湖北省武汉市硚口区2018届中考数学模拟试卷(二)及答案解析

合集下载

2018年湖北省武汉市中考数学试卷及答案解析

2018年湖北省武汉市中考数学试卷及答案解析

绝密★启用前2018年武汉市初中毕业生学业考试数学试卷亲爱的同学,在你答题前,请认真阅读下面的注意事项: 1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,全卷共6页,三大题,满分120分,考试用时120分钟. 2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号.3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答在..“.试卷..”.上.无效... 5.认真阅读答题卡上的注意事项. 预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、 选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑. 1.温度由4℃-上升7℃是 A .3℃B .3℃-C .11℃D .11℃-2.若分式12x +在实数范围内有意义,则实数x 的取值范围是 A .2x -B .2-x <C .2x =-D .2x ≠-3.计算223x x -的结果是 A .2B .22xC .2xD .24x4.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是 A .2、40B .42、38C .40、42D .42、405.计算()(23)a a -+的结果是 A .26a -B .26a a +-C .26a +D .26a a -+6.点5(2),A -关于x 轴对称的点的坐标是 A .(2)5,.B .()25,-C .(25),--D .()52,-7.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是 A .3 B .4 C .5 D .68.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是 A .14B .12C .34D .569.将正整数1至2018按一定规律排列如下表:毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------A.2019B .2018C .2016D .201310.如图,在O 中点C 在优弧AB 上,将弧BC 沿BC 折叠后刚好经过AB 的中点D .若O4AB=,则BC 的长是 A. B .CD 第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算的结果是 . 12.下表记录了某种幼树在一定条件下移植成活情况是 (精确到0.1).13.计算22111m m m---的结果是 . 14.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC的度数是 .15.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是23602y t t =-.在飞机着陆滑行中,最后4s 滑行的距离是 m .16.如图,△ABC 中,60ACB ∠=︒,1AC =,D 是边AB 的中点,E是边BC 上一点.若DE 平分△ABC 的周长,则DE 的长是 .三、解答题(共8小题,共72分)在答题卡指定位置上写出必要的演算过程或证明过程. 17.(本小题满分8分)解方程组:10 216. x y x y +=⎧⎨+=⎩,①②第10题图第16题图18.(本小题满分8分)如图,点E 、F 在BC 上,BE CF =,AB DC =,B C ∠=∠,AF与DE 交于点G .求证:GE GF =. 19.(本小题满分8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表学生读书数量扇形图(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?20.(本小题满分8分)用1块A 型钢板可制成2块C 型钢板和1块D 型钢板;用1块B 型钢板可制成1块C 型钢板和3块D 型钢板.现准备购买A ,B 型钢板共100块,并全部加工成C ,D 型钢板.要求C 型钢板不少于120块,D 型钢板不少于250块,设购买A 型钢板x 块(x 为整数).(1)求A ,B 型钢板的购买方案共有多少种?(2)出售C 型钢板每块利润为100元,D 型钢板每块利润为120元.若将C 、D 型钢板全部出售,请你设计获利最大的购买方案.21.(本小题满分8分)如图,P A 是O 的切线,A 是切点,AC 是直径,AB 是弦,连接PB ,PC .PC交AB 于点E ,且PA PB =.(1)求证:PB 是O 的切线; PECE的值. (2)若3APC BPC ∠=∠,求22.(本小题满分10分)已知点()A a m ,在双曲线8y x=上,且0m <.过点A 作x 轴的垂线,垂足为B .(1)如图1,当2a =-时,()P t ,0是x 轴上的动点,将点B 绕点P 顺时针旋转90°至点C .第18题图第21题图-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------①若1t =,直接写出点C 的坐标; ②若双曲线8y x=经过点C ,求t 的值;(2)如图2,将图1中的双曲线()8x 0y x=->沿y 轴折叠得到双曲线()8x 0y x=-<,将线段OA 绕点O 旋转,点A 刚好落在双曲线()8x 0y x=-<上的点()D d n ,处,求m 和n 的数量关系.第22题图1第22题图223.(本小题满分10分)在△ABC 中,90ABC ∠=︒.(1)如图1,分别过A 、C 两点作经过点B 的直线的垂线,垂足分别为M ,N .求证:△∽△ABM BCN ;(2)如图2,P 是边BC 上一点,BAP C ∠=∠,an 5t PAC ∠=,求tan C 的值;(3)如图3,D 是边CA 延长线上一点,AE AB =,90DEB ∠=︒,3sin 5BAC ∠=,25AD AC =,直接写出tan CEB ∠的值.24.(本小题满分12分)抛物线L :2y x bx c +=-+经过点1(0)A ,,与它的对称轴直线1x =交于点B .