实验四进程的管道通信
操作系统实验
实验一进程管理、管道通信------- 一、实验名称:进程管理、管道通信二、实验目的:1、熟悉linux下利用gcc、gdb编译、调试C程序2、掌握进程的概念,明确进程的含义3、认识并了解并发执行的实质4、掌握进程间无名管道的通信三、实验准备:1、预习linux下利用gcc编译c程序。
2、参考课件及资料掌握进程的创建过程。
3、参考课件及资料掌握进程的并发执行。
4、参考课件及资料掌握进程间无名管道的通信四、实验内容:内容一:敲通如下程序,分析运行结果。
#include<stdio.h>void main(){int i;while((i=fork())==-1);printf("i=%d",i);if(i)printf("It is a parent process!");else printf("It is a child process!");}结论:在fork函数执行完毕后,如果创建新进程成功时,则会出现两个进程,一个是子进程,一个是父进程。
在子进程中,fork函数返回0,在父进程会返回新建子进程的id内容二:编写程序,用系统调用fork()创建两子进程。
父进程显示50次字符串“father”,子进程1显示50次字符串“son”,子进程2显示50次字符串“daughter”。
观察并记录屏幕上显示结果,分析原因。
(提示:可在各进程中加入sleep,观察结果分析原因)1、程序代码如图所示:2、运行结果如图所示内容三:敲通如下程序,写出运行结果,分析程序功能。
1、程序代码如图所示:#include<stdio.h>#include <pthread.h>void *ptest(void *arg){printf(" This is the new thread!" );return(NULL);void main(){pthread_t tid;printf(" This is the parent process !" );pthread_create(&tid,NULL,ptest,NULL);sleep(1);return;}2、运行结果如图所示3、程序功能:利用系统函数创建子进程,并且调用子函数,然后输出子函数中的内容。
电大操作系统实验报告3_ 进程管理实验
电大操作系统实验报告3_ 进程管理实验电大操作系统实验报告 3 进程管理实验一、实验目的进程管理是操作系统的核心功能之一,本次实验的目的是通过实际操作和观察,深入理解进程的概念、状态转换、进程调度以及进程间的通信机制,掌握操作系统中进程管理的基本原理和方法,提高对操作系统的整体认识和实践能力。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C 语言,开发工具为 Visual Studio 2019。
三、实验内容及步骤(一)进程的创建与终止1、编写一个 C 程序,使用系统调用创建一个子进程。
2、在父进程和子进程中分别输出各自的进程 ID 和父进程 ID。
3、子进程执行一段简单的计算任务,父进程等待子进程结束后输出结束信息。
以下是实现上述功能的 C 程序代码:```cinclude <stdioh>include <stdlibh>include <unistdh>int main(){pid_t pid;pid = fork();if (pid < 0) {printf("创建子进程失败\n");return 1;} else if (pid == 0) {printf("子进程:我的进程 ID 是%d,父进程 ID 是%d\n",getpid(), getppid());int result = 2 + 3;printf("子进程计算结果:2 + 3 =%d\n", result);exit(0);} else {printf("父进程:我的进程 ID 是%d,子进程 ID 是%d\n",getpid(), pid);wait(NULL);printf("子进程已结束\n");}return 0;}```编译并运行上述程序,可以观察到父进程和子进程的输出信息,验证了进程的创建和终止过程。
(二)进程的状态转换1、编写一个 C 程序,创建一个子进程,子进程进入睡眠状态一段时间,然后被唤醒并输出状态转换信息。
进程管理演示实验报告
一、实验目的1. 理解进程的概念及其在操作系统中的作用。
2. 掌握Linux系统中进程的创建、调度、同步和通信方法。
3. 熟悉进程的阻塞、挂起、恢复和终止操作。
4. 学习使用相关命令和工具进行进程管理和调试。
二、实验环境操作系统:Linux开发环境:GCC、Xshell三、实验内容1. 进程创建与调度2. 进程同步与通信3. 进程阻塞与恢复4. 进程终止与调试四、实验步骤1. 进程创建与调度(1)编写一个简单的C程序,使用fork()函数创建一个子进程。
(2)在父进程中,使用getpid()和getppid()函数获取进程ID和父进程ID。
(3)使用ps命令查看当前系统中的进程,观察父进程和子进程的状态。
(4)使用waitpid()函数等待子进程结束。
2. 进程同步与通信(1)编写一个使用管道(pipe)进行进程间通信的C程序。
(2)父进程向管道中写入数据,子进程从管道中读取数据。
(3)使用ps命令查看进程状态,观察管道通信的效果。
(4)编写一个使用信号量(semaphore)进行进程同步的C程序。
(5)使用sem_wait()和sem_post()函数实现进程同步。
3. 进程阻塞与恢复(1)编写一个使用sleep()函数使进程阻塞的C程序。
(2)在父进程中,使用waitpid()函数等待阻塞的子进程结束。
(3)使用kill()函数向阻塞的进程发送SIGCONT信号,使其恢复执行。
4. 进程终止与调试(1)编写一个使用exit()函数终止进程的C程序。
(2)在父进程中,使用waitpid()函数等待终止的子进程。
(3)使用gdb调试器分析程序运行过程中出现的问题。
五、实验结果与分析1. 进程创建与调度实验结果表明,使用fork()函数成功创建了子进程,父进程和子进程的进程ID和父进程ID被正确获取。
通过ps命令,可以观察到父进程和子进程的状态。
2. 进程同步与通信实验结果表明,管道通信可以成功实现父进程和子进程之间的数据传递。
操作系(00002)
exit()函数是进程结束最常调用的函数。在正常终止时,exit()函数返回进程结束状态。
4.kill()函数
kill()函数用于结束执行中的程序或者任务。
5.signal()
signal()函数是允许调用进程控制软中断信号的处理。
6.pipe()函数
pipe函数用于创建一个管道
(1)首先要判断读写进程双方是否存在,只有确定读进程和写进程都存在的情况下,才能够通过管道进行通信。
(2)同步:当写进程完成任务,把要求的数据写入管道后,便会睡眠等待。直到读进程将管道中的数据读取取出后,再把写进程唤醒。当读进程试图从一空管道中读取数据时,也应睡眠等待,直至写进程将数据写入管道后,才将其唤醒。
waiting();
lockf(1,1,0);
printf("child process2 is killed by parent! \n");
lockf(1,0,0);
exit(0);
}
}
Else
{
printf("p1\n");
wait_mark=1;
signal(16,stop);
signal(SIGINT,SIG_IGN);
三、实验内容
1.进程的创建
编写一段程序,使用系统调用fork()创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。试观察记录屏幕上的显示结果,并分析原因。
2.进程的控制
修改已有程序,将每个进程输出一个字符改为每个进程输出几行字符,再观察程序执行时屏幕上的现象,并分析原因。如果在程序中使用系统调用lockf()来给每一个进程加锁,可以实现进程之间的互斥,观察并分析出现的现象。
操作系统进程通信报告
实验四:进程同步实验一、实验任务:1、熟悉操作系统进程通信原理2、设计程序,实现共享内存、管道通信、消息通信二、实验原理:1、进程间通信的几种方法简介(1)消息队列:消息队列是消息的链接表,包括Posix消息队列systemV消息队列。
有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。
(2)共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。
是针对其他通信机制运行效率较低而设计的。
往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
(3)无名管道(Pipe)及有名管道(named pipe):有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;无名管道可用于有亲缘关系的进程之间彼此的通信,进行通信时候必须有一定的机制保证对管道写和读的互斥:即在读是要关闭写的端口,而在写的时候也要保证读的一端是关闭的。
2、进程通信函数(1)消息队列有关系统调用函数a.创建消息队列使用msgget()函数:#include <sys/types.h>#include <sys/ipc.h>#include <sys/msg.h>int msgget(key_t key, int flag) ;该函数成功调用返回消息队列标识符。
其中的key是关键字,可以由ftok()函数得到:key=ftok(“.”,’a’);其中”.”可以是任何目录,’a’是任意字符,即所有群组标识。
flag是标识,IPC_CREAT位表示创建,一般由服务器程序创建消息队列时使用。
如果是客户程序,必须打开现存的消息队列,必须不使用IPC_CREAT。
发送和接收的消息都必须使用一个类似msgbuf的结构表示,msgbuf结构定义如下:struct msgbuf{long mtype;char mtext[1];}上面的定义,消息内容只有一个字节,是不实用的,一般我们需要重新定义一个结构:struct amsgbuf{long mtype;char mtext[200];}其中的mtype都是消息类型。
进程管理实验报告分析(3篇)
第1篇一、实验背景进程管理是操作系统中的一个重要组成部分,它负责管理计算机系统中所有进程的创建、调度、同步、通信和终止等操作。
为了加深对进程管理的理解,我们进行了一系列实验,以下是对实验的分析和总结。
二、实验目的1. 加深对进程概念的理解,明确进程和程序的区别。
2. 进一步认识并发执行的实质。
3. 分析进程争用资源的现象,学习解决进程互斥的方法。
4. 了解Linux系统中进程通信的基本原理。
三、实验内容1. 使用系统调用fork()创建两个子进程,父进程和子进程分别显示不同的字符。
2. 修改程序,使每个进程循环显示一句话。
3. 使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号,实现进程的终止。
4. 分析利用软中断通信实现进程同步的机理。
四、实验结果与分析1. 实验一:父进程和子进程分别显示不同的字符在实验一中,我们使用fork()创建了一个父进程和两个子进程。
在父进程中,我们打印了字符'a',而在两个子进程中,我们分别打印了字符'b'和字符'c'。
实验结果显示,父进程和子进程的打印顺序是不确定的,这是因为进程的并发执行。
2. 实验二:每个进程循环显示一句话在实验二中,我们修改了程序,使每个进程循环显示一句话。
实验结果显示,父进程和子进程的打印顺序仍然是随机的。
这是因为并发执行的进程可能会同时占用CPU,导致打印顺序的不确定性。
3. 实验三:使用signal()捕捉键盘中断信号,并通过kill()向子进程发送信号在实验三中,我们使用signal()捕捉键盘中断信号(按c键),然后通过kill()向两个子进程发送信号,实现进程的终止。
实验结果显示,当按下c键时,两个子进程被终止,而父进程继续执行。
这表明signal()和kill()在进程控制方面具有重要作用。
4. 实验四:分析利用软中断通信实现进程同步的机理在实验四中,我们分析了利用软中断通信实现进程同步的机理。
进程通信的实验报告
一、实验目的1. 理解进程通信的概念和作用。
2. 掌握进程通信的常用方法,包括管道、消息队列、信号量等。
3. 通过编程实践,加深对进程通信机制的理解和应用。
二、实验环境操作系统:Linux开发环境:gcc三、实验内容1. 管道通信2. 消息队列通信3. 信号量通信四、实验步骤及分析1. 管道通信(1)实验步骤1)创建一个父进程和一个子进程;2)在父进程中创建一个管道,并将管道的读端和写端分别赋给父进程和子进程;3)在父进程中,通过管道的写端发送数据给子进程;4)在子进程中,通过管道的读端接收父进程发送的数据;5)关闭管道的读端和写端;6)结束进程。
