北师大版数学九年级上册全册课件【完整版】

合集下载

新北师大版九年级数学上册ppt资料讲解共29页

新北师大版九年级数学上册ppt资料讲解共29页
55、 为 中 华 之 崛起而 读书。 ——周 恩来
1
0















谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
新北师大版九年级数学上册ppt资料讲 解
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8














9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。

北师大版九年级上册数学整册教学课件

北师大版九年级上册数学整册教学课件

∵OB = OD,
∴AO⊥BD,AO平分∠BAD,
即AC⊥BD,∠DAC=∠BAC.
同理可证∠DCA=∠BCA,
∠ADB=∠CDB,∠ABD=∠CBD.
归纳总结 菱形是特殊的平行四边形,它除具有平行四边形的 所有性质外,还有平行四边形所没有的特殊性质.
菱形的特殊性质
平行四边形的性质
对称性:是轴对称图形.
证明:连接AC. ∵四边形ABCD是菱形, ∴AC平分∠BAD, 即∠BAC=∠DAC. ∵CE⊥AB,CF⊥AD, ∴∠AEC=∠AFC=90°. 又∵AC=AC, ∴△ACE≌△ACF. ∴AE=AF.
归纳 菱形是轴对称图形,它的两条对角线所在的直线 都是它的对称轴,每条对角线平分一组对角.
例3 如图,E为菱形ABCD边BC上一点,且AB=AE, AE交BD于O,且∠DAE=2∠BAE,求证:OA=EB.
∵EF垂直平分AC, ∴AO = OC .
A1
E
O
D
又∠AOE =∠COF,
B
F
2
C
∴△AOE≌△COF,∴EO =FO.
∴四边形AFCE是平行四边形.
又∵EF⊥AC
∴ 四边形AFCE是菱形.
练一练
在四边形ABCD中,对角线AC,BD互相平分,若
添加一个条件使得四边形ABCD是菱形,则这个条
件可以是
D
∴ AB2=OA2+OB2,
∴△AOB是直角三角形, A
O
C
即AC⊥BD,
B
又∵四边形ABCD是平行四边形,
∴四边形ABCD是菱形.
例2 如图,□ABCD的对角线AC的垂直平分线与边AD、
BC分别交于点E、F,求证:四边形AFCE是菱形.

北师大版九年级上册数学全册教学课件

北师大版九年级上册数学全册教学课件

1 2
BD.
∵AC=6cm,BD=12cm,
∴AO=3cm,BO=6cm.
在Rt△ABO中,由勾股定理得
AB AO2 BO2 32 62 3 5 cm.
∴菱形的周长=4AB=4×3 5 =12 5 (cm).
例2 如图,在菱形ABCD中,CE⊥AB于点E, CF⊥AD于点F,求证:AE=AF.
欣赏视频,前面的图片中出现的图形是平行四边形, 和视频中菱形一致,那么什么是菱形呢?这节课让 我们一起来学习吧.
讲授新课
一 菱形的性质
思考 如果从边的角度,将平行四边形特殊化,内角 大小保持不变仅改变边的长度让它有一组邻边相等, 这个特殊的平行四边形叫什么呢?
平行四边形 邻边相等


归纳总结
定义:有一组邻边相等的平行四边形. 菱形是特殊的平行四边形. 平行四边形不一定是菱形.
D.对角线相等
2.如图,在菱形ABCD中,AC=8,BD=6,则
△ABD的周长等于
(B)
A.18
B.16
C.15
D.14
3.根据下图填一填:
(1)已知菱形ABCD的周长是12cm,那么它的边长
是 __3_c_m__.
(2)在菱形ABCD中,∠ABC=120 °,则∠BAC=
___3_0_°__.
(3)菱形ABCD的两条对角线长分别为6cm和8cm,
1
九年级数学上(BS) 教学课件
第一章 特殊平行四边形
1.1 菱形的性质与判定
第1课时 菱形的性质
导入新课
讲授新课
当堂练习
课堂小结
1.了解菱形的概念及学其习与目平行标四边形的关系.
2.探索并证明菱形的性质定理.(重点) 3.应用菱形的性质定理解决相关计算或证明问题.(难点 )

