当a ∥b 时,a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错;2.要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向也有大小的信息.3.若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0,应表示为x 1y 2-x 2y 1=0.[试一试]1.若向量BA=(2,3),CA =(4,7),则BC =( ) A .(-2,-4) B .(2,4) C .(6,10)D .(-6,-10)答案:A2.(2013·石家庄模拟)已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值是________.解析:∵u =(1+2x,4),v =(2-x,3),u ∥v ,∴8-4x =3+6x ,∴x =12. 答案:12用基向量表示所求向量时,注意方程思想的运用. [练一练]设e 1、e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .解析:由题意,设e 1+e 2=m a +n b . 因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m +n )·e 2. 由平面向量基本定理,得⎩⎨⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.答案:23 -131.(2014·昆明一中摸底)已知点M (5,-6)和向量a =(1,-2),若MN=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)解析:选A MN =-3a =-3(1,-2)=(-3,6),设N (x ,y ),则MN=(x -5,y -(-6))=(-3,6),所以⎩⎨⎧ x -5=-3,y +6=6,即⎩⎨⎧x =2,y =0,选A.2.(2013·北京高考)向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.解析:设i ,j 分别为水平方向和竖直方向上的正向单位向量,则a =-i +j ,b =6i +2j ,c =-i -3j ,所以-i -3j =λ(-i +j )+μ(6i +2j ),根据平面向量基本定理得λ=-2,μ=-12,所以λμ=4.答案:43.已知A (-2,4),B (3,-1),C (-3,-4).设AB=a ,BC =b ,CA =c . (1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24) =(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n ), ∴⎩⎨⎧ -6m +n =5,-3m +8n =-5,解得⎩⎨⎧m =-1,n =-1.[类题通法]1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.[典例] 如图,在梯形ABCD 中,AD ∥BC ,且AD =13BC ,E ,F 分别为线段AD 与BC 的中点.设BA=a ,BC =b ,试用a ,b 为基底表示向量EF , DF ,CD.[解] EF =EA +AB +BF =-16b -a +12b =13b -a ,DF =DE +EF =-16b +⎝ ⎛⎭⎪⎫13b -a =16b -a ,CD =CF +FD =-12b -⎝ ⎛⎭⎪⎫16b -a =a -23b .[类题通法]用平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.[针对训练](2014·济南调研)如图,在△ABC 中,AN =13NC,P 是BN上的一点,若AP =m AB +211AC ,则实数m 的值为________.解析:因为AP =AB +BP =AB +k BN =AB+k (AN -AB )=AB +k ⎝ ⎛⎭⎪⎫14 AC-AB=(1-k )AB +k 4AC,且AP =m AB +211AC, 所以1-k =m ,k 4=211, 解得k =811,m =311. 答案:311[典例] 平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1). (1)求满足a =m b +n c 的实数m ,n ; (2)若(a +k c )∥(2b -a ),求实数k ; [解] (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎨⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2), 由题意得2×(3+4k )-(-5)×(2+k )=0. ∴k =-1613.解:设由题意得⎩⎨⎧4(x -4)-2(y -1)=0,(x -4)2+(y -1)2=5, 得⎩⎨⎧ x =3,y =-1或⎩⎨⎧x =5,y =3. ∴d =(3,-1)或(5,3). [类题通法]1.向量共线的两种表示形式设a =(x 1,y 1),b =(x 2,y 2),①a ∥b ⇒a =λb (b ≠0);②a ∥b ⇔x 1y 2-x 2y 1=0,至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.2.两向量共线的充要条件的作用判断两向量是否共线(平行),可解决三点共线的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.[针对训练]已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC =2AB,求点C 的坐标.解:(1)由已知得AB=(2,-2),AC =(a -1,b -1),∵A ,B ,C 三点共线,∴AB ∥AC. ∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC =2AB ,∴(a -1,b -1)=2(2,-2). ∴⎩⎨⎧ a -1=4,b -1=-4,解得⎩⎨⎧a =5,b =-3. ∴点C 的坐标为(5,-3).第三节平面向量的数量积与平面向量应用举例1.平面向量的数量积 平面向量数量积的定义已知两个非零向量a 和b ,它们的夹角为θ,把数量|a||b|cos θ叫做a 和b 的数量积(或内积),记作a·b .即a·b =|a||b|cos θ,规定0·a =0.2.向量数量积的运算律 (1)a·b =b·a .(2)(λa )·b =λ(a·b )=a·(λb ). (3)(a +b )·c =a·c +b·c .3.平面向量数量积的有关结论 已知非零向量a =(x 1,y 1),b =(x 2,y 2)1.若a ,b ,c 是实数,则ab =ac ⇒b =c (a ≠0);但对于向量就没有这样的性质,即若向量a ,b ,c ,若满足a ·b =a ·c (a ≠0),则不一定有b =c ,即等式两边不能同时约去一个向量,但可以同时乘以一个向量.2.数量积运算不适合结合律,即(a ·b )·c ≠a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而a 与c 不一定共线,因此(a ·b )·c 与a ·(b ·c )不一定相等.[试一试]1.(2013·广州调研)已知向量a ,b 都是单位向量,且a ·b =12,则|2a -b |的值为________.解析:|2a -b |=(2a -b )2=4a 2-4a ·b +b 2=4-2+1= 3. 答案: 32.(2013·山东高考)在平面直角坐标系xOy 中,已知OA =(-1,t ),OB =(2,2).若∠ABO =90°,则实数t 的值为________.解析:AB =OB -OA =(3,2-t ),由题意知OB ·AB=0,所以2×3+2(2-t )=0,t =5.答案:51.明确两个结论:(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立);(2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).2.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.[练一练]1.已知向量a ,b 均为非零向量,(a -2b )⊥a ,(b -2a )⊥b ,则a ,b 的夹角为( )A.π6 B.π3 C.2π3D.5π6解析:选B (a -2b )·a =|a |2-2a ·b =0,(b -2a )·b =|b |2-2a ·b =0,所以|a |2=|b |2,即|a |=|b |,故|a |2-2a ·b =|a |2-2|a |2cos a ,b =0,可得cos a ,b =12,又因为0≤ a ,b ≤π,所以 a ,b =π3.2.(2013·福建高考)在四边形ABCD 中,AC =(1,2),BD=(-4,2),则该四边形的面积为( )A. 5B .2 5C .5D .10解析:选C 依题意得,AC ·BD=1×(-4)+2×2=0, ∴AC ⊥BD ,∴四边形ABCD 的面积为12|AC|·|BD |=12×5×20=5.1.(2014·11=(x 2,y 2),若|=2,|b |=3,a ·b =-6.则x 1+y 1x 2+y 2的值为( ) A.23 B .-23 C.56D .-56解析:选B 由已知得,向量a =(x 1,y 1)与b =(x 2,y 2)反向,3a +2b =0,即3(x 1,y 1)+2(x 2,y 2)=(0,0),得x 1=-23x 2,y 1=-23y 2,故x 1+y 1x 2+y 2=-23.2.(2014·温州适应性测试)在△ABC 中,若∠A =120°,AB ·AC=-1,则|BC |的最小值是( )A. 2B .2C. 6D .6 解析:选C ∵AB ·AC =-1,∴|AB |·|AC |cos 120°=-1,即|AB |·|AC|=2,∴|BC |2=|AC -AB |2=AC 2-2AB ·AC +AB 2≥2|AB |·|AC |-2AB ·AC =6,∴|BC|min = 6.3.(2013·南昌模拟)已知向量e 1=⎝ ⎛⎭⎪⎫cos π4,sin π6,e 2=⎝ ⎛⎭⎪⎫2sin π4,4cos π3,则e 1·e 2=________.解析:由向量数量积公式得e 1·e 2=cos π4×2sin π4+sin π6×4cos π3=22×2+12×2=2.答案:24.(2013·全国卷Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ·BD=________.解析:因为AE =AD +12AB ,BD =AD -AB ,所以AE ·BD =(AD +12AB )·(AD -AB )=AD 2-12AD ·AB -12AB 2=2. 答案:2 [类题通法]向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos a ,b .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.(1)平面向量的模; (2)平面向量的夹角; (3)平面向量的垂直.角度一 平面向量的模1.(2013·天津高考)在平行四边形ABCD 中,AD =1,∠BAD =60° , E 为CD的中点.若AC ·BE=1 , 则AB 的长为________. 解析:由已知得AC =AD +AB ,BE =AD -12AB,∴AC ·BE =AD 2-12AB ·AD +AB ·AD -12AB 2=1+12AB·AD -12|AB |2=1+12|AB |·|AD |cos 60°-12|AB|2=1,∴|AB |=12.答案:12角度二 平面向量的夹角2.(1)已知平面向量a ,b ,|a |=1,|b |=3,且|2a +b |=7,则向量a 与a +b 的夹角为( )A.π2 B.π3 C.π6D .π解析:选B ∵|2a +b |2=4|a |2+4a ·b +|b |2=7,|a |=1,|b |=3,∴4+4a ·b +3=7,∴a ·b =0,∴a ⊥b .如图所示,a 与a +b 的夹角为∠COA .∵tan ∠COA =|CA ||OA |=|b ||a |=3,∴∠COA =π3,即a 与a +b 的夹角为π3. (2)(2014·云南第一次检测)若平面向量a 与平面向量b 的夹角等于π3,|a |=2,|b |=3,则2a -b 与a +2b 的夹角的余弦值等于( )A.126B .