(2)实验分析通过管道通信,实现了父进程和子进程之间的数据传递。
管道是半双工通信,数据只能单向流动。
在本实验中,父进程向子进程发送数据,子进程接收数据。
2. 消息队列通信(1)实验步骤1)创建一个消息队列;2)在父进程中,向消息队列中发送消息;3)在子进程中,从消息队列中接收消息;4)删除消息队列;5)结束进程。
(2)实验分析消息队列是一种进程间通信机制,允许不同进程之间传递消息。
消息队列的创建、发送、接收和删除等操作都是通过系统调用实现的。
在本实验中,父进程向消息队列发送消息,子进程从消息队列接收消息,实现了进程间的消息传递。
3. 信号量通信(1)实验步骤1)创建一个信号量;2)在父进程中,对信号量执行P操作,请求资源;3)在子进程中,对信号量执行V操作,释放资源;4)结束进程。
(2)实验分析信号量是一种用于实现进程同步的机制。
在进程通信中,信号量可以用来协调多个进程对共享资源的访问。
在本实验中,父进程和子进程通过信号量实现了对共享资源的同步访问。
五、实验结果1. 管道通信实验结果:父进程成功向子进程发送数据,子进程成功接收数据。
2. 消息队列通信实验结果:父进程成功向消息队列发送消息,子进程成功从消息队列接收消息。
3. 信号量通信实验结果:父进程成功获取资源,子进程成功释放资源。
进程通讯管理实验报告(3篇)
第1篇一、实验目的1. 理解进程通信的概念和原理;2. 掌握进程通信的常用机制和方法;3. 能够使用进程通信机制实现进程间的数据交换和同步;4. 增强对操作系统进程管理模块的理解。
二、实验环境1. 操作系统:Linux2. 编程语言:C3. 开发环境:GCC三、实验内容1. 进程间通信的管道机制2. 进程间通信的信号量机制3. 进程间通信的共享内存机制4. 进程间通信的消息队列机制四、实验步骤1. 管道机制(1)创建管道:使用pipe()函数创建管道,将管道文件描述符存储在两个变量中,分别用于读和写。
(2)创建进程:使用fork()函数创建子进程,实现父子进程间的通信。
(3)管道读写:在父进程中,使用read()函数读取子进程写入的数据;在子进程中,使用write()函数将数据写入管道。
(4)关闭管道:在管道读写结束后,关闭对应的管道文件描述符。
2. 信号量机制(1)创建信号量:使用sem_open()函数创建信号量,并初始化为1。
(2)获取信号量:使用sem_wait()函数获取信号量,实现进程同步。
(3)释放信号量:使用sem_post()函数释放信号量,实现进程同步。
(4)关闭信号量:使用sem_close()函数关闭信号量。
3. 共享内存机制(1)创建共享内存:使用mmap()函数创建共享内存区域,并初始化数据。
(2)映射共享内存:在父进程和子进程中,使用mmap()函数映射共享内存区域。
(3)读写共享内存:在父进程和子进程中,通过指针访问共享内存区域,实现数据交换。
(4)解除映射:在管道读写结束后,使用munmap()函数解除映射。
4. 消息队列机制(1)创建消息队列:使用msgget()函数创建消息队列,并初始化消息队列属性。
(2)发送消息:使用msgsnd()函数向消息队列发送消息。
(3)接收消息:使用msgrcv()函数从消息队列接收消息。
(4)删除消息队列:使用msgctl()函数删除消息队列。
进程控制与进程通信程序实验报告
进程控制与进程通信程序实验报告一、引言进程是计算机系统中最基本的概念之一,是操作系统中最小的资源管理单位。
进程控制与进程通信是操作系统中重要的内容,涉及到进程的创建、调度和终止,以及进程间的信息传递和同步管理。
本实验旨在通过编写进程控制与进程通信程序,加深对操作系统中进程管理和通信机制的理解。
二、实验目的1. 理解进程的概念和特点,掌握进程的创建、调度和终止方法。
2. 掌握进程通信的基本原理和方法,包括共享内存、管道、消息队列和信号量等。
3. 能够编写简单的进程控制和进程通信程序。
三、实验内容1. 进程控制实验:编写一个程序,实现进程的创建、调度和终止。
通过调用系统调用函数,创建多个子进程,并通过进程控制函数实现父子进程的协作与同步。
2. 进程通信实验:编写一个程序,实现进程间的信息传递和同步管理。
通过共享内存、管道、消息队列或信号量等机制,实现不同进程之间的数据交换和共享。
四、实验步骤1. 进程控制实验:(1)创建父进程和子进程:使用fork()函数创建子进程,并通过判断返回值来区分父子进程。
(2)调度子进程:使用wait()函数等待子进程的结束,以实现父子进程的同步。
(3)终止子进程:使用exit()函数终止子进程的运行。
2. 进程通信实验:(1)共享内存:使用shmget()函数创建共享内存段,使用shmat()函数映射共享内存到进程的地址空间,实现共享数据的读写。
(2)管道:使用pipe()函数创建管道,使用fork()函数创建子进程,通过读写管道实现进程间的数据传输。
(3)消息队列:使用msgget()函数创建消息队列,使用msgsnd()函数向消息队列发送消息,使用msgrcv()函数从消息队列接收消息,实现进程间的消息传递。
(4)信号量:使用semget()函数创建信号量,使用semop()函数对信号量进行P操作和V操作,实现进程间的同步和互斥。
五、实验结果通过实验,我们成功实现了进程的创建、调度和终止,以及进程间的信息传递和同步管理。
进程操作的实验报告
一、实验目的1. 理解进程的基本概念和进程控制块(PCB)的作用。
2. 掌握进程创建、调度、同步和通信的基本方法。
3. 熟悉进程状态转换及进程同步机制。
4. 提高编程能力,加深对操作系统进程管理的理解。
二、实验环境1. 操作系统:Windows 102. 编程语言:C/C++3. 开发环境:Visual Studio 2019三、实验内容1. 进程创建与销毁2. 进程调度3. 进程同步4. 进程通信四、实验步骤1. 进程创建与销毁(1)定义进程结构体```ctypedef struct {int pid; // 进程IDchar name[50]; // 进程名int status; // 进程状态struct PCB next; // 指向下一个进程的指针} PCB;```(2)创建进程```cPCB createProcess(char name) {PCB newProcess = (PCB )malloc(sizeof(PCB)); newProcess->pid = ...; // 分配进程IDstrcpy(newProcess->name, name);newProcess->status = ...; // 初始化进程状态 newProcess->next = NULL;// ... 其他初始化操作return newProcess;}```(3)销毁进程```cvoid destroyProcess(PCB process) {free(process);}```2. 进程调度(1)定义进程队列```ctypedef struct {PCB head; // 队列头指针PCB tail; // 队列尾指针} ProcessQueue;```(2)初始化进程队列```cvoid initProcessQueue(ProcessQueue queue) {queue->head = NULL;queue->tail = NULL;}```(3)入队```cvoid enqueue(ProcessQueue queue, PCB process) { if (queue->head == NULL) {queue->head = process;queue->tail = process;} else {queue->tail->next = process;queue->tail = process;}}(4)出队```cPCB dequeue(ProcessQueue queue) {if (queue->head == NULL) {return NULL;}PCB process = queue->head;queue->head = queue->head->next; if (queue->head == NULL) {queue->tail = NULL;}return process;}```3. 进程同步(1)互斥锁```ctypedef struct {int locked; // 锁的状态} Mutex;void initMutex(Mutex mutex) {mutex->locked = 0;void lock(Mutex mutex) {while (mutex->locked) {// 等待锁释放}mutex->locked = 1;}void unlock(Mutex mutex) {mutex->locked = 0;}```(2)信号量```ctypedef struct {int count; // 信号量值Mutex mutex; // 互斥锁} Semaphore;void initSemaphore(Semaphore semaphore, int count) { semaphore->count = count;initMutex(&semaphore->mutex);}void P(Semaphore semaphore) {lock(&semaphore->mutex);while (semaphore->count <= 0) {// 等待信号量}semaphore->count--;unlock(&semaphore->mutex);}void V(Semaphore semaphore) {lock(&semaphore->mutex);semaphore->count++;unlock(&semaphore->mutex);}```4. 进程通信(1)管道通信```cint pipe(int pipefd[2]) {// 创建管道}void writePipe(int pipefd[2], const void buf, size_t nbyte) { // 向管道写入数据}void readPipe(int pipefd[2], void buf, size_t nbyte) {// 从管道读取数据}```(2)消息队列通信```cint msgget(key_t key, int msgflg) {// 创建消息队列}void msgsnd(int msqid, const void msgp, size_t msgsz, int msgflg) {// 向消息队列发送消息}void msgrcv(int msqid, void msgp, size_t msgsz, long msgtype, int msgflg) {// 从消息队列接收消息}```五、实验结果与分析1. 进程创建与销毁:通过创建和销毁进程,验证了进程结构体的正确性。
进程的管道通信实验报告
进程的管道通信实验报告一、实验目的本实验旨在通过实际操作,深入理解进程间通信(IPC)的原理,掌握管道通信的实现方法,提高对操作系统进程管理的理解。
二、实验环境实验环境为Linux操作系统,使用Shell脚本进行进程的管道通信实验。
三、实验内容1. 创建两个Shell脚本文件,分别命名为sender.sh和receiver.sh。
2. 在sender.sh中,编写一个简单的程序,用于向管道中写入数据。
程序包括一个无限循环,每次循环中随机生成一个数字并写入管道。
3. 在receiver.sh中,编写一个简单的程序,用于从管道中读取数据。
程序同样包括一个无限循环,每次循环中从管道中读取一个数字并输出。
4. 使用Shell命令将sender.sh和receiver.sh链接起来,实现进程间的管道通信。
四、实验过程1. 打开两个终端窗口,分别用于运行sender.sh和receiver.sh。
2. 在第一个终端窗口中,输入命令“bash sender.sh”运行sender.sh脚本。
该脚本将创建一个无限循环,每次循环中随机生成一个数字并写入管道。
3. 在第二个终端窗口中,输入命令“bash receiver.sh”运行receiver.sh脚本。
该脚本将创建一个无限循环,每次循环中从管道中读取一个数字并输出。
4. 观察两个终端窗口的输出,可以看到sender.sh进程向管道中写入的数字被receiver.sh进程读取并输出。
五、实验总结通过本次实验,我们成功实现了进程间的管道通信。
在实验过程中,我们深入了解了进程间通信的原理和实现方法,掌握了管道通信的基本操作。
