吉林省四平市2018-2019学年新高一入学分班考试数学试卷-含解析
吉林省吉林一中2019年新高一上学期入学分班数学试卷-含解析
吉林省吉林一中2019年新高一入学分班考试数学试卷一、选择题(本题共12小题,每小题4分,共48分.在每小题的四个选项中,只有一个符合题目要求)1.下列计算:①(﹣2014)0=1;②2m﹣4=;③x4+x3=x7;④(ab2)3=a3b6;⑤=35,正确的是()A.①B.①②③C.①③④D.①④⑤2.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.一个底面半径为5cm,母线长为16cm的圆锥,它的侧面展开图的面积是()A.80πcm2B.40πcm2C.80cm2D.40cm24.以下五个图形中,既是轴对称又是中心对称的图形有()A.1个B.2个C.3个D.4个5.下列各项中,不可以组成集合的是()A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数6.下列集合中,是空集的是()A.{x|x2+3=3} B.{(x,y)|y=﹣x2,x,y∈R}C.{x|﹣x2≥0}D.{x|x2﹣x+1=0,x∈R}7.下列表示图中的阴影部分的是()A.(A∪C)∩(B∪C)B.(A∪B)∩(A∪C) C.(A∪B)∩(B∪C)D.(A∪B)∩C8.下面有四个命题:①集合N中最小的数是1;②若﹣a∉N则a∈N;③若a∈N,b∈N则a+b的最小值为2;④x2+1=2x的解集可表示为{1,1}.其中真命题的个数为()个.A.0B.1C.2D.39.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个11.函数y=k(1﹣x)和y=(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为y,运动的距离为x.下面表示y与x的函数关系式的图象大致是()A.B.C.D.二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)13.不等式组的整数解为.14.分解因式x13﹣2x12x2﹣x1+2x2=.15.如图,△ABC中,BD平分∠ABC,AD⊥BD于D,F为AC中点,AB=5,BC=7,则DF=.16.已知二次函数图象过点A(2,1)、B(4,1)且最大值为2,则二次函数的解析式为.17.已知Rt△ABC中,∠C=90°,AC=,BC=1,若以C为圆心,CB为半径的圆交AB于点P,则AP=.18.直线y=﹣x+8与x轴、y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为.三、解答题(本题共有7小题,共72分)19.化简:(x2﹣4)(﹣)÷.20.解分式方程:﹣=2.21.如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.22.为了鼓励居民节约用水,我市某地水费按下表规定收取:每户每月用水量不超过10吨(含10吨)超过10吨的部分水费单价 1.30元/吨 2.00元/吨(1)某用户用水量为x吨,需付水费为y元,则水费y(元)与用水量x(吨)之间的函数关系式是;(2)若小华家四月份付水费17元,问他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?23.如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.(1)求证:△ADE∽△BEC;(2)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.24.已知集合A={a2,a+1,﹣3},B={a﹣3,2a﹣1,a2+1},若A∩B={﹣3},求实数a的值.25.设全集U=R,M={m|方程mx2﹣x﹣1=0有实数根},N={n|方程x2﹣x+n=0有实数根},求(∁U M)∩N.吉林省吉林一中2019年新高一入学分班考试参考答案一、选择题(本题共12小题,每小题4分,共48分.在每小题的四个选项中,只有一个符合题目要求)1.下列计算:①(﹣2014)0=1;②2m﹣4=;③x4+x3=x7;④(ab2)3=a3b6;⑤=35,正确的是()A.①B.①②③C.①③④D.①④⑤考点:根式与分数指数幂的互化及其化简运算.专题:计算题.分析:由根式的定义与指数幂的运算规则可直接判断出正确的等式,得出正确选项.解答:解::①(﹣2014)0=1正确;②2m﹣4=≠不正确;③x4+x3=x7不一定正确,当x=0,1时等号成立;④(ab2)3=a3b6正确,由指数的运算法则可直接得出此结论是正确的;⑤=35,由根式的定义可得出,此等式正确.综上,①④⑤是正确的.故选:D.点评:本题考查根式的意义与分数指数的运算规则,熟练掌握运算规则是解答的关键.2.一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限考点:直线的一般式方程.专题:直线与圆.分析:y随x的增大而减小,可得一次函数y=kx+b单调递减,k<0,又满足kb>0,可得b<0.即可得出.解答:解:∵y随x的增大而减小,∴一次函数y=kx+b单调递减,∴k<0,∵满足kb>0,∴b<0.∴直线经过第二、三、四象限,不经过第一象限.故选:A.点评:本题考查了一次函数的单调性、斜率与截距的意义,属于基础题.3.一个底面半径为5cm,母线长为16cm的圆锥,它的侧面展开图的面积是()A.80πcm2B.40πcm2C.80cm2D.40cm2考点:旋转体(圆柱、圆锥、圆台).专题:计算题;空间位置关系与距离.分析:直接利用圆锥的侧面面积公式S=π•r•l即可.解答:解:圆锥的侧面展开图的面积为S=π•r•l=π•5•16=80π(cm2).故选:A.点评:考查了圆锥的侧面面积公式S=π•r•l的记忆与应用.4.以下五个图形中,既是轴对称又是中心对称的图形有()A.1个B.2个C.3个D.4个考点:奇偶函数图象的对称性.专题:图表型.分析:根据轴对称图形与中心对称图形的定义即可判断.解答:解:既是轴对称又是中心对称的图只有第二个图形.故选:A.点评:本题考查了轴对称图形与中心对称图形的定义,正确理解定义是关键.5.下列各项中,不可以组成集合的是()A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数考点:集合的含义.专题:阅读型.分析:根据集合的三要素:确定性、互异性、无序性得到选项.解答:解:集合中的元素满足三要素:确定性、互异性、无序性“接近于0的数”是不确定的元素故接近于0的数不能组成集合故选C.点评:本题考查集合中元素满足的三要素:确定性、互异性、无序性.是基础题.6.下列集合中,是空集的是()A.{x|x2+3=3} B.{(x,y)|y=﹣x2,x,y∈R}C.{x|﹣x2≥0}D.{x|x2﹣x+1=0,x∈R}考点:空集的定义、性质及运算.专题:计算题.分析:不含任何元素的集合称为空集,对于A,集合中含有0,对于B,集合中含有无数个点,对于C,集合中含0,是非空的,对于D,方程无解,则集合中不含有元素.解答:解:对于A,集合中含有0,故错;对于B,集合中含有无数个点,故也错.对于C,集合中含0,是非空的,故错;对于D,所对应的方程无解,集合中不含有元素,故正确;故选D.点评:本题主要考查空集的概念,空集的定义:不含任何元素的集合称为空集.空集的性质:空集是一切集合的子集.7.下列表示图中的阴影部分的是()A.(A∪C)∩(B∪C)B.(A∪B)∩(A∪C) C.(A∪B)∩(B∪C)D.(A∪B)∩C考点:Venn图表达集合的关系及运算.专题:数形结合.分析:由韦恩图分析阴影部分表示的集合,关键是要分析阴影部分的性质,先用自然语言将其描述出来,再根据集合运算的定义,将共转化为集合语言,再去利用集合运算的方法,对其进行变形和化简.解答:解:图中阴影部分表示元素满足:是C中的元素,或者是A与B的公共元素故可以表示为C∪(A∩B)也可以表示为:(A∪C)∩(B∪C)故选A.点评:韦恩图是分析集合关系时,最常借助的工具,其特点是直观,要分析韦恩图分析阴影部分表示的集合,要先分析阴影部分的性质,先用自然语言将其描述出来,再根据集合运算的定义,将共转化为集合语言,再去利用集合运算的方法,对其进行变形和化简.8.下面有四个命题:①集合N中最小的数是1;②若﹣a∉N则a∈N;③若a∈N,b∈N则a+b的最小值为2;④x2+1=2x的解集可表示为{1,1}.其中真命题的个数为()个.A.0B.1C.2D.3考点:命题的真假判断与应用;集合的确定性、互异性、无序性.专题:阅读型.分析:根据N表示自然数集,包括0和正整数,判断①②③的正确性;根据集合中元素的互异性判定④是否正确.解答:解:∵集合N中含0,∴①×;∵N表示自然数集,﹣0.5∉N,0.5∉N,∴②×;∵0∈N,1∈N,∴③×;根据列举法表示集合中元素的互异性,④×;故选A点评:本题借助考查命题的真假判断,考查了自然数集的表示及集合中元素的性质,集合中元素性质:无序性、确定性、互异性.9.若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形考点:集合的确定性、互异性、无序性.分析:根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,则△ABC不会是等腰三角形.解答:解:根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,故△ABC一定不是等腰三角形;选D.点评:本题较简单,注意到集合的元素特征即可.10.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个考点:子集与真子集.专题:计算题.分析:利用集合中含n个元素,其真子集的个数为2n﹣1个,求出集合的真子集的个数.