最新北师大版九年级数学上册全套PPT课件

最新北师大版九年级数学上册全套PPT课件

练习1:
3、如图,在矩形ABCD中,AC与BD相交于点O,
AB=3cm,BC=4cm 则AC= 5 cm,BO= 2.5cm,
矩形的周长为 14 cm,
矩形的面积为 12 cm2
矩形的两条边和对角线构成
A
D 一个 直角 三角形, 对角线 是 斜边.
求矩形的边长和对角线的问
O
题可转化为直角三角形,利
A D
O
B
C
练习
2.已知:如图,在平行四边形ABCD中,AE平分∠BAD,
与BC相交于点E,EF//AB,与AD相交于点F.
求证:四边形ABEF是菱形.
A
F D
B
EC
练习
3.已知如图,在△ABC,∠ACB=900,AD是角平分线, 点E、F分别在AB、AD上,且AE=AC,EF∥BC。
求证:四边形CDEF是菱形
有三个角是直角 对角线互相平分且相等
提示:判定一个四边形是矩形,应先认清是任 意四边形,还是平行四边形,然后选择适 当的方法判定。
第一章 特殊平行四边形
第3节 正方形的性质与判定(一)
情境引入
看我们收获了什么?
图形 第一类 数据

四个角都相等都是90°

数量关系 两组对边分别相等
线
位置关系 两组对边分别平行
你可能会想到: 如果一个四边形的四条边都相等,那它会不会 一定是菱形?试着画一画,与周围的同学讨论,猜一猜结论是否 成立.
由此我们得到了判定菱形的又一种方法:
四条边都相等的四边形是菱形.
其实,这个结论同样是正确的.这里的条件能否再减少一些呢? 能否类似对矩形的讨论那样,有三条边相等的四边形就是菱形了 呢?猜一猜,并试着画一画,你就会知道,这个结论是不成立 的.

最新北师大版九年级数学上册全册教学课件

最新北师大版九年级数学上册全册教学课件

1 2
1 2
证明:∵四边形ABCD是矩形, ∴ AC=BD(矩形的对角线相等) OA=OC= AC,OB=OD= BD, ∴OA=OD。 ∵∠AOD=120°, ∴∠ODA=∠OAD= (180°-120°) = 30°。 又∵∠DAB=90°(矩形的四个角都是直角) ∴BD=2AB=2×2.5=5.
A.矩形的对角线互相平分 B. 矩形的对角线相等。
C. 有一个角是直角的四边形是矩形 D. 有一个角是直角的平行四边形叫做矩形 (2)已知矩形的一条对角线长为10cm,两条 对角线的一个交角为120°,则矩形的长和 宽分别为 _____。
生活中的矩形
生活链接
四个学生正在做投圈游戏,他们分别站在 一个矩形的四个顶点处,目标物放在对角线的 交点处,这样的队形对每个人公平吗?为什么?
问题3:矩形具有而一般平行四边形不具有的 性质是 ( ) A.对角相等 B.对边相等 C.对角线相等 D.对角线互相平分
第五环节:建构新知,发展问题
问题1: (1) 矩形的两条对角线可以把矩 形分成几个直角三角形? (2)在直角三 角形ABC中,你能找到它的一条特殊线段 吗? (3)你能发现它有什么特殊的性质 吗? (4)你能借助于矩形加以证明吗?
问题1:请同学们拿出准备好的矩形纸片,折 一折,观察并思考。
(1)矩形是不是中心对称图形? 如果是,那 么对称中心是什么? (2)矩形是不是轴对称图形?如果是,那么 对称轴有几条?
结论:矩形是轴对称图形,它有两条对称轴。
问题2:请你总结一下矩形有哪些性质? 归纳概括矩形的性质: 从边来说,矩形的对边平行且相等; 从角来说,矩形的四个角都是直角; 从对角线来说,矩形的对角线相等且互相平分; 从对称性来说,矩形既是轴对称图形,又是中心 对称图形。