通过实际操作,我们更好地理解了操作系统中进程管理、进程间通信的相关知识。
同时,我们也发现了一些不足之处,例如在程序中没有添加异常处理机制等。
在今后的学习中,我们将继续深入探索进程间通信的相关知识,提高自己的编程技能和系统设计能力。
操作系统实验报告
操作系统实验报告专业:软件工程姓名:李程星学号:2011221104220092实验一操作系统的用户界面LINUX操作系统提供了图形用户界面和命令行界面,本实验主要熟悉命令行界面,为后续的实验编程做准备。
一、系统启动1. 开机,选择进入Linux系统,约40秒后系统启动成功,系统提示输入用户名:user输入口令:111111 然后进入Linux系统桌面。
2.进入Linux命令行方式单击小红帽图标,选择“系统工具”,单击“终端”图标,出现Linux的shell提示符.....@......$,,即可输入命令。
实验二进程管理一、实验目的(1)加深对进程概念的理解,明确进程和程序的区别。
(2)进一步认识并发执行的实质。
二、实验内容1、进程的创建执行下面的程序,分析执行的结果。
#include <stdio.h>main(){ int i;printf("just 1 process.\n");i=fork();if (i==0)printf("I am child.\n");elseif (i>0)printf("I am parent.\n");elseprintf("fork() failed.\n");printf("program end.\n");}输出结果:just 1 process.I am parent.program end.I am a child.program end.2、进程的同步执行下面的程序,分析执行的结果。
#include <stdio.h>main(){ int i;printf("just 1 process.\n");i=fork();if (i>0){printf("I am parent.\n");wait();}elseif (i==0) {printf("I am child.\n");exit(1);}printf("program end.\n");}输出结果:just 1 process.I am parent.I am child.program end.3、进程的延迟执行下面的程序,分析执行的结果。
操作系统原理第一次实验
内容三:敲通如下程序,写出运行结果,分析程序功能。
#include <stdio.h>
#include <pthread.h>
void *ptest(void *arg)
{
printf(" This is the new thread!" );
return(NULL);
}
main()
3
{
pthread_t tid;
实验一进程管理、管道通信
一.实验名称:
进程管理、管道通信
二.实验目的:
1、熟悉linux下利用gcc、gdb编译、调试C程序
2、掌握进程的概念,明确进程的含义
3、认识并了解并发执行的实质
4、掌握进程间无名管道的通信
三.实验准备:
1、预习linux下利用gcc编译c程序。
2、参考课件及资料掌握进程的创建过程。
thread!”返回值为空,程序休眠后结束程序。
图三
内容四:敲通管道通信(课件)例题,写出运行结果,分析程序功能
#include<stdlib.h>
#include<stdio.h>
voidmain()
{
int x,fd[2];
char buf[30],s[30]; pipe(fd); while((x=fork())==-1); if(x==0)
3、参考课件及资料掌握进程的并发执行。
4、参考课件及资料掌握进程间无名管道的通信。
四.实验内Байду номын сангаас:
内容一:敲通如下程序,分析运行结果。
#include <stdio.h>
main()
操作系统实验三进程的管道通信
操作系统实验三进程的管道通信操作系统中的进程通信是指进程之间通过一定机制进行信息传递和交换的过程。
而管道是常用的进程间通信(IPC)机制之一,它提供了一种半双工的通信方式,用于在具有亲缘关系的进程之间进行通信。
本实验以Linux系统为例,介绍进程的管道通信。
一、进程间通信(IPC)概述进程之间的通信是操作系统的重要功能之一,它使得不同进程能够共享信息、协调工作。
Linux系统提供了多种进程间通信的方式,如管道、消息队列、信号、共享内存等。
其中,管道是最简单、最常用的一种进程间通信方式。
二、管道的概念与原理1.管道的概念管道是一种特殊的文件,用于实现具有亲缘关系的进程之间的通信。
整个管道可以看作是一个字节流,其中写入的数据可以被读取。
管道通常是半双工的,即数据只能从一个进程流向另一个进程,而不能反向流动。
2.管道的原理管道的内部实现是通过操作系统的缓冲区来完成的。
当一个进程往管道写入数据时,数据被放置在写管道的缓冲区中。
另一个进程从管道中读取数据时,数据被从读管道的缓冲区中取出。
如果写管道的缓冲区为空,写操作将会阻塞,直到有数据被写入为止。
同样,如果读管道的缓冲区为空,读操作将会阻塞,直到有数据可读为止。
三、管道的使用步骤1.打开管道在Linux系统中,使用`pipe`系统调用来创建管道。
它接受一个包含两个整数的参数数组,返回0表示成功,负数表示失败。
成功创建管道后,会得到两个文件描述符,分别代表读管道和写管道。
2.进程间通信在有亲缘关系的进程中,可以使用`fork`系统调用来创建一个子进程。
父进程和子进程都可以使用管道进行读写操作。
父进程可以关闭写管道描述符,子进程关闭读管道描述符,即父进程只负责写入数据,子进程负责读取数据。
3.写入数据父进程在写管道描述符上调用`write`函数来向管道写入数据。
该函数的返回值为成功写入的字节数,返回-1表示写入失败。
4.读取数据子进程在读管道描述符上调用`read`函数来从管道读取数据。
实验四、文件的读写与上锁
break;
case F_WRLCK:
{
printf("write lock set by %d\n",getpid());
}
break;
case F_UNLCK:
{
printf("release lock by %d\n",getpid());
return 1;
}
break;
default:
break;
sscanf(argv[2], "%d", &time_life);
}
while (time_life--)
{
if (product() < 0)
{
break;
}
sleep(time_step);
}exit(EXIT_S来自CCESS);}(接上)
实验内容(步骤、方法、算法、程序)
/* customer.c中的代码*/
}
break;
default:
{
return -1;
}
}/*end of switch*/
sprintf(buff, "%c", (sign_start + counter));
counter = (counter + 1) % sign_count;
lock_set(fd, F_WRLCK); /* 上写锁 */
if ((in_file = open(sour_file, O_RDONLY|O_NONBLOCK)) < 0)
{
printf("Function myfilecopy error in source file\n");
管道通信操作系统实验报告
计算机与信息技术学院综合性、设计性实验报告专业:计算机科学与技术年级/班级:08级计科一班2010 —2011学年第一学期一、实验目的1、了解什么是管道2、熟悉UNIX/LINUX支持的管道通信方式二、实验仪器或设备已安装linux系统的计算机一台三、总体设计(设计原理、设计方案及流程等)设计原理:1、无名管道:一个临时文件。
利用pipe()建立起来的无名文件(无路径名)。
只用该系统调用所返回的文件描述符来标识该文件,故只有调用pipe()的进程及其子孙进程才能识别此文件描述符,才能利用该文件(管道)进行通信。
当这些进程不再使用此管道时,核心收回其索引结点。
它能够连接一个写进程和一个读进程、并允许它们以生产者一消费者方式进行通信的一个共享文件,又称为pipe文件。
由写进程从管道的写入端(句柄1)将数据写入管道,而读进程则从管道的读出端(句柄0)读出数据。
2、建立一无名管道:pipe()系统调用格式:pipe(pipelD)参数定义 : int pipe(pipelD);int pipelD [2];其中,文件描述符pipeID [1]是写入端,文件描述符pipeID [0]是读出端。
该函数使用头文件如下:#i nclude <uni std.h>#inl cude <sig nal.h>#i nclude <stdio.h>2、从管道读数据:read()系统调用格式:read(fd,buf, nbyte)功能:从fd所指示的文件中读出nbyte个字节的数据,并将它们送至由指针buf 所指示的缓冲区中。
如该文件被加锁,等待,直到锁打开为止。
参数定义:int read(fd,buf, nbyte);int fd;char *buf;un sig ned n byte;3、从管道写入数据:write()系统调用格式:write(fd,buf, nbyte)功能:把nbyte个字节的数据,从buf所指向的缓冲区写到由fd所指向的文件中。
进程的控制_实验报告
### 实验目的1. 理解操作系统进程控制的基本概念和原理。
2. 掌握进程的创建、同步、通信和终止等操作。
3. 熟悉Linux系统中的进程控制命令和系统调用。
4. 理解进程调度算法的基本原理和实现方法。
### 实验环境1. 操作系统:Linux2. 编程语言:C/C++3. 编译器:gcc4. 开发工具:vim### 实验内容本实验主要涉及以下内容:1. 进程的创建与终止2. 进程同步与通信3. 进程调度算法#### 1. 进程的创建与终止实验一:利用fork()创建进程```c#include <stdio.h>#include <unistd.h>#include <sys/types.h>#include <sys/wait.h>int main() {pid_t pid;pid = fork();if (pid < 0) {printf("fork() error\n");return 1;} else if (pid == 0) {printf("Child process, PID: %d\n", getpid()); printf("Child process is running...\n");sleep(2);printf("Child process is exiting...\n");return 0;} else {printf("Parent process, PID: %d\n", getpid()); printf("Parent process is running...\n");sleep(3);printf("Parent process is exiting...\n");wait(NULL);}return 0;}```实验二:利用exec()创建进程```c#include <unistd.h>#include <sys/types.h>#include <sys/wait.h>int main() {pid_t pid;pid = fork();if (pid < 0) {printf("fork() error\n");return 1;} else if (pid == 0) {execlp("ls", "ls", "-l", (char )NULL); printf("execlp() error\n");return 1;} else {wait(NULL);}return 0;}```实验三:进程终止```c#include <stdio.h>#include <sys/types.h>#include <sys/wait.h>int main() {pid_t pid;pid = fork();if (pid < 0) {printf("fork() error\n");return 1;} else if (pid == 0) {printf("Child process, PID: %d\n", getpid()); sleep(2);printf("Child process is exiting...\n");exit(0);} else {wait(NULL);}return 0;}```#### 2. 