解答:解:∵U={0,1,2,3}且C U A={2},∴A={0,1,3}∴集合A的真子集共有23﹣1=7故选C点评:求一个集合的子集、真子集的个数可以利用公式:若一个集合含n个元素,其子集的个数为2n,真子集的个数为2n﹣1.11.函数y=k(1﹣x)和y=(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据一次函数和分式函数的图象和性质即可得到结论.解答:解:函数y=k(1﹣x)过定点(1,0),故排除A,B,C,在D中,k<0,满足条件,故选:D点评:本题主要考查函数图象的识别和判断,根据一次函数和分式函数的图象和性质是解决本题的关键,比较基础.12.如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为y,运动的距离为x.下面表示y与x的函数关系式的图象大致是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据条件建立函数关系,求出三角形的面积,即可得到结论.解答:解:设等腰直角三角形的直角边长为1,当0≤x≤1时,三角形CEG的面积y=为抛物线,当1<x≤2时,重合的部分为△FBG,此时EC=x,BE=x﹣1,BF=1﹣(x﹣1)=2﹣x,对应的面积y=(2﹣x)2,x>1.故对应的图象为C,故选:C点评:本题主要考查函数图象的识别和判断,根据条件建立函数关系是解决本题的关键.二、填空题(本题共6小题,每小题5分,共30分.把答案填写在题中横线上)13.不等式组的整数解为0,1,2,3,4.考点:其他不等式的解法.专题:不等式的解法及应用.分析:先求出不等式组的解集,即可得到结论.解答:解:∵,∴,即,则﹣1<x≤4,则对应的整数解为0,1,2,3,4,故答案为:0,1,2,3,4点评:本题主要考查不等式的求解,根据不等式的求法方法是解决本题的关键.14.分解因式x13﹣2x12x2﹣x1+2x2=(x1﹣2x2)(x1+1)(x1﹣1).考点:因式分解定理.专题:计算题.分析:利用分组法、提取公因式法、公式法即可得出.解答:解:x13﹣2x12x2﹣x1+2x2=﹣(x1﹣2x2)==(x1﹣2x2)(x1+1)(x2﹣1).故答案为:(x1﹣2x2)(x1+1)(x2﹣1).点评:本题考查了因式分解方法,属于基础题.15.如图,△ABC中,BD平分∠ABC,AD⊥BD于D,F为AC中点,AB=5,BC=7,则DF=1.考点:解三角形.专题:计算题;解三角形.分析:作辅助线,延长AD交BC于E,通过BD平分∠ABC,AD⊥BD,可证出△ABD≌△EBD,那么有两组边相等,即BE=5,那么CE就可求,AD=DE,联合F为AC中点,也就是DF是△ACE的中位线,利用三角形中位线定理,可求DF.解答:解:延长AD交BC于E∵AD⊥BD,BD平分∠ABC∴△ABD≌△EBD∴BE=AB=5又∵BC=7∴EC=BC﹣BE=7﹣5=2又F为AC中点,可得DF为△AEC的中位线∴DF=EC=×2=1.故答案为1.点评:解答此题的关键是作出辅助线DE,构造等腰三角形和三角形的中位线,便可将问题转化为中位线定理来解.16.已知二次函数图象过点A(2,1)、B(4,1)且最大值为2,则二次函数的解析式为y=﹣x2+6x﹣7.考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:设出二次函数的解析式为y=ax2+bx+c,根据已知条件建立关于a,b,c的方程,解方程求出a,b,c即可.解答:解:设二次函数解析式为:y=ax2+bx+c,则由已知条件得:,解得a=﹣1,b=6,c=﹣7;∴所求二次函数解析式为y=﹣x2+6x﹣7.点评:考查二次函数的一般形式,以及图象上的点和函数解析式的关系,二次函数的最值公式.17.已知Rt△ABC中,∠C=90°,AC=,BC=1,若以C为圆心,CB为半径的圆交AB于点P,则AP=.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:先求出AB的长,再根据割线定理列出等式求解即可.解答:解:Rt△ABC中,∵∠C=90°,AC=,BC=1,∴AB=,设AC交圆于M,延长AC交圆于N,则AM=AC﹣CM=﹣1,AN=+1根据AM•AN=AP•AB得,(﹣1)(+1)=AP×,解得AP=.故答案为:.点评:本题主要考查了圆的割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D,则有PA•PB=PC•PD.18.直线y=﹣x+8与x轴、y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为y=﹣x+3.考点:直线的一般式方程.专题:直线与圆.分析:由直线y=﹣x+8可得:A(6,0),B(0,8),由于M是OB上的一点,若将△ABM沿AM折叠,点B 恰好落在x轴上的点B′处,设∠BAB′=θ,可得k AB=﹣=tan(π﹣θ),即tanθ=.由=,可得.求出=﹣即可得出直线AM的斜率,再利用点斜式即可得出.解答:解:由直线y=﹣x+8可得:A(6,0),B(0,8),∵M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,设∠B AB′=θ,∵k AB==﹣=tan(π﹣θ),∴tanθ=.∴=,解得=﹣2(舍去),或.∴=﹣=﹣.∴直线AM的解析式为,即.故答案为:.点评:本题考查了对称性、正切公式、直线的点斜式,考查了推理能力和计算能力,属于难题.三、解答题(本题共有7小题,共72分)19.化简:(x2﹣4)(﹣)÷.考点:有理数指数幂的运算性质.专题:函数的性质及应用.分析:利用多项式的乘法除法运算法则即可得出.解答:解:原式=(x﹣2)(x+2)===.点评:本题考查了多项式的乘法除法运算法则,属于基础题.20.解分式方程:﹣=2.考点:函数的零点与方程根的关系.专题:计算题.分析:将原分式方程进行移项,通分并化简得:,所以容易解出x=.解答:解:原方程变成:;∴解得;点评:考查分式方程的求解办法:通分,将分式方程变成整式方程求解即可.21.如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连结AE、CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.考点:相似三角形的判定.专题:立体几何.分析:(1)由已知得∠FAD=∠ECD,AD=CD,∠ADF=∠CDE,由此能证明△ADF≌△CDE,从而AF=CE.(2)若AC=EF,则四边形AFCE是矩形,由AF∥CE,知四边形AFCE是平行四边形,由此能推导出四边形AFCE 是矩形.解答:(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE.∴AF=CE.(2)解:若AC=EF,则四边形AFCE是矩形.由(1)知AF∥CE,∴四边形AFCE是平行四边形,又∵AC=EF,∴四边形AFCE是矩形.点评:本题考查线段相等的证明,考查四边形形状的判断与证明,解题时要认真审题,是基础题.22.为了鼓励居民节约用水,我市某地水费按下表规定收取:每户每月用水量不超过10吨(含10吨)超过10吨的部分水费单价 1.30元/吨 2.00元/吨(1)某用户用水量为x吨,需付水费为y元,则水费y(元)与用水量x(吨)之间的函数关系式是;(2)若小华家四月份付水费17元,问他家四月份用水多少吨?(3)已知某住宅小区100户居民五月份交水费1682元,且该月每户用水量均不超过15吨(含15吨),求该月用水量不超过10吨的居民最多可能有多少户?考点:函数模型的选择与应用.专题:应用题;函数的性质及应用.分析:(1)根据题意可知本题分两种情况求解:不超过10吨和超过10吨两种,即当x≤10时,y=1.3x;当x>10时,y=13+2(x﹣10);(2)通过分析可知应该套用当x>10时,y=13+2(x﹣10),可求得x=12吨;(3)设该月用水量不超过10吨的用户有a户,则超过10吨不超过15吨的用户为(100﹣a)户,根据水费共1682元列不等式求出a的取值范围即可求解.解答:解:(1)当x≤10时,y=1.3x,当x>10时,y=13+2(x﹣10);(2)设小华家四月份用水量为x吨.∵17>1.30×10,∴小华家四月份用水量超过10吨,由题意得:1.30×10+(x ﹣10)×2=17,∴2x=24,∴x=12(吨).即小华家四月份的用水量为12吨.(3)设该月用水量不超过10吨的用户有a户,则超过10吨不超过15吨的用户为(100﹣a)户.由题意得:13 a+[13+(15﹣10)×2](100﹣a)≥1682,化简的:10 a≤618,∴a≤61.8,故正整数a的最大值为61.即这个月用水量不超过10吨的居民最多可能有61户.点评:本题考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.如图1,在直角梯形ABCD中,AD∥BC,顶点D,C分别在AM,BN上运动(点D不与A重合,点C不与B重合),E是AB上的动点(点E不与A,B重合),在运动过程中始终保持DE⊥CE,且AD+DE=AB=a.(1)求证:△ADE∽△BEC;(2)设AE=m,请探究:△BEC的周长是否与m值有关,若有关请用含m的代数式表示△BEC的周长;若无关请说明理由.考点:相似三角形的判定.专题:立体几何.分析:(1)由∠DEC=90°,可得∠AED+∠BEC=90°,又由∠AED+∠ADE=90°,可得∠BEC=∠ADE,即可证明;(2)结论:△BEC的周长与m值无关.利用相似三角形的性质、勾股定理即可得出.解答:(1)证明:∵∠DEC=90°,∴∠AED+∠BEC=90°,又∵∠AED+∠ADE=90°,∴∠BEC=∠ADE,而∠A=∠B=90°,∴△ADE∽△BEC.(2)解:结论:△BEC的周长与m无关.在△EBC中,由AE=m,AB=a,得BE=a﹣m,设AD=x,∵△ADE∽△BEC,∴,即:,解得:BC=,.