动量守恒定律测试题

合集下载

动量守恒定律单元测试题

动量守恒定律单元测试题

动量守恒定律单元测试题一、动量守恒定律 选择题1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( )A .全过程中墙对A 的冲量大小为p02ABE m mB .物体B 的最大速度为p02AE mC .弹簧长度最长时,物体B 的速度大小为p02BA BBE m m m m +D .弹簧长度最长时,弹簧具有的弹性势能p p0E E >2.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒 B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 23.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/s B .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J4.将质量为m 0的木块固定在光滑水平面上,一颗质量为m 的子弹以速度v 0沿水平方向射入木块,子弹射穿木块时的速度为3v .现将同样的木块放在光滑的水平桌面上,相同的子弹仍以速度v 0沿水平方向射入木块,设子弹在木块中所受阻力不变,则以下说法正确的是()A .若m 0=3m ,则能够射穿木块B .若m 0=3m ,子弹不能射穿木块,将留在木块中,一起以共同的速度做匀速运动C .若m 0=3m ,子弹刚好能射穿木块,此时子弹相对于木块的速度为零D .若子弹以3v 0速度射向木块,并从木块中穿出,木块获得的速度为v 1;若子弹以4v 0速度射向木块,木块获得的速度为v 2;则必有v 1<v 25.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv 2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s7.如图所示,轻弹簧的一端固定在竖直墙上,一质量为2m 的光滑弧形槽静止放在足够长的光滑水平面上,弧形槽底端与水平面相切,一质量为m 的小物块从槽上高h 处开始下滑,重力加速度为g,下列说法正确的是A.物体第一次滑到槽底端时,槽的动能为3mghB.物体第一次滑到槽底端时,槽的动能为6mghC.在压缩弹簧的过程中,物块和弹簧组成的系统动量守恒D.物块第一次被弹簧反弹后能追上槽,但不能回到槽上高h处8.如图所示,将质量为M1、半径为R且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M2的物块.今让一质量为m的小球自左侧槽口A的正上方h高处从静止开始下落,与半圆槽相切自A点进入槽内,则以下结论中正确的是( )A.小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B.小球在槽内运动的B至C过程中,小球、半圆槽和物块组成的系统水平方向动量守恒C.小球离开C点以后,将做竖直上抛运动D.小球从A点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒9.有一宇宙飞船,它的正对面积S=2 m2,以v=3×103 m/s的相对速度飞入一宇宙微粒区.此微粒区1 m3空间中有一个微粒,每一个微粒的平均质量为m=2×10-7kg.设微粒与飞船外壳碰撞后附着于飞船上,要使飞船速度不变,飞船的牵引力应增加A.3.6×103 N B.3.6 N C.1.2×103 N D.1.2 N10.如图所示,一个质量为M的木箱静止在光滑水平面上,木箱内粗糙的底板上放着一个质量为m=2M的小物块.现使木箱瞬间获得一个水平向左、大小为v0的初速度,下列说法正确的是A.最终小物块和木箱都将静止B.最终小物块和木箱组成的系统损失机械能为20 3 MvC .木箱速度水平向左、大小为02v 时,小物块的速度大小为04v D .木箱速度水平向右、大小为03v . 时,小物块的速度大小为023v 11.如图,长木板M 原来静止于光滑水平面上,木块m 从长木板M 的一端以初速度v 0冲上木板,当m 相对于M 滑行7cm 时,M 向前滑行了4cm ,则在此过程中( )A .摩擦力对m 与M 的冲量大小之比等于11∶4B .m 减小的动能与M 增加的动能之比等于11∶4C .m 与M 系统损失的机械能与M 增加的动能之比等于7∶4D .m 减小的动能与m 和M 系统损失的机械能之比等于1∶112.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析

物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。

高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析

高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。

《动量守恒定律》测试题(含答案)

《动量守恒定律》测试题(含答案)

《动量守恒定律》测试题(含答案)一、动量守恒定律选择题1.—粒钢珠从静止状态开始自由下落,然后陷入泥潭中静止.若把在空中下落的过程称为过程Ⅰ,进入泥潭直到停止的过程称为过程Ⅱ, 不计空气阻力,则( )A.过程Ⅰ中的钢珠动量的改变量的大小大于过程Ⅱ中合力的冲量的大小B.过程Ⅱ中合力的冲量的大小等于过程Ⅰ中重力冲量的大小C.过程Ⅱ中钢珠克服阻力所做的功等于过程Ⅰ中重力做功D.过程Ⅰ中的钢珠动量的改变量小于过程Ⅱ中钢珠的重力的冲量2.如图甲所示,质量M=2kg的木板静止于光滑水平面上,质量m=1kg的物块(可视为质点)以水平初速度v0从左端冲上木板,物块与木板的v-t图象如图乙所示,重力加速度大小为10m/s2,下列说法正确的是()A.物块与木板相对静止时的速率为1m/sB.物块与木板间的动摩擦因数为0.3C.木板的长度至少为2mD.从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J3.如图所示,质量为m的小球从距离地面高度为H的A点由静止释放,落到地面上后又陷入泥潭中,由于受到阻力作用,到达距地面深度为h的B点时速度减为零不计空气阻力,重力加速度为g。

则关于小球下落过程中,说法正确的是A.整个下落过程中,小球的机械能减少了mgHB.整个下落过程中,小球克服阻力做的功为mg(H+h)C.在陷入泥潭过程中,小球所受阻力的冲量大于mD.在陷入泥潭过程中,小球动量的改变量的大小等于m4.如图所示,A、B、C三个半径相同的小球穿在两根平行且光滑的足够长的杆上,三个球的质量分别为m A=2kg,m B=3kg,m C=1kg,初状态三个小球均静止,BC球之间连着一根轻质弹簧,弹簣处于原长状态.现给A 一个向左的初速度v 0=10m/s,A 、B 碰后A 球的速度变为向右,大小为2m/s ,下列说法正确的是A .球A 和B 碰撞是弹性碰撞B .球A 和B 碰后,球B 的最小速度可为0C .球A 和B 碰后,弹簧的最大弹性势能可以达到96JD .球A 和B 碰后,弹簧恢复原长时球C 的速度可能为12m/s5.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==6.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg =,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J7.如图所示,将质量为M 1、半径为R 且内壁光滑的半圆槽置于光滑水平面上,左侧靠竖直墙壁,右侧靠一质量为M 2的物块.今让一质量为m 的小球自左侧槽口A 的正上方h 高处从静止开始下落,与半圆槽相切自A 点进入槽内,则以下结论中正确的是( )A .小球在槽内运动的全过程中,小球与半圆槽在水平方向动量守恒B .小球在槽内运动的B 至C 过程中,小球、半圆槽和物块组成的系统水平方向动量守恒 C .小球离开C 点以后,将做竖直上抛运动D .小球从A 点经最低点向右侧最高点运动的过程中,小球、半圆槽和物块组成的系统机械能守恒8.如图所示,光滑水平面上有一质量为m =1kg 的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m 0=1kg 的物块,物块与上表面光滑的小车一起以v 0=5m/s 的速度向右匀速运动,与静止在光滑水平面上、质量为M =4kg 的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.则( )A .碰撞结束时,小车的速度为3m/s ,速度方向向左B .从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为4N·sC .小车的最小速度为1m/sD .在小车速度为1m/s 时,弹簧的弹性势能有最大值9.A 、B 两球沿同一直线运动并发生正碰,如图所示为两球碰撞前后的位移—时间(x-t)图像,图中a 、b 分别为A 、B 两球碰撞前的图线,c 为碰撞后两球共同运动的图线.若A 球的质量2A m kg ,则由图可知下列结论正确的是( )A .A 、B 两球碰撞前的总动量为3 kg·m/sB .碰撞过程A 对B 的冲量为-4 N·sC .碰撞前后A 的动量变化为4kg·m/sD .碰撞过程A 、B 两球组成的系统损失的机械能为10 J10.如图所示,足够长的光滑水平面上有一质量为2kg 的木板B ,质量为1kg 的木块C 叠放在B 的右端点,B 、C 均处于静止状态且B 、C 之间的动摩擦因数为μ = 0.1。

动量守恒测试题及答案高中

动量守恒测试题及答案高中

动量守恒测试题及答案高中1. 动量守恒定律适用于哪些情况?2. 一个质量为2kg的物体以5m/s的速度向北运动,与一个质量为3kg 的物体以3m/s的速度向南运动相撞。

如果两物体发生完全非弹性碰撞,请计算碰撞后两物体的共同速度。

3. 一个质量为5kg的物体以10m/s的速度向东运动,撞击一个静止的质量为3kg的物体。

如果碰撞是完全弹性的,请计算碰撞后两物体的速度。

4. 一辆质量为1000kg的汽车以20m/s的速度行驶,突然刹车。

如果刹车过程中动量守恒,计算汽车在刹车过程中受到的平均冲击力(假设刹车过程持续了0.5秒)。

5. 一个质量为0.5kg的足球以15m/s的速度被踢出,如果足球在撞击墙壁后以相同的速率反弹回来,计算墙壁对足球的平均作用力(假设作用时间为0.1秒)。

答案1. 动量守恒定律适用于没有外力作用或外力之和为零的系统。

在这种情况下,系统的总动量在时间上保持不变。

2. 碰撞前总动量为 \( P_{\text{总}} = (2 \times 5) - (3 \times3) = 10 - 9 = 1 \) kg·m/s。

因为完全非弹性碰撞后两物体粘在一起,所以共同速度 \( v \) 为 \( P_{\text{总}} / (2 + 3) = 1 /5 = 0.2 \) m/s,方向向北。