-126C.112D .-112解析:选B 记向量2a -b 与a +2b 的夹角为θ,又(2a -b )2=4×22+32-4×2×3×cos π3=13,(a +2b )2=22+4×32+4×2×3×cos π3=52,(2a -b )·(a +2b )=2a 2-2b 2+3a ·b =8-18+9=-1,故cos θ=(2a -b )·(a +2b )|2a -b |·|a +2b |=-126,即向量2a-b 与a +2b 的夹角的余弦值是-126,因此选B.角度三 平面向量的垂直3.(1)(2013·荆州高中毕业班质量检查Ⅰ)已知向量a 与b 的夹角是2π3,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________.解析:若a ⊥(2a +λb ),则a ·(2a +λb )=0,即2|a |2+λ·|a ||b |·cos 2π3=0,∴2+λ×1×4×⎝ ⎛⎭⎪⎫-12=0.∴λ=1.答案:1(2)在直角三角形ABC 中,已知AB=(2,3),AC =(1,k ),则k 的值为________. 解析:①当A =90°时,∵AB ⊥AC ,∴AB ·AC=0. ∴2×1+3k =0,解得k =-23.②当B =90°时,∵AB ⊥BC, 又BC =AC -AB=(1,k )-(2,3)=(-1,k -3),∴AB ·BC=2×(-1)+3×(k -3)=0, 解得k =113.③当C =90°时, ∵AC ⊥BC,∴1×(-1)+k (k -3)=0, 即k 2-3k -1=0.∴k =3±132.答案:-23或113或3±132. [类题通法]1.求两非零向量的夹角时要注意: (1)向量的数量积不满足结合律;(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明两向量的夹角为直角,数量积小于0且两向量不能共线时两向量的夹角就是钝角.2.利用数量积求解长度问题的处理方法 (1)a 2=a ·a =|a |2或|a |=a ·a . (2)|a ±b |=(a ±b )2=a 2±2a ·b +b 2. (3)若a =(x ,y ),则|a |=x 2+y 2.[典例sin α),b =(cos ,sin β),0<β<α<π.(1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0,sin α+sin β=1.由此得,cos α=cos (π-β),由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β.代入sin α+sin β=1, 得sin α=sin β=12,而α>β,所以α=5π6,β=π6. [类题通法]平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.[针对训练]已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值; (2)若|a |=|b |,0<θ<π,求θ的值.解:(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ, 于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |,知sin 2θ+(cos θ-2sin θ)2=5, 所以1-2sin 2θ+4sin 2θ=5.从而-2sin 2θ+2(1-cos 2θ)=4,即sin 2θ+cos 2θ=-1, 于是sin ⎝ ⎛⎭⎪⎫2θ+π4=-22.又由0<θ<π,知π4<2θ+π4<9π4, 所以2θ+π4=5π4或2θ+π4=7π4. 因此θ=π2或θ=3π4.第四节数系的扩充与复数的引入1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ ―→的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2.2.复数的几何意义 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R ) 平面向量OZ.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; ④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0). (2)复数加法的运算定律复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 3.z 2<0在复数范围内有可能成立,例如:当z =3i 时z 2=-9<0. [试一试]1.(2014·惠州调研)i 是虚数单位,若z (i +1)=i ,则|z |等于( ) A .1 B.32 C.22D.12解析:选C 由题意知z =i i +1=i (1-i )(i +1)(1-i )=1+i 2,|z |=22,故选C. 2.(2013·天津高考)已知a ,b ∈R ,i 是虚数单位.若(a +i)·(1+i)=b i ,则a +b i =________.解析:因为(a +i)(1+i)=a -1+(a +1)i =b i ,a ,b ∈R ,所以⎩⎨⎧a -1=0,a +1=b ,解得⎩⎨⎧a =1,b =2,所以a +b i =1+2i. 答案:1+2i1.把握复数的运算技巧(1)设z =a +b i(a ,b ∈R ),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.(2)在复数代数形式的四则运算中,加、减、乘运算按多项式运算法则进行,除法则需分母实数化.2.掌握复数代数运算中常用的几个结论在进行复数的代数运算时,记住以下结论,可提高计算速度. (1)(1±i)2=±2i ;1+i 1-i =i ;1-i 1+i=-i ;(2)-b +a i =i(a +b i);(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n +i 4n +1+i 4n +2+i 4n +3=0,n ∈N *. [练一练](2013·安徽联考)已知i 是虚数单位,则⎝ ⎛⎭⎪⎫1+i 2 2 013在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C ∵⎝⎛⎭⎪⎫1+i 22=2i2=i , ∴⎝ ⎛⎭⎪⎫1+i 2 2 013=⎝ ⎛⎭⎪⎫1+i 2 2 0121+i 2=i 1 006·1+i 2=i 2·1+i 2=-22-22i.∴其对应点位于第三象限,故选C.1.(2014·湖北八校联考)设x ∈R ,则“x =1”是“复数z =(x 2-1)+(x +1)i 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C 由纯虚数的定义知:⎩⎨⎧x 2-1=0,x +1≠0,⇒x =1,选C.2.(2014·安徽“江南十校”联考)若a +b i =51+2i(i 是虚数单位,a ,b ∈R ),则ab =( )A .-2B .-1C .1D .2解析:选A a +b i =51+2i=1-2i ,所以a =1,b =-2,ab =-2. 3.(2013·安徽高考)设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为( )A .-3B .-1C .1D .3解析:选D 复数a -103-i =a -10(3+i )(3-i )(3+i )=(a -3)-i 为纯虚数,则a -3=0,即a =3.4.(2013·洛阳统考)设复数z =-1-i(i 为虚数单位),z 的共轭复数为z ,则|(1-z )·z -|=( )A.10 B .2 C. 2D .1解析:选A 依题意得(1-z )·z -=(2+i)(-1+i)=-3+i ,|(1-z )·z -|=|-3+i|=(-3)2+12=10.选A.[类题通法]解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +bi (a ,b ∈R )的形式,以确定实部和虚部.[典例] (1)(2013·四川高考)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )A .AB .BC .CD .D(2)(2014·郑州质量预测)复数z 1=3+i ,z 2=1-i ,则z =z 1z 2的共轭复数在复平面内的对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)设z =a +b i(a ,b ∈R ),且a <0,b >0,则z 的共轭复数为a -b i ,其中a <0,-b <0,故应为B 点.(2)依题意得,z =3+i 1-i =(3+i )(1+i )(1-i )(1+i )=2+4i 2=1+2i ,因此复数z =z 1z 2的共轭复数1-2i 在复平面内的对应点的坐标是(1,-2),该点位于第四象限,选D.[答案] (1)B (2)D[类题通法]对复数几何意义的理解及应用(1)复数z 、复平面上的点Z 及向量OZ相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔ OZ(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[针对训练]1.(2013·湖北八校联考)已知i 是虚数单位,z =1+i ,z -为z 的共轭复数,则复数z 2z-在复平面上对应的点的坐标为________.解析:z =1+i ,则z 2z -=(1+i )21-i =2i 1-i =2i (1+i )(1-i )(1+i )=-1+i ,则复数z 2z-在复平面上对应的点的坐标为(-1,1).答案:(-1,1)2.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上对应的点分别为A ,B ,C ,若OC =λOA +μOB,(λ,μ∈R ),则λ+μ的值是________.解析:由条件得OC =(3,-4),OA=(-1,2), OB=(1,-1),根据OC =λOA +μOB 得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ), ∴⎩⎨⎧ -λ+μ=3,2λ-μ=-4,解得⎩⎨⎧λ=-1,μ=2. ∴λ+μ=1. 答案:1[典例] (1)若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5iB .3-5iC .-3+5iD .-3-5i(2)(2013·长春调研)已知复数z =1+a i(a ∈R ,i 是虚数单位),z -z =-35+45i ,则a =( )A .2B .-2C .±2D .-12[解析] (1)z =11+7i 2-i =(11+7i )(2+i )(2-i )(2+i )=15+25i5=3+5i.(2)由题意可知:1-a i 1+a i =(1-a i )2(1+a i )(1-a i )=1-2a i -a 21+a 2=1-a 21+a 2-2a 1+a 2i =-35+45i ,因此1-a 21+a 2=-35,化简得5a 2-5=3a 2+3,a 2=4,则a =±2,由-2a 1+a 2=45可知a <0,仅有a =-2满足,故选B.[答案] (1)A (2)B解:∵z =3+5i ,∴z -=3-5i∴(1+z )·z -=(4+5i)(3-5i)=12-20i +15i +25=37-5i. [类题通法]复数四则运算的解答策略复数的加法、减法、乘法运算可以类比多项式的运算,除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.[针对训练]1.(2013·山东高考)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( )A .2+iB .2-iC .5+iD .5-i解析:选D 由(z -3)(2-i)=5,得z =3+52-i =3+5(2+i )(2-i )(2+i )=3+2+i =5+i,所以z=5-i.2.设复数z的共轭复数为z,若z=1-i(i为虚数单位),则zz+z2的值为()A.-3i B.-2i C.i D.-i解析:选D依题意得zz+z2=1+i1-i+(1-i)2=-i2+i1-i-2i=i-2i=-i.。