最新北师大版九年级数学上册课件【全册】

最新北师大版九年级数学上册课件【全册】
最新北师大版九年级数学上册课件 【全册】
*5 一元二次方程的根与系数的 关系
最新北师大版九年级数学上册课件 【全册】
6 应用一元二次方程
最新北师大版九年级数学上册课件 【全册】
回顾与思考
最新北师大版九年级数学上册课件 【全册】
复习题
最新北师大版九年级数学上册课件 【全册】
第三章 概率的进一步认识
最新北师大版九年级数学上册课件 【全册】
1 用树状图或表格求概率
最新北师大版九年级数学上册课件 【全册】
2 用频率估计概率
最新北师大版九年级数学上册课 件【全册】目录
0002页 0045页 0069页 0107页 0136页 0169页 0198页 0231页 0267页 0318页 0369页 0401页 0440页 0457页 0493页 0524页 0585页
第一章 特殊平行四边形 2 矩形的性质与判定 回顾与思考 第二章 一元二次方程 2 用配方法求解一元二次方程 4 用分解因式法求解一元二次方程 6 应用一元二次方程 复习题 1 用树状图或表格求概率 回顾与思考 第四章 图形的相似 2 平行线分线段成比例 4 探索三角形相似的条件 6 利用相似三角形测高 8 图形的位似 复习题 1 投影
最新北师大版九年级数学上册课件 【全册】
回顾与思考
最新北师大版九年级数学上册课件 【全册】
复习题
最新北师大版九年级数学上册课件 【全册】
第四章 图形的相似
最新北师大版九年级数学上册课件 【全册】
1 成比例线段
最新北师大版九年级数学上册课件 【全册】
最新北师大版九年级数学上册课件 【全册】
2 用配方法求解一元二次方程
最新北师大版九年级数学上册课件 【全册】

北师大版数学九年级上册全册复习PPT课件

北师大版数学九年级上册全册复习PPT课件

.
9
5.矩形的判定 (1)有一个角是直角的__平__行__四__边__形___是矩形; (2)有三个角是直角的___四__边__形____是矩形; (3)对角线相等的__平__行__四__边__形____是矩形.
.
10
6.正方形的性质
(1)正方形的对边平__行_______; (2)正方形的四边_相__等______;
(3)正方形的四个角都是_直__角_____; (4)正方形的对角线相等、互相垂直、互相平分,每条对角 线平分一组对角;
(5)正方形既是轴对称图形,又是中心对称图形,对称轴有 ___四_____条,对称中心是对角线的交点.
.
11
7.正方形的判定
(1)有一组邻边相等,并且有一个角是直角的平行四边形叫 做正方形;
.
22
方法技巧 正方形是一种特殊的四边形,它里面隐含着许多线段之间的 关系或角之间的关系,我们要充分利用正方形的特性,结合 图形大胆地探索、归纳、验证即可使问题获解.
.
23
第二章 一元二次方程
.
24
┃知识归纳┃
1.一元二次方程
只含有一个未知数的整式方程,并且都可以化为
ax2+bx+c=0
(a,b,c为常数,a≠0)的形式,这样的
(1)由于菱形是平行四边形,所以菱形的面积=底×高;
(2)因为菱形的对角线互相垂直平分,所以其对角线将菱形 分成4个全等的三角形,故菱形的面积等于两对角线乘积的一 半.
.
7
4.矩形的性质 (1)矩形的对边_平__行__且__相__等______; (2)矩形的对角__相__等_______; (3)矩形的对角线__互__相__平__分____、__相__等______;