∴△BEC的周长=BE+BC+EC=(a﹣m)++=(a﹣m)=①∵AD=x,由已知AD+DE=AB=a得DE=a﹣x,又AE=m在Rt△AED中,由勾股定理得:x2+m2=(a﹣x)2,化简整理得:a2﹣m2=2ax ②把②式代入①,得△BEC的周长=BE+BC+EC==2a,∴△BEC的周长与m无关.点评:本题考查了相似三角形的性质、勾股定理、互余角之间的关系、三角形的周长,考查了推理能力和计算能力,属于中档题.24.已知集合A={a2,a+1,﹣3},B={a﹣3,2a﹣1,a2+1},若A∩B={﹣3},求实数a的值.考点:交集及其运算.专题:计算题.分析:由A∩B={﹣3}得﹣3∈B,分a﹣3=﹣3,2a﹣1=﹣3,a2+1=﹣3三种情况讨论,一定要注意元素的互异性.解答:解:∵A∩B={﹣3},∴﹣3∈B,而a2+1≠﹣3,∴当a﹣3=﹣3,a=0,A={0,1,﹣3},B={﹣3,﹣1,1},这样A∩B={﹣3,1}与A∩B={﹣3}矛盾;当2a﹣1=﹣3,a=﹣1,符合A∩B={﹣3}∴a=﹣1点评:本题主要考查集合的交集及其运算,通过公共元素考查了分类讨论的思想.25.设全集U=R,M={m|方程mx2﹣x﹣1=0有实数根},N={n|方程x2﹣x+n=0有实数根},求(∁U M)∩N.考点:交、并、补集的混合运算.专题:计算题;分类讨论.分析:对于集合M分m=0和m≠0两种情况求解,当m≠0时利用判别式大于等于零求出m的范围,再根据补集的运算求出∁U M;同理由对应的判别式大于等于零求出n的范围,由交集的定义求出(∁U M)∩N.解答:解:对于集合M,当m=0时,x=﹣1,即0∈M;当m≠0时,△=1+4m≥0,即m≥﹣,且m≠0∴m≥﹣,∴C U M={m|m<﹣}而对于集合N,△=1﹣4n≥0,即n≤,∴N={n|n≤}∴(C U M)∩N={x|x<﹣}.点评:本题的考点是集合的混合运算,根据判别式大于等于零分别求出两个集合,对集合M因二次项系数含有参数,需要分类讨论,再由集合运算的法则求解.。
吉林省吉林市第一中学高一下学期开学考试数学试题附答案
吉林市第一中学2018-2019年高一下学期开学考试(理科数学)一、选择题(共60分,每题5分)1. 设集合{|3213}A x x =-≤-≤,集合B 为函数lg(1)y x =-的定义域,则A B =.(1,2)A .[1,2]B .[1,2)C .(1,2]D2. 已知 1.22a =,0.21()2b -=,52log 2c =,则,,a b c 的大小关系为 .A c b a <<.B c a b <<.C b a c <<.D b c a <<3. 已知222,1()5,13log ,3x x f x x x x x +≤-⎧⎪=--<<⎨⎪≥⎩,则{[(4)]}f f f 的值为 .1A .1B -.2C .2D -4. 直线13kx y k -+=,当k变动时,所有直线都通过定点 .(0,0)A .(0,1)B .(3,1)C .(2,1)D5. 如图,用斜二测画法画出一个水平放置的平面图形的直观图为一个正方形,则原来图形的形状是6. 某四面体的三视图如图所示,该四面体四个面的面积中,最大的是.8A .62B .10C .102D7. 若幂函数2223(33)m m y m m x +-=++的图像不过原点,且关于原点对称,则m 的取值范围是 .2A m =-.1B m =-.21C m m =-=-或.31D m -≤≤-8. 一个平面截一球得到直径为6的圆面,球心到这个圆面的距离为4,则这个球的体积为100.3A π208.3B π500.3C π4163.3D π 9. 函数(0,1)x y a a a a =->≠的图像可能是10. 函数()23x f x x =+的零点所在的一个区间是.(2,1)A --.(1,0)B -.(0,1)C .(1,2)D11. 若函数()f x 是定义在R 上的偶函数,在(,0]-∞上为减函数,且(2)0f =,则使()0f x >的x 的取值范围是.(,2)A -∞.(2,)B +∞.(,2)(2,)C -∞-+∞.(2,2)D -12. 已知(2,3)A -,(3,0)B ,直线l 过O 与线段AB 相交,则直线l 的斜率k 的取值范围是3.02A k -≤≤3.02B k k ≤-≥或3.02C k k ≤≥或3.02D k ≤≤ 二、填空题(共32分,每题4分)13. 若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的表面积为14. 函数log (2)3a y x =++的图像恒过定点15. 已知下列命题:①若m ∥n ,m α⊥,则n α⊥;②若m ⊥n ,m α⊥,则m ∥n ;③若m ⊥α,m n ⊥,则n ∥α;④若m ∥α,m n ⊥,则n α⊥;其中正确命题的序号是16. 若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 的取值范围是17. 如果圆的方程为22220x y kx y k ++++=,那么当圆的面积最大时,圆心坐标为18. 已知函数1()21x f x a =-+,若()f x 为奇函数,则a = 19. 如图,两个正方形ABCD 和ADEF 所在平面互相垂直,设M 、N 分别是BD 和AE 的中点,那么①AD NM ⊥;②MN ∥平面CED ;③MN∥CE ;④MN 、CE 异面.其中正确结论的序号是20. 若函数()log (2)a f x ax =-在[0,1]上为减函数,则实数a 的取值范围是三、解答题(共28分)21. (8分)已知两条直线1l :80mx y n ++=和2l :2102n x my +-+=,试确定,m n 的值或取值范围,使得(1)12l l ⊥ (2)1l ∥2l22. (10分)如图,在直三棱柱111ABC A B C -中,E 、F 分别为1A B ,1AC 的中点,点D 在11B C 上,111A D B C ⊥,求证:(1)EF ∥平面ABC (2)平面1A FD ⊥平面11BB C C23. (10分)已知圆221:20C x y x y +-+-=及圆222:5C x y +=相交于A 、B 两点,(1)求圆1C 与圆2C 相交于弦AB 所在的直线方程(2)求圆1C 与圆2C 公共弦AB 的长(3)求线段AB 的中垂线的方程吉林市第一中学2018-2019年高一下学期开学考试(理科数学答案)一、选择题DAACACACCBCB二、填空题13. 3π14. (1,3)-15. ①②16. [3,1]-17. (0,1)-18. 1219. ①②③20. (1,2)三、解答题21. (1)0m =(2)4,m n R =∈或4,1m n =-≠22. (1)EF ∥BC ,即证(2)111A D BCC B ⊥面,即证23. (1)30x y --=(2)2(3)y x =-。
吉林省四平市高一下学期开学数学试卷
吉林省四平市高一下学期开学数学试卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2019高一上·延安月考) 设集合,若A是B的真子集,则实数的取值集合为().A .B .C .D .2. (2分) (2019高一上·怀宁月考) 幂函数的图象经过点,则的图象是()A .B .C .D .3. (2分)已知m,n是两条不同直线,α,β是两个不同平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β②若m⊥α,m⊥β,则α∥β③若m⊥α,n⊥β,m⊥n,则α⊥β④若m∥α,n∥β,m∥n,则α∥β其中正确的命题是()A . ①②B . ②③C . ①④D . ②④4. (2分) (2018高二下·定远期末) 若,则当时,的大小关系是()A .B .C .D .5. (2分) (2019高一上·汤原月考) 已知函数的定义域为,则函数的定义域为()A .B .C .D .6. (2分)过点M(﹣3,2),且与直线x+2y﹣9=0平行的直线方程是()A . 2x﹣y+8=0B . x﹣2y+7=0C . x+2y+4=0D . x+2y﹣1=07. (2分)设三棱柱的侧棱垂直于底面,所有棱的长都为,顶点都在一个球面上,则该球的表面积为()A .B .C .D .8. (2分)经过点M(1,1)且在两轴上截距相等的直线是()A . x+y﹣2=0B . x﹣y=0C . x﹣1=0或y﹣1=0D . x+y﹣2=0或x﹣y=09. (2分)关于的方程的解的个数为()A . 1B . 2C . 3D . 410. (2分)某三棱锥的三视图如图所示,则该三棱锥的体积是()A . 2B . 1C .D .11. (2分)已知角α的顶点与原点O重合,始边与x轴的正半轴重合,若它的终边经过点P(2,3),则=()A .B .C .D .12. (2分) (2016高一下·惠阳期中) 设x>0,则y=3+3x+ 的最小值为()A . 3B . 3+3C . 3+2D . 1二、填空题: (共4题;共4分)13. (1分) (2019高一下·上海月考) 若,且,则角的终边所在象限是第________象限.14. (1分)(2017·宿州模拟) 已知函数,则=________.15. (1分)已知圆台的上底半径为2cm,下底半径为4cm,圆台的高为cm,则侧面展开图所在扇形的圆心角=________ .16. (1分) (2019高二下·上海月考) 下列四个命题,其中真命题的个数是________.①任意两条直线都可以确定一个平面;②若两个平面有3个不同的公共点,则这两个平面重合;③直线,,,若与共面,与共面,则与共面;④若直线上有一点在平面外,则在平面外.三、解答题: (共6题;共70分)17. (10分) (2016高一上·汕头期中) 已知集合A={x|(x+3)(x﹣6)≥0},B={x| <0}.(1)求A∩∁RB;(2)已知E={x|2a<x<a+1}(a∈R),若E⊆B,求实数a的取值范围.18. (10分)如图所示,四棱锥P﹣ABCD的底面为一直角梯形,BC⊥CD,CD⊥AD,AD=2BC,PC⊥底面ABCD,E为PA的中点.