进程同步与通信实验四:使用信号实现进程同步```c#include <unistd.h>#include <sys/types.h>#include <sys/wait.h>#include <signal.h>int main() {pid_t pid;int status;int signalNo = 1;pid = fork();if (pid < 0) {printf("fork() error\n");return 1;} else if (pid == 0) {printf("Child process, PID: %d\n", getpid()); while (1) {pause();printf("Child process is running...\n"); }} else {printf("Parent process, PID: %d\n", getpid()); sleep(1);kill(pid, signalNo);wait(NULL);}return 0;}```实验五:使用管道实现进程通信```c#include <stdio.h>#include <unistd.h>#include <sys/types.h>#include <sys/wait.h>int main() {int pipefd[2];pid_t pid;char buffer[100];if (pipe(pipefd) == -1) {printf("pipe() error\n"); return 1;}pid = fork();if (pid < 0) {printf("fork() error\n"); return 1;} else if (pid == 0) {close(pipefd[0]);read(pipefd[1], buffer, sizeof(buffer));printf("Child process, PID: %d, Received: %s\n", getpid(), buffer);} else {close(pipefd[1]);write(pipefd[0], "Hello, Child!\n", 14);wait(NULL);}return 0;}```#### 3. 进程调度算法实验六:先来先服务(FCFS)调度算法```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/wait.h>#define NUM_PROCESSES 5#define TIME_QUANTUM 2typedef struct {int pid;int arrival_time;int burst_time;} Process;int main() {Process processes[NUM_PROCESSES] = {{1, 0, 5},{2, 1, 3},{3, 2, 4},{4, 3, 2},{5, 4, 1}};int i, j, time = 0, completed = 0;int wait_time[NUM_PROCESSES], turnaround_time[NUM_PROCESSES]; // Calculate waiting timefor (i = 0; i < NUM_PROCESSES; i++) {wait_time[i] = 0;}for (i = 0; i < NUM_PROCESSES; i++) {for (j = 0; j < i; j++) {wait_time[i] += processes[j].burst_time;}}// Calculate turnaround timefor (i = 0; i < NUM_PROCESSES; i++) {turnaround_time[i] = wait_time[i] + processes[i].burst_time;}// Calculate average waiting time and turnaround timeint total_wait_time = 0, total_turnaround_time = 0;for (i = 0; i < NUM_PROCESSES; i++) {total_wait_time += wait_time[i];total_turnaround_time += turnaround_time[i];}printf("Average waiting time: %.2f\n", (float)total_wait_time / NUM_PROCESSES);printf("Average turnaround time: %.2f\n",(float)total_turnaround_time / NUM_PROCESSES);return 0;}```实验七:时间片轮转调度算法```c#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/wait.h>#define NUM_PROCESSES 5#define TIME_QUANTUM 2typedef struct {int pid;int arrival_time;int burst_time;} Process;int main() {Process processes[NUM_PROCESSES] = {{1, 0, 5},{2, 1, 3},{3, 2, 4},{4, 3, 2},{5, 4, 1}};int i, j, time = 0, completed = 0;int wait_time[NUM_PROCESSES], turnaround_time[NUM_PROCESSES]; // Calculate waiting timefor (i = 0; i < NUM_PROCESSES; i++) {wait_time[i] = 0;}for (i = 0; i < NUM_PROCESSES; i++) {for (j = 0; j < i; j++) {wait_time[i] += processes[j].burst_time;}}// Calculate turnaround timefor (i = 0; i < NUM_PROCESSES; i++) {turnaround_time[i] = wait_time[i] + processes[i].burst_time;}// Calculate average waiting time and turnaround timeint total_wait_time = 0, total_turnaround_time = 0;for (i = 0; i < NUM_PROCESSES; i++) {total_wait_time += wait_time[i];total_turnaround_time += turnaround_time[i];}printf("Average waiting time: %.2f\n", (float)total_wait_time / NUM_PROCESSES);printf("Average turnaround time: %.2f\n",(float)total_turnaround_time / NUM_PROCESSES);return 0;}```### 实验总结通过本次实验,我对操作系统进程控制有了更深入的了解。
(完整word版)操作系统实验进程的通信
(操作系统原理和linux操作系统相结合的实验)实验二进程的通信一实验目的1 学会使用vi编辑器编辑C语言程序2 学会Linux环境下gcc的使用3 学会调试工具GDB的使用二实验原理1 利用linux提供的进程通信的系统调用设计进程通信程序,加深对进程通信概念的理解。
2 体会进程通信的方法和效果。
三实验环境PC机1台,Windows操作系统和其上的虚拟Linux操作系统。
四实验步骤1.管道通信(1)编写一个程序。
父进程创建一个子进程和一个无名管道fd,由子进程向管道写入信息“This is a message”,然后终止执行;父进程接收到子进程终止信号后从管道中读出并显示信息后结束。
#include<stdio.h>#include<unistd.h>main(){int p1,fd[2];char outpipe[50]; //定义读缓冲区char inpipe[50]="This is a message!"; //定义写缓冲区pipe(fd); //创建无名管道fdwhile((p1=fork())==-1);if (p1==0) //子进程返回{write(fd[1],inpipe,50); //写信息到管道exit(0);}else //父进程返回{wait(0); //等待子进程终止read(fd[0],outpipe,50); //从管道读信息到读缓冲区printf("%s\n",outpipe); //显示读到的信息exit(0);}}(2)父进程创建两个子进程,父子进程之间利用管道进行通信。
要求能显示父进程、子进程各自的信息,体现通信效果。
(源程序pipe_1.c)#include<stdio.h>main(){int I,r,j,k,l,p1,p2,fd[2];char buf[50],s[50];pipe(fd);while((p1=fork())==-1);if(p1==0){lockf(fd[1],1,0);sprintf(buf,"Child process p1 is sending message!\n");printf("Child process p1!\n");write(fd[1],buf,50);lockf(fd[1],0,0);sleep(5);j=getpid();k=getppid();printf("p1 %d is weakup.My parent process id is %d.\n",j,k);exit(0);}else{while((p2=fork())==-1);if(p2==0){lockf(fd[1],1,0);sprintf(buf,"Child process p2 is sending message!\n");printf("Child process p2!\n");write(fd[1],buf,50);lockf(fd[1],0,0);sleep(5);j=getpid();k=getppid();printf("p2 %d is weakup.My parent process id is %d.\n",j,k);exit(0);}else{I=getpid();wait(0);if(r=read(fd[0],s,50)==-1)printf("can’t read pip e.");elseprintf("Parent %d:%s\n",l,s);wait(0);if(r=read(fd[0],s,50)==-1)pr intf("can’t read pipe");elseprintf ( "Parent %d:%s\n",l,s);exit(0);}}}结果:2.共享内存通信。
进程通信实验报告
西安电子科技大学《操作系统原理》实验报告题目:进程通信实验报告班级: 030912姓名:王增祥学号: 03091168实验内容补充说明:一、分析和设计1.理论分析每个Windows进程都是由一个执行体进程块(EPROCESS)表示。
API函数CreatProcess 可以创建进程,采用管道技术可以实现进程间的相互通信。
建立pipe,进程以及其子进程就可以对该管道进程读写共享,管道读写操作利用,write、read、close进行。
父进程利用pipe 发送消息,子进程利用该pipe接收父进程发来的消息;子进程利用管道向父进程发送应答,父进程利用该pipe接受应答。
2.总体设计1、利用CreatProcess函数创建进程。
2、创建管道,实现进程间的通信二、详细实现1、创建界面,采用Botton、列表框等控件创建父子界面如下图:父进程界面:子进程界面:其中父进程各个空间创建类向导如图:子进程创建类向导如图:2.父进程编写(1)创建管道:(2)创建子进程:(3)消息发送(4)消息接受3.子进程编写(1)发送消息(2)读消息三、实验结果点击创建子进程按钮:在创建子进程之后进行进程间的通信如下图四、心得体会1、从试验的角度了解了进程间是怎样利用管道进行通信的,了解了进程间通信的实际过程2、进一步掌握了MFC的初步编程技巧,知道了怎样调试程序。
3进一步了解了,API函数的应用,明白了怎样进行界面编程。
4、进一步熟悉了在进行进程通信的编写过程中的各个细节。