上册第一章第3课矩形的性质-北师大版九年级数学全一册课件

上册第一章第3课矩形的性质-北师大版九年级数学全一册课件

在EF上的点H处,折痕为FG,则A,H两点间的
距离为
.
15. 如图,在矩形ABCD中,以顶点B为圆心、边BC
长为半径作弧,交AD边于点E,连接BE,过点
C作CF⊥BE于点F. 猜想线段BF与图中现有的哪
一条线段相等?然后再加以证明.
解:猜想:BF=AE. 证明:∵四边形ABCD是矩形, ∴∠A=90°,AD//BC. ∴∠AEB=∠FBC. ∵CF⊥BE,∴∠A=∠BFC=90°. ∵BC=BE,∴△BFC≌△EAB. ∴BF=AE.
(1)证明:∵四边形 ∴△ABE≌△CDF(AAS).
如图,矩形ABCD的对角线AC,BD相交于点O,则图中有 知识点2 矩形的四个角都是直角
ABCD是矩形,∴AB=CD, ∴∠AEB=∠FBC.
∵AB=AO,∴OA=OB=AB.
个直角三角形,有
个等腰三角形,有
对全等三角形.
AB∥CD. 知识点2 矩形的四个角都是直角
三级拓展延伸练
16. 已知:在矩形ABCD中,BD是对角线,AE⊥BD 矩形是平行四边形,但平行四边形不一定是矩形,矩形是特殊的平行四边形,它具有平行四边形的所有性质.
∠A=90°(答案不唯一,四个角中任意一个角是直角即可)
于点E,CF⊥BD于点F. ∴∠ABD=60°.
(3)矩形是轴对称图形,有2条对称轴.
二级能力提升练 13. 如图,矩形ABCD的对角线AC与BD相交于点O,
AC=10,P,Q分别为AO,AD的中点,则PQ的 长度为 2.5 .
14. 如图①,在矩形纸片ABCD中,AB=5,BC=3,
先按图②操作:将矩形纸片ABCD沿过点A的直
线折叠,使点D落在边AB上的点E处,折痕为AF;

北师大版九年级数学上册全册优质教学课件x

北师大版九年级数学上册全册优质教学课件x
评价方法:课堂观察、作业批改、测试评估、学生自评、同伴互评
反思内容:教学目标、教学内容、教学方法、教学效果 改进措施:调整教学策略、优化教学设计、加强师生互动、关注学 生需求
06 总结与展望
总结
本学期学习的主要内容:函数、 方程、不等式、概率等
重点难点:函数的性质、方程 的解法、不等式的应用、概率 的计算等
北师大版九年级数学上 册全册优质教学课件
汇报人:XX
01 课 件 概 览 02 教 学 内 容 03 教 学 方 法 04 教 学 特 色 05 教 学 建 议 06 总 结 与 展 望
目录
01 课件概览
课件封面
标题:北师 大版九年级 数学上册全 册优质教学
课件
副标题:打 造高效课堂, 提升学习效
重点难点解析
重点:二次函数、一元二次方程、旋转、圆、概率等
难点:二次函数的图像和性质、一元二次方程的解法、旋转的性质、圆的 性质、概率的计算等
教学方法:通过实例讲解、图解、实验等方式帮助学生理解重点和难点
教学目标:让学生掌握重点知识,突破难点,提高数学思维能力和解决实 际问题的能力
经典例题解析
例题1:一元二次方程的解法 例题2:二次函数的图像和性质 例题3:圆和圆的方程 例题4:相似三角形的性质和应用
学习方法:理解概念、掌握公 式、多做练习、总结规律等
学习效果:提高了数学思维能 力、解题能力、应用能力等
展望
数学学习的重要性:数学是基础学科,对于培养学生的逻辑思维能力、解决问题能 力等方面具有重要作用。
数学学习的发展趋势:随着科技的发展,数学学习的方式和手段也在不断变化,需 要关注新的教学方法和工具。
果。
04 教学特色
课件设计理念

2020北师大版九年级数学上册全册完整课件

2020北师大版九年级数学上册全册完整课件

第一章 特殊平行四边形
2020北师大版九年级数学上册全册 完整课件
1 菱形的性质与判定
2020北师大版九年级数学上册全册课件目录
0002页 0020页 0038页 0096页 0117页 0155页 0184页 0266页 0279页 0295页 0363页 0415页 0453页 0482页 0633页 0635页 0686页
第一章 特殊平行四边形 2 矩形的性质与判定 回顾与思考 第二章 一元二次方程 2 用配方法求解一元二次方程 4 用分解因式法求解一元二次方程 6 应用一元二次方程 复习题 1 用树状图或表格求概率 回顾与思考 第四章 图形的相似 2 平行线分线段成比例 4 探索三角形相似的条件 6 利用相似三角形测高 8 图形的位似 复习题 1 投影

上册第六章第1课反比例函数的概念-北师大版九年级数学全一册课件

上册第六章第1课反比例函数的概念-北师大版九年级数学全一册课件

一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
解:(1)由题意得,v= 125-40=85 (m/min).
(t>0).
(2)小明星期二步行上学用了25 min,星期三骑 自行车上学用了8 min,那么他星期三上学时 的平均速度比星期二快多少?
(2)当t=25时,v=
一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.
(1)求y与x的函数关系式;
下列y是x的反比例函数吗?如果是,请写出对应的k值.
不是 自变量x的取值范围是
.
(1)求变量 v 和 t 之间的函数表达式;