3. 碰撞前总动量为 \( P_{\text{总}} = 5 \times 10 = 50 \)kg·m/s。

碰撞后两物体的总动量仍为50 kg·m/s。

设碰撞后5kg物体速度为 \( v_1 \),3kg物体速度为 \( v_2 \),则 \( 5v_1 + 3v_2= 50 \)。

由于完全弹性碰撞,还满足 \( \frac{5}{3} =\frac{v_1}{v_2} \)。

解得 \( v_1 = 10 \) m/s,\( v_2 = 6 \)m/s。

4. 汽车的初始动量为 \( P_{\text{初}} = 1000 \times 20 = 20000 \) kg·m/s。

高中物理选修一第一章《动量守恒定律》测试卷(包含答案解析)

高中物理选修一第一章《动量守恒定律》测试卷(包含答案解析)

一、选择题1.(0分)[ID:127070]静止在光滑水平面上的物体,受到水平拉力F的作用,拉力F随时间t变化的图象如图所示,则下列说法中正确的是()A.0~4s内物体的位移为零B.0~4s内拉力对物体做功不为零C.4s末物体的动量为零D.0~4s内拉力对物体的冲量不为零2.(0分)[ID:127067]在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为p A=12kg·m/s、p B=13kg·m/s,碰后它们的动量变化分别为Δp A、Δp B,下列数值可能正确的是()A.Δp A=-3kg·m/s、Δp B=3kg·m/s B.Δp A=3kg·m/s、Δp B=-3kg·m/sC.Δp A=-24kg·m/s、Δp B=24kg·m/s D.Δp A=24kg·m/s、Δp B=-24kg·m/s3.(0分)[ID:127051]如图所示,A、B、C三球的质量分别为m、m、2m,三个小球从同一高度同时出发,其中A球有水平向右的初速度v0, B、C由静止释放。

三个小球在同一竖直平面内运动,小球与地面之间、小球与小球之间的碰撞均为弹性碰撞,则小球与小球之间最多能够发生碰撞的次数为( )A.2次B.3次C.4次D.5次4.(0分)[ID:127043]质量为M的物块以速度v运动,与质量为m的静止物块发生正碰,碰撞后两者的动量正好相等,两者质量M与m的比值可能为()A.2 B.4 C.6 D.85.(0分)[ID:127042]一质量为2kg的物块在合外力F的作用下从静止开始沿直线运动。

F 随时间t变化的图线如图所示,则()A .1s t =时物块的速率为2m/sB .2s t =时物块的动量大小为2kg·m/sC .3s t =时物块的动量大小为3kg·m/sD .4s t =时物块的速度为零6.(0分)[ID :127035]光滑绝缘水平桌面上存在与桌面垂直方向的匀强磁场,有一带电粒子在桌面上做匀速圆周运动,当它运动到M 点,突然与一不带电的静止粒子发生正碰合为一体(碰撞时间极短),则粒子的运动轨迹应是图中的哪一个(实线为原轨迹,虚线为碰后轨迹)( )A .B .C .D . 7.(0分)[ID :127030]质量相等的A 、B 两个物体放在同一水平面上,分别受到水平拉力F 1、F 2的作用而从静止开始做匀加速直线运动,经过时间t 0和4t 0,A 、B 的速度分别达到2v 0和v 0时,分别撤去拉力,以后物体继续做匀减速直线运动直至停止,两个物体速度随时间变化的图像如图所示,设F 1和F 2的冲量分别为I 1和I 2,F 1和F 2做的功分别为W 1和W 2,则下列结论正确的是( )A .I 1>I 2,W 1>W 2B .I 1<I 2,W 1>W 2C .I 1<I 2,W 1<W 2D .I 1>I 2,W 1<W 28.(0分)[ID :127029]由我国自主研发制造的世界上最大的海上风电机SL5000,它的机舱上可以起降直升机,叶片直径128米,风轮高度超过40层楼,是世界风电制造业的一个奇迹。

上海市选修1高中物理(完整版)动量守恒定律单元测试题

上海市选修1高中物理(完整版)动量守恒定律单元测试题

上海市选修1高中物理(完整版)动量守恒定律单元测试题一、动量守恒定律 选择题1.如图所示,在光滑水平面上有质量分别为A m 、B m 的物体A ,B 通过轻质弹簧相连接,物体A 紧靠墙壁,细线连接A ,B 使弹簧处于压缩状态,此时弹性势能为p0E ,现烧断细线,对以后的运动过程,下列说法正确的是( )A .全过程中墙对A 的冲量大小为p02A B E m mB .物体B 的最大速度为p02A E mC .弹簧长度最长时,物体B 的速度大小为p02B A BB E m m m m +D .弹簧长度最长时,弹簧具有的弹性势能p p0E E > 2.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。

已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。

下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落3.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 4.如图所示,物体A 、B 的质量均为m =0.1kg ,B 静置于劲度系数k =100N/m 竖直轻弹簧的上端且B 不与弹簧连接,A 从距B 正上方h =0.2m 处自由下落,A 与B 相碰并粘在一起.弹簧始终在弹性限度内,g =10m/s 2.下列说法正确的是A .AB 组成的系统机械能守恒B .B 运动的最大速度大于1m/sC .B 物体上升到最高点时与初位置的高度差为0.05mD .AB 在最高点的加速度大小等于10m/s 25.质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块l 、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( )A .1木块相对静止前,木板是静止的B .1木块的最小速度是023v C .2木块的最小速度是056v D .木块3从开始运动到相对静止时位移是204v g6.如图所示,光滑绝缘的水平面上M 、N 两点有完全相同的金属球A 和B ,带有不等量的同种电荷.现使A 、B 以大小相等的初动量相向运动,不计一切能量损失,碰后返回M 、N 两点,则A.碰撞发生在M、N中点之外B.两球同时返回M、N两点C.两球回到原位置时动能比原来大些D.两球回到原位置时动能不变7.如图,固定的光滑斜面倾角 =30°,一质量1kg的小滑块静止在底端A点.在恒力F 作用下从沿斜面向上作匀加速运动,经过时间t=2s,运动到B点,此时速度大小为v1,到B点时撤去F再经过2s的时间,物体运动到AB的中点C,此时速度大小为v2,则以下正确的是A.v2=2v1B.B点到C点的过程中,物体动量改变量为2kg·m/sC.F=7ND.运动过程中F对小滑块做功28J8.从高处跳到低处时,为了安全,一般都要屈腿(如图所示),这样做是为了()A.减小冲量B.减小动量的变化量C.增大与地面的冲击时间,从而减小冲力D.增大人对地面的压强,起到安全作用9.如图所示,两滑块A、B位于光滑水平面上,已知A的质量M A=1k g,B的质量M B=4k g.滑块B的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A以v=5m/s速度水平向右运动,通过弹簧与静止的滑块B相互作用(整个过程弹簧没有超过弹性限度),直至分开.则()A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =10.如图所示,在同一水平面内有两根足够长的光滑水平平行金属导轨,间距为L =20cm ,电阻不计,其左端连接一恒定电源,电动势为E ,内阻不计,两导轨之间交替存在着磁感应强度为B =1T 、方向相反的匀强磁场,同向磁场的宽度相同。

《动量守恒定律》单元测试题含答案(1)

《动量守恒定律》单元测试题含答案(1)
4
小为 gH ,物体最终落在地面上.则下列关于物体的运动说法正确的是 2
A.当物体沿墙壁下滑时,物体先加速运动再做匀速直线运动
B.摩擦力对物体产生的冲量大小为 E02q 2k
C.摩擦力所做的功W 1 mgH 8
D.物体与墙壁脱离的时刻为 t gH g
9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为 m 的小球以平行斜 面向上的初速度 v1 ,当小球回到出发点时速率为 v2 。小球在运动过程中除重力和弹力外, 另受阻力 f (包含摩擦阻力),阻力 f 大小与速率成正比即 f kv 。则小球在斜面上运动 总时间 t 为( )
《动量守恒定律》单元测试题含答案(1)
一、动量守恒定律 选择题
1.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体 P 和 Q,质量均为 m,在 水平恒力 F 作用下以速度 v 做匀速运动.在 t=0 时轻绳断开,Q 在 F 的作用下继续前进,则 下列说法正确的是( )
A.t=0 至 t 2mv 时间内,P、Q 的总动量守恒 F
A. t
v1 v2 g sin
B. t
v1 v2 g sin
C. t
mg
mv1 mv2 sin k v1
v2
2
D.
t
mg
mv1 mv2 sin k v1
v2
2
10.如图所示, A 是不带电的球,质量 mA 0.5kg , B 是金属小球,带电量为 q 2102C ,质量为 mB 0.5kg ,两个小球大小相同且均可视为质点。绝缘细线长 L 0.25m,一端固定于 O 点,另一端和小球 B 相连接,细线能承受的最大拉力为 276N 。整个装置处于竖直向下的匀强电场中,场强大小 E 500N/C ,小球 B 静止于最