(1)证明:EB∥平面PCD;(2)若PC=CD,证明:BE⊥平面PDA.19. (10分) (2017高一下·南京期末) 已知三角形的顶点分别为A(﹣1,3),B(3,2),C(1,0)(1)求BC边上高的长度;(2)若直线l过点C,且在l上不存在到A,B两点的距离相等的点,求直线l的方程.20. (10分) (2017高一下·衡水期末) 已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间[﹣, ]上的单调性.21. (10分) (2016高二上·宾阳期中) 某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别写出用x表示y和S的函数关系式(写出函数定义域);(2)怎样设计能使S取得最大值,最大值为多少?22. (20分)已知函数f(x)=x2﹣4|x|+3.(1)试证明函数f(x)是偶函数;(2)画出f(x)的图象;(要求先用铅笔画出草图,再用中性笔描摹)(3)请根据图象指出函数f(x)的单调递增区间与单调递减区间;(不必证明)(4)当实数k取不同的值时,讨论关于x的方程x2﹣4|x|+3=k的实根的个数.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12、答案:略二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共6题;共70分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、。
高一新生分班考试数学试卷含答案
CB高一新生分班考试数学试卷(含答案)(满分150分,考试时间120分钟)一、选择题(每题5分,共40分) 1.化简=-2aa ( )A .aB .a -C .aD .2a2.分式1||22---x x x 的值为0,则x 的值为 ( )A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。
若EF =2,BC =5,CD =3, 则tan C 等于 ( )A .43 B .35 C .34 D .45 4.如图,P A 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P = 40°,则∠BAC =( )A .040 B .080 C .020 D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是 ( )A .21 B .165 C .167 D .436.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A . 6B.4C .5D . 37.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动B CD CB A 路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P ,Q )是函数y 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”)。
已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有( )个A .0 B.1 C. 2 D.3注意:请将选择题的答案填入表格中。
吉林省四平市公主岭范家屯第一中学2018-2019学年高一数学理月考试卷含解析
吉林省四平市公主岭范家屯第一中学2018-2019学年高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,则函数与函数的图象可能是( )参考答案:B2. (5分)已知角α的顶点为坐标原点,始边为x轴正半轴,终边经过点(﹣4,3),则cosα=()A.﹣B.﹣C.D.参考答案:A考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件利用任意角的三角函数的定义求得cosα的值.解答:由题意可得,x=﹣4,y=3,r=5,∴cosα==﹣,故选:A.点评:本题主要考查任意角的三角函数的定义,属于基础题.3. 设集合A={x|0≤x≤6},B={y|0≤y≤2},从A到B的对应法则f不是映射的是().A. f:x→y=xB. f:x→y=xC. f:x→y=xD. f:x→y=x 参考答案:A试题分析:对A,当时,而.故选A.考点:映射的概念4. 在用二分法求方程的一个近似解时,现在已经将一根锁定在(1,2)内,则下一步可断定该根所在的区间为()A.(1.4,2)B.(1,1.4)C.(1,1.5)D.(1.5,2)参考答案:D5. (5分)已知集合A={﹣1,0,1},B={x|﹣1<x<2},则A∩B等于()A.{1} B.{﹣1,1} C.{1,0} D.{﹣1,0,1}参考答案:C考点:交集及其运算.专题:集合.分析:根据集合的交集运算进行求解.解答:∵A={﹣1,0,1},B={x|﹣1<x<2},∴A∩B={0,1},故选:C点评:本题主要考查集合的基本运算,比较基础.6. 下列各式:①1∈{0,1,2};②??{0,1,2};③{1}∈{0,1,2};④{0,1,2}={2,0,1},其中错误的个数是()A.1个B.2个C.3个D.4个参考答案:A【考点】元素与集合关系的判断.【专题】计算题.【分析】对于①根据元素与集合之间的关系进行判定,对于②根据空间是任何集合的子集,对于③集合与集合之间不能用属于符号进行判定,对于④根据集合本身是集合的子集进行判定,对于⑤根据集合的无序性进行判定即可.解::①1∈{0,1,2},元素与集合之间用属于符号,故正确;②??{0,1,2};空集是任何集合的子集,正确③{1}∈{0,1,2};集合与集合之间不能用属于符号,故不正确;④{0,1,2}?{0,1,2},集合本身是集合的子集,故正确⑤{0,1,2}={2,0,1},根据集合的无序性可知正确;故选:A【点评】本题主要考查了元素与集合的关系,以及集合与集合之间的关系,属于基础题.7. 设全集为R,集合,则()A. B. C. D.参考答案:B8. 已知函数f(x)=的定义域是一切实数,则m的取值范围是()A.0<m≤4B.0≤m≤1C.m≥4D.0≤m≤4参考答案:D【考点】函数恒成立问题;函数的定义域及其求法.【分析】根据函数的定义域是全体实数,得到mx2+mx+1≥0恒成立,即可得到结论.【解答】解:若函数f(x)=的定义域是一切实数,则等价为mx2+mx+1≥0恒成立,若m=0,则不等式等价为1≥0,满足条件,若m≠0,则满足,即,解得0<m≤4,综上0≤m≤4,故选:D9. 下列各角中与240°角终边相同的角为()参考答案:C10. 如图,正三棱柱ABC-A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是A.B.C.D.2参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.参考答案:略12. 已知a=log0.53,b=20.5,c=0.50.3,则a,b,c的大小关系是.参考答案:a<c<b【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=log0.53<0,b=20.5>1,c=0.50.3(0,1).∴a<c<b.故答案为:a<c<b.13. 函数的定义域是;参考答案:略14. 已知函数,则不等式的解集是__________.参考答案:当时,,在上递增,由,可得或,解得或,即为或,即,即有解集为,故答案为.15. 已知是边长为1的等边三角形,为边上一点,满足=.参考答案:16. 若,则.参考答案:.17. 已知函数y=f(x)和y=g(x)在[-2,2]的图像如图所示,给出下列四个命题:①方程f[g(x)]=0有且仅有6个根②方程g[f(x)]=0有且仅有3个根③方程f[f(x)]=0有且仅有5个根④方程g[g(x)]=0有且仅有4个根其中正确的命题是参考答案:①③④三、解答题:本大题共5小题,共72分。
2018高一入学分班考试(数学试卷及答案)
2018高一入学分班考试(数学试卷)满分:100分 时间:90分钟一、选择题(本题有10个小题,每小题4分,共40分)(1) 如果一元一次不等式组{x >3x >a 的解集为x>3,则a 的取值范围是 A.a>3 B.a ≥3C.a<3D.a ≤3 (2)若实数x 满足x 3+2x 2+2x =−1,则x +x 2+x 3+⋯+x 99=A.-1B.0C.1D.99(3)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a 克,再称得剩下的电线质量为b 克,那么原来这卷电线的总长度是A.b+1a 米 B. a b +1米 C. a+ba +1米 D.ba +1 米 (4)若实数n 满足(n −46)2+(45−n )2=2,则代数式(n-46)(45-n)的值是A. -1 B. -0.5 C. 0.5 D. 1(5)已知方程x 2+(2k +1)x +k −1=0的两个实数根x 1,x 2满足x 1−x 2=4k −1,则实数k 的值是 A. -3,0 B. 1,−43 C.1, −13 D. 1,0二、填空题(本题有5个小题,每小题4分,共20分)(11)(12)(13)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=10,CD=6,则sinB的值为__________. (14)已知二次函数图象过点A(2,1)、B(4,1)且最大值为2,则二次函数的解析式为______. (15)如图,在⊙O中,∠ACB=∠D=60°,OA=2,则AC的长为__________.三. 解答题(共4小题,共40分,解答应写出文字说明,证明过程或演算步骤)(16)(本小题8分)(17)(本小题10分)(18)(本小题10分)(19)(本小题12分)2018高一入学分班考试(数学试卷答案)1-10. DADBB CCBAA12.13.0.814.15.2√316.17.18解:(1)综上,三角形ABC周长为10. 19.即小华家四月份用水量为12吨。