是反比例函数,求m的值.
(1)求变量 v 和 t 之间的函数表达式;
即一共需要支付的工人工资是750元.
17. 小明家离学校1 000 m,每天他往返于两地之间,
(2)当x=4时,求y的值.
有时步行,有时骑车. 假设小明每天上学时的 15×5×10=750(元)
这个函数是反比例函数吗?如果是,指出比例系数,如果不是,请说明理由.
解:(1)由题意得,v=
(t>0).
(例2)已知函数y=(2m2+m-1)
是反比例函数,求 m 的值.
这个函数是反比例函数吗?如果是,指出比例系数,如果不是,请说明理由.
t= =10. 15×5×10=750(元) (2)当x=4时,求y的值.
在面积为定值的一组菱形中,当菱形的一条对角线长为4 cm时,它的另一条对角线长为12 cm.
m,高为y m的圆柱形状的水桶的体积为10 m3;③
用铁丝做一个圆,铁丝的长为x cm,做成圆的半径
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、矩形与平形四边形之间的关系 平行四边形 矩形
即:矩形是一种特殊的平行四边形
矩形有哪些性质? 具有平行四边形的所有性质
边:矩形的对边平行且相等
角:矩形对角相等;邻角互补 对角线:矩形对角线互相平分
矩形还有哪些特殊性质?
A
D
矩形的特殊性质:
B
C
猜性想质1、矩形的四个角都是直角.
性质2: 矩形的对角线相等.
证明:在△AOB中, ∵ AB= √5,OA=2,OB=1
∴AB2=OA2+OB2
∴△AOB是直角三角形,∠AOB是直角.
∴AC⊥BD
∴□ABC)
课堂小结
1. 通过本节课的学习你有哪些收获?在今后的 学习过程中应该怎么做?
矩形的性质与判定
回忆
四边形
两组对边 分别平行
展示交流
思考与动手: 1.在一张纸上用尺规作图做出边长为10cm的
菱形; 2.想办法用一张长方形纸剪折出一个菱形; 3.利用长方形纸你还能想到哪些制作菱形的
方法. 请向同学们展示你的作品,全班交流.
探索新知
根据菱形的定义,邻边相等的平行 四边形是菱形.除此之外,你认为还有什 么条件可以判断一个平行四边形是菱形? 先想一想,再与同伴交流.
已知:如图,矩形ABCD. 求证:AC=BD.
证明: ∵四边形ABCD是矩形, A
D
∴ ∠ABC= ∠DCB,AB=CD.
在△ABC和△DCB中,
B
C
AB=DC
∵ ∠ABC= ∠DCB BC=CB
∴ △ ABC≌△DCB(SAS)
∴ AC=BD.
矩形的特殊性质
性质1、矩形的四个角都是直角. 性质2、矩形的两条对角线相等.
北师大版九年级上册
数学
全册优质课件
菱形的性质与判定(一)
图片中有你熟悉的图形吗?
与左图相比较,这种平行四 边形特殊在哪里?你能给菱形 下定义吗?
有一组邻边相等的平行四边形叫做菱形。
想一想
菱形是特殊的平行四边形, 它具有一般平行四边形的所有性质。你 能列举一些这样的性质吗?
菱形的对边平行且相等,对角相等,对角 线互相平分。中心对称图形。
随堂练习
如图,在菱形ABCD中,对角 线AC与BD 相交于点O. 已知 AB=5cm,AO=4cm ,求 BD的 长.
课堂小结
1、菱形的定义:一组邻边相等的平行四边形 是菱形。
2、菱形的性质:①菱形是轴对称图形,对称轴 是两条对角线所在的直线;②菱形的四条边都 相等;③菱形的对角线互相垂直平分。 3、菱形具有平行四边形的所有,应用菱形的 性质可以进行计算和推理。
已知:如图1-1,在菱形ABCD中, AB=AD, 对角线AC与BD相交于点O求证:
(1)AB=BC=CD=AD; (2)AC⊥BD.
证明: (1)∵四边形ABCD是菱形,
∴AB = CD,AD= BC(菱形的对边相等). 又∵AB=AD
∴AB=BC=CD=AD
(2)∵AB=AD ∴△ABD是等腰三角形
平行 四边形
平行四边形的性质有: 边: 对边平行且相等
角:对角相等;邻角互补 对角线:对角线互相平分
平行四边形是中心对称图形.
四边形
两组对边 分别平行
平行 一个角 四边形 是直角
矩形