高中物理选择性必修一第一章 动量守恒定律 单元测试(含答案)

高中物理选择性必修一第一章  动量守恒定律 单元测试(含答案)

高中物理选择性必修一第一章一、选择题(1-7单选题,8-10多选题)1.2024年春天,中国航天科技集团研制的50kW级双环嵌套式霍尔推力器,成功实现点火并稳定运行,标志着我国已跻身全球嵌套式霍尔电推进技术领先行列。

嵌套式霍尔推力器不用传统的化学推进剂,而是使用等离子体推进剂,它的一个显著优点是“比冲”高。

比冲是航天学家为了衡量火箭引擎燃料利用效率引入的一个物理量,英文缩写为I sp,是单位质量的推进剂产生的冲量,比冲这个物理量的单位应该是( )A.m/s B.kg⋅m/s2C.m/s2D.N⋅s2.物理在生活和生产中有广泛应用,以下实例没有利用反冲现象的是( )A.乌贼喷水前行B.电风扇吹风C.火箭喷气升空D.飞机喷气加速3.如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。

关于上述过程,下列说法中正确的是( )A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小不相等4.人从高处跳到较硬的水平地面时,为了安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( )A.减小地面对人的冲量B.减小人的动量的变化C.增加人对地面的冲击时间D.增大人对地面的压强5.在光滑的水平面上,质量为m1的小球以速率v0向右运动。

在小球的前方有一质量为m2的小球处于静止状态,如图所示,两球碰撞后粘合在一起,两球继续向右运动,则两球碰撞后的速度变为( )A.仍为v0B.m1v0(m1+m2)C.m2v0(m1+m2)D.v0(m1+m2)6.重量为mg的物体静止在水平地面上,物体与地面之间的最大静摩擦力为F m,从0时刻开始,物体受到水平拉力F的作用,F与时间t的关系如图a所示,为了定性地表达该物体的运动情况,在图b所示的图象中,纵轴y应为该物体的()A.动量大小P B.加速度大小a C.位移大小xD.动能大小E k7.一质量为0.1kg的小球自t=0时刻从水平地面上方某处自由下落,小球与地面碰后反向弹回,不计空气阻力,也不计小球与地面弹性碰撞的时间,小球距地面的高度h与运动时间t关系如图所示,取g=10m/s2.则()A .小球第一次与地面弹性碰撞后的最大速度为10m /sB .小球与地面弹性碰撞前后动量守恒C .小球第一次与地面弹性碰撞时机械能损失了19JD .小球将在t =6s 时与地面发生第四次弹性碰撞8.如图所示,质量为M 的带有四分之一光滑圆弧轨道的小车静止置于光滑水平面上,圆弧的半径为R(未知),一质量为m 的小球以速度v 0水平冲上小车,恰好达到圆弧的顶端,此时M 向前走了0.25R ,接着小球又返回小车的左端。

单元测试五 动量 动量守恒定律

单元测试五  动量  动量守恒定律

单元测试五动量动量守恒定律一、选择题1.关于两个物体的动能和动量的大小,下列说法正确的是 ( )A.若它们的动能相同,其中质量大的物体动量大B.若它们的动能相同,其中质量小的物体动量大C.若它们的动量相同,其中质量大的物体动能大D.若它们的动量相同,其中质量小的物体动能大2.质量不同而动能相同的两个物体,要使它们在相同的时间内静止下来,则( )A.必须给两物体施以相同的阻力B.必须给质量较大的物体施以较大的阻力c.必须给速度较大的物体施以较大的阻力D.上述说法都不对3.下列关于动量的说法中,正确的是 ( )A.物体受的力越大,其动量变化一定越大B.物体受的冲力越大,则物体受冲量后的动量也越大c.物体的速度大小不变,则其动量也一定保持不变,受到合外力的冲量一定为零D.以上说法都不对4.如图5—1所示,一辆小车静止在光滑水平面上,A、 B两人分别站在车的两端。

当两人同时相向运动时 ( )A.若小车不动,两人速率一定相等B.若小车向左运动,A的速率一定比B的小c.若小车向左运动,A的动量一定比B的大D.若小车向左运动.A的动量一定比B的小5.在以下几种情况中,属于动量守恒的有 ( )A.车原来静止,放于光滑水平面,车上的人从车头走到车尾的过程,由人和车组成的系统B.水平放置的弹簧一端固定,另一端与置于光滑水平面的物体相连,令弹簧伸长,使物体运动起来,由物体和弹簧车组成的系统c.子弹射穿一棵小树,子弹与小树组成的系统D.炮弹在空中爆炸,所有的弹片组成的系统6.物体沿固定的光滑斜面下滑,在全部下滑过程中 ( )A.重力做的功等于物体动能的增量B.重力的冲量等于物体动量的增量C.支持力的功为零D.支持力的冲量为零7.从距地面相同高度以相同的速率抛出A、B、C三个质量相同的球,A平抛、B竖直上抛,C竖直下抛,若不计空气阻力,三球从开始运动到落地的过程中 ( )A.B球动量变化最大,C球动量变化最小B.对C球重力的平均功率最大,对B球重力的平均功率最小C.三球动能变化相同D .三球动量变化大小相同8.一个质量为m=0.2kg 的小球从1.25m 的高处自由下落,落到一块厚软垫上,若小球从接触软垫到陷至最低点所用时间为O .20s ,则这段时间内软垫对小球的平均冲力的大小为[g 取lOm /s 2] ( )A .2NB .3NC .5N n 7N9.小平板车甲静止在光滑的水平面上,物体乙以水平初速度V O 由甲的一端,滑向另一端,如图5—2所示,由于甲和乙之间存在摩擦,因而乙滑上甲后,乙开始做减速运动,甲开始做加速运动(设甲足够长),则甲的速度达到最大时应发生在 ( )A .乙的速度最小时B .甲乙速度相等时C .乙在甲上停止滑动时D .甲开始做匀谏盲线运动时10.如图5—3所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,弹簧被压缩,现将子弹、木块和弹簧合在一起作为研究系统,则此系统在从子弹开始射人到弹簧被压缩到最短的整个过程中 ( )A .动量守恒,机械能守恒B .动量不守恒,机械能不守恒c .弹性势能由最大变到最小D .机械能由最大值变为稳定值二、填空题11.一木块静止在光滑水平面上,一颗子弹沿水平方向射人木块,子弹进入木块的最大深度为2cm ,在此过程中,木块沿水平地面移动了lcm ,则在这一过程中,子弹损失的动能与变热损失的动能之比为 。

《动量守恒定律》测试题(含答案)(1)

《动量守恒定律》测试题(含答案)(1)

《动量守恒定律》测试题(含答案)(1)一、动量守恒定律 选择题1.如图所示,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,固定在水平面上,导轨弯曲部分光滑,平直部分粗糙,右端接一个阻值为R 的定值电阻,平直部分导轨左侧区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场。

质量为m 、电阻也为R 的金属棒从高为h 处由静止释放,到达磁场右边界处恰好停止。

已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好,重力加速度为g ,则金属棒穿过磁场区域的过程中( )A .金属棒克服安培力做的功等于系统增加的内能B .金属棒克服安培力做的功为mghC .金属棒产生的电热为()12mg h d μ- D .金属棒在磁场中运动的时间为2222gh B L d g R mgμμ- 2.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动3.如图所示,将一光滑的、质量为4m 、半径为R 的半圆槽置于光滑水平面上,在槽的左侧紧挨着一个质量为m 的物块.今让一质量也为m 的小球自左侧槽口A 的正上方高为R 处从静止开始落下,沿半圆槽切线方向自A 点进入槽内,则以下结论中正确的是( )A .小球在半圆槽内第一次由A 到最低点B 的运动过程中,槽的支持力对小球做负功B.小球第一次运动到半圆槽的最低点B时,小球与槽的速度大小之比为41︰C.小球第一次在半圆槽的最低点B时对槽的压力为133 mgD.物块最终的动能为15mgR4.从高处跳到低处时,为了安全,一般都要屈腿(如图所示),这样做是为了()A.减小冲量B.减小动量的变化量C.增大与地面的冲击时间,从而减小冲力D.增大人对地面的压强,起到安全作用5.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a自由下落到b,再从b开始以恒力制动竖直下落到c停下.已知跳楼机和游客的总质量为m,ab 高度差为2h,bc高度差为h,重力加速度为g.则A.从a到b与从b到c的运动时间之比为2:1B.从a到b,跳楼机座椅对游客的作用力与游客的重力大小相等C.从a到b,跳楼机和游客总重力的冲量大小为m ghD.从b到c,跳楼机受到制动力的大小等于2mg6.如图所示,质量为M的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m的小物块从木板最右端以速度v0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。