2015届高考数学总复习第四章 第五节数系的扩充、复数的概念与四则运算精讲课件 文

2015届高考数学总复习第四章 第五节数系的扩充、复数的概念与四则运算精讲课件 文

(2)(2013· 陕西卷 ) 设 z1 , z2 是复数,则下列命题中的假 命题是( ) A.若|z1-z2|=0,则 Z 1 = Z 2
B.若z1= Z 2 ,则 Z 1 =z2
C.若|z1|=|z2|,则z1· Z Z =z2·
1 2
D.若|z1|=|z2|,则
解析:(1)设z=a+bi,a,b∈R,
变式探究
3.(1)(2013· 四川卷)如图,在复平面内,点A表示复数z,
则图中表示z的共轭复数的点( A.A C.C B.B D.D )
(2)若复数z=(x-5)+(3-x)i在复平面
内对应的点位于第三象限,则实数x的
取值范围是( A.(-∞,5) C.(3,5) ) B.(3,+∞) D.(5,+∞)
(2)z1z2=(1-i)(2+i)=2+i-2i-i2=2+1-i=3-i.故选A.
(3)z2+
2=பைடு நூலகம்cos
θ+isin θ)2+(cos θ-isin θ)2=2cos 2θ=
1⇒sin 2θ=
.
点评: 复数代数形式的运算是复数部分的重点,其基本
思路就是应用运算法则进行计算.复数的加减运算类似于实 数中的多项式的加减运算(合并同类项),复数的乘除运算是复
变式探究
1 . (1) 设 a , b∈R , i 是虚数单位,则“ ab = 0” 是“复数 a + 为纯虚数”的( )
A.充分不必要条件
C.充要条件 (2)下面是关于复数z= p1:|z|=2,p2:z2=2i,
B.必要不充分条件
D.既不充分也不必要条件 的四个命题:
p3:z的共轭复数为1+i,p4:z的虚部为-1,
运算转化为实数运算,体现了化归与转化思想;

高考数学一轮复习 第四章 平面向量、数系的扩充与复数

高考数学一轮复习 第四章 平面向量、数系的扩充与复数

A.12a +12b
B.12a +13b
C.14a +12b
D.12a +14b
解析:∵在△ABC 中,BE 是边 AC 上的中线,
∴―A→E =12―A→C .∵O 是边 BE 的中点,
∴―A→O =12(―A→B +―A→E )=12―A→B +14―A→C =12a +14b .
答案:D
2.已知向量 e1,e2 不共线,实数 x,y 满足(3x-4y)e1+(2x-3y)e2
第二 节
平面向量的基本定理及坐标表示
课前·双基落实
知识回扣,小题热身,基稳才能楼高
课堂·考点突破
练透基点,研通难点,备考不留死角
课后·三维演练
分层训练,梯度设计,及时查漏补缺
课 前 双基落实
知识回扣,小题热身,基稳才能楼高
过基 础知 识
1.平面向量基本定理 如果e1,e2是同一平面内的两个 不共线 向量,那么对于 这一平面内的任意向量a , 有且只有 一对实数λ1,λ2,使 a =_λ_1e_1_+__λ_2e_2_. 其中,不共线的向量e1,e2叫做表示这一平面内所有向量 的一组 基底 .
=-14a +14b . 答案:-14a +14b
课 堂 考点突破
练透基点,研通难点,备考不留死角
考点一 平面向量基本定理及其应用 [考什么·怎么考]
高考对平面向量基本定理的考查主要是用基底表 示其他向量,一般多以选择题、填空题的形式出现, 难度中等.
1.如图,在△ABC 中,BE 是边 AC 的中线,O 是边 BE 的中点,若―A→B =a ,―A→C =b ,则―A→O =( )
2.平面向量的坐标运算 (1)向量的加法、减法、数乘向量及向量的模:
设 a =(x1,y1),b =(x2,y2),则 a +b = (x1+x2,y1+y2) ,a -b = (x1-x2,y1-y2) , λa = (λx1,λy1) ,|a |=___x_21+__y_21__.

4-2第二节 平面向量基本定理及其坐标运算(2015年高考总复习)

4-2第二节 平面向量基本定理及其坐标运算(2015年高考总复习)

考源教学资源网
第8页
返回导航
第四章
第二节
高考总复习模块新课标
新课标A版数学
→ → ②设OA=xi+yj,则向量OA的坐标(x,y)就是 终点 A 的坐标, → 即若OA=(x,y),则 A 点坐标为 (x,y) ,反之亦成立.(O 是坐标 原点) 2.平面向量的坐标运算 (1)加法、减法、数乘运算. (2)向量坐标的求法:
→ → 方法 2:设AB=a,AD=b,因为 M,N 分别为 CD,BC 的中 → 1 → 1 点,所以BN=2b,DM=2a,于是有 1 c = b + a, 2 d=a+1b, 2 2 a = 2d-c, 3 解得 b=22c-d, 3
→ 2 → 2 即AB= (2d-c),AD= (2c-d). 3 3
解析
答案
1 → → → BE=BC+CE=- a+b. 2
1 - a+b 2
考源教学资源网
第20页
返回导航
第四章
第二节
高考总复习模块新课标
新课标A版数学
Y 研考点· 知规律
探究悟道 点拨技法
考源教学资源网
第21页
返回导航
第四章
第二节
1→ → → → AD=AM-DM=c-2AB.① 1→ → → → 在△ABN 中,AB=AN-BN=d-2AD.② → 2 → 2 由①②得AB=3(2d-c),AD=3(2c-d).
考源教学资源网
第24页
返回导航
第四章
第二节
高考总复习模块新课标
新课标A版数学
第7页
返回导航
第四章
第二节
高考总复习模块新课标
新课标A版数学
(3)平面向量的坐标表示: ①在平面直角坐标系中,分别取与 x 轴、y 轴方向相同的两个 单位向量 i,j 作为基底,对于平面内的一个向量 a,有且只有一对 实数 x,y,使 a=xi+yj,把有序数对 (x,y) 叫做向量 a 的坐标, 记作 a=(x,y) ,其中 x 轴上的坐标. 叫 a 在 x 轴上的坐标, y 叫a在y