吉林省四平市2018-2019学年高一入学考试数学试题-含详细解析
高中入学考试数学试卷数学试题共六道大题,26道小题。
全卷满分120分。
考试时间120分钟。
得 分 栏题号 一 二 三 四 五 六 总分得分一、单项选择题(每小题2分,共12分)1. 下列各数中,最小的数是 ( ) A. -2 B. -0.1 C . 0 D. |-1|2. 如图是几个完全相同小正方体组成的一个几何体,这个几何体的俯视图是( )A .B .C .D .3. 下列运算正确的是( )A .3x 2+4x 2=7x 4B .2x 3·3x 3=6x 3C .x 6÷x 3==x 2D .(x 2)4=x 8 4.不等式组10840x x -⎧⎨-⎩>≤的解集在数轴上表示为 ( )A .B .C .D .5.如图,把三角板的直角顶点放在直尺的一边上, 若∠1=30°,则∠2的度数为( ) A .60° B .50° C .40° D .30°6.如图,⊙O 是△ABC 的外接圆,连接OA 、OB ,∠OBA=50°, 则∠C 的度数为( ) A .30° B .40° C .50° D .80°二、填空题(每小题3分,共24分)7. 太阳的半径约为696 000千米,用科学记数法表示为____________千米. 8. 若x 31-在实数范围内有意义,则x 的取值范围是 . 9.某校篮球班21名同学的身高如下表:(第5题图) (第6题图)身高/cm 180 185 187 190 201 人数/名46542则该校篮球班21名同学身高的中位数是______________cm .10.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产 台机器. 11. 若x = -2是关于x 的一元二次方程02522=+-a ax x 的一个根, 则a 的值为__________ 。
2018-2019学年高一上学期分班考试数学试题
一、选择题:(本大题共10个小题,每小题4分,共40分) 1.21-的相反数是 ( ) A.-2 B.2 C.21-D.212.如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为( )A.50°B.60°C.70°D.80°3.下列计算中正确的是( )A .a·a 2=a 2B .2a·a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 44.已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A.a >2B.a <2C.a <2且a ≠lD.a <-25.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( )A.1.65,1.70B.1.70,1.70C.1.70,1.65D.3,46.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图像可能是( )7.一个几何体是由一些大小相同的小正方体摆成的,其俯 视图与主视图如图所示,则组成这个几何体的小正方体 最多有( )A.4个B.5个C.6个D.7个8.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动路线是A→D→C→B→A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是( )A. B. C. D.9.如图,在直角坐标系中,O 为坐标原点,函数11k y x=(x <0)和22k y x =(0x >)的图象上,分别有A 、B 两点,若AB ∥x 轴且交y 轴于点C ,且OA ⊥OB ,12AOC S ∆=,92BOC S ∆=,则线段AB 的长度为( )A B . C . D .4第9题图 第10题图10.如图,AB 是⊙O 的直径,弦BC =2cm ,∠ABC =60°.若动点P 以2cm/s 的速度从B 点出发沿着B →A 的方向运动,点Q 以1cm/s 的速度从A 点出发沿着A →C 的方向运动,当点P 到达点A 时,点Q 也随之停止运动.设运动时间为t (s),当△APQ 是直角三角形时,t 的值为( )A.34B.3-3或133832- C.34或3-3 D.34或3-3或3 二、填空题(本大题共6个小题,每小题5分,共30分)11.已知某种感冒病毒的直径是0.000000012米,那么这个数可用科学记数法表示为_________米.12.因式分解:4a 3﹣16a =_________.13.绍兴旅游景点较多。
2019年重点高中高一新生分班考试数学卷含答案
2019年重点高中高一新生分班考试数学卷含答案(共23页)-本页仅作为预览文档封面,使用时请删除本页-2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B.C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm 7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。
吉林省吉林市第一中学2018_2019学年高一数学下学期开学考试试题(含解析)
1拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
2答题顺序:从卷首依次开始一般来讲,全卷大致是先易后难的排列。
所以,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。
但也不是坚决地“依次”做题,虽然考卷大致是先易后难,但试卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先做好有保证的题,才能尽量多得分。
3答题策略答题策略一共有三点: 1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
4学会分段得分。
不会做的题会做的题目要特别注意表达准确、书写规范、语言科学,防止被“分段扣点分”目我们可以先承认中间结论,往后推,看能否得到结论。
如果不能,说明这个途径不对,。
如果题目立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”有多个问题,也可以跳步作答,先回答自己会的问题。
5立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
6确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
7要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。
2018-2019学年吉林省四平市某校高一(下)第一次月考理数学(理)试卷
2018-2019学年吉林省四平市某校高一(下)第一次月考理数学(理)试卷一、选择题1. 在△ABC 中,sin A =2sin C ,则ac 等于( ) A.√2 B.2C.√22D.122. 在等差数列{a n }中,若a 3=2,a 6=4,则a 1=( ) A.43B.1C.23D.133. 在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=45,则a 2+a 8的值为( ) A.15 B.18 C.21 D.244. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若A =π3,a =√7,b =2,则边c 的大小为( )A.3B.2C.√3D.√25. 设向量a →=(3,−1),b →=(−2,−1),则(a →+b →)⋅a →=( ) A.−2 B.0 C.3 D.56. 在△ABC 中,A =π3,b =2,其面积为2√3,则sin A+sin B a+b等于( )A.13 B.14C.√36D.√3+187. 如图,在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A.2B.83C.65D.858. 一游客在A 处望见在正北方向有一塔B ,在北偏西45∘方向的C 处有一寺庙,此游客骑车向西行1km 后到达 D 处,这时塔和寺庙分别在北偏东30∘和北偏西15∘,则塔B 与寺庙C 的距离为( ) A.2km B.√3kmC.√2kmD.1km9. 在△ABC 中,已知向量AB →=(1,1),|AC →|=2,AB →⋅AC →=−2,则|BC →|=( ) A.4 B.5C.√10D.310. 在△ABC 中,若a 2b 2=a 2+c 2−b 2b 2+c 2−a 2,则△ABC 是( ) A.等腰三角形或直角三角形 B.等腰三角形 C.等腰直角三角形 D.直角三角形11. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =2,2sin A =sin C .若B 为钝角,cos 2C =−14,则△ABC 的面积为( ) A.√10 B.√15 C.2√5 D.512. 已知两个等差数列{a n },{b n }的前π项和分别为S n ,T n ,若对任意的正整数π,都有S n T n=2n−73n+2,则a 5b1+b 11+a 7b 3+b 9等于( )A.1B.37 C.2235 D.157二、解答题在数列{a n }中,a 7=2,a n+1=2a n −3,则a 5等于________.在锐角△ABC 中,角A ,B ,C 的对边分别为α,b ,c .若(b 2+c 2−a 2)tan A =√3bc ,则角A 的大小为________.