(1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线()40y kx k k =-+<与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m ()m>0个单位长度得到抛物线1L ,抛物线1L 与y 轴交于点C ,过点C 作y 轴的垂线交抛物线1L 于另一点D .F 为抛物线1L 的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.第24题图1第24题图22018年武汉市初中毕业生学业考试数学试卷答案解析第23题图1第23题图2第23题图3第Ⅰ卷一、选择题1.【答案】A【解析】温度由4-℃上升7℃是473-+=℃.【提示】根据题意列出算式,再利用加法法则计算可得.【考点】有理数的加法.2.【答案】D【解析】∵代数式12x+在实数范围内有意义,∴20x+≠,解得:2x≠-.【提示】直接利用分式有意义的条件分析得出答案.【考点】分式有意义的条件.3.【答案】B【解析】22232x x x-=【提示】根据合并同类项解答即可.【考点】合并同类项.4.【答案】D【解析】这组数据的众数和中位数分别42,40.【提示】根据众数和中位数的定义求解.【考点】众数和中位数的定义.5.【答案】B【解析】223()()6a a a a-+=+-【提示】根据多项式的乘法解答即可.【考点】多项式的乘法.6.【答案】A【解析】点5(2)A-,关于x轴的对称点B的坐标为(2)5,.【提示】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【考点】x轴、y轴对称的点的坐标.7【答案】C【解析】结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.【提示】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可. 【考点】由三视图判断几何体.8.【答案】C【解析】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率123164==.【提示】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【考点】列表法与树状图法.9.【答案】D【解析】设中间数为x,则另外两个数分别为1x-、1x+,∴三个数之和为()(13)1x x x x-+++=.根据题意得:32019x=、32018x=、32016x=、32013x=,解得:673x=,26733x=(舍去),672x=,671x=.∵6738481=⨯+,∴2019不合题意,舍去;∵672848=⨯,∴2016不合题意,舍去;∵6718377=⨯+,∴三个数之和为2013.【提示】设中间数为x,则另外两个数分别为1x-、1x+,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x不能为第一列及第八列数,即可确定x值,此题得解.【考点】一元一次方程的应用以及规律型中数字的变化类.10.【答案】B【解析】连接OD 、AC 、DC 、OB 、OC ,作CE AB ⊥于E ,OF CE ⊥于F ,如图,∵D 为AB 的中点, ∴OD AB ⊥, ∴122AD BD AB ===,在Rt △OBD 中,1OD ==,∵将弧BC 沿BC 折叠后刚好经过AB 的中点D , ∴弧AC 和弧CD 所在的圆为等圆, ∴AC CD =, ∴AC DC =, ∴1AE DE ==,易得四边形ODEF 为正方形, ∴1OF EF ==,在Rt △OCF 中,2CF =, ∴213CE CF EF =+=+=, 而213BE BD DE =+=+=,∴BC =.【提示】连接OD 、AC 、DC 、OB 、OC ,作CE AB ⊥于E ,OF CE ⊥于F ,如图,利用垂径定理,得到OD AB ⊥,则122AD BD AB ===,于是根据勾股定理可计算出1OD =,再利用折叠的性质可判断弧AC 和弧CD 所在的圆为等圆,则根据圆周角定理得到AC CD =,所以AC DC =,利用等腰三角形的性质得1AE DE ==,接着证明四边形ODEF 为正方形得到1OF EF ==,然后计算出CF 后得到3CE BE ==,于是得到BC =.【考点】切线的性质,圆周角定理和垂径定理.第Ⅱ卷二、填空题 11【解析】原式【提示】根据二次根式的运算法则即可求出答案. 【考点】二次根式的运算. 12.【答案】0.9【解析】∵概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率. ∴这种幼树移植成活率的概率约为0.9.【提示】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率. 【考点】利用频率估计概率. 13.【答案】11m - 【解析】原式2211111m m m m =+=---. 【提示】根据分式的运算法则即可求出答案. 【考点】分式的运算法则. 14.【答案】30︒或150︒. 【解析】如图1,∵四边形ABCD 为正方形,△ADE 为等边三角形,∴AB BC CD AD AE DE =====,90BAD ABC BCD ADC ∠=∠=∠=∠=︒,60AED ADE DAE ∠=∠=∠=︒,∴150BAE CDE ∠=∠=︒,又AB AE =,DC DE =, ∴15AEB CED ∠=∠=︒,则30BEC AED AEB CED ∠=∠-∠-∠=︒. 如图2,∵△ADE 是等边三角形, ∴AD DE =,∵四边形ABCD 是正方形, ∴AD DC =, ∴DE DC =,∴CED ECD ∠=∠,∴906030CDE ADC ADE ∠=∠-∠=︒-︒=︒, ∴118030()752CED ECD ∠=∠=︒-︒=︒,∴36075260150BEC ∠=︒-︒⨯-︒=︒【提示】分等边△ADE 在正方形的内部和外部两种情况分别求解可得.【考点】正方形的性质,等边三角形的性质,等腰三角形的判定与性质. 15.【答案】24 【解析】22223333604020400206002222y t t t t t t ⎡⎤=-=--=---=--+⎣⎦()()() 当20s t =时,y 取得最大值,即滑行停止,所以,故最后4s 为第16s至20s 内滑行的总距离。