2015届高考数学(人教,理科)大一轮配套练透:第4章 平面向量、数系的扩充与复数的引入 第1节

2015届高考数学(人教,理科)大一轮配套练透:第4章 平面向量、数系的扩充与复数的引入 第1节

[课堂练通考点]1.给出下列命题:①两个具有公共终点的向量,一定是共线向量. ②两个向量不能比较大小,但它们的模能比较大小. ③λa =0(λ为实数),则λ必为零.④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误的命题的个数为( ) A .1 B .2 C .3D .4解析:选C ①错误,两向量共线要看其方向而不是起点或终点. ②正确,因为向量既有大小,又有方向,故它们不能比较大小,但它们的模均为实数,故可以比较大小.③错误,当a =0时,不论λ为何值,λa =0.④错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故选C.2.如图,已知AB =a ,AC =b ,BD=3DC ,用a ,b 表示AD ,则AD=( )A .a +34b B.14a +34b C.14a +14bD.34a +14b解析:选B ∵CB =AB -AC =a -b ,又BD=3DC ,∴CD =14CB =14(a -b ),∴AD =AC +CD =b +14(a -b )=14a +34b .3.(2013·贵阳监测考试)已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c =( )A .aB .bC .cD .0解析:选D 依题意,设a +b =m c ,b +c =n a ,则有(a +b )-(b +c )=m c -n a ,即a -c =m c -n a .又a 与c 不共线,于是有m =-1,n =-1,a +b =-c ,a +b +c =0,选D.4.(2013·“江南十校”联考)如图,在△ABC 中,∠A =60°,∠A 的平分线交BC 于D ,若AB =4,且AD =14AC +λAB(λ∈R ),则AD 的长为( )A .2 3B .3 3C .4 3D .5 3解析:选B 因为B ,D ,C 三点共线,所以有14+λ=1,解得λ=34,如图,过点D 分别作AC ,AB 的平行线交AB ,AC于点M ,N ,则AN =14AC , AM =34AB,经计算得AN =AM =3,AD =3 3.5.在▱ABCD 中,AB =a ,AD=b ,OE AN =3NC ,M 为BC 的中点,则MN=________(用a ,b 表示).解析:由AN =3NC 得4AN =3AC=3(a +b ),AM =a +12b ,所以MN =34(a +b )-⎝⎛⎭⎪⎫a +12b =-14a +14b . 答案:-14a +14b6.设点M 是线段BC 的中点,点A 在直线BC 外,BC 2=16,|AB +AC|=|AB -AC |,则|AM|=________.解析:由|AB +AC |=|AB -AC |可知,AB ⊥AC,则AM 为Rt △ABC 斜边BC 上的中线,因此,|AM |=12|BC|=2.答案:2[课下提升考能]第Ⅰ组:全员必做题1.设a 、b 是两个非零向量( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |解析:选C 对于A ,可得cos a ,b =-1,因此a ⊥b 不成立;对于B ,满足a ⊥b 时|a +b |=|a |-|b |不成立;对于C ,可得cos a ,b =-1,因此成立,而D 显然不一定成立.2.设D ,E ,F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC =2BD,CE =2EA ,AF =2FB ,则AD +BE +CF与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A 由题意得AD =AB +BD =AB +13BC,BE =BA +AE =BA +13AC , CF =CB +BF =CB +13BA ,因此AD +BE +CF =CB +13(BC +AC -AB) =CB +23BC =-13BC ,故AD +BE +CF与BC 反向平行.3.(2013·安庆二模)已知a ,b 是不共线的两个向量,AB=x a +b ,AC =a+y b (x ,y ∈R ),若A ,B ,C 三点共线,则点P (x ,y )的轨迹是( )A .直线B .双曲线C .圆D .椭圆解析:选B ∵若A ,B ,C 三点共线,∴AB=λAC . 即x a +b =λ(a +y b )⇒⎩⎨⎧x =λ,1=λy ,⇒xy =1,故选B.4.(2014·山师大附中模拟)已知平面内一点P 及△ABC ,若PA +PB +PC=AB,则点P 与△ABC 的位置关系是( )A .点P 在线段AB 上 B .点P 在线段BC 上C .点P 在线段AC 上D .点P 在△ABC 外部解析:选C 由PA +PB +PC =AB 得PA +PC =AB -PB =AP,即PC =AP -PA =2AP,所以点P 在线段AC 上,选C.5.(2014·大连高三双基测试)设O 在△ABC 的内部,且有OA +2OB +3OC=0,则△ABC 的面积和△AOC 的面积之比为( )A .3 B.53 C .2D.32解析:选A 设AC ,BC 的中点分别为M ,N ,则已知条件可化为(OA +OC)+2(OB +OC )=0,即OM +2ON =0,所以OM =-2ON,说明M ,O ,N 共线,即O 为中位线MN 上的靠近N 的三等分点,S △AOC =23S △ANC =23·12S △ABC =13S △ABC ,所以S △ABCS △AOC=3. 6.(2013·淮阴模拟)已知△ABC 和点M 满足MA ―→+MB ―→+MC ―→=0.若存在实数m 使得AB +AC =m AM成立,则m =________.解析:由题目条件可知,M 为△ABC 的重心,连接AM 并延长交BC 于D ,则AM =23AD ,因为AD 为中线,则AB +AC =2AD =3AM,所以m =3.答案:37.(2013·大庆模拟)已知O 为四边形ABCD 所在平面内一点,且向量OA ,OB,OC ,OD 满足等式OA +OC =OB +OD,则四边形ABCD 的形状为________.解析:∵OA +OC =OB +OD ,∴OA -OB =OD -OC,∴BA =CD,BA 綊CD ,∴四边形ABCD 为平行四边形.答案:平行四边形8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC =a ,CA=b ,给出下列命题:①AD =12a -b ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF=0.其中正确命题的个数为________.解析:BC =a ,CA =b ,AD =12CB +AC =-12a -b ,故①错; BE =BC +12CA =a +12b ,故②错; CF =12(CB +CA )=12(-a +b ) =-12a +12b ,故③正确;∴AD +BE +CF =-b -12a +a +12b +12b -12a =0.∴正确命题为②③④. 答案:39.设两个非零向量e 1和e 2不共线.(1)如果AB=e 1-e 2,BC =3e 1+2e 2,CD =-8e 1-2e 2,求证:A 、C 、D 三点共线;(2)如果AB=e 1+e 2,BC =2e 1-3e 2,CD =2e 1-k e 2,且A 、C 、D 三点共线,求k 的值.解:(1)证明:∵AB=e 1-e 2,BC =3e 1+2e 2, CD=-8e 1-2e 2, ∴AC =AB +BC=4e 1+e 2=-12(-8e 1-2e 2)=-12CD, ∴AC 与CD共线.又∵AC 与CD有公共点C ,∴A 、C 、D 三点共线. (2)AC =AB +BC=(e 1+e 2)+(2e 1-3e 2)=3e 1-2e 2,∵A 、C 、D 三点共线,∴AC 与CD 共线,从而存在实数λ使得AC =λCD,即3e 1-2e 2=λ(2e 1-k e 2),得⎩⎨⎧3=2λ,-2=-λk ,解得λ=32,k =43.10.如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点, AE =23AD ,AB=a ,AC =b .(1)用a ,b 表示向量AD ,AE ,AF ,BE ,BF;(2)求证:B ,E ,F 三点共线. 解:(1)延长AD 到G ,使AD =12AG ,连接BG ,CG ,得到▱ABGC ,所以AG=a +b ,AD =12AG =12(a +b ), AE =23AD =13(a +b ), AF =12AC =12b ,BE =AE -AB =13(a +b )-a =13(b -2a ), BF =AF -AB =12b -a =12(b -2a ). (2)证明:由(1)可知BE =23BF, 又因为BE ,BF有公共点B ,所以B ,E ,F 三点共线. 第Ⅱ组:重点选做题1.A ,B ,O 是平面内不共线的三个定点,且OA =a ,OB=b ,点P 关于点A 的对称点为Q ,点Q 关于点B 的对称点为R ,则PR等于( )A .a -bB .2(b -a )C .2(a -b )D .b -a解析:选B PR =OR-OP =(OR +OQ )-(OP +OQ )=2OB -2OA =2(b -a ).2.如图,在△ABC 中,设AB=a ,AC =b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点恰为P ,则AP等于________.解析:如图,连接BP ,则AP =AC +CP =b +PR,① AP =AB +BP =a +RP -RB,②①+②,得2AP =a +b -RB.③又RB =12QB =12(AB-AQ ) =12⎝ ⎛⎭⎪⎫a -12 AP ,④将④代入③,得2AP =a +b -12⎝ ⎛⎭⎪⎫a -12 AP ,解得AP =27a +47b .答案:27a +47b 134。

2014届高考数学一轮复习 第4章《平面向量、数系的扩充与复数的引入》(第2课时)知识过关检测 理 新人教A版

2014届高考数学一轮复习 第4章《平面向量、数系的扩充与复数的引入》(第2课时)知识过关检测 理 新人教A版

2014届高考数学(理)一轮复习知识过关检测:第4章《平面向量、数系的扩充与复数的引入》(第2课时)(新人教A 版)一、选择题1.(2013·合肥质检)设平面向量a =(3,5),b =(-2,1),则a -2b =( ) A .(7,3) B .(7,7) C .(1,7) D .(1,3)解析:选A.依题意得a -2b =(3,5)-2(-2,1)=(7,3). 2.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ) A .3a +b B .3a -b C .-a +3b D .a +3b 解析:选B.设c =m a +n b ,则(4,2)=(m -n ,m +n ). ∴⎩⎪⎨⎪⎧ m -n =4m +n =2⇒⎩⎪⎨⎪⎧m =3n =-1,∴c =3a -b . 3.(2013·鞍山质检)设向量a =(4sin α,3),b =(2,3cos α),且a ∥b ,则锐角α为( )A.π6B.π4C.π3D.512π 解析:选B.∵a ∥b ,∴4sin α·3cos α=2×3, ∴sin 2α=1, ∵α为锐角.∴α=π4.故选B.4.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →=( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)解析:选B.AQ →=PQ →-PA →=(-3,2), ∴AC →=2AQ →=(-6,4). PC →=PA →+AC →=(-2,7), ∴BC →=3PC →=(-6,21).故选B.5.(2011·高考广东卷)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( )A.14B.12 C .1 D .2解析:选B.∵a +λb =(1+λ,2),c =(3,4)且(a +λb )∥c , ∴1+λ3=24,∴λ=12.二、填空题6.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 解析:∵a =(2,-1),b =(-1,m ),∴a +b =(1,m -1). ∵(a +b )∥c ,c =(-1,2),∴2-(-1)·(m -1)=0. ∴m =-1. 答案:-17.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AB ,AD 分别落在x 轴,y轴的正方向上,则向量2AB →+3BC →+AC →的坐标为________.解析:由已知得A (0,0),B (1,0),C (1,1), 则AB →=(1,0),BC →=(0,1),AC →=(1,1), ∴2AB →+3BC →+AC →=2(1,0)+3(0,1)+(1,1)=(3,4). 答案:(3,4) 8.设两个向量a =(λ+2,λ2-cos 2α)和b =(m ,m2+sin α),其中λ,m ,α为实数.若a =2b ,则λm的取值范围是________________________________________________________________________.解析:根据已知条件得2b =(2m ,m +2sin α),又a =2b ,所以λ+2=2m ,λ2-cos 2α=m +2sin α,于是2λ2-2cos 2α=λ+2+4sin α,即2λ2-λ=-2sin 2α+4sin α+4=-2(sin α-1)2+6,故-2≤2λ2-λ≤6,即⎩⎪⎨⎪⎧2λ2-λ≤62λ2-λ≥-2,解得-32≤λ≤2,故λm =λλ2+1=2-4λ+2∈[-6,1]. 答案:[-6,1] 三、解答题9.已知A (1,-2),B (2,1),C (3,2)和D (-2,3),试以AB →、AC →为一组基底来表示AD →+BD →+CD →.解:由已知得:AB →=(1,3),AC →=(2,4), AD →=(-3,5),BD →=(-4,2),CD →=(-5,1), ∴AD →+BD →+CD →=(-3,5)+(-4,2)+(-5,1) =(-12,8). 设AD →+BD →+CD →=λ1AB →+λ2AC →, 则(-12,8)=λ1(1,3)+λ2(2,4), ∴⎩⎪⎨⎪⎧ λ1+2λ2=-12,3λ1+4λ2=8.解得⎩⎪⎨⎪⎧λ1=32,λ2=-22. ∴AD →+BD →+CD →=32AB →-22AC →.10.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标.解:设点C ,D 的坐标分别为(x 1,y 1)、(x 2,y 2),由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6).因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2,和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧x 1=0,y 1=4,和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别是(0,4)、(-2,0),从而CD →=(-2,-4).一、选择题1.已知点A (2,1),B (0,2),C (-2,1),O (0,0),给出下面的结论:①直线OC 与直线BA 平行;②AB →+BC →=CA →; ③OA →+OC →=OB →;④AC →=OB →-2OA →. 其中正确结论的个数是( ) A .1 B .2 C .3 D .4解析:选C.∵OC →=(-2,1),BA →=(2,-1), ∴OC →=-BA →,∴ OC →∥ BA →.又由坐标知点O 、C 、A 、B 不共线,∴OC ∥BA ,①正确; ∵AB →+BC →=AC →,∴②错误; ∵OA →+OC →=(0,2)=OB →,∴③正确; ∵OB →-2OA →=(-4,0),AC →=(-4,0),∴④正确.故选C.2.已知P ={a |a =(1,0)+m (0,1),m ∈R },Q ={b |b =(1,1)+n (-1,1),n ∈R }是两个向量的集合,则P ∩Q 等于( )A .{(1,1)}B .{(-1,1)}C .{(1,0)}D .{(0,1)} 解析:选A.因为a =(1,m ),b =(1-n,1+n ). 可得P ∩Q ={(1,1)},故选A. 二、填空题3.e 1,e 2是不共线向量,且a =-e 1+3e 2,b =4e 1+2e 2,c =-3e 1+12e 2,若b ,c 为一组基底,则a =________.解析:设a =λ1b +λ2c ,则-e 1+3e 2=λ1(4e 1+2e 2)+λ2(-3e 1+12e 2), 即-e 1+3e 2=(4λ1-3λ2)e 1+(2λ1+12λ2)e 2,∴⎩⎪⎨⎪⎧4λ1-3λ2=-1,2λ1+12λ2=3,解得⎩⎪⎨⎪⎧λ1=-118,λ2=727,∴a =-118b +727c .答案:-118b +727c4.(2012·高考山东卷)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP →的坐标为________.解析:如图,作CQ ∥x 轴,PQ ⊥CQ ,Q 为垂足.根据题意得劣弧DP =2,故∠DCP =2弧度,则在△PCQ 中,∠PCQ =⎝⎛⎭⎪⎫2-π2弧度,|CQ |=cos ⎝⎛⎭⎪⎫2-π2=sin2,|PQ |=sin ⎝⎛⎭⎪⎫2-π2=-cos2,所以点P 的横坐标为2-|CQ |=2-sin2,P 点的纵坐标为1+|PQ |=1-cos2,所以P 点的坐标为(2-sin2,1-cos2), 故OP →=(2-sin2,1-cos2). 答案:(2-sin2,1-cos2) 三、解答题5.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,求: (1)t 为何值时,P 在x 轴上?P 在y 轴上?P 在第二象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值,若不能,请说明理由.解:(1)OP →=OA →+tAB →=(1+3t,2+3t ).若P 在x 轴上,则2+3t =0,∴t =-23;若P 在y 轴上,只需1+3t =0,∴t =-13;若P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0.∴-23<t <-13.(2)因为OA →=(1,2),PB →=(3-3t,3-3t ),若OABP 为平行四边形,则OA →=PB →, ∵⎩⎪⎨⎪⎧3-3t =1,3-3t =2,无解, 所以四边形OABP 不能成为平行四边形.。