已知向量a →=(x,y ),b →=(−1,2),且a →+b →=(1,3),则|a →−2b →|等于________.若数列{a n }满足a 1=1,na n+1=(n +1)a n +n (n +1),若S n =a 1−a 2+a 3−a 4+⋯+(−1)n−1a n ,则S 101=________.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且角A ,C ,B 成等差数列. (1)求角C 的值;(2)若a =5,b =8,求边c 的长.已知等差数列{a n }的前π项和为S n ,且a 4=8,a 6=12 (1)求数列{a n }的通项公式;(2)若S n =20,求n 的值.已知四点A (1,3),B (2,−2),C (4,−1),D (5,y ) . (1)若向量AB →与CD →共线,求y 的值;(1)设向量a →=AB →,b →=BC →,若ka →+b →与a →−b →垂直,求实数k 的值.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2A −√3sin A sin C =sin 2B −sin 2C . (1)求角B 的大小;(2)若A =π6,BC 边上的中线AM 的长为√7,求△ABC 的面积.如图,在四边形ABCD 中,AD =2,AB =1.(1)若△ABC 为等边三角形,且AD//BC ,E 是CD 的中点,求AE →⋅BD →;(2)若AC =AB,cos ∠CAB =35,AC →⋅BD →=45,求|DC →|.已知等差数列{a n }的前π项和为S n ,且a 1=13,a 4=10. (1)当n 为何值时,S n 取得最大值?(2)求a 2+a 4+⋯+a 20的值;(3)求数列{|a n |}的前n 项和T n .参考答案与试题解析2018-2019学年吉林省四平市某校高一(下)第一次月考理数学(理)试卷一、选择题1.【答案】B【考点】正弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评2.【答案】C【考点】等差数列的通项公式【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评3.【答案】B【考点】等差数列的性质【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评4.【答案】A【考点】正弦定理余弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评5.【答案】【考点】平面向量数量积的运算【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评6.【答案】B【考点】正弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评7.【答案】D【考点】平面向量的基本定理及其意义向量在几何中的应用【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评8.【答案】C【考点】解三角形的实际应用【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评9.【答案】C【考点】平面向量数量积的运算向量在几何中的应用【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评10.【答案】A【考点】余弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评11.【答案】B【考点】正弦定理余弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评12.【答案】B【考点】等差数列的性质【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评二、解答题【答案】【考点】余弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评【答案】【考点】余弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评【答案】【考点】余弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评【答案】【考点】余弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评【答案】解:(1)∵角A,C,B成等差数列,且C为三角形的内角,A+B+C=π,A+B=2C,∴C=π3.(2)由余弦定理c2=a2+b2−2ab cos C=25+64−2×5×8×12=49,得c=7.【考点】余弦定理正弦定理【解析】此题暂无解析【解答】解:(1)∵角A,C,B成等差数列,且C为三角形的内角,A+B+C=π,A+B=2C,∴C=π3.(2)由余弦定理c2=a2+b2−2ab cos C=25+64−2×5×8×12=49,得c=7.【点评】此题暂无点评【答案】【考点】等差数列的前n项和等差数列的通项公式【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评【答案】【考点】平面向量共线(平行)的坐标表示平行向量的性质【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评【答案】解:(1)∵sin2A−√3sin A⋅sin C=sin2B−sin2C,由正弦定理可得,a2−√3ac=b2−c2,即a2+c2−b2=√3ac,由余弦定理可得,cos B=a2+c2−b22ac=√32.∵0<B<π,∴B=π6.(2)若A=π6,结合(1)可知C=2π3,a=b,c=√3a,因为BC边上的中线AM的长为√7,△ABM中,由余弦定理可得,cos30∘=3a2+14a2−72×√3a×12a,解可得,a=2,b=2,故△ABC的面积S=12ab sin C=12×2×2×√32=√3.【考点】正弦定理余弦定理【解析】(1)结合正弦定理把已知化为a,b,c的比值,然后结合余弦定理即可求cos B,进而可求B;(2)结合已知及余弦定理可求a,b,然后代入三角形的面积公式即可求解.【解答】解:(1)∵sin2A−√3sin A⋅sin C=sin2B−sin2C,由正弦定理可得,a2−√3ac=b2−c2,即a2+c2−b2=√3ac,由余弦定理可得,cos B=a2+c2−b22ac=√32.∵0<B<π,∴B=π6.(2)若A=π6,结合(1)可知C=2π3,a=b,c=√3a,因为BC边上的中线AM的长为√7,△ABM中,由余弦定理可得,cos30∘=3a2+14a2−72×√3a×12a,解可得,a=2,b=2,故△ABC的面积S=12ab sin C=12×2×2×√32=√3.【点评】本题主要考查了正弦定理,余弦定理及三角形的面积公式的简单应用,属于基础试题.【答案】【考点】平面向量数量积的运算正弦定理【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评【答案】【考点】等差数列的性质数列的求和【解析】此题暂无解析【解答】此题暂无解答【点评】此题暂无点评。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年吉林省四平市新高一入学分班考试数学试卷一、单项选择题(每小题2分,共12分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|2.如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.3.下列运算正确的是()A.3x2+4x2=7x4 B.2x3•3x3=6x3 C.x6÷x3=x2 D.(x2)4=x84.不等式组的解集在数轴上表示为()A.B.C.D.5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()A.60° B.50° C.40° D.30°6.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°二、填空题(每小题3分,共24分)7.太阳的半径约为696 000千米,用科学记数法表示为千米.8.若在实数范围内有意义,则x的取值范围是.9.某校篮球班21名同学的身高如下表:身高/cm 180 185 187 190 201人数/名4 6 5 4 2则该校篮球班21名同学身高的中位数是cm.10.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产台机器.11.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为.12.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为度.13.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线解析式是.14.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.三.解答题(每小题5分,共20分)15.先化简,再求值:﹣,其中x=﹣.16.小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.17.现有5个质地、大小完全相同的小球上分别标有数字﹣1,﹣2,1,2,3.先将标有数字﹣2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.18.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.求证:BD=AE.四、解答题(每小题7分,共28分)19.