矩形的定义:有形一叫个做角矩是形直. 角的平行四边
A
D 矩形是轴对称图形
吗?如果是,那么
B
C
有几条对称轴?
轴对称图形
∵四边形ABCD是平行四边形 又∵AC⊥BD ∴四边形ABCD是菱形
议一议
已知线段AC,你能用尺规作图的方法做一 个菱形ABCD,使AC为菱形的一条对角线吗?
D
A
C
B
议一议
以下是小刚的作法
你是怎么做的?你认为小刚的作法正确吗?与 同伴交流.
请尝试证明下面的定理
四条边相等的四边形是菱形
已知:如图1-5,四边形ABCD中,AB=BC=CD=DA. 求证: 四边形ABCD是菱形 证明:∵AB=CD,AD=BC
做一做
请同学们用菱形纸片折 一折,回答下列问题:
(1)菱形是轴对称图形吗?如果是,它有几 条对称轴?对称轴之间有什么位置关系?
答:菱形是轴对称图形; 有四条对称轴; 两条对角线,两条中位线
结论
• 菱形是轴对称图形,有两条对称轴,是菱形领条对角 线所在的直线。两条对称轴互相垂直。
• 菱形的邻边相等,对边相等,四条边都相等。
试一试
对角线互相垂直的平行四边形是菱形吗?
已知:如图1-3,在□ABCD中,对角线AC与
BD交于点O,AC⊥BD.
求证: □ABCD是菱形
证明:∵四边形ABCD是平行四边形 ∴OA=OC
又∵AC⊥BD ∴BD是线段AC的垂直平分线 ∴BA=BC ∴四边形ABCD是菱形(菱形定义)
定理
对角线互相垂直的平行四边形是菱形
∴四边形ABCD是平行四边形 又∵AB=BC
∴四边形ABCD是菱形(菱形定义)
定理
四条边相等的四边形是菱形
∵AB=BC=CD=DA ∴四边形ABCD是菱形
做一做
你能用折纸等办法得到一个菱形吗?动手试一试. 先将一张长方形的纸对折,再对折,然后沿图中 的虚线剪下,将纸展开,就得到了一个菱形.
想一想这样做的道理!
小明的想法
平行四边形的不少性质定理与判定定理都是互逆 命题.受此启发,我猜想:四边相等的四边形是菱形,对 角线垂直的平行四边形是菱形.
小颖的想法
我觉得,对角线互相垂直的平行四 边形有可能是菱形.但“四边相等的平 行四边形是菱形”嘛……实际上与“邻 边相等的平行四边形是菱形”一样.
你是怎么想的?你认为小明的想法 如何?与同伴交流一下.
菱形的性质与判定(二)
温故知新
1.菱形的定义? 有一组邻边相等的平行四边形叫做菱形
2.如图,已知四边形ABCD是一个平行四边形,则只需
补充
就可A以B判=B定C它是一个菱形.
3.如图,已知菱形ABCD的对角线AC、BD相交于点O,并 20 且AC=6cm,BD=8cm,则菱形ABCD的周长为 cm.
又∵四边形ABCD是菱形 ∴OB=OD(菱形的对角线互相平分)
在等腰三角形ABD中, ∵OB=OD ∴AO⊥BD 即AC⊥BD
菱形是特殊的平行四边形,它除具有平行四边形 的所有性质外,还有平行四边形所没有的特殊 性质:
定理
菱形的四条边都相等。
定理
菱形的两条对角线互相垂直。
例1
如图1-2,在菱形ABCD中,对角 线AC与BD相交于点O, ∠BAD=60°,BD=6,求菱形的 边长AB和对角线AC的长。
相关文档
最新文档