高考数学平面向量及复数专项训练试题、参考答案

高考数学平面向量及复数专项训练试题、参考答案

高考数学平面向量及复数专项训练试题一、选择题(本题每小题5分,共60分)1.设向量(cos 23,cos67),(cos53,cos37),a b a b =︒︒=︒︒⋅=则 ( )AB .12C .D .12-2.如果复数212bi i-+(其中i 为虚数单位,b 为实数)的实部和虚部是互为相反数,那么b 等于( )A B .23C .2D . 23-3.220041i i i ++++的值是 ( ) A .0 B .1- C .1 D .i 4.若(2,3)a =-, (1,2)b =-,向量c 满足c a ⊥,1b c ⋅=,则c 的坐标是 ( ) A .(3,2)- B .(3,2) C .(3,2)-- D .(3,2)- 5.使4()a i R +∈(i 为虚数单位)的实数a 有( ) A .1个 B .2个 C .3个D .4个6.设e 是单位向量,3,3,3AB e CD e AD ==-=,则四边形ABCD 是( )A .梯形B .菱形C .矩形D .正方形7.已知O 、A 、B 三点的坐标分别为(0,0)O ,(3,0)A ,(0,3)B ,点P 在线段AB 上,且(0AP t AB =≤t ≤1),则OA OP ⋅的最大值为( )A .3B .6C .9D .128.已知2,1a b ==,a 与b 的夹角为60︒,则使向量a b λ+与2a b λ-的夹角为钝角的实数λ的取值范围是 ( )A . (,1-∞--B . (1)-++∞C . (,1(13,)-∞--++∞D . (11--+9.若z 为复数,下列结论正确的是 ( )A .若12,z z C ∈且120z z ->且12z z >B .22z z =C .若0,z z -=则z 为纯虚数D .若2z 是正实数,那么z 一定是非零实数10.若sin 211)i θθ-++是纯虚数,则θ的值为 ( ) A .2()4k k Z ππ-∈ B .2()4k k Z ππ+∈ C .2()4k k Z ππ±∈ D .()24k k Z ππ+∈11.已知△ABC 的三个顶点的A 、B 、C 及平面内一点P 满足PA PB PC AB ++=,下列结论中正确的是 ( ) A .P 在△ABC 内部 B .P 在△ABC 外部 C .P 在AB 边所在直线上 D .P 是AC 边的一个三等分点 12.复数z 在复平面上对应的点在单位圆上,则复数21zz+ ( )A .是纯虚数B .是虚数但不是纯虚数C .是实数D .只能是零 二、填空题(本题每小题4分,共16分)13.已知复数z 满足等式:2||212z zi i -=+,则z= .14.把函数)2245y x x =-+的图象按向量a 平移后,得到22y x =的图象,且a ⊥b ,(1,1)c =-,4b c ⋅=,则b =_____________。

2015年高考数学(理)一轮总复习课件:第四章+平面向量与复数 第2节 平面向量的基本定理及坐标运算

2015年高考数学(理)一轮总复习课件:第四章+平面向量与复数 第2节 平面向量的基本定理及坐标运算
第二十五页,编辑于星期五:十一点 五十七分。
变式训练 3 (1)(2013·皖南八校高三第三次联考)已知向
量 a=(-1,2),b=(2,0)、c=(1,-1),若向量(λa+b)∥c,
则实数 λ 为( )
A.-2
B.-1
C.-13
D.-23
(2)若平面向量 a,b 满足|a+b|=1,a+b 平行于 x 轴,
-3)=- 3×(-1, 3),故向量 c 可以是(-1, 3)
【答案】 D
第二十二页,编辑于星期五:十一点 五十七分。
考向 3 平面向量共线的坐标表示
【例 3】 (1)已知向量O→A=(3,-4),O→B=(6,-3),O→C
=(m,m+1),若A→B∥O→C,则实数 m 的值为( )
A.-32
4.(2013·辽宁高考)已知点 A(1,3),B(4,-1),则与向量
A→B同方向的单位向量为( )
A.35,-45
B.45,-35
C.-35,45
D.-45,35
【解析】 A→B=(3,-4),则与其同方向的单位向量 e
=|AA→→BB|=15(3,-4)=35,-45. 【答案】 A
第二十九页,编辑于星期五:十一点 五十七分。
三个结论 1.若 a 与 b 不共线,λa+μb=0,则 λ=μ=0. 2.已知O→A=λO→B+μO→C(λ,μ 为常数),则 A,B,C 三 点共线的充要条件是 λ+μ=1. 3.平面向量的基底中一定不含零向量.
B.-14
1 C.2
3 D.2
(2)(2012·重庆高考改编)设 x,y∈R,向量 a=(x,1),b=
(1,y),c=(2,-4),且 a⊥c,b∥c,则|a+b|=________.