(完整版)动量守恒定律练习题及答案

(完整版)动量守恒定律练习题及答案

(完整版)动量守恒定律练习题及答案动量守恒定律⼀、单选题(每题3分,共36分)1.下列关于物体的动量和动能的说法,正确的是 ( )A .物体的动量发⽣变化,其动能⼀定发⽣变化B .物体的动能发⽣变化,其动量⼀定发⽣变化C .若两个物体的动量相同,它们的动能也⼀定相同D .两物体中动能⼤的物体,其动量也⼀定⼤2.为了模拟宇宙⼤爆炸初期的情境,科学家们使⽤两个带正电的重离⼦被加速后,沿同⼀条直线相向运动⽽发⽣猛烈碰撞.若要使碰撞前重离⼦的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离⼦在碰撞前的瞬间具有 ( ) A .相同的速度 B .相同⼤⼩的动量 C .相同的动能 D .相同的质量3.质量为M 的⼩车在光滑⽔平⾯上以速度v 向东⾏驶,⼀个质量为m 的⼩球从距地⾯H ⾼处⾃由落下,正好落⼊车中,此后⼩车的速度将 ( ) A .增⼤ B .减⼩ C .不变 D .先减⼩后增⼤4.甲、⼄两物体质量相同,以相同的初速度在粗糙的⽔平⾯上滑⾏,甲物体⽐⼄物体先停下来,下⾯说法正确的是( ) A .滑⾏过程中,甲物体所受冲量⼤ B .滑⾏过程中,⼄物体所受冲量⼤C .滑⾏过程中,甲、⼄两物体所受的冲量相同D .⽆法⽐较5.A 、B 两刚性球在光滑⽔平⾯上沿同⼀直线、同⼀⽅向运动,A 球的动量是5kg·m /s ,B 球的动量是7kg·m /s ,当A 球追上B 球时发⽣碰撞,则碰撞后A 、B 两球的动量的可能值是 ( )A .-4kg·m/s 、14kg·m/sB .3kg·m/s 、9kg·m/sC .-5kg·m/s 、17kg·m/sD .6kg·m /s 、6kg·m/s6.质量为m 的钢球⾃⾼处落下,以速率1v 碰地,竖直向上弹回,碰撞时间极短,离地的速率为2v .在碰撞过程中,地⾯对钢球冲量的⽅向和⼤⼩为 ( )A .向下,12()m v v -B .向下,12()m v v +C .向上,12()m v v -D .向上,12()m v v +7.质量为m 的α粒⼦,其速度为0v ,与质量为3m 的静⽌碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,⽽碳核获得的速度为 ( ) A .06v B .20v C .02v D .03v 8.在光滑⽔平⾯上,动能为0E ,动量⼤⼩为0P 的⼩钢球1与静⽌的⼩钢球2发⽣碰撞,碰撞前后球1的运动⽅向相反,将碰撞后球1的动能和动量的⼤⼩分别记作1E 、1P ,球2的动能和动量的⼤⼩分别记为2E 、2P ,则必有 ( ) ①1E <0E ②1P <0P ③2E >0E ④2P >0PA .①② B.①③④ C.①②④ D.②③9.质量为1.0kg 的⼩球从⾼20 m 处⾃由下落到软垫上,反弹后上升的最⼤⾼度为5.O m .⼩球与软垫接触的时间是1.0s ,在接触的时间内⼩球受到的合⼒的冲量⼤⼩为(空⽓阻⼒不计,g 取10m/s 2) ( )A .10N·sB .20N·sC .30N·sD .40N·s10.质量为2kg 的物体,速度由4m /s 变成 -6m/s ,则在此过程中,它所受到的合外⼒冲量是 ( )A .-20N·s B.20N·s C .-4N·s D .-12N·s11.竖直向上抛出⼀个物体.若不计阻⼒,取竖直向上为正,则该物体动量随时间变化的图线是 ( )12.⼀颗⽔平飞⾏的⼦弹射⼊⼀个原来悬挂在天花板下静⽌的沙袋并留在其中和沙袋⼀起上摆.关于⼦弹和沙袋组成的系统,下列说法中正确的是 ( )A .⼦弹射⼊沙袋过程中系统动量和机械能都守恒B .⼦弹射⼊沙袋过程中系统动量和机械能都不守恒C .共同上摆阶段系统动量守恒,机械能不守恒D .共同上摆阶段系统动量不守恒,机械能守恒⼆、多选题(每题4分,共16分)13.下列情况下系统动量守恒的是 ( )A .两球在光滑的⽔平⾯上相互碰撞 B .飞⾏的⼿榴弹在空中爆炸C .⼤炮发射炮弹时,炮⾝和炮弹组成的系统D .⽤肩部紧紧抵住步枪枪托射击,枪⾝和⼦弹组成的系统14.两物体相互作⽤前后的总动量不变,则两物体组成的系统⼀定 ( )A .不受外⼒作⽤B .不受外⼒或所受合外⼒为零C .每个物体动量改变量的值相同D .每个物体动量改变量的值不同15.从⽔平地⾯上⽅同⼀⾼度处,使a 球竖直上抛,使b 球平抛,且两球质量相等,初速度⼤⼩相同,最后落于同⼀⽔平地⾯上.空⽓阻⼒不计.下述说法中正确的是 ( )A .着地时的动量相同B .着地时的动能相同C .重⼒对两球的冲量相同D .重⼒对两球所做的功相同16.如图所⽰,固定的光滑斜⾯倾⾓为θ.质量为m 的物体由静⽌开始从斜⾯顶端滑到底端,所⽤时间为t .在这⼀过程中 ( )A .所受⽀持⼒的冲量为OB .所受⽀持⼒的冲量⼤⼩为cos mg t θ?C .所受重⼒的冲量⼤⼩为mgtD .动量的变化量⼤⼩为sin mg t θ?三、填空题(每题3分,共15分)17.以初速度0v =40m /s 竖直向上抛出的物体,质量为4kg (g=10m/s 2),则第2s 末的mv 的乘积为 kg·m/s ,第5s 末的mv 的乘积为 kg·m/s ,从第2s 末到第5s 末mv 的乘积变化量为 kg·m/s .这个过程mv 的乘积,机械能.(填“守恒.”或“不守恒”)18.质量为150 kg 的⼩车以2m/s 的速度在光滑⽔平道路上匀速前进,质量为50 kg 的⼈以⽔平速度4m/s 迎⾯跳上⼩车后,⼩车速度为 m/s .19.在光滑的⽔平轨道上,质量为2kg 的A 球以5m/s 的速度向右运动,质量为3kg 的B 球以 l m/s 的速度向左运动,⼆者迎⾯相碰撞,设碰撞中机械能不损失,那么碰撞后,A 球的速度⼤⼩为,⽅向;B 球的速度⼤⼩为,⽅向。