硚口区2018届中考数学模拟试卷(三)

硚口区2018届中考数学模拟试卷(三)

硚口区2018届中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,共30分) 1.气温由-2℃上升了3℃时的气温是( ) A .-1℃B .1℃C .5℃D .-5℃2.若代数式11+x 在实数范围内有意义,则实数x 的取值范围是( ) A .x >-1B .x =-1C .x <1D .x ≠-1 3.下列运算计算正确的是( ) A .2x ·x 2=2x 2B .6x 6÷2x 2=3x 3C .3x 2-2x 2=x 2D .2x +3x =5x 2 4投篮次数n 50 100 150 200 250 300 500 投中次数m 28 60 78 104 123 152 251 投中频率m /n 0.560.600.520.520.490.51 0.50则这名球员投篮一次,投中的概率(结果保留小数点后一位)约是( )A .0.5B .0.49C .0.4D .0.6 5.计算(a -2)2的结果是( )A .a 2+4B .a 2-2a +4C .a 2+4a +4D .a 2-4a +4 6.以原点为中心,把点A (1,2)顺时针旋转90°得到的点B 的坐标是( ) A .(-2,1)B .(1,-2)C .(2,-1)D .(-1,2)7.下列哪个几何体,它的主视图、俯视图、左视图都相同的是( )8日加工零件数4 5 6 7 8 人数2x564这些工人日加工零件数的众数、中位数分别是( )A .7、5.5B .6、5C .7、6D .7、6.59.如图,在正方形ABCD 所在的平面内找一点P ,使其与正方形中 的每一边所构成的三角形均是等腰三角形,这样的点共有( ) A .9个 B .8个C .7个D .5个10.如图,在△ABC 中,AB =12,AC =9,点D 是BC 边上的一点,AD =BD =2DC .设△ABD 与△ACD 的内切圆半径分别为r 1、r 2,则r 1∶r 2的值为( ) A .2B .23C .34 D .45 二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算)23(32+-的结果是___________12.计算xx x -+-1112的结果是___________ 13.一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球,然后放回,再随机摸出一个小球,则“两次取出的小球标号的和等于4”的概率是_____ 14.如图,在四边形ABCD 中,AD ∥BC ,AC 、BD 交于点E .若AB =AC ,且BC =BE =EA ,则∠ADB 的度数为___________15.以x 为自变量的二次函数y =x 2-2(b -2)x +b 2-1的图象不经过第三象限,则实数b 的取值范围是___________16.如图,在矩形ABCD 中,AB =8 cm ,AD =9 cm ,动点M 从点C 出发,在CB 边上以每秒1 cm 的速度向点B 匀速运动,同时动点N 从点C 出发,在CD 边上以每秒1 cm 的速度向点D 匀速运动.设运动时间为t 秒(0<t <8),若∠MAN =45°,则t 的值为___________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧-=+=+841y x y x18.(本题8分)如图,点B 、E 、C 、F 在一条直线上,AB =DF ,∠B =∠F ,BE =FC ,求证:AC ∥ED19.(本题8分)秋季新学期开学时,某校对七年级新生掌握“中学生日常规范”的情况进行了知识测试,测试成绩全部合格.现学校随机选取了部分学生的成绩,整理并制作成如下的图表(注:A 组成绩为60≤x <70,B 组成绩70≤x <80,C 组成绩为80≤x <90,D 组成绩为90≤x ≤100)请根据上述统计图表,解答下列问题:(1) 本次调查共抽查了___________名学生,在扇形统计图中,成绩为“90≤x ≤100”所在扇形的圆心角是___________度(2) 如果测试成绩不低于80分为“优秀”等次,请估计全校七年级的800名学生中“优秀”等次的学生约有多少人?(3) 请估计选取的七年级学生测试成绩的平均成绩20.(本题8分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费60元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别对学生提出了不同的优惠方案:甲印刷厂提出:需支付制版费,长期客户活动免付版费,所有资料的印刷费按9折收费 乙印刷厂提出:所有资料的印刷费按8折收费(1) 在没有任何优惠方案的情况下,求该学生付费300元可印刷资料多少份? (2) 在有优惠方案的情况下,应该选择哪家印刷厂比较优惠?21.(本题8分)已知△ABC 的外角∠EAC 的平分线AD 交其外接圆⊙O 于点D ,连接DB 、DC (1) 如图1,求证:BD =CD(2) 如图2,若AC 是⊙O 的直径,sin ∠BDC =53,求tan ∠DBA 的值22.(本题10分)如图,已知:A (0,2)、B (4,0)(1) ① 画出线段AB 关于x 轴对称的线段A 1B ,并写出直线A 1B 的解析式 ② 若反比例函数xky =(k <0)的图象与直线A 1B 有两个不同的公共点M 、N ,作ME ⊥x 轴于E ,NF ⊥x 轴于F ,求k 的取值范围及ME +NF 的值(2) 将线段AB 绕点P 旋转180°得到线段CD (点C 与点A 对应),且点C 、D 在反比例函数xm y =的图象上,直接写出所有符合条件的点C 所在图象的函数解析式23.(本题10分)如图1,AD 是△ABC 的角平分线,点E 是AC 上一点,BE 交AD 于点F ,BD =BF(1) 求证:△BAF ∽△CAD(2) 如图2,若BE 是△ABC 的高,sinC =53,AB =10,求DF 的长 (3) 如图3,若BE 是△ABC 的中线,直接写出BDCD的值24.(本题12分)已知,抛物线C 1:y =ax 2+bx -4经过点L (-1,0)、(2,-6) (1) 求抛物线的解析式(2) 如图1,平移抛物线C 1使其顶点为M (0,2)得到抛物线C 2,点A 为抛物线C 2第一象限内异于点M 的任意一点,直线AM 交x 轴于点C ,过点C 作x 轴的垂线交抛物线C 2于点B ,直线AB 与y 轴交于点N ,求点N 的坐标(3) 如图2,点P 是抛物线C 1第一象限内的点,过点P 的直线y =mx +n (n <0)与抛物线C 1交于另一点Q ,连接LP 交y 轴于点S ,连接LQ 交y 轴于点T .若OS ·OT =2,探究m 与n 之间的数量关系,并说明理由。