六、附录Process_Father.cpp#include "stdafx.h"#include "Process_Father.h" //包含已编写的Process_Father.h头文件#include "Process_FatherDlg.h" //包含已编写的Process_FatherDlg.h头文件//进行宏定义#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif//创建父进程BEGIN_MESSAGE_MAP(CProcess_FatherApp, CWinApp)//{{AFX_MSG_MAP(CProcess_FatherApp)// NOTE - the ClassWizard will add and remove mapping macros here.// DO NOT EDIT what you see in these blocks of generated code!//}}AFX_MSGON_COMMAND(ID_HELP, CWinApp::OnHelp)END_MESSAGE_MAP()// CProcess_FatherApp constructionCProcess_FatherApp::CProcess_FatherApp(){// TODO: add construction code here,// Place all significant initialization in InitInstance}// The one and only CProcess_FatherApp objectCProcess_FatherApp theApp;// CProcess_FatherApp initializationBOOL CProcess_FatherApp::InitInstance(){AfxEnableControlContainer();#ifdef _AFXDLLEnable3dControls(); // Call this when using MFC in a shared DLL #elseEnable3dControlsStatic(); // Call this when linking to MFC statically #endifCProcess_FatherDlg dlg;m_pMainWnd = &dlg;int nResponse = dlg.DoModal();if (nResponse == IDOK){// TODO: Place code here to handle when the dialog is// dismissed with OK}else if (nResponse == IDCANCEL){// TODO: Place code here to handle when the dialog is// dismissed with Cancel}// Since the dialog has been closed, return FALSE so that we exit the// application, rather than start the application's message pump.return FALSE;}Process_FatherDlg.cpp// Process_FatherDlg.cpp : implementation file//#include "stdafx.h"#include "Process_Father.h"#include "Process_FatherDlg.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif///////////////////////////////////////////////////////////////////////////// // CAboutDlg dialog used for App Aboutclass CAboutDlg : public CDialog{public:CAboutDlg();// Dialog Data//{{AFX_DATA(CAboutDlg)enum { IDD = IDD_ABOUTBOX };//}}AFX_DATA// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CAboutDlg)protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL// Implementationprotected://{{AFX_MSG(CAboutDlg)//}}AFX_MSGDECLARE_MESSAGE_MAP()};CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD){//{{AFX_DATA_INIT(CAboutDlg)//}}AFX_DATA_INIT}void CAboutDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CAboutDlg)//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)//{{AFX_MSG_MAP(CAboutDlg)// No message handlers//}}AFX_MSG_MAPEND_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CProcess_FatherDlg dialogCProcess_FatherDlg::CProcess_FatherDlg(CWnd* pParent /*=NULL*/) : CDialog(CProcess_FatherDlg::IDD, pParent){//{{AFX_DATA_INIT(CProcess_FatherDlg)//}}AFX_DATA_INIT// Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);}void CProcess_FatherDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CProcess_FatherDlg)DDX_Control(pDX, IDC_BT_CreateChildProcess, m_BT_CreateChildProcess);DDX_Control(pDX, IDC_Send, m_Send);DDX_Control(pDX, IDC_LISTBOX_Record, m_LISTBOX_Record);DDX_Control(pDX, IDC_EDIT_Message, m_EDIT_Message);//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CProcess_FatherDlg, CDialog)//{{AFX_MSG_MAP(CProcess_FatherDlg)ON_WM_SYSCOMMAND()ON_WM_PAINT()ON_WM_QUERYDRAGICON()ON_BN_CLICKED(IDC_BT_CreateChildProcess, OnBTCreateChildProcess)ON_BN_CLICKED(IDC_Send, OnSend)//}}AFX_MSG_MAPON_MESSAGE(WM_CHILD_SEND,OnReceiveMsg)END_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CProcess_FatherDlg message handlersBOOL CProcess_FatherDlg::OnInitDialog(){CDialog::OnInitDialog();// Add "About..." menu item to system menu.// IDM_ABOUTBOX must be in the system command range.ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);ASSERT(IDM_ABOUTBOX < 0xF000);CMenu* pSysMenu = GetSystemMenu(FALSE);if (pSysMenu != NULL){CString strAboutMenu;strAboutMenu.LoadString(IDS_ABOUTBOX);if (!strAboutMenu.IsEmpty()){pSysMenu->AppendMenu(MF_SEPARATOR);pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);}}// Set the icon for this dialog. The framework does this automatically // when the application's main window is not a dialogSetIcon(m_hIcon, TRUE); // Set big iconSetIcon(m_hIcon, FALSE); // Set small icon// TODO: Add extra initialization herereturn TRUE; // return TRUE unless you set the focus to a control}void CProcess_FatherDlg::OnSysCommand(UINT nID, LPARAM lParam){if ((nID & 0xFFF0) == IDM_ABOUTBOX){CAboutDlg dlgAbout;dlgAbout.DoModal();}else{CDialog::OnSysCommand(nID, lParam);}}// If you add a minimize button to your dialog, you will need the code below // to draw the icon. For MFC applications using the document/view model, // this is automatically done for you by the framework.void CProcess_FatherDlg::OnPaint(){if (IsIconic()){CPaintDC dc(this); // device context for paintingSendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);// Center icon in client rectangleint cxIcon = GetSystemMetrics(SM_CXICON);int cyIcon = GetSystemMetrics(SM_CYICON);CRect rect;GetClientRect(&rect);int x = (rect.Width() - cxIcon + 1) / 2;int y = (rect.Height() - cyIcon + 1) / 2;// Draw the icondc.DrawIcon(x, y, m_hIcon);}else{CDialog::OnPaint();}}// The system calls this to obtain the cursor to display while the user drags // the minimized window.HCURSOR CProcess_FatherDlg::OnQueryDragIcon(){return (HCURSOR) m_hIcon;}void CProcess_FatherDlg::OnBTCreateChildProcess(){//创建管道SECURITY_ATTRIBUTES sa;sa.nLength=sizeof(SECURITY_ATTRIBUTES);sa.lpSecurityDescriptor=NULL;sa.bInheritHandle=TRUE;::CreatePipe(&hPipeRead,&hPipeWrite,&sa,0);::CreatePipe(&hPipeRead2,&hPipeWrite2,&sa,0);//创建子进程STARTUPINFO