动量守恒定律单元检测附答案

动量守恒定律单元检测附答案

动量守恒定律单元测试 一.选择题(共14小题)1.(多选)质量为m的物块甲以3m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4m/s的速度与甲相向运动,如图所示,则( )A.甲、乙两物块在弹簧压缩过程中,动量守恒B.当两物块相距最近时,物块甲的速率为零C.当物块甲的速率为1m/s时,物块乙的速率可能为2m/s,也可能为0D.物块甲的速率可能达到5m/s2.如图所示,质量为M的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,开始时木块静止在A位置.现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,则当木块回到A位置时的速度v以及此过程中墙对弹簧的冲量I的大小分别为( )A.v=,I=0 B.v=,I=2mv0C.v=,I= D.v=,I=2mv0﹣图象如图所示,其中OA和BC段为抛物线,AB段为直线并3.一物体做直线运动的x t且与两段抛物线相切.物体的加速度、速度、动能、动量分别用a、v、E k、P表示,下列表示这些物理量的变化规律可能正确的是( )A. B.C. D.4.如图所示,质量为 m 的小滑块(可视为质点),从 h 高处的 A 点由静止开始沿斜面下滑,停在水平地面上的 B 点(斜面和水平面之间有小圆弧平滑连接).要使物体能原路返回,在 B 点需给物体的瞬时冲量最小应是( )A.2m B.m C.D.4m5.(多选)将质量相等的三只小球A、B、C从离地同一高度以大小相同的初速度分别上抛下抛、平抛出去,空气阻力不计,那么,有关三球动量和冲量的情况是( )A.三球刚着地时的动量大小相同B.三球刚着地时的动量各不相同C.三球从抛出到落地时间内,受重力冲量最大的是A球,最小的是B球D.三球从抛出到落地时间内,受重力冲量均相同6.(多选)测量运动员体能的装置如图所示,质量为m1的运动员将绳拴在腰间并沿水平方向跨过滑轮(不计滑轮质量及摩擦),下端悬吊一个m2的重物,人用力向后蹬传送带,而人的重心不动,使传送带以v的速率向后运动,则不正确的是( )A.人对传送带不做功B.传送带对人的冲量等于零C.人对传送带做功的功率m2gv D.人对传送带做功的功率m1gv7.(多选)如图所示,放在光滑水平桌面上的A、B两小木块中部夹一被压缩的轻弹簧,当轻弹簧被放开时,A、B两小木块各自在桌面上滑行一段距离后,飞离桌面落在地面上若m A=3m B,则下列结果正确的是( )A.若轻弹簧对A、B做功分别为W1和W2,则有W1:W2=1:1B.在与轻弹簧作用过程中,两木块的速度变化量之和不为零C.若A、B在空中飞行时的动量变化量分别为△p1和△p2,则有△p1:△p2=1:1D.若A、B同时离开桌面,则从释放轻弹簧开始到两木块落地的这段时间内,A、B两木块的水平位移大小之比为l:38.如图所示,在光滑水平面上放置一个质量为M的滑块,滑块的一侧是一个1/4弧形凹槽OAB,凹槽半径为R,A点切线水平.另有一个质量为m的小球以速度v0从A点冲上凹槽,重力加速度大小为g,不计摩擦.下列说法中正确的是( )A.当时,小球能到达B点B.如果小球的速度足够大,球将从滑块的左侧离开滑块后落到水平面上C.当时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大D.如果滑块固定,小球返回A点时对滑块的压力为9.在光滑的水平地面上水平放置着足够长的质量为M的木板,其上放置着质量为m带正电的物块(电量保持不变),两者之间的动摩擦因数恒定,且M>m,空间存在着足够大的方向垂直于纸面向里的匀强磁场,某时刻开始它们以大小相同的速度相向运动,如图,取向右为正方向,则下列图象可能正确反映它们以后运动的是( )A.B.C.D.10.(多选)如图所示,轻弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m的小物块从槽高h处开始自由下滑,下列说法正确的是( )A.在下滑过程中,物块的机械能守恒B.在下滑过程中,物块和槽的动量守恒C.物块被弹簧反弹后,做匀速直线运动D.物块被弹簧反弹后,不能回到槽高h处11.如图,质量为3kg的木板放在光滑水平面上,质量为1kg的物块在木板上,它们之间有摩擦力,木板足够长,两者都以4m/s的初速度向相反方向运动,当木板的速度为2.4m/s 时,物块( )A.加速运动B.减速运动C.匀速运动D.静止不动12.质量为m的均匀木块静止在光滑水平面上,木块左右两侧各有一位拿着完全相同步枪和子弹的射击手.左侧射手首先开枪,子弹相对木块静止时水平射入木块的最大深度为d1,然后右侧射手开枪,子弹相对木块静止时水平射入木块的最大深度为d2,如图所示.设子弹均未射穿木块,且两颗子弹与木块之间的作用力大小均相等.当两颗子弹均相对于木块静止时,下列判断正确的是( )A.木块静止,d1=d2B.木块向右运动,d1<d2C.木块静止,d1<d2D.木块向左运动,d1=d2二.实验题(共1小题)13.某物理兴趣小组利用如图1所示的装置进行实验.在足够大的水平平台上的A点放置一个光电门,水平平台上A点右侧摩擦很小可忽略不计,左侧为粗糙水平面,当地重力加速度大小为g.采用的实验步骤如下:①在小滑块a上固定一个宽度为d的窄挡光片;②用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b;③在a和b间用细线连接,中间夹一被压缩了的轻弹簧,静止放置在平台上;④细线烧断后,a、b瞬间被弹开,向相反方向运动;⑤记录滑块a通过光电门时挡光片的遮光时间t;⑥滑块a最终停在C点(图中未画出),用刻度尺测出AC之间的距离S a;⑦小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面的高度h及平台边缘铅垂线与B点之间的水平距离S b;⑧改变弹簧压缩量,进行多次测量.(1)该实验要验证“动量守恒定律”,则只需验证 = 即可.(用上述实验数据字母表示)(2)改变弹簧压缩量,多次测量后,该实验小组得到S a与的关系图象如图2所示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为 .(用上述实验数据字母表示)三.计算题(共4小题)14.如图所示,左端带有挡板P的长木板质量为m,置于光滑水平面上,劲度系数很大的轻弹簧左端与P相连,弹簧处于原长时右端在O点,木板上表面O点右侧粗糙、左侧光滑若将木板固定,质量也为m的小物块以速度v0从距O点L的A点向左运动,与弹簧碰撞后反弹,向右最远运动至B点,OB的距离为3L,已知重力加速度为g.(1)求物块和木板间动摩擦因数μ及上述过程弹簧的最大弹性势能E p.(2)解除对木板的固定,物块仍然从A点以初速度v0向左运动,由于弹簧劲度系数很大,物块与弹簧接触时间很短可以忽略不计,物块与弹簧碰撞后,木板与物块交换速度.①求物块从A点运动到刚接触弹簧经历的时间t;②物块最终离O点的距离x.15.如图所示,一条不可伸长的轻绳长为R,一端悬于天花板上的O点,另一端系一质量为m的小球(可视为质点).现有一个高为h,质量为M的平板车P,在其左端放有一个质量也为m的小物块Q(可视为质点),小物块Q正好处在悬点O的正下方,系统静止在光滑水平面地面上.今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时刚好与Q发生正碰,碰撞时间极短,且无能量损失.已知Q离开平板车时的速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?16.如图所示,在光滑的水平地面的左端连接一半径为R的光滑圆形固定轨道,在水平面质量为M=3m的小球Q连接着轻质弹簧,处于静止状态.现有一质量为m的小球P从B点正上方h=R高处由静止释放,求:(1)小球P到达圆形轨道最低点C时的速度大小和对轨道的压力;(2)在小球P压缩弹簧的过程中,弹簧具有的最大弹性势能;(3)若球P从B上方高H处释放,恰好使P球经弹簧反弹后能够回到B点,则高度H 的大小.17.如图,质量为M=2.0kg的小车静止在光滑水平面上,小车AB部分是半径为R=0.4m的四分之一圆弧光滑轨道,BC部分是长为L=0。

《动量守恒定律》测试题(含答案)

《动量守恒定律》测试题(含答案)

《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.如图所小,在粗糙水平面上,用水平轻绳相连的两个相同物体P 和Q ,质量均为m ,在水平恒力F 作用下以速度v 做匀速运动.在t =0时轻绳断开,Q 在F 的作用下继续前进,则下列说法正确的是( )A .t =0至2mv t F =时间内,P 、Q 的总动量守恒 B .t =0至3mv t F =时间内,P 、Q 的总动量守恒 C .4mv t F =时,Q 的动量为3mv D .3mv t F =时,P 的动量为32mv 2.如图所示,两滑块A 、B 位于光滑水平面上,已知A 的质量M A =1k g ,B 的质量M B =4k g .滑块B 的左端连有轻质弹簧,弹簧开始处于自由伸长状态.现使滑块A 以v =5m/s 速度水平向右运动,通过弹簧与静止的滑块B 相互作用(整个过程弹簧没有超过弹性限度),直至分开.则( )A .物块A 的加速度一直在减小,物块B 的加速度一直在增大B .作用过程中弹簧的最大弹性势能2J p E =C .滑块A 的最小动能为 4.5J KA E =,滑块B 的最大动能为8J KB E =D .若滑块A 的质量4kg A M =,B 的质量1kg B M =,滑块A 的最小动能为18J KAE =,滑块B 的最大动能为32J KB E =3.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++4.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽5.如图所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 紧靠竖直墙.用水平力向左推B 将弹簧压缩,推到一定位置静止时推力大小为F 0,弹簧的弹性势能为E .在此位置突然撤去推力,下列说法中正确的是( )A .在A 离开竖直墙前,A 、B 与弹簧组成的系统机械能守恒,之后不守恒B .在A 离开竖直墙前,A 、B 系统动量不守恒,之后守恒C .在A 离开竖直墙后,A 、B 速度相等时的速度是223E m D .在A 离开竖直墙后,弹簧的弹性势能最大值为3E 6.如图所示,在光滑的水平面上放有一质量为M 的物体P ,物体P 上有一半径为R 的光滑四分之一圆弧轨道, 现让质量为m 的小滑块Q (可视为质点)从轨道最高点由静止开始下滑至最低点的过程中A .P 、Q 组成的系统动量不守恒,机械能守恒B .P 移动的距离为m M m+R C .P 、Q 组成的系统动量守恒,机械能守恒 D .P 移动的距离为M m M +R 7.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv 2023mv B .20mv 2032mvC.212mv232mv D.223mv256mv8.在光滑水平面上,有两个小球A、B沿同一直线同向运动(B在前),已知碰前两球的动量分别为pA=10 kg·m/s、pB=13 kg·m/s,碰后它们动量的变化分别为ΔpA、ΔpB.下列数值可能正确的是( )A.ΔpA=-3 kg·m/s、ΔpB=3 kg·m/sB.ΔpA=3 kg·m/s、ΔpB=-3 kg·m/sC.ΔpA=-20 kg·m/s、ΔpB=20 kg·m/sD.ΔpA=20kg·m/s、ΔpB=-20 kg·m/s9.如图,斜面体固定在水平面上,斜面足够长,在斜面底端给质量为m的小球以平行斜面向上的初速度1v,当小球回到出发点时速率为2v。