2018年中考数学模拟试题及答案(共五套)

2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。

2018年武汉市中考数学试题参考答案与解析

2018年武汉市中考数学试题参考答案与解析

2018年武汉中考数学参考答案与解析一、选择题09.设中间的数为x ,则这三个数分别为x -1,x ,x +1∴这三个数的和为3x ,所以和是3和倍数,又2019÷3=671,673除以8的余数为1,∴2019在第1列(舍去);2016÷3=672,672除以8的余数为0,∴2016在第8列(舍去);2013÷3-671,671除以8的余数为7,∴2013在第7列,所以这三数的和是是2013,故选答案D .10.连AC 、DC 、OD ,过C 作CE ⊥AB 于E ,过O 作OF ⊥CE 于F ,∵ BC沿BC 折叠,∴∠CDB =∠H ,∵∠H +∠A =180°,∴∠CDA +∠CDB =180°,∴∠A =∠CDA ,∴CA =CD ,∵CE ⊥AD ,∴AE =ED =1,∵OA =AD =2,∴OD =1,∵OD ⊥AB ,∴OFED 为正方形,∴OF =1,OC CF =2,CE =3,∴CB=.OHFEDCBAOFEDCBA法一图法二图法二 第10题 作D 关于BC 的对称点E ,连AC 、CE ,∵AB =4,2AE AO ==BE =2,由对称性知,∠ABC =∠CBE =45°,∴AC =CE ,延长BA 至F ,使FA =BE ,连FC ,易证△FCA ≌△BCE ,∴∠FCB =90