圣维南原理证明

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元圣维南原理简述

圣维南原理(Saint Venant ’s Principle )是弹性力学的基础性原理,是法国力学家圣维南于1855年提出的。其内容是:分布于弹性体上一小块面积(或体积)内的荷载所引起的物体中的应力,在离荷载作用区稍远的地方,基本上只同荷载的合力和合力矩有关;荷载的具体分布只影响荷载作用区附近的应力分布。还有一种等价的提法:如果作用在弹性体某一小块面积(或体积)上的荷载的合力和合力矩都等于零,则在远离荷载作用区的地方,应力就小得几乎等于零。不少学者研究过圣维南原理的正确性,结果发现,它在大部分实际问题中成立。因此,圣维南原理中“原理”二字,圣维南原理(Saint-Venant ’s Principle )表述如下:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。

圣维南原理是弹性力学的基础性原理,圣维南原理的证明一直是弹性力学重要的研究课题,在此通过ANSYS 软件工具,进行该原理的证明。

2. ANSYS 证明

当物体一小部分边界上的位移边界条件不能满足时,也可以应用圣维南原理得到用用的解答。例如,图1,2 所示构建的右端是固定端,则在该构件的右端,有边界条件()0,()0s s u u v v ====。这就是说,右端固定端的面力,静力等效于经过右端截面形心的力F 。结果仍然应该是在靠近两端处有显著的误差,而在离两端较远之处,误差是可以不计的。

考虑到在ANSYS 中建立约束条件的可行性,采用具有代表性的进行建模分析。

图1

图2

1) 创建有限元模型——柱形构件

为便于在两端面中心加载,选用四面体单元类型。由于ANSYS的单元类型是在不断发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。在ANSYS 15.0中,选用Solid-Tet-10 node 187单元类型。

根据常用材料属性表,选用弹性较好较为常用的低碳钢,弹性模量取EX=2.0E11,泊松比PRXY=0.25。为满足小边界条件,使L>>h,创建一个长、宽、高分别为1m,0.01m,0.01m的长方体,并对其进行自由网格划分,SmatSize 取6。建模及网格划分结果如下图3所示

图3 矩形截面直杆模型的ANSYS建模与网格划分

2、施加载荷并求解。

低碳钢的屈服极限为207MPa,取安全系数S=2时,计算可得,在不发生塑性变形的前提下,在断面可施加的最大力为:

Fmax=

62

*/(207*10*0.01/2)10.35

s A S N KN σ==

1)在柱形构件一端加上全自由度位移约束,另一端面中心加上沿X方向的F=5KN的集中力作用,求解。约束及载荷施加结果如图4所示。

图4 集中力及约束施加结果

2)在柱形构件一端加上全自由度位移约束,另一端面(与集中力作用端面相同)加上与集中力静力等效的P=5e7N的均布载荷作用,求解。约束及载荷施加结果如图5所示。

图5 均布载荷及约束施加结果

3、查看分析结果。

1)分别生成在柱形构件端面施加集中力与等效均布载荷情况下,各节点X 方向位移图以及位移分布变化曲线。如下图所示。

图6 集中力下各节点X方向位移图

图7均布载荷下各节点X方向位移图

2)分别生成在柱形构件端面施加集中力与等效均布载荷情况下,其平均应力分布图以及各节点处平均应力分布变化曲线。如下图所示。

图8集中力下所得平均应力分布图

图9均布载荷下所得平均应力分布图

图10均布载荷下所得平均应力分布图

在ANSYS后处理中,基于两端面中心的1117号节点和1122号节点,建立贯穿柱形构件中线的路径,并分别将X方向位移数值和平均应力数值映射到所创建的路径上。数值列表及分布曲线如下所示:

图11集中力下各节点处位移分布变化曲线

图12均布载荷下各节点处位移分布变化曲线

图13集中力下各节点处平均应力分布变化曲线

图14均布载荷下各节点处平均应力分布变化曲线

3) 基于其他有限元模型

同样道理,亦可建立满足一定长宽比的基本的圆柱、圆锥构件等,原理过程与柱形构建一致,在此不复赘述。

三、分析与总结

由图可知,所创建柱形构件在受到集中力及与其等效的均布载荷作用下,

其绝大部分平均应力数值均处于5000Pa左右,而且各节点处应力分布变化情况也基本一致,只在添加约束及受力端面处有明显变化。

故此矩形截面直杆两端受等效应力的实例结果,即验证了圣维南原理的正确性:作用在物体一端(次要边界或是小边界)的荷载,如果只改变应力分布而不改变合成,那么就只会显著改变该端附近的应力,在距离端部较远处相差甚微。

(注:范文素材和资料部分来自网络,供参考。只是收取少量整理收集费用,请预览后才下载,期待你的好评与关注)

相关文档
最新文档