第一章《动量守恒定律》测试题(含答案)-高二上学期物理人教版(2019)选择性必修第一册

第一章《动量守恒定律》测试题(含答案)-高二上学期物理人教版(2019)选择性必修第一册

第一章《动量守恒定律》测试题一、单选题1.质量为M的小孩站在质量为m的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v,此时滑板的速度大小为.A.mvMB.M vmC.m vm M+D.M vm M+2.两个具有相等动量的物体,质量分别为m1和m2,且m1>m2,则()A.m2动能较大B.m1动能较大C.两物体动能相等D.无法判断3.静止在水平地面上的平板车,当一人在车上行走时,下列说法正确的是()A.只有当地面光滑时,人和小车组成的系统的动量才守恒B.无论地面是否光滑,人和小车组成的系统的动量都守恒C.只有当小车的表面光滑时,人和小车组成的系统的动量才守恒D.无论小车的表面是否光滑,人和小车组成的系统的动量都守恒4.一炮艇总质量为M,一速度v0匀速行驶,从炮艇上以相对海岸的水平速度v向前进方向射出一质量为m的炮弹,发射炮弹后炮艇的速度为v,,若不计水的阻力,则下列关系式中正确的是()A.Mv0=(M-m)v,+mv B.Mv0=(M-m)v,+m(v+v0)C.Mv0=(M-m)v,+m(v+v,)D.Mv0=Mv,+mv5.下列关于力的冲量和动量的说法中,正确的是()A.物体所受的合力为零,它的动量一定为零B.物体所受的合外力的冲量为零,它的动量变化一定为零C.物体所受的合力外的做的功为零,它的动量变化一定为零D.物体所受的合外力不变,它的动量一定不变6.地动仪是世界上最早的感知地震装置,由我国杰出的科学家张衡在洛阳制成,早于欧洲1700多年如图所示,为一现代仿制的地动仪,龙口中的铜珠到蟾蜍口的距离为h,当感知到地震时,质量为m的铜珠(初速度为零)离开龙口,落入蟾蜍口中,与蟾蜍口碰撞的时间约为t,则铜珠对蟾蜍口产生的冲击力大小约为()Amg BCDmg 7.质量为m 的木箱放置在光滑的水平地面上,在与水平方向成θ角的恒定拉力F 作用下由静止开始运动,经过时间t 速度变为v ,则在这段时间内拉力F 与重力的冲量大小分别为( )A .Ft , 0B .Ft , mgtC .mv , mgtD .Ft cos θ, 08.一位质量为m 的运动员从下蹲状态向上起跳,经Δt 时间,身体伸直并刚好离开地面,速度为v ,在此过程中( )A .地面对他的冲量为mv +mg Δt ,地面对他做的功为12mv 2B .地面对他的冲量为mv +mg Δt ,地面对他做的功为零C .地面对他的冲量为mv ,地面对他做的功为12mv 2D .地面对他的冲量为mv -mg Δt ,地面对他做的功为零9.某火箭模型含燃料质量为M ,点火后在极短时间内相对地面以速度大小v 0竖直向下喷出一定质量的气体,火箭模型获得的速度大小为v ,忽略喷气过程中重力和空气阻力的影响,则喷出的气体质量为( )A .0Mv vB .0Mv v v +C .0Mv v v -D .02Mv v v + 10.如图所示,木块A 和木块B 用一根弹性良好的轻弹簧连在一起,置于光滑水平面上,一颗子弹水平射入木块A 并留在A 中,则在子弹打击木块A 及弹簧压缩的过程中,对子弹、两木块和弹簧组成的系统( )A .动量守恒,机械能守恒B .动量不守恒,机械能守恒C .动量守恒,机械能不守恒D .无法判断动量、机械能是否守恒11.如图所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短,则下图列说法中正确的是( )A.从子弹开始射入木块到弹簧压缩至最短的全过程中,子弹与木块组成的系统动量守恒B.子弹射入木块的短暂过程中,子弹与木块组成的系统动量守恒C.从子弹开始射入木块到弹簧压缩至最短的过程中,子弹、木块和弹簧组成的系统动量守恒D.若水平桌面粗糙,子弹射入木块的短暂过程中,子弹与木块组成的系统动量不守恒12.如图所示,是某游乐园的标志性设施一一摩天轮。

动量守恒定律测试题

动量守恒定律测试题

动量守恒定律1.物体在运动过程中,()A.动能变时,动量不一定变B.动能变时,动量一定变C.动量变时,动能一定变D.动量不变时,动能一定不变2.将0.5kg小球以10m/s的速度竖直向上抛出,在3s内(小球未落地)小球的动量变化的大小等于________kg·m/s,方向__________。

3.质量为m的物体以速度v做匀速圆周运动。

当物体转过的角度为π的过程中其动量的变化为_______,其向心力的冲量为__________。

4.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2,在碰撞过程中,地面对钢球的冲量的方向和大小为()A.向下,m (v1- v2)B.向下,m (v1+v2)C.向上,m (v1- v2)D.向上,m (v1+ v2)5.如图所示,质量为m的物体在与水平方向成θ角的拉力F的作用下匀速前进了时间t,则A.地面支持力对物体的冲量大小(mg-Fsinθ)tB.拉力对物体的冲量大小为FtcosθC.摩擦力对物体的冲量大小为FtD.合外力对物体的冲量大小为Ft6.关于冲量、动量与动量变化的下述说法中正确的是()A.物体的动量等于物体所受外力的冲量B.物体动量变化的大小与所受外力的冲量大小相等C.物体动量变化的方向与所受外力的冲量方向相同D.物体的动量变化方向与物体末动量的方向相同7.物体在水平恒力作用下,在水平面上由静止开始运动。

经过时间t撤去F,物体继续再前进3t后停止运动。

若路面情况相同,则物体的摩擦力和最大动量是:A.f=F/3,pmax =4Ft B.f=F/3,pmax=FtC.f=F/4,pmax =Ft/3D.f=F/4,pmax=3Ft/48.A、B两个相互作用的物体,在相互作用的过程中合外力为0,则下列说法中正确的是()A.若A的动量变大,B的动量一定变大B.若A的动量变大,B的动量一定变小C.A和B的动量变化相等D.若A与B受到的冲量大小相等9.一质量为100g的小球从0.80m高处自由下落到一厚软垫上。

动量定理动量守恒定律

动量定理动量守恒定律

第四十一讲:冲量 动量 动量定理一、单选题 1.关于物体的动量和冲量,下列说法中正确的是( )A .物体所受合外力的冲量越大,它的动量也越大B .物体所受合外力的冲量不为零,它的动量一定要改变C .物体的动量的方向,就是它所受合外力的冲量的方向D .物体所受的合外力越大,它的动量变化越大2.一个物体在下述运动中,动量不发生变化的是( )A .匀加速直线运动B .斜向上抛运动C .匀速圆周运动D .匀速直线运动 3.如图所示,一物体在与水平成θ角的拉力F 作用下匀速前进了时间t ,则( )A .拉力F 对物体的冲量大小为FtB .拉力F 对物体的冲量大小为Ft cos θC .合外力对物体的冲量大小为FtD .合外力对物体的冲量大小为Ft sin θ 4.一质量为2kg 的物块在水平力F 的作用下由静止开始在水平地面上做直线运动。

F 随时间t 变化的图线如图所示,已知物块与地面间的动摩擦因数为0.1,重力加速度g 取210m s 。

则( )A .2s =t 时物块的动量大小为2kg m s ⋅B .3s t =时物块的速度大小为1m s ,方向向右C .04s ~时间内F 对物块的冲量大小为6N s ⋅D .04s ~时间内物体的位移为3m 5.2022年卡塔尔世界杯于北京时间11月21日至12月18日举行。

在葡萄牙对阵乌拉圭的比赛中,著名球星C 罗接队友传中,跳起头球打门,为葡萄牙打进关键一球。

设C 罗的质量为m ,从静止下蹲状态向上起跳,经t ∆时间,身体伸直并刚好离开地面,速度为v ,重力加速度大小为g ,在此过程中( )A .地面对他的冲量大小为mg t △B .地面对他的冲量大小为mv mg t +∆C .地面对他的冲量大小为mvD .地面对他的冲量大小为mv mg t -∆6.物体仅受到方向不变的力F 作用由静止开始运动,力的大小随时间的变化规律为4F t =(F 的单位是N ),则( )A .力F 在第1s 内的冲量大小为2N s ⋅B .力F 在第1s 内的冲量大小为4N s ⋅C .2s 末物体的动量大小为4kg m /s ⋅D .2s 末物体的动量大小为16kg m /s ⋅ 7.如图所示,一物体分别沿三个倾角不同的光滑斜面由静止开始从顶端下滑到底端C 、D 、E 处,三个过程中重力的冲量依次为I 1、I 2、I 3,动量变化量的大小依次为1Δp 、2Δp 、3Δp ,则有( )A .三个过程中,合力的冲量不相等,动量的变化量相等B .三个过程中,合力做的功相等,动能的变化量不相等C .123I I I <<,312ΔΔΔp p p ==D .123I I I <<,123Δp p p <∆<∆8.如图所示,我国自行研制的第五代隐形战机“歼—20”以速度v 0水平向右匀速飞行,到达目标地时,将质量为M 的导弹自由释放,导弹向后喷出质量为m 、对地速率为v 1的燃气,则喷气后导弹的速率为( )A .01Mv mv M m +-B .01Mv mv M m --C .1Mv mv M 0-D .01Mv mv M+ 9.我国新型电动汽车迅猛发展,一新型电动汽车在水平路面上进行测试时,汽车由静止以恒定的加速度启动,在汽车做匀加速直线运动的时间内,下列关于汽车的动量大小p 和汽车的速度大小v 、运动时间t 、位移大小x 的关系图像,可能正确的是( )A .B .C .D .10.水流射向物体,会对物体产生冲击力。