StartupInfo;memset(&StartupInfo,0,sizeof(STARTUPINFO)) ;StartupInfo.cb=sizeof(STARTUPINFO);StartupInfo.dwFlags=STARTF_USESTDHANDLES;StartupInfo.hStdInput=hPipeRead;StartupInfo.hStdOutput=hPipeWrite;StartupInfo.hStdError=GetStdHandle(STD_ERROR_HANDLE);PROCESS_INFORMATION ProcessInfo;::CreateProcess("Process_Child.exe",NULL,NULL,NULL,TRUE,0,NULL,NULL,&Startu pInfo,&ProcessInfo);m_BT_CreateChildProcess.EnableWindow(FALSE);}void CProcess_FatherDlg::OnSend(){CString str;char ss[20]="Father:";m_EDIT_Message.GetWindowText(str);DWORD dwWritten;if(!WriteFile(hPipeWrite,str,40,&dwWritten,NULL)){MessageBox(TEXT("写错误"),"警告",MB_OK|MB_ICONWARNING);}CString strWinName = "Process_Child";CWnd *pWnd=CWnd::FindWindow(NULL,strWinName);if(pWnd){pWnd->SendMessage(WM_FATHER_SEND,0,0);strcat(ss,str);m_LISTBOX_Record.InsertString(-1,ss);m_EDIT_Message.SetWindowText("");}else{MessageBox("没有发现子进程","错误");}}void CProcess_FatherDlg::OnReceiveMsg(WPARAM wParam,LPARAM lParam){DWORD dwRead;TCHAR s[40];HANDLE hPipeRead2;hPipeRead2=GetStdHandle(STD_INPUT_HANDLE);if(!ReadFile(hPipeRead,s,40,&dwRead,NULL)){MessageBox(TEXT("读错误!"),"警告",MB_OK|MB_ICONWARNING);}char str[60]="Child: ";strcat(str,s);m_LISTBOX_Record.InsertString(-1,str);}Process_Father.h// Process_Father.h : main header file for the PROCESS_FATHER application//#if !defined(AFX_PROCESS_FATHER_H__1F9659A2_2B93_4C1E_89C5_5A88971D3DDA__INCLUD ED_)#define AFX_PROCESS_FATHER_H__1F9659A2_2B93_4C1E_89C5_5A88971D3DDA__INCLUDED_#if _MSC_VER > 1000#pragma once#endif // _MSC_VER > 1000#ifndef __AFXWIN_H__#error include 'stdafx.h' before including this file for PCH#endif#include "resource.h" // main symbols///////////////////////////////////////////////////////////////////////////// // CProcess_FatherApp:// See Process_Father.cpp for the implementation of this class//class CProcess_FatherApp : public CWinApp{public:CProcess_FatherApp();// Overrides// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CProcess_FatherApp)public:virtual BOOL InitInstance();//}}AFX_VIRTUAL// Implementation//{{AFX_MSG(CProcess_FatherApp)// NOTE - the ClassWizard will add and remove member functions here.// DO NOT EDIT what you see in these blocks of generated code !//}}AFX_MSGDECLARE_MESSAGE_MAP()};///////////////////////////////////////////////////////////////////////////////{{AFX_INSERT_LOCATION}}// Microsoft Visual C++ will insert additional declarations immediately before the previous line.#endif// !defined(AFX_PROCESS_FATHER_H__1F9659A2_2B93_4C1E_89C5_5A88971D3DDA__INCLUDE D_)Process_FatherDlg.h// Process_FatherDlg.h : header file//#if !defined(AFX_PROCESS_FATHERDLG_H__69E2942A_7A5F_413F_B4A3_AFB8C1F51DFE__INC LUDED_)#defineAFX_PROCESS_FATHERDLG_H__69E2942A_7A5F_413F_B4A3_AFB8C1F51DFE__INCLUDED_#define WM_FATHER_SEND WM_USER+100#define WM_CHILD_SEND WM_USER+101#if _MSC_VER > 1000#pragma once#endif // _MSC_VER > 1000///////////////////////////////////////////////////////////////////////////// // CProcess_FatherDlg dialogclass CProcess_FatherDlg : public CDialog{// Constructionpublic:CProcess_FatherDlg(CWnd* pParent = NULL); // standard constructor// Dialog Data//{{AFX_DATA(CProcess_FatherDlg)enum { IDD = IDD_PROCESS_FATHER_DIALOG };CButton m_BT_CreateChildProcess;CButton m_Send;CListBox m_LISTBOX_Record;CEdit m_EDIT_Message;//}}AFX_DATA// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CProcess_FatherDlg)protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL// Implementationprotected:HICON m_hIcon;// Generated message map functions//{{AFX_MSG(CProcess_FatherDlg)virtual BOOL OnInitDialog();afx_msg void OnSysCommand(UINT nID, LPARAM lParam);afx_msg void OnPaint();afx_msg HCURSOR OnQueryDragIcon();afx_msg void OnReceiveMsg(WPARAM wParam, LPARAM lParam);afx_msg void OnBTCreateChildProcess();afx_msg void OnSend();//}}AFX_MSGDECLARE_MESSAGE_MAP()private:HANDLE hPipeWrite2;HANDLE hPipeRead2;HANDLE hPipeWrite;HANDLE hPipeRead;};//{{AFX_INSERT_LOCATION}}// Microsoft Visual C++ will insert additional declarations immediately before theprevious line.#endif// !defined(AFX_PROCESS_FATHERDLG_H__69E2942A_7A5F_413F_B4A3_AFB8C1F51DFE__INCL UDED_)子进程代码Process_Child.cpp// Process_Child.cpp : Defines the class behaviors for the application.//#include "stdafx.h"#include "Process_Child.h"#include "Process_ChildDlg.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif/////////////////////////////////////////////////////////////////////////////// CProcess_ChildAppBEGIN_MESSAGE_MAP(CProcess_ChildApp, CWinApp)//{{AFX_MSG_MAP(CProcess_ChildApp)// NOTE - the ClassWizard will add and remove mapping macros here.// DO NOT EDIT what you see in these blocks of generated code!//}}AFX_MSGON_COMMAND(ID_HELP, CWinApp::OnHelp)END_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CProcess_ChildApp constructionCProcess_ChildApp::CProcess_ChildApp(){// TODO: add construction code here,// Place all significant initialization in InitInstance}///////////////////////////////////////////////////////////////////////////// // The one and only CProcess_ChildApp objectCProcess_ChildApp theApp;///////////////////////////////////////////////////////////////////////////// // CProcess_ChildApp initializationBOOL CProcess_ChildApp::InitInstance(){AfxEnableControlContainer();// Standard initialization// If you are not using these features and wish to reduce the size// of your final executable, you should remove from the following// the specific initialization routines you do not need.