如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上.(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;(2)请直接写出四边形ABCD的周长.20.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.(1)求反比例函数y=的解析式;(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.五、解答题(每小题8分,共16分)23.如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.(1)求证:AB为⊙O的切线;(2)求弦AC的长;(3)求图中阴影部分的面积.24.某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)六、解答题(每小题10分,共20分)25.(10分)(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为;(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A 的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ 的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.26.(10分)(2013•河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.参考答案与试题解析一、单项选择题(每小题2分,共12分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|考点:有理数大小比较.分析:根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.解答:解:因为正实数都大于0,所以>0,又因为正实数大于一切负实数,所以>﹣2,所以>﹣0.1所以最大,故D不对;又因为负实数都小于0,所以0>﹣2,0>﹣0.1,故C不对;因为两个负实数绝对值大的反而小,所以﹣2<﹣0.1,故B不对;故选A.点评:此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上面看到的图形,共分三列,从左到右小正方形的个数是:1,1,1.解答:解:这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.3.下列运算正确的是()A.3x2+4x2=7x4 B.2x3•3x3=6x3 C.x6÷x3=x2 D.(x2)4=x8考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.解答:解:A、∵3x2+4x2=7x2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选D.点评:本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.5.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为()A.60° B.50° C.40° D.30°考点:平行线的性质;余角和补角.分析:根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.解答:解:∵∠1=30°,∴∠3=180°﹣90°﹣30°=60°,∵直尺两边互相平行,∴∠2=∠3=60°.故选:A.点评:本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.6.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°考点:圆周角定理.专题:几何图形问题.分析:根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.解答:解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.点评:此题综合运用了三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.二、填空题(每小题3分,共24分)7.太阳的半径约为696 000千米,用科学记数法表示为 6.96×105千米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将696 000千米用科学记数法表示为6.96×105千米.故答案为:6.96×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.若在实数范围内有意义,则x的取值范围是x≤.考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:1﹣3x≥0,解得:x≤.故答案是:x≤.点评:本题考查的知识点为:二次根式的被开方数是非负数.9.某校篮球班21名同学的身高如下表:身高/cm 180 185 187 190 201人数/名4 6 5 4 2则该校篮球班21名同学身高的中位数是187cm.考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:按从小到大的顺序排列,第11个数是187cm,故中位数是:187cm.故答案为:187.点评:本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产200台机器.考点:分式方程的应用.分析:根据现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.解答:解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.依题意得:=.解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.故答案为:200.点评:此题主要考查了分式方程的应用,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.11.若x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,则a的值为﹣1或﹣4.考点:一元二次方程的解.分析:把x=﹣2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.解答:解:∵x=﹣2是关于x的一元二次方程x2﹣ax+a2=0的一个根,∴(﹣2)2﹣a×(﹣2)+a2=0,即a2+5a+4=0,整理,得(a+1)(a+4)=0,解得a1=﹣1,a2=﹣4.即a的值是﹣1或﹣4.故答案是:﹣1或﹣4.点评:本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.12.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为60度.考点:正方形的性质;等边三角形的性质.分析:根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.解答:解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故答案为:60.点评:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.13.把抛物线y=(x+1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线解析式是y=x2﹣2.考点:二次函数图象与几何变换.分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解答:解:抛物线y=(x+1)2向下平移2个单位,得:y=(x+1)2﹣2;再向右平移1个单位,得:y=(x+1﹣1)2﹣2.即:y=x2﹣2.故答案是:y=x2﹣2.点评:主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.14.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是﹣1.考点:菱形的性质;翻折变换(折叠问题).分析:根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.解答:解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.点评:此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.三.解答题(每小题5分,共20分)15.先化简,再求值:﹣,其中x=﹣.考点:分式的化简求值.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=﹣==,当x=﹣时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.考点:二元一次方程组的应用.分析:设每支中性笔的价格为x元,每盒笔芯的价格为y元,根据单价×数量=总价建立方程组,求出其解即可.解答:解:设每支中性笔的价格为x元,每盒笔芯的价格为y元,由题意,得,解得:.答:每支中性笔的价格为2元,每盒笔芯的价格为8元.点评:本题考查了列二元一次方程解实际问题的运用,二元一次方程的解法的运用,总价=单价×数量的运用,解答时根据题意的等量关系建立方程组是关键.17.现有5个质地、大小完全相同的小球上分别标有数字﹣1,﹣2,1,2,3.