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)

动量守恒定律试题(含答案)一、动量守恒定律 选择题1.四个水球可以挡住一颗子弹!如图所示,是央视《国家地理》频道的实验示意图,直径相同(约30cm 左右)的4个装满水的薄皮气球水平固定排列,子弹射入水球中并沿水平线做匀变速直线运动,恰好能穿出第4个水球,气球薄皮对子弹的阻力忽略不计。

以下判断正确的是( )A .子弹在每个水球中的速度变化相同B .每个水球对子弹做的功不同C .每个水球对子弹的冲量相同D .子弹穿出第3个水球的瞬时速度与全程的平均速度相等 2.如图所示,用长为L 的细线悬挂一质量为M 的小木块,木块处于静止状态.一质量为m 、速度为v 0的子弹自左向右水平射穿木块后,速度变为v .已知重力加速度为g ,则A .子弹刚穿出木块时,木块的速度为0()m v v M - B .子弹穿过木块的过程中,子弹与木块组成的系统机械能守恒C .子弹穿过木块的过程中,子弹与木块组成的系统动量守恒D .木块上升的最大高度为2202mv mv Mg- 3.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。

已知物块a 、b 与木板间的摩擦因数分别为a μ、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。

下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落C .若032a v gL μ≤ab 一定不相碰D .若2b a μμ>,则a 可能从木板左端滑落4.如图所示,长木板A 放在光滑的水平面上,质量为m =4kg 的小物体B 以水平速度v 0=2m/s 滑上原来静止的长木板A 的表面,由于A 、B 间存在摩擦,之后A 、B 速度随时间变化情况如图乙所示,取g=10m/s 2,则下列说法正确的是( )A .木板A 获得的动能为2JB .系统损失的机械能为2JC .A 、B 间的动摩擦因数为0.1D .木板A 的最小长度为2m5.平静水面上停着一只小船,船头站立着一个人,船的质量是人的质量的8倍.从某时刻起,人向船尾走去,走到船中部时他突然停止走动.不计水对船的阻力,下列说法正确的是( )A .人在船上走动过程中,人的动能是船的动能的8倍B .人在船上走动过程中,人的位移是船的位移的9倍C .人走动时,它相对水面的速度大于小船相对水面的速度D .人突然停止走动后,船由于惯性还会继续运动一小段时间6.如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4kg ,m B =2kg ,速度分别是v A =3m/s (设为正方向),v B =-3m/s .则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/sB .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s7.如图所示,左图为大型游乐设施跳楼机,右图为其结构简图.跳楼机由静止从a 自由下落到b ,再从b 开始以恒力制动竖直下落到c 停下.已知跳楼机和游客的总质量为m ,ab 高度差为2h ,bc 高度差为h ,重力加速度为g .则A .从a 到b 与从b 到c 的运动时间之比为2:1B .从a 到b ,跳楼机座椅对游客的作用力与游客的重力大小相等C .从a 到b ,跳楼机和游客总重力的冲量大小为m ghD .从b 到c ,跳楼机受到制动力的大小等于2mg8.如图所示,小车质量为M ,小车顶端为半径为R 的四分之一光滑圆弧,质量为m 的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g 为当地重力加速度)( )A .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为mgB .若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为32mg C .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR m M M m + D .若地面光滑,当小球滑到圆弧最低点时,小车速度为2()gR Mm M m + 9.如图,质量为m 的小木块从高为h 的质量为M 的光滑斜面体顶端滑下,斜面体倾角为θ,放在光滑水平面上,m 由斜面体顶端滑至底端的过程中,下列说法正确的是A .M 、m 组成的系统动量守恒B .M 移动的位移为()tan mh M m θ+ C .m 对M 做功为222cos ()(sin )Mm gh M m M m θθ++ D .m 对M 做功为222sin ()(cos )Mm gh M m M m θθ++ 10.如图所示,A 、B 、C 是三级台阶的端点位置,每一级台阶的水平宽度是相同的,其竖直高度分别为h 1、h 2、h 3,将三个相同的小球分别从A 、B 、C 三点以相同的速度v 0水平抛出,最终都能到达A 的下一级台阶的端点P 处,不计空气阻力。

动量守恒定律章末测试题及答案

动量守恒定律章末测试题及答案

第十六章《动量守恒定律》章末检测试题班级姓名一、选择题(每题答案全对4分,1-—9单选,10--12多选)1、下列关于系统动量守恒说法正确的是:A.若系统内存在着摩擦力,系统的动量的就不守恒B.若系统中物体具有加速度,系统的动量就不守恒C.若系统所受的合外力为零,系统的动量就守恒D.若系统所受外力不为零,系统的动量就守恒2、把一支枪固定在小车上,小车放在光滑的水平桌面上.枪发射出一颗子弹.对于此过程,下列说法中正确的有A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.车、枪和子弹组成的系统近似动量守恒,因为子弹和枪筒之间有f.且f 的冲量甚小D.车、枪和子弹组成的系统动量守恒3。

甲、乙两球在光滑水平面上发生碰撞。

碰撞前,甲球向左运动,乙球向右运动,碰撞后一起向右运动,由此可以判断:( )A.甲的质量比乙小B.甲的初速度比乙小C.甲的初动量比乙小D.甲的动量变化比乙小4、炮弹的质量为m,装好炮弹的大炮总质量为M,炮弹出口时相对地面的速度为v,炮弹与水平方向夹角为α,如果不考虑炮车与水平地面的摩擦,则射击时炮车的后退速度为( )A。

mv/(M—m) B.mvcosα/M C。

mv/M D.mvcosα/(M-m)5.如图3所示,设车厢长度为L,质量为M,静止于光滑的水平面上,车厢内有一质量为m的物体以初速度v0向右运动,与车厢壁来回碰撞n次后,静止mv0图3在车厢中。