#ifdef _AFXDLLEnable3dControls(); // Call this when using MFC in a shared DLL #elseEnable3dControlsStatic(); // Call this when linking to MFC statically #endifCProcess_ChildDlg dlg;m_pMainWnd = &dlg;int nResponse = dlg.DoModal();if (nResponse == IDOK){// TODO: Place code here to handle when the dialog is// dismissed with OK}else if (nResponse == IDCANCEL){// TODO: Place code here to handle when the dialog is// dismissed with Cancel}// Since the dialog has been closed, return FALSE so that we exit the // application, rather than start the application's message pump.return FALSE;}Process_ChildDlg.cpp// Process_ChildDlg.cpp : implementation file//#include "stdafx.h"#include "Process_Child.h"#include "Process_ChildDlg.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif///////////////////////////////////////////////////////////////////////////// // CAboutDlg dialog used for App Aboutclass CAboutDlg : public CDialog{public:CAboutDlg();// Dialog Data//{{AFX_DATA(CAboutDlg)enum { IDD = IDD_ABOUTBOX };//}}AFX_DATA// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CAboutDlg)protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL// Implementationprotected://{{AFX_MSG(CAboutDlg)//}}AFX_MSGDECLARE_MESSAGE_MAP()};CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD){//{{AFX_DATA_INIT(CAboutDlg)//}}AFX_DATA_INIT}void CAboutDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CAboutDlg)//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)//{{AFX_MSG_MAP(CAboutDlg)// No message handlers//}}AFX_MSG_MAPEND_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CProcess_ChildDlg dialogCProcess_ChildDlg::CProcess_ChildDlg(CWnd* pParent /*=NULL*/): CDialog(CProcess_ChildDlg::IDD, pParent){//{{AFX_DATA_INIT(CProcess_ChildDlg)//}}AFX_DATA_INIT// Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);}void CProcess_ChildDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CProcess_ChildDlg)DDX_Control(pDX, IDC_Send, m_Send);DDX_Control(pDX, IDC_LISTBOX_Record, m_LISTBOX_Record);DDX_Control(pDX, IDC_EDIT_Message, m_EDIT_Message);//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CProcess_ChildDlg, CDialog)//{{AFX_MSG_MAP(CProcess_ChildDlg)ON_WM_SYSCOMMAND()ON_WM_PAINT()ON_WM_QUERYDRAGICON()ON_BN_CLICKED(IDC_Send, OnSend)//}}AFX_MSG_MAPON_MESSAGE(WM_FATHER_SEND,OnReceiveMsg)END_MESSAGE_MAP()/////////////////////////////////////////////////////////////////////////////// CProcess_ChildDlg message handlersBOOL CProcess_ChildDlg::OnInitDialog(){CDialog::OnInitDialog();// Add "About..." menu item to system menu.// IDM_ABOUTBOX must be in the system command range.ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);ASSERT(IDM_ABOUTBOX < 0xF000);CMenu* pSysMenu = GetSystemMenu(FALSE);if (pSysMenu != NULL){CString strAboutMenu;strAboutMenu.LoadString(IDS_ABOUTBOX);if (!strAboutMenu.IsEmpty()){pSysMenu->AppendMenu(MF_SEPARATOR);pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);}// Set the icon for this dialog. The framework does this automatically // when the application's main window is not a dialogSetIcon(m_hIcon, TRUE); // Set big iconSetIcon(m_hIcon, FALSE); // Set small icon// TODO: Add extra initialization herereturn TRUE; // return TRUE unless you set the focus to a control}void CProcess_ChildDlg::OnSysCommand(UINT nID, LPARAM lParam){if ((nID & 0xFFF0) == IDM_ABOUTBOX){CAboutDlg dlgAbout;dlgAbout.DoModal();}else{CDialog::OnSysCommand(nID, lParam);}// If you add a minimize button to your dialog, you will need the code below // to draw the icon. For MFC applications using the document/view model, // this is automatically done for you by the framework.void CProcess_ChildDlg::OnPaint(){if (IsIconic()){CPaintDC dc(this); // device context for paintingSendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);// Center icon in client rectangleint cxIcon = GetSystemMetrics(SM_CXICON);int cyIcon = GetSystemMetrics(SM_CYICON);CRect rect;GetClientRect(&rect);int x = (rect.Width() - cxIcon + 1) / 2;int y = (rect.Height() - cyIcon + 1) / 2;// Draw the icondc.DrawIcon(x, y, m_hIcon);}else{CDialog::OnPaint();}}// The system calls this to obtain the cursor to display while the user drags // the minimized window.HCURSOR CProcess_ChildDlg::OnQueryDragIcon(){return (HCURSOR) m_hIcon;}void CProcess_ChildDlg::OnSend(){char ss[20]="Child:";CString str;m_EDIT_Message.GetWindowText(str);DWORD dwWritten;hPipeWrite=GetStdHandle(STD_OUTPUT_HANDLE);if(!WriteFile(hPipeWrite,str,40,&dwWritten,NULL)) {MessageBox(TEXT("写错误"),"警告",MB_OK|MB_ICONWARNING);}CString strWinName = "Process_Father";CWnd *pWnd=CWnd::FindWindow(NULL,strWinName);if(pWnd){pWnd->SendMessage(WM_CHILD_SEND,0,0);strcat(ss,str);m_LISTBOX_Record.InsertString(-1,ss);m_EDIT_Message.SetWindowText("");}else{MessageBox("没有发现父进程","错误");}void CProcess_ChildDlg::OnReceiveMsg(WPARAM wParam,LPARAM lParam){DWORD dwRead;char s[40];HANDLE hPipeRead;hPipeRead=GetStdHandle(STD_INPUT_HANDLE);if(!ReadFile(hPipeRead,s,40,&dwRead,NULL)){MessageBox(TEXT("读错误!"),"警告",MB_OK|MB_ICONWARNING);}char str[60]="Father: ";strcat(str,s);m_LISTBOX_Record.InsertString(-1,str);}Process_Child.h// Process_Child.h : main header file for the PROCESS_CHILD application//#if !defined(AFX_PROCESS_CHILD_H__7416C60C_DD56_40CC_BD28_3DA310873DE7__INCLUDE#define AFX_PROCESS_CHILD_H__7416C60C_DD56_40CC_BD28_3DA310873DE7__INCLUDED_#if _MSC_VER > 1000#pragma once#endif // _MSC_VER > 1000#ifndef __AFXWIN_H__#error include 'stdafx.h' before including this file for PCH#endif#include "resource.h" // main symbols///////////////////////////////////////////////////////////////////////////// // CProcess_ChildApp:// See Process_Child.cpp for the implementation of this class//class CProcess_ChildApp : public CWinApp{public:CProcess_ChildApp();// Overrides// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CProcess_ChildApp)public:virtual BOOL InitInstance();//}}AFX_VIRTUAL// Implementation//{{AFX_MSG(CProcess_ChildApp)// NOTE - the ClassWizard will add and remove member functions here.