先将标有数字﹣2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随即取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.考点:列表法与树状图法.分析:(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.解答:解:(1)列表得:﹣1 2﹣2 ﹣3 01 0 33 2 5则共有6种结果,且它们的可能性相同;…(3分)(2)∵取出的两个小球上的数字之和等于0的有:(1,﹣1),(﹣2,2),∴两个小球上的数字之和等于0的概率为:=.点评:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.18.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点.求证:BD=AE.考点:全等三角形的判定与性质;等腰直角三角形.专题:证明题.分析:根据等腰直角三角形的性质可得AC=BC,CD=CE,再根据同角的余角相等求出∠ACE=∠BCD,然后利用“边角边”证明△ACE和△BCD全等,然后根据全等三角形对应边相等即可证明.解答:证明:∵△ABC和△ECD都是等腰直角三角形,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴BD=AE.点评:本题考查了全等三角形的判定与性质,等腰直角三角形的性质,以及等角的余角相等的性质,熟记各性质是解题的关键.四、解答题(每小题7分,共28分)19.如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB和直线MN,点A,B,M,N均在小正方形的顶点上.(1)在方格纸中画四边形ABCD(四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN为对称轴的轴对称图形,点A的对称点为点D,点B的对称点为点C;(2)请直接写出四边形ABCD的周长.考点:作图-轴对称变换;勾股定理.分析:(1)根据四边形ABCD是以直线MN为对称轴的轴对称图形,分别得出对称点画出即可;(2)根据勾股定理求出四边形ABCD的周长即可.解答:解;(1)如图所示:(2)四边形ABCD的周长为:AB+BC+CD+AD=+2++3=2+5.点评:此题主要考查了勾股定理以及轴对称图形的作法,根据已知得出A,B点关于MN 的对称点是解题关键.20.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?考点:条形统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(2)利用(1)中所求得出喜欢艺体类的学生数进而画出图形即可;(3)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.解答:解:(1)被调查的学生人数为:12÷20%=60(人);(2)喜欢艺体类的学生数为:60﹣24﹣12﹣16=8(人),如图所示:;(3)全校最喜爱文学类图书的学生约有:1200×=480(人).点评:此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)考点:解直角三角形的应用.专题:几何图形问题.分析:(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH 中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.解答:解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.22.如图,已知▱ABCD水平放置在平面直角坐标系xOy中,若点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5)在反比例函数y=(x>0)图象上.(1)求反比例函数y=的解析式;(2)将▱ABCD沿x轴正方向平移10个单位后,能否使点C落在反比例函数y=的图象上?并说明理由.考点:平行四边形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式;坐标与图形变化-平移.专题:数形结合.分析:(1)利用待定系数法把B(3,5)代入反比例函数解析式可得k的值,进而得到函数解析式;(2)根据A、D、B三点坐标可得AB=5,AB∥x轴,根据平行四边形的性质可得AB∥CD∥x 轴,再由C点坐标可得▱ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),根据反比例函数图象上点的坐标特点可得点C落在反比例函数y=的图象上.解答:解:(1)∵点B(3,5)在反比例函数y=(x>0)图象上,∴k=15,∴反比例函数的解析式为y=;(2)平移后的点C能落在y=的图象上;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点A,D的坐标分别为(﹣2,5),(0,1),点B(3,5),∴AB=5,AB∥x轴,∴DC∥x轴,∴点C的坐标为(5,1),∴▱ABCD沿x轴正方向平移10个单位后C点坐标为(15,1),∴平移后的点C能落在y=的图象上.点评:此题主要考查了平行四边形的性质,以及待定系数法求反比例函数和反比例函数图象上点的坐标特点,根据题意得到AB=5,AB∥x轴是解决问题的关键.五、解答题(每小题8分,共16分)23.如图,已知⊙O的半径为4,CD是⊙O的直径,AC为⊙O的弦,B为CD延长线上的一点,∠ABC=30°,且AB=AC.(1)求证:AB为⊙O的切线;(2)求弦AC的长;(3)求图中阴影部分的面积.考点:切线的判定;扇形面积的计算.专题:压轴题.分析:(1)如图,连接OA,欲证明AAB为⊙O的切线,只需证明AB⊥OA即可;(2)如图,连接AD,构建直角△ADC,利用“30度角所对的直角边是斜边的一半”求得AD=4,然后利用勾股定理来求弦AC的长度;(3)根据图示知,图中阴影部分的面积=扇形ADO的面积+△AOC的面积.解答:(1)证明:如图,连接OA.∵AB=AC,∠ABC=30°,∴∠ABC=∠ACB=30°.∴∠AOB=2∠ACB=60°,∴在△ABO中,∠BAO=180°﹣∠ABO﹣∠AOB=90°,即AB⊥OA,又∵OA是⊙O的半径,∴AB为⊙O的切线;(2)解:如图,连接AD.∵CD是⊙O的直径,∴∠DAC=90°.∵由(1)知,∠ACB=30°,∴AD=CD=4,则根据勾股定理知AC==4,即弦AC的长是4;(3)解:由(2)知,在△ADC中,∠DAC=90°,AD=4,AC=4,则S△ADC=AD•AC=×4×4=8.∵点O是△ADC斜边上的中点,∴S△AOC=S△ADC=4.根据图示知,S阴影=S扇形ADO+S△AOC=+4=+4,即图中阴影部分的面积是+4.点评:本题考查了切线的判定,圆周角定理以及扇形面积的计算.解答(3)时,求△AOC 的面积的面积的技巧性在于利用了“等边同高”三角形的面积相等的性质.24.某景区的三个景点A、B、C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲第一次相遇?(2)要使甲到达景点C时,乙与C的路程不超过400米,则乙从景点B步行到景点C的速度至少为多少?(结果精确到0.1米/分钟)考点:一次函数的应用.专题:行程问题;数形结合.分析:(1)利用待定系数法求一次函数解析式进而利用两函数相等时即为相遇时,求出时间即可;(2)根据题意得出要使两人相距400米,乙需要步行的距离为:5400﹣3000﹣400=2000(米),乙所用的时间为:30分钟,进而得出答案.解答:解:(1)设S甲=kt,将(90,5400)代入得:5400=90k,解得:k=60,∴S甲=60t;当0≤t≤30,设S乙=at+b,将(20,0),(30,3000)代入得出:,解得:,∴当20≤t≤30,S乙=300t﹣6000.当S甲=S乙,∴60t=300t﹣6000,解得:t=25,∴乙出发后5分钟与甲第一次相遇.(2)由题意可得出;当甲到达C地,乙距离C地400米时,乙需要步行的距离为:5400﹣3000﹣400=2000(米),乙所用的时间为:90﹣60=30(分钟),故乙从景点B步行到景点C的速度至少为:≈66.7(米/分),答:乙从景点B步行到景点C的速度至少为66.7米/分.点评:此题主要考查了待定系数法求一次函数解析式以及行程问题,根据题意得出S与t 的函数关系式是解题关键.六、解答题(每小题10分,共20分)25.(10分)(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).(1)求该二次函数的解析式;(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为(,0);(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A 的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ 的面积为S.①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;②请求出S关于t的函数关系式,并写出自变量t的取值范围;③设S0是②中函数S的最大值,直接写出S0的值.考点:二次函数综合题.专题:压轴题.分析:(1)根据已知的与x轴的两个交点坐标和经过的一点利用交点式求二次函数的解析式即可;(2)首先根据上题求得的函数的解析式确定顶点坐标,然后求得点C关于x轴的对称点的坐标C′,从而求得直线C′M的解析式,求得与x轴的交点坐标即可;(3)①如果DE∥OC,此时点D,E应分别在线段OA,CA上,先求出这个区间t的取值范围,然后根据平行线分线段成比例定理,求出此时t的值,然后看t的值是否符合此种情。