这时车厢的速度是()A。

v0水平向右 B。

0C.mv0/(M+m),水平向右.D.mv0/(M—m),水平向右乙6.、质量为2kg的物体以2m/s的速度作匀变速直线运动,经过2s后其动量大小变为8kg。

m/s,则关于该物体说法错误的是( )A.所受合外力的大小可能等于2NB.所受合外力的大小可能等于6NC.所受冲量可能等于12N。

sD.所受冲量可能等于20N。

s7、两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1 kg m B=2 kg,v A=6m/s,v B=2 m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A.v A′=5 m/s,v B′=2.5 m/s B.v A′=2 m/s,v B′=4 m/sC.v A′=-4 m/s,v B′=7 m/s D.v A′=7 m/s, v B′=1.5 m/s8.在光滑的水平面上,两个质量均为m的完全相同的滑块以大小均为P的动量相向运动, 发生正碰,碰后系统的总动能不可能是A.0 B.错误!C.错误!D.错误!9.如图所示,质量为m的小车静止于光滑水平面上,车上有一光滑的弧形轨道,另一质量为m的小球以水平初速沿轨道的右端的切线方向进入轨道,则当小球再次从轨道的右端离开轨道后,将作( )A.向左的平抛运动;B.向右的平抛运动;C.自由落体运动;D.无法确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒定律测试题一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.如图,质量分别为m 1=1.0kg 和m 2=2.0kg 的弹性小球a 、b ,用轻绳紧紧的把它们捆在一起,使它们发生微小的形变.该系统以速度v 0=0.10m/s 沿光滑水平面向右做直线运动.某时刻轻绳突然自动断开,断开后两球仍沿原直线运动.经过时间t =5.0s 后,测得两球相距s =4.5m ,则刚分离时,a 球、b 球的速度大小分别为_____________、______________;两球分开过程中释放的弹性势能为_____________.【答案】①0.7m/s, -0.2m/s ②0.27J 【解析】试题分析:①根据已知,由动量守恒定律得联立得②由能量守恒得代入数据得考点:考查了动量守恒,能量守恒定律的应用【名师点睛】关键是对过程分析清楚,搞清楚过程中初始量与末时量,然后根据动量守恒定律与能量守恒定律分析解题3.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.4.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律5.用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氨(它们可视为处于静止状态).测得照射后沿铍“辐射”方向高速运动的氨核和氦核的质量之比为7:0.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假设铍“辐射”中的中性粒子与氢或氦发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u 表示,1u 等于1个12C 原子质量的十二分之一.取氢核和氦核的质量分别为1.0u 和14u .)【答案】m =1.2u 【解析】设构成铍“副射”的中性粒子的质量和速度分别为m 和v ,氢核的质量为m H .构成铍“辐射”的中性粒子与氢核发生弹性正碰,碰后两粒子的速度分别为v′和v H ′.由动量守恒与能量守恒定律得 mv =mv′+m H v H ′ ①12mv 2=12mv′2+12m H v H ′2② 解得v H ′=2Hmv m m +③同理,对于质量为m N 的氮核,其碰后速度为 V N ′=2Nmvm m +④由③④式可得 m =''''N N H H H N m v m v v v --⑤根据题意可知v H ′=7.0v N ′ ⑥将上式与题给数据代入⑤式得 m =1.2u ⑦6.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m 【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.7.光滑水平面上质量为1kg 的小球A ,以2.0m/s 的速度与同向运动的速度为1.0m/s 、质量为2kg 的大小相同的小球B 发生正碰,碰撞后小球B 以1.5m/s 的速度运动.求:(1)碰后A 球的速度大小;(2)碰撞过程中A 、B 系统损失的机械能. 【答案】 1.0/A v m s '=,0.25E J =损 【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度. (2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A 的初速度方向为正,由动量守恒定律得: m A v A +m B v B =m A v′A +m B v′B 代入数据解:v′A =1.0m/s②碰撞过程中A 、B 系统损失的机械能量为:代入数据解得:E 损=0.25J答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为0.25J .【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以正确解题,应用动量守恒定律解题时要注意正方向的选择.8.如图所示,带有14光滑圆弧的小车A 的半径为R ,静止在光滑水平面上.滑块C 置于木板B 的右端,A 、B 、C 的质量均为m ,A 、B 底面厚度相同.现B 、C 以相同的速度向右匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高处.则:(已知重力加速度为g ) (1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【答案】(1)023v gR =(2)123gRv =253gR v =【解析】本题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为v 0,AB 相碰过程中动量守恒,设碰后AB 总体速度u ,由02mv mu =,解得02v u =C 滑到最高点的过程: 023mv mu mu +='222011123222mv mu mu mgR +⋅=+'⋅ 解得023v gR =(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有01222mv mu mv mv +=+22220121111222222mv mu mv mv +⋅=+⋅解得:123gRv =,253gR v =9.如图甲所示,用半径相同的A 、B 两球的碰撞可以验证“动量守恒定律”.实验时先让质量为1m 的A 球从斜槽上某一固定位置C 由静止开始滚下,进入水平轨道后,从轨道末端水平抛出,落到位于水平地面的复写纸上,在下面的白纸上留下痕迹.重复上述操作10次,得到10个落点痕迹.再把质量为2m 的B 球放在水平轨道末端,让A 球仍从位置C 由静止滚下,A 球和B 球碰撞后,分别在白纸上留下各自的落点痕迹,重复操作10次.M 、P 、N 为三个落点的平均位置,未放B 球时,A 球的落点是P 点,O 点是水平轨道末端在记录纸上的竖直投影点,如图乙所示.(1)在这个实验中,为了尽量减小实验误差,两个小球的质量应满足______(填“>”或“<”).(2)除了图中器材外,实验室还备有下列器材,完成本实验还必须使用的两种器材是_____.A .秒表B .天平C .刻度尺D .打点计时器 (3)下列说法中正确的是_________.A .如果小球每次从同一位置由静止释放,每次的落点一定是重合的B .重复操作时发现小球的落点并不重合,说明实验操作中出现了错误C .用半径尽量小的圆把10个落点圈起来,这个圆的圆心可视为小球落点的平均位置D .仅调节斜槽上固定位置C ,它的位置越低,线段OP 的长度越大(4)在某次实验中,测量出两个小球的质量1m 、2m ,记录的落点平均位置M 、N 几乎与OP 在同一条直线上,测量出三个落点位置与O 点距离OM 、OP 、ON 的长度.在实验误差允许范围内,若满足关系式__________________,则可以认为两球碰撞前后在OP 方向上的总动量守恒;若碰撞是弹性碰撞,则还需满足的关系式是________________.(用测量的量表示)(5)某同学在做这个实验时,记录下小球三个落点的平均位置M 、P 、N ,如图丙所示.他发现M 和N 偏离了OP 方向.这位同学猜想两小球碰撞前后在OP 方向上依然动量守恒,他想到了验证这个猜想的办法:连接OP 、OM 、ON ,作出M 、N 在OP 方向上的投影点M '、N '.分别测量出OP 、OM '、ON '的长度.若在实验误差允许的范围内,满足关系式:_____则可以认为两小球碰撞前后在OP 方向上动量守恒.【答案】> BC C 112m OP m OM m ON =+ 222112m OP m OM m ON =+112m OP m OM m ON ''=+【解析】 【分析】 【详解】(1)为了防止入射球碰后反弹,应让入射球的质量大于被碰球的质量;(1)小球离开轨道后做平抛运动,小球在空中的运动时间相同,小球的水平位移与其初速度成正比,可以用小球的水平位移代替小球的初速度,实验需要验证:101122m v m v m v =+,因小球均做平抛运动,下落时间相同,则可知水平位移x =vt ,因此可以直接用水平位移代替速度进行验证,故有112m OP m OM m ON ⋅=⋅+⋅ ,实验需要测量小球的质量、小球落地点的位置,测量质量需要天平,测量小球落地点的位置需要毫米刻度尺,因此需要的实验器材有:BC ;(3)由于各种偶然因素,如所受阻力不同等,小球的落点不可能完全重合,落点应当比较集中,但不是出现了错误,故AB 错误;由于落点比较密集,又较多,每次测量距离很难,故确定落点平均位置的方法是最小圆法,即用尽可能最小的圆把各个落点圈住,这个圆的圆心位置代表落点的平均位置,故C 正确;仅调节斜槽上固定位置C ,它的位置越低,由于水平速度越小,则线段OP 的长度越小,故D 错误.故选C ; (4)若两球相碰前后的动量守恒,则101122m v m v m v =+,又012,,OP v t OM v t ON v t ===,代入得:112m OP m OM m ON ⋅=⋅+⋅,若碰撞是弹性碰撞,满足机械能守恒,则:222101122111222m v m v m v =+ ,代入得;222112m OP m OM m ON ⋅=⋅+⋅;(5)如图所示,连接OP 、OM 、ON ,作出M 、N 在OP 方向上的投影点M ′、N ′,如图所示;分别测量出OP 、OM ′、ON ′的长度.若在实验误差允许范围内,满足关系式112m OP m OM m ON ''⋅=⋅+⋅ 则可以认为两小球碰撞前后在OP 方向上动量守恒.10.如图所示,质量均为M =4 kg 的小车A 、B ,B 车上用轻绳挂有质量为m =2 kg 的小球C ,与B 车静止在水平地面上,A 车以v 0=2 m/s 的速度在光滑水平面上向B 车运动,相碰后粘在一起(碰撞时间很短).求:(1)碰撞过程中系统损失的机械能;(2)碰后小球C 第一次回到最低点时的速度大小. 【答案】(1) 4 J (2) 1.6 m/s 【解析】 【详解】解:(1)设A 、B 车碰后共同速度为1v ,由动量守恒得:012Mv Mv = 系统损失的能量为:220112 4 212E Mv Mv J -⨯==损 (2)设小球C 再次回到最低点时A 、B 车速为2v ,小球C 速度为3v ,对A 、B 、C 系统由水平方向动量守恒得:12322Mv Mv mv =+ 由能量守恒得:22212311122222Mv Mv mv ⨯=⨯+ 解得:3 1.6 /v m s =11.如图所示,在沙堆表面放置一长方形木块A ,其上面再放一个质量为m=0.10kg 的爆竹B ,木块的质量为M=6.0kg .当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm ,而木块所受的平均阻力为f=80N .若爆竹的火药质量以及空气阻力可忽略不计,g 取10m/s 2,求爆竹能上升的最大高度.【答案】60m h = 【解析】试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得211()02mg f h Mv -=-(1)爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有21mv Mv =(2)爆竹完后,爆竹做竖直上抛运动,故有222v g h =∆(3)联立三式可得:600h m ∆=考点:考查了动量守恒定律,动能定理的应用点评:基础题,比较简单,本题容易错误的地方为在A 下降过程中容易将重力丢掉12.如图所示,固定点O 上系一长L =0.6 m 的细绳,细绳的下端系一质量m =1.0 kg 的小球(可视为质点),原来处于静止状态,球与平台的B 点接触但对平台无压力,平台高h =0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现对物块M施予一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于小球的重力,而物块M落在水平地面上的C点,其水平位移x=1.2 m,不计空气阻力,g=10 m/s2.(1)求物块M碰撞后的速度大小;(2)若平台表面与物块M间的动摩擦因数μ=0.5,物块M与小球的初始距离为x1=1.3 m,求物块M在P处的初速度大小.【答案】(1)3.0m/s(2)7.0m/s【解析】试题分析:(1)碰后物块M做平抛运动,设其平抛运动的初速度为V① (2分)S = Vt ② (2分)得:=" 3.0" m/s ③ (2分)(2)物块与小球在B处碰撞,设碰撞前物块的速度为V1,碰撞后小球的速度为V2,由动量守恒定律:MV1= mV2+ MV ⑥ (2分)碰后小球从B处运动到最高点A过程中机械能守恒,设小球在A点的速度为V A:⑦(2分)小球在最高点时依题给条件有:⑧ (2分)由⑦⑧解得:V2=" 6.0" m/s ⑨ (1分)由③⑥⑨得:=" 6.0" m/s ⑩ (1分)物块M从P运动到B处过程中,由动能定理:⑾(2分)解得:=" 7.0" m/s ⑿(2分)考点:本题考查了平抛运动的规律、动量守恒定律、机械能守恒定律及动能定理的应用。

相关文档
最新文档