// DO NOT EDIT what you see in these blocks of generated code !//}}AFX_MSGDECLARE_MESSAGE_MAP()};///////////////////////////////////////////////////////////////////////////////{{AFX_INSERT_LOCATION}}// Microsoft Visual C++ will insert additional declarations immediately before theprevious line.#endif// !defined(AFX_PROCESS_CHILD_H__7416C60C_DD56_40CC_BD28_3DA310873DE7__INCLUDED _)Process_ChildDlg.h// Process_ChildDlg.h : header file//#if !defined(AFX_PROCESS_CHILDDLG_H__01C41D47_4973_4DCB_84FC_4B7C5A6C584A__INCL UDED_)#define AFX_PROCESS_CHILDDLG_H__01C41D47_4973_4DCB_84FC_4B7C5A6C584A__INCLUDED_ #define WM_FATHER_SEND WM_USER+100#define WM_CHILD_SEND WM_USER+101#if _MSC_VER > 1000#pragma once#endif // _MSC_VER > 1000///////////////////////////////////////////////////////////////////////////// // CProcess_ChildDlg dialogclass CProcess_ChildDlg : public CDialog{// Constructionpublic:CProcess_ChildDlg(CWnd* pParent = NULL); // standard constructor// Dialog Data//{{AFX_DATA(CProcess_ChildDlg)enum { IDD = IDD_PROCESS_CHILD_DIALOG };CButton m_Send;CListBox m_LISTBOX_Record;CEdit m_EDIT_Message;//}}AFX_DATA// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CProcess_ChildDlg)protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support //}}AFX_VIRTUAL// Implementationprotected:HICON m_hIcon;// Generated message map functions//{{AFX_MSG(CProcess_ChildDlg)virtual BOOL OnInitDialog();afx_msg void OnSysCommand(UINT nID, LPARAM lParam);afx_msg void OnPaint();afx_msg HCURSOR OnQueryDragIcon();afx_msg void OnReceiveMsg(WPARAM wParam, LPARAM lParam);afx_msg void OnSend();//}}AFX_MSGDECLARE_MESSAGE_MAP()private:HANDLE hPipeWrite;};//{{AFX_INSERT_LOCATION}}// Microsoft Visual C++ will insert additional declarations immediately before the previous line.#endif// !defined(AFX_PROCESS_CHILDDLG_H__01C41D47_4973_4DCB_84FC_4B7C5A6C584A__INCLU DED_)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四:进程的管道通信
1.实验目的
1)加深对进程概念的理解,明确进程和程序的区别。
2)学习进程创建的过程,进一步认识进程并发执行的实质。
3)分析进程争用资源的现象,学习解决进程互斥的方法。
4)学习解决进程同步的方法。
5)掌握Linux系统中进程间通过管道通信的具体实现。
2.实验内容
使用系统调用pipe()建立一条管道,系统调用fork()分别创建两个子进程,它们分别向管道写一句话,如:
Child process1 is sending a message!
Child process2 is sending a message!
父进程分别从管道读出来自两个子进程的信息,显示在屏幕上。
3.实验要求
这是一个设计型实验,要求自行、独立编制程序。
两个子进程要并发执行。
实现管道的互斥使用。
当一个子进程正在对管道进行写操作时,另一个欲写入管道的子进程必须等待。
使用系统调用lockf(fd[1],1,0)实现对管道的加锁操作,用lockf(fd[1],0,0)解除对管道的锁定。
实现父子进程的同步,当父进程试图从一空管道中读取数据时,便进入等待状态,直到子进程将数据写入管道返回后,才将其唤醒。
fork() 用于创一个子进程。
格式:int fork();返回值:在子进程中返回0;在父进程中返回所创建的子进程的ID值;当返回-1时,创建失败。
wait() 常用来控制父进程与子进程的同步。
在父进程中调用wait(),则父进程被阻塞,进入等待队列,等待子进程结束。
当子进程结束时,父进程从wait()返回继续执行原来的程序。
返回值:大于0时,为子进程的ID值;等于-1时,调用失败。
exit() 是进程结束时最常调用的。
格式:void exit( int status); 其中,status为进程结束状态。
pipe() 用于创建一个管道格式:pipe(int fd);其中fd是一个由两个数组元素fd[0]和fd[1]组成的整型数组,fd[0]是管道的读端口,用于从管道读出数据,fd[1]是管道的写端口,用于向管道写入数据。
返回值:0 调用成功;-1 调用失败。
sleep() 使调用进程睡眠若干时间,之后唤醒。
格式:sleep(int t);其中t为睡眠时间。
lockf() 用于对互斥资源加锁和解锁。
在本实验中该调用的格式为:
lockf(fd[1],1,0);/* 表示对管道的写入端口加锁。
lockf(fd[1],0,0);/* 表示对管道的写入端口解锁。
write(fd[1],String,Length) 将字符串String的内容写入管道的写入口。
read(fd[0],String,Length) 从管道的读入口读出信息放入字符串String 中。
4.程序流程图
注:由于操作系统进程调度算法的缘故,各子进程被操作系统调用执行的先后顺序并不一定是按照创建顺序,因此如果直接创建子进程向管道内写数据并通过主进程读出打印到屏幕的话,可能输出顺序不是1,2,3。
为了解决此问题,在子进程向管道内写数据前,先令其睡眠一段时间,sleep(ni), 其中ni随着i的增大而增大,这样可以保证管道中数据的写入顺序一定是先创建的进程先写入,保证最后打印输出的顺序是1,2,3。
5.数据结构及说明
本程序没有什么特别的数据结构。
int pid1,pid2,pid3;//子进程号
int fd[2];//管道端口,fd[0]是读端口,fd[1]是写端口
char inpipe[100];//读入缓冲,存储从管道中读入的数据
char outpipe[100];//输出缓冲,存储准备向管道输出的数据
6.源程序。
#include <iostream>
#include <unistd.h>
#include <stdio.h>
#include <wait.h>
#include <stdlib.h>
#include <string>
using namespace std;
int pid1,pid2,pid3;
void process(){
int fd[2];
char inpipe[100];
char outpipe[100];
pipe(fd);
pid1=fork();//Create child process1
if(pid1==-1){//create failed
cout<<"Fork Failure!"<<endl;
}
else if(pid1==0){//child process1 is running
sprintf(outpipe,"Child process 1 is sending message!");
lockf(fd[1],1,0);
write(fd[1],outpipe,100);//cp1 write message in pipe
sleep(2);
lockf(fd[1],0,0);
exit(0);
}
else{
pid2=fork();//Create child process2
if(pid2==-1){//create failed
cout<<"Fork Failure!"<<endl;
}
else if(pid2==0){//child process2 is running
sleep(1);
sprintf(outpipe,"Child process 2 is sending message!");
lockf(fd[1],1,0);
write(fd[1],outpipe,100);//cp2 write message in pipe
sleep(1);
lockf(fd[1],0,0);
exit(0);
}
else{
pid3=fork();//create child process3
if(pid3==-1){//failed
cout<<"Fork Failure!"<<endl;
}
else if(pid3==0){//cp3 is running
sleep(2);
sprintf(outpipe,"Child process 3 is sending message!");
lockf(fd[1],1,0);
write(fd[1],outpipe,100);//cp3 write in pipe
sleep(1);
lockf(fd[1],0,0);
exit(0);
}
else{//main process is running, read message from pipe
wait(0);
read(fd[0],inpipe,100);
cout<<inpipe<<endl;
wait(0);
read(fd[0],inpipe,100);
cout<<inpipe<<endl;
wait(0);
read(fd[0],inpipe,100);
cout<<inpipe<<endl;
}
}
}
}
int main(){
process();
return 0;
}
7.运行结果
8.程序使用说明。
在Linux环境下编译执行即可看到输出结果。