2015届高考数学(人教,理科)大一轮配套练透:第4章 平面向量、数系的扩充与复数的引入 第4节

2015届高考数学(人教,理科)大一轮配套练透:第4章 平面向量、数系的扩充与复数的引入 第4节

[课堂练通考点]1.(2014·石家庄模拟)复数z =1-i ,则1z +z 对应的点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵z =1-i ,∴1z +z =32-i 2, ∴1z +z 对应的点所在的象限是第四象限,故选D.2.(2014·浙江名校联考)已知i 是虚数单位,且复数z 1=3-b i ,z 2=1-2i ,若z 1z 2是实数,则实数b 的值为( )A .6B .-6C .0D.16解析:选A ∵z 1z 2=3-b i 1-2i =3+2b 5+(6-b )i 5,当6-b 5=0时,z 1z 2是实数,∴b=6.3.(2013·广东高考)若i(x +y i)=3+4i ,x ,y ∈R ,则复数x +y i 的模是( ) A .2 B .3 C .4D .5解析:选D 依题意得-y +x i =3+4i , ∴⎩⎨⎧ -y =3,x =4,即⎩⎨⎧y =-3,x =4, ∴|x +y i|=|4-3i|=42+(-3)2=5.4.(2013·河北教学质量监测)已知m ∈R ,复数m +i 1+i -12的实部和虚部相等,则m =________.解析:m +i 1+i -12=(m +i )(1-i )(1+i )(1-i )-12=(m +1)+(1-m )i 2-12=m +(1-m )i2,由已知得m =1-m ,则m =12.答案:12[课下提升考能]第Ⅰ组:全员必做题1.(2013·东城区统一检测)已知a 是实数,a +i1-i是纯虚数,则a 等于( ) A .-1 B .1 C. 2D .- 2解析:选B a +i 1-i =(a +i )(1+i )(1-i )(1+i )=a -1+(a +1)i 2,当a +i 1-i为纯虚数时,a -12=0,即a =1.2.(2013·郑州质量预测)若复数z =2-i ,则z -+10z =( ) A .2-i B .2+i C .4+2iD .6+3i解析:选D ∵z =2-i ,∴z -+10z =(2+i)+102-i =(2+i)+10(2+i )(2-i )(2+i )=6+3i.3.(2014·萍乡模拟)复数(1+2i )(2+i )(1-i )2等于( )A.52 B .-52 C.52iD .-52i解析:选B (1+2i )(2+i )(1-i )2=2+4i +i +2i 2-2i =5i -2i =-52. 4.(2014·长沙模拟)已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫i ,i 2,1i ,(1+i )2i ,i 是虚数单位,Z 为整数集,则集合Z ∩M 中的元素个数是( )A .3个B .2个C.1个D.0个解析:选B由已知得M={i,-1,-i,2},Z为整数集,∴Z∩M={-1,2},即集合Z∩M中有2个元素.5.(2013·陕西高考)设z1,z2是复数,则下列命题中的假命题是()A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1·z1=z2·z2D.若|z1|=|z2|,则z21=z22解析:选D对于A,|z1-z2|=0⇒z1=z2⇒z1=z2,是真命题;对于B,C 易判断是真命题;对于D,若z1=2,z2=1+ 3 i,则|z1|=|z2|,但z21=4,z22=-2+23i,是假命题.6.(2013·重庆高考)已知复数z=5i1+2i(i是虚数单位),则|z|=________.解析:5i1+2i=5i(1-2i)(1+2i)(1-2i)=2+i,所以|z|= 5.答案: 57.若3+b i1-i=a+b i(a,b为实数,i为虚数单位),则a+b=________.解析:由3+b i1-i=(3+b i)(1+i)(1-i)(1+i)=3-b+(3+b)i2=a+b i,得a=3-b2,b=3+b2,解得b=3,a=0,所以a+b=3.答案:38.已知复数z=1-i,则z2-2zz-1=________.解析:z2-2zz-1=(z-1)2-1z-1=z-1-1z-1=(-i)-1-i=-i-i-i·i=-2i.答案:-2i9.计算:(1)(-1+i)(2+i)i3;(2)(1+2i )2+3(1-i )2+i ;(3)1-i (1+i )2+1+i(1-i )2; (4)1-3i (3+i )2. 解:(1)(-1+i )(2+i )i 3=-3+i-i=-1-3i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i2+i =i (2-i )5=15+25i.(3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. (4)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i=(-i )(3-i )4=-14-34i.10.已知z 是复数,z +2i ,z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应的点在第一象限,求实数a 的取值范围.解:设z =x +y i(x ,y ∈R ), 则z +2i =x +(y +2)i , 由题意得y =-2. ∵z 2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i. 由题意得x =4,∴z =4-2i. ∴(z +a i)2=(12+4a -a 2)+8(a -2)i.由于(z +a i)2在复平面上对应的点在第一象限,∴⎩⎨⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6. ∴实数a 的取值范围是(2,6). 第Ⅱ组:重点选做题1.定义:若z 2=a +b i(a ,b ∈R ,i 为虚数单位),则称复数z 是复数a +b i 的平方根.根据定义,则复数-3+4i 的平方根是( )A .1-2i 或-1+2iB .1+2i 或-1-2iC .-7-24iD .7+24i解析:选B 设(x +y i)2=-3+4i ,则⎩⎨⎧x 2-y 2=-3,xy =2,解得⎩⎨⎧ x =1,y =2或⎩⎨⎧x =-1,y =-2.2.已知复数z =x +y i ,且|z -2|=3,则yx 的最大值为________.解析:∵|z -2|=(x -2)2+y 2=3, ∴(x -2)2+y 2=3. 由图可知⎝ ⎛⎭⎪⎫y x max =31= 3.答案: 3。

(名师导学)高考数学总复习 同步测试卷(八)平面向量、复数的概念及运算 理(含解析)新人教A版-新人

(名师导学)高考数学总复习 同步测试卷(八)平面向量、复数的概念及运算 理(含解析)新人教A版-新人

同步测试卷理科数学(八) 【p 299】 (平面向量、复数的概念及运算) 时间:60分钟 总分:100分一、选择题(本大题共6小题,每小题5分,共30分.每小题所给的四个选项中,只有一项是符合题目要求的.)1.复数1+51-2i(i 是虚数单位)的模等于( )A .4B .5C .22D .2【解析】1+51-2i =1+5(1+2i )(1-2i )(1+2i )=1+1+2i =2+2i ,则它的模等于22+22=2 2. 【答案】C2.已知向量a =()1,m ,b =()m ,1,则“m =1”是“a∥b ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【解析】当m =1时,a =b 可以推出a∥b ;当a∥b 时,1m =m1m 2=1,m =±1,不能推出m =1.所以,“m =1”是“a∥b ”成立的充分不必要条件.【答案】A3.在复平面上,复数z 1,z 2对应的点关于直线y =x 对称,且z 1z 2=4i ,则复数z 1的模长为( )A .2 B. 3 C. 2 D .1【解析】设z 1=a +b i ,则z 2=b +a i ,由z 1z 2=4i ,可知a 2+b 2=4,所以||z 1=a 2+b2=2.【答案】A4.如图,已知AB →=a, AC →=b, DC →=3BD →,AE →=2EC →,则DE →=( )A.34b -13aB.512a -34bC.34a -13bD.512b -34a 【解析】由平面向量的三角形法则可知:DE →=DC →+CE →=34BC →+⎝ ⎛⎭⎪⎫-13AC →=34(AC →-AB →)-13AC →=-34AB →+512AC →=-34a +512b . 【答案】D5.已知不共线向量a ,b ,|a |=|b |=|a -b |,则a +b 与a 的夹角是( ) A.π12 B.π6 C.π4 D.π3【解析】法一:根据|a |=|b |,有|a |2=|b |2,又由|b |=|a -b |,得|b |2=|a |2-2a ·b +|b |2,∴a ·b =12|a |2.而|a +b |2=|a |2+2a ·b +|b |2=3|a |2,∴|a +b |=3|a |.设a 与a +b 的夹角为θ,则cos θ=a ·(a +b )|a ||a +b |=|a |2+12|a |2|a |·3|a |=32,∴θ=π6.法二:根据向量加法的几何意义,在平面内任取一点O ,作OA →=a ,OB →=b ,以OA 、OB 为邻边作平行四边形OACB .∵|a |=|b |,即|OA →|=|OB →|,∴OACB 为菱形,OC 平分∠AOB ,这时OC →=a +b ,BA →=a -b .而|a |=|b |=|a -b |,即|OA →|=|OB →|=|BA →|.∴△AOB 为正三角形,则∠AOB =60°,于是∠AOC =30°,即a 与a +b 的夹角为π6.【答案】B6.△ABC 是底边边长为22的等腰直角三角形,P 是以直角顶点C 为圆心,半径为1的圆上任意一点,若m ≤AP →·BP →≤n ,则n -m 的最小值为( )A .42B .2 2C .2D .4【解析】如图所示,建立直角坐标系,则:A (-2,0),B (2,0),P (cos θ,2+sin θ),由平面向量的性质可得:AP →=(cos θ+2,sin θ+2),BP →=(cos θ-2,sin θ+2),由平面向量的数量积:AP →·BP →=cos 2θ-2+sin 2θ+22sin θ+2=1+22sin θ,据此有:m max =1-22,n min =1+22,(n -m )min =4 2.【答案】A二、填空题(本大题共4小题,每小题5分,共20分,将各小题的结果填在题中横线上.) 7.已知复数z 满足()2-i z =-3+4i ,则z 的共轭复数是________.【解析】因为z =-3+4i 2-i =()-3+4i ()2+i 5=-10+5i5=-2+i ,所以z 的共轭复数是-2-i .【答案】-2-i8.设x ,y ∈R ,向量a =(x ,2),b =(1,y ),c =(2,-6),且a ⊥c ,b ∥c ,则||a +b =__________.【解析】a ⊥c 2x -12=0x =6a =(6,2),b ∥c-6-2y =0y =-3b =(1,-3)||a +b 2=a 2+2a ·b +b 2=40+10=50||a +b =52.【答案】5 29.若向量OA →=(1,-3),|OA →|=|OB →|,OA → ·OB →=0,则 |AB →|=________. 【解析】法一:设OB →=(x ,y ),由|OA →|=|OB →|知,x 2+y 2=10,又OA → ·OB →=x -3y =0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.则|AB →|=2 5.法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,所以|AB →|=2 5. 【答案】2 510.已知△ABC ,其中顶点坐标分别为A ()-1,1,B ()1,2,C ()-2,-1,点D 为边BC 的中点,则向量AD →在向量AB →方向上的投影为__________.【解析】因为AB →=()2,1,AC →=(-1,-2),AD →=12()AB →+AC →=⎝ ⎛⎭⎪⎫12,-12,故AB→·AD →=2×12-12=12,由于||AB →=5,所以向量AD →在向量AB →方向上的投影为AB →·AD →||AB→=12×15=510. 【答案】510三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程或演算步骤.) 11.(16分)已知平面上三点A ,B ,C ,BC →=(2-k ,3),AC →=(2,4). (1)若三点A ,B ,C 不能构成三角形,某某数k 应满足的条件;(2)若△ABC 中角A 为直角,求k 的值.【解析】(1)由三点A ,B ,C 不能构成三角形,得A ,B ,C 在同一直线上,即向量BC →与AC →平行,∴4(2-k)-2×3=0,解得k =12.(2)∵BC →=(2-k ,3),∴CB →=(k -2,-3), ∴AB →=AC →+CB →=(k ,1).当A 是直角时,AB →⊥AC →,即AB →·AC →=0, ∴2k +4=0,解得k =-2.12.(16分)在△ABC 中,AM →=34AB →+14AC →.(1)求△ABM 与△ABC 的面积之比;(2)若N 为AB 中点,AM →与→交于点P ,且AP →=xAB →+yAC →(x ,y ∈R ),求x +y 的值. 【解析】(1)在△ABC 中,AM →=34AB →+14AC →,可得3BM →=MC →,即点M 在线段BC 靠近B 点的四等分点.故△ABM 与△ABC 的面积之比为14.(2)因为AM →=34AB →+14AC →,AM →∥AP →,AP →=xAB →+yAC →(x ,y ∈R ),所以x =3y, 因为N 为AB 中点,所以NP →=AP →-AN →=xAB →+yAC →-12AB →=⎝ ⎛⎭⎪⎫x -12AB →+yAC →,CP →=AP →-AC →=xAB →+yAC →-AC →=xAB →+(y -1)AC →,因为NP →∥CP →,所以⎝ ⎛⎭⎪⎫x -12(y -1)=xy ,即2x +y =1,又x =3y ,所以x =37,y =17,所以x +y =47.13.(18分)向量a =(2,2),向量b 与向量a 的夹角为3π4,且a·b =-2.(1)求向量b ;(2)若t =(1,0),且b⊥t ,c =⎝⎛⎭⎪⎫cos A ,2cos 2C 2,其中A ,B ,C 是△ABC 的内角,若A 、B 、C 依次成等差数列,试求|b +c |的取值X 围.【解析】(1)设b =(x ,y ),则a·b =2x +2y =-2,且|b |=a·b|a |cos3π4=1=x 2+y 2,联立方程得⎩⎪⎨⎪⎧2x +2y =-2,x 2+y 2=1,解得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴b =(-1,0)或b =(0,-1). (2)∵A ,B ,C 依次成等差数列,∴B =π3.∴b +c =⎝ ⎛⎭⎪⎫cos A ,2cos 2C2-1=(cos A ,cos C ),∴|b +c|2=cos 2A +cos 2C =1+12()cos 2A +cos 2C=1+12⎣⎢⎡⎦⎥⎤cos 2A +cos ⎝ ⎛⎭⎪⎫4π3-2A =1+12⎝ ⎛⎭⎪⎫cos 2A -12cos 2A -32sin 2A=1+12cos ⎝⎛⎭⎪⎫2A +π3.∵A ∈⎝ ⎛⎭⎪⎫0,2π3,∴2A +π3∈⎝ ⎛⎭⎪⎫π3,5π3, ∴-1≤cos ⎝⎛⎭⎪⎫2A +π3<12,∴12≤|b+c|2<54,故22≤|b+c|<52.。

高考数学一轮总复习第五章平面向量与复数 4复数课件

高考数学一轮总复习第五章平面向量与复数 4复数课件

所以ቊ + 2
= 1,
所以 =
2
02
+ 2
+ 12
4
= 2,解得ቊ = 0,或൝ = − 3 ,
= 1,
= 1.
= 1或 =
4 2

3
+ 12
=
5
5
.故填1或 .
3
3
(3)已知1 ,2 是方程 2 − 2 + 2 = 0的两个复根,则 12 − 22 =(
结果,这对提高运算的速度和准确度都有很大的帮助,详见本节【常用结论】.②计算
除法的关键是“分母实数化”.③灵活应用待定系数法解题.
变式2(1) (2023年全国乙卷)设 =
B.1 + 2i

A.1 − 2i
解: =
2+i
1−1+i
=
i 2+i
i2
2+i
,则
1+i2 +i5
C.2 − i
= 1 − 2i,则 = 1 + 2i.故选B.
3,4
则实数的取值范围为______.
解:因为 = 2 − 4 + 2 − − 6 i,且所对应的点在第二象限,所以
2 − 4 < 0,
ቊ 2
解得3 < < 4.故填 3,4 .
− − 6 > 0,
(2)(2020年全国Ⅱ卷)设复数1 ,2 满足 1 = 2 = 2,1 + 2 = 3 + i,则
2 3
1 − 2 =_____.
解:(方法一)如图所示,设复数1 ,2 所对应的点为1 ,2 ,

高中数学(文科)复数练习题

高中数学(文科)复数练习题

高中数学《复数》复习作业出题:储鹏1. 设复数),(R b a bi a z ∈+=,则z 为纯虚数的必要不充分条件是____________。

【答案】a=02. 已知复数)()65(167222R a i a a a a a z ∈--+-+-=,那么当a=_______时,z 是实数; 当a ∈__________________时,z 是虚数;当a=___________时,z 是纯虚数。

【答案】∅∈+∞---∞∈=a a a ),6()6,1()1,1()1,(63. 已知0)2(622=-++-+i y x y x ,则实数.___________,__________==y x 【答案】⎪⎩⎪⎨⎧--=-=⎪⎩⎪⎨⎧+-=+=21212121y x y x 或 4. 若复数a 满足i ai a 4421+-=+-,则复数a=___________。

【答案】1+2i5. 已知R a ∈,则复数i a a a a z )106()22(22--++-=必位于复平面的第_____象限。

【答案】第四6. 复数2i i z +=在复平面对应的点在第_______象限。

【答案】第二7. 设i 是虚数单位,计算=+++432i i i i ________.【答案】08. 已知向量1OZ 对应的复数是i 45-,向量2OZ 对应的复数是i 45+-, 则1OZ +2OZ 对应的复数是___________。

【答案】09. 已知复数|2||4|),(+=-∈+=z i z R y x yi x z 满足条件,则y x 42+的最小值 是________。

【答案】2410. 计算: ________21211_________1__________|)4()23(|________5)3()5(等于,则已知z i i z ii i i i i i ---==+=--+=----11. 复数ii z 213--=的共轭复数是__________。

高三数学复习第四章 平面向量、数系的扩充与复数的引入

高三数学复习第四章  平面向量、数系的扩充与复数的引入
数学(6省专版)
提 升 学 科 素 养
演 练 知 能 检 测
第一节
平面向量的概念及其线性运算 [自测· 牛刀小试]
回 扣 主 干 知 识
1.下列说法中正确的是
A.只有方向相同或相反的向量是平行向量 B.零向量的长度为零 C.长度相等的两个向量是相等向量
(
)
提 升 学 科 素 养
突 破 热 点 题 型
解析:向量是既有大小又有方向的量,a与|a|a0的模相
同,但方向不一定相同,故①是假命题;若a与a0平行, 则a与a0的方向有两种情况:一是同向,二是反向,反 向时a=-|a|a0,故②③也是假命题.综上所述,假命 题的个数是3. 答案:D
数学(6省专版)
演 练 知 能 检 测
第一节
平面向量的概念及其线性运算 向量的线性运算
D.共线向量是在一条直线上的向量
解析:由于零向量与任意向量平行,故选项A错误;
长度相等且方向相同的两个向量是相等向量,故C错 误;方向相同或相反的两个非零向量是共线向量,故 D错误.
演 练 知 能 检 测
答案:B
数学(6省专版)
第一节
平面向量的概念及其线性运算
2.(教材习题改编)D 是△ABC 的边 AB 上的中点, 则向量 CD
提 升 学 科 素 养
突 破 热 点 题 型
位向量的核心是方向没有限制,但长度都是一个单位长度;
零向量的核心是方向没有限制,长度是0;规定零向量与任 意向量共线.只有紧紧抓住概念的核心才能顺利解决与向 量概念有关的问题.
——————————————————————————
数学(6省专版)
演 练 知 能 检 测
回 扣 主 干 知 识

复 数:高考数学复习

复 数:高考数学复习

A. 2
√B.1
C.2
D.3
∵x2+x+1=0, ∴由求根公式得 x=-1±2 1-4=-12± 3i, 即 z=-12± 3i, ∴当 z=-12+ 23i 时,|z|= -122+ 232=1,
当 z=-12- 23i 时,|z|= -122+- 232=1.
综上,|z|=1.
题型二 复数的四则运算
5 5
对于 A,z=1-102i=(1-102(1i)+(1+2i)2i)=2+4i,∴ z =2-4i,故 A 正确; 对于B,z-2=2+4i-2=4i,为纯虚数,故B正确; 对于C,z=2+4i,其在复平面内对应的点为(2,4),在第一象限,故 C错误; 对于 D,复数 z 在复平面内对应的点为(2,4),则 sin α= 224+42=255, 故 D 错误.
自主诊断
2.(必修第二册P95T1(3)改编)已知复数z=i3(1+i),则z在复平面内对应的
点位于
A.第一象限
Hale Waihona Puke B.第二象限C.第三象限
√D.第四象限
z=i3(1+i)=-i(1+i)=1-i, z在复平面内对应的点为(1,-1),位于第四象限.
自主诊断
3.(2023·合肥模拟)已知i是虚数单位,若|1+ai|=5,则实数a等于
返回
第二部分
探究核心题型
题型一 复数的概念
例1 (1)(多选)(2023·银川模拟)若复数z满足z(1-2i)=10,则
√A. z =2-4i √B.z-2 是纯虚数
C.复数 z 在复平面内对应的点在第三象限
D.若角 α 的始边为 x 轴非负半轴,复数 z 对应的点在角 α 的终边上,则
sin
α=

(5年高考真题备考题库)2014-2015高考数学一轮复习 第4章 第1节 平面向量的概念及其线性运算 文 湘教版

(5年高考真题备考题库)2014-2015高考数学一轮复习 第4章 第1节 平面向量的概念及其线性运算 文 湘教版

2009~2013年高考真题备选题库第4章 平面向量、数系的扩充与复数的引入第1节 平面向量的概念及其线性运算考点 平面向量的概念与线性运算1.(2013广东,5分)设a 是已知的平面向量且a≠0.关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μ c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μ c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μ c.上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( )A .1B .2C .3D .4解析:本题主要考查平面向量知识,考查数形结合、分类与整合的数学思想方法,意在考查考生的抽象概括能力、推理论证能力.显然①②正确;对于③,当μ<,时,不存在符合题意的单位向量c 和实数λ,③错;对于④,当λ=μ=1,|a|>2时,易知④错.答案:B2.(2013新课标全国Ⅱ,5分)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE ·BD =________.解析:本题考查平面向量的基本定理及基本运算,是基本题目,意在考查考生的运算求解能力.选向量的基底为AB ,AD ,则BD =AD -AB ,AE =AD +12AB ,那么AE ·BD =⎝ ⎛⎭⎪⎫AD +12 AB ·(AD -AB )=2. 答案:23(2013江苏,5分).设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC.若DE =λ1AB +λ2AC (λ1,λ2为实数),则λ1+λ2的值为________.解析:本题考查向量的基本定理、向量的运算,意在考查学生的转化与化归能力. DE =DB +BE =12AB +23BC =12AB +23(BA +AC )=-16AB +23AC ,所以λ1=-16,λ2=23,即λ1+λ2=12. 答案:124.(2010安徽,5分)设向量a =(1,0),b =(12,12),则下列结论中正确的是( )A .|a|=|b|B .a ·b=22 C .a ∥b D .a -b 与b 垂直解析:|a|=12+02=1,|b|=12+12=22; a·b=1×12+0×12=12;(a -b)·b=a·b-|b|2=12-12=0,故a -b 与b 垂直. 答案:D5.(2010山东,4分)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP 的坐标为________.解析:如图,作CQ ∥x 轴,PQ ⊥CQ ,Q 为垂足.根据题意得劣弧D P =2,故∠DCP =2弧度,则在△PCQ 中,∠PCQ =(2-π2)弧度,|CQ|=cos(2-π2)=sin 2,|PQ|=sin(2-π2)=-cos 2,所以P 点的横坐标为2-|CQ|=2-sin 2,P 点的纵坐标为1+|PQ|=1-cos 2,所以P 点的坐标为(2-sin 2,1-cos 2),此即为向量OP 的坐标.答案:(2-sin 2,1-cos 2)6.如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP ·AC =________.解析:设AC 与BD 的交点为O ,则AP ·AC =AP ·2AO =2AP 2+2AP ·PO =2×32+0=18.答案:187.(2011浙江,4分)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是________. 解析:对于以向量α,β为邻边的平行四边形的面积S0=12|α||β|·sin〈α,β〉×2=|β|sin 〈α,β〉=12,因此sin 〈α,β〉=12|β|∈[12,1],因此α与β的夹角θ的取值范围是[π6,5π6]. 答案:[π6,5π6] 8.(2010浙江,4分)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.解析:由于α⊥(α-2β),所以α·(α-2β)=|α|2-2α·β=0,故2α·β=1,所以|2α+β|=4|α|2+4α·β+|β|2=4+2+4=10.答案:10。

高中数学复数知识点及练习

高中数学复数知识点及练习

【1】复数的基本概念(1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部。

实数:当b = 0时复数a + b i 为实数; 虚数:当0≠b 时的复数a + b i 为虚数;纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义:00==⇔=+∈==⇔+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-;(4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b =;(象限的复习)(5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+(1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-;(3) 乘法:()()1212122112z z a a b b a b a b i ⋅=-++ 特别22z z a b ⋅=+。

(4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-【3】复数的化简c diz a bi+=+(,a b 是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc ic di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+【例1】若复数()312a iz a R i +=∈-(i 为虚数单位),(1)若z 为实数,求a 的值 (2)当z 为纯虚数,求a 的值。

【变式1】设a 是实数,且112a ii -++是实数,求a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 平面向量与复数第4课时 复 数
1. (2013·南通期末)已知复数z =3-2i i
(i 是虚数单位),则复数z 所对应的点位于复平面的第________象限.
答案:三
解析:z =3-2i i =(3-2i )(-i )i (-i )
=-2-3i. 2. (2013·苏州期末)设复数z 满足z(2+i)=1-2i(i 为虚数单位),则|z|=________. 答案:1
解析:由z(2+i)=1-2i ,得z =1-2i 2+i =(1-2i )(2-i )(2+i )(2-i )
=0-5i 5=-i ,故|z|=1. 3. (2013·徐州三模)已知i 是虚数单位,若a +3i i
=b +i(a 、b ∈R ),则ab 的值为________. 答案:-3
解析:由a +3i i
=b +i(a 、b ∈R ),得a +3i =bi -1,根据复数相等的条件得a =-1,b =3,ab =-3.
4. (2013·常州期末)已知复数z =-1+i(i 为虚数单位),计算:z·z -z -z -=________. 答案:-i
解析:z =-1+i ,z·z -z -z - =(-1+i )(-1-i )(-1+i )-(-1-i )=22i
=-i. 5. (2013·苏锡常镇一模)若实数a 满足2+ai 1-i
=2i ,其中i 是虚数单位,则a =________. 答案:2
解析:由2+ai 1-i
=2i 得2+ai =(1-i)2i ,即2+ai =2+2i ,根据实部、虚部分别相等,可知a =2.
6. 若z -·z +z =154
+2i(i 为虚数单位),则复数z =________. 答案:-12
+2i 解析:设z =x +yi(x ,y ∈R ),则由z -·z +z =154+2i ,得x 2+y 2+x +yi =154
+2i ,所以⎩⎪⎨⎪⎧x 2+y 2+x =154,y =2,解得⎩⎪⎨⎪⎧x =-12,y =2,
所以z =-12
+2i.
7. 若复数z 满足|z -i|=1(其中i 为虚数单位),则|z|的最大值为________.
答案:2
解析:设z =x +yi(x ,y ∈R ),则由|z -i|=1,得x 2+(y -1)2=1,由画图可知|z|的最大值为2.
8. 已知x =-3-2i(i 为虚数单位)是一元二次方程x 2+ax +b =0(a ,b 均为实数)的一个根,则a +b =________.
答案:19
解析:∵ x =-3-2i(i 为虚数单位)是一元二次方程x 2+ax +b =0(a ,b 均为实数)的一个根,∴ (-3-2i)2+a(-3-2i)+b =0,化为5-3a +b +(12-2a)i =0.根据复数相等即可得到⎩⎪⎨⎪⎧5-3a +b =0,12-2a =0,解得⎩
⎪⎨⎪⎧a =6,b =13,∴ a +b =19. 9. 已知复数z 的共轭复数是z -,且满足z·z -+2iz =9+2i.求z.
解:设z =a +bi(a ,b ∈R ),则z -=a -bi ,
∵ z ·z -+2iz =9+2i ,
∴ (a +bi)(a -bi)+2i(a +bi)=9+2i ,
即a 2+b 2-2b +2ai =9+2i ,
∴ ⎩
⎪⎨⎪⎧a 2+b 2-2b =9,2a =2. ①② 由②,得a =1,代入①,得b 2-2b -8=0,
解得b =-2或b =4.∴ z =1-2i 或z =1+4i.
10. 已知z 是复数,z +2i 、z 2-i
均为实数(i 为虚数单位),且复数(z +ai)2在复平面上对应的点在第一象限,求实数a 的取值范围.
解:设z =x +yi(x 、y ∈R ),
所以z +2i =x +(y +2)i ,由题意得y =-2.
因为z 2-i =x -2i 2-i =15
(x -2i)(2+i) =15(2x +2)+15
(x -4)i. 由题意得x =4,所以z =4-2i.
所以(z +ai)2=(12+4a -a 2)+8(a -2)i ,
由于(z +ai)2在复平面上对应的点在第一象限,
所以⎩
⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0,解得2<a<6, 故实数a 的取值范围是(2,6).
11. 设复数z 满足4z +2z -=33+i ,w =sin θ-icos θ,求z 的值和|z -w|的取值范围.
解:设z =a +bi(a ,b ∈R ),
则z -=a -bi.
代入4z +2z -=33+i ,得4(a +bi)+2(a -bi)=33+i ,
即6a +2bi =33+i.
∴ ⎩
⎨⎧a =32,b =12
.∴ z =32+12i. |z -w|=|32+12
i -(sin θ-icos θ)| =⎝⎛⎭⎫32-sin θ2+⎝⎛⎭⎫12
+cos θ2 =2-3sin θ+cos θ=2-2sin ⎝
⎛⎭⎫θ-π6. ∵ -1≤sin ⎝⎛⎭⎫θ-π6≤1,∴ 0≤2-2sin ⎝
⎛⎭⎫θ-π6≤4, ∴ 0≤|z -w|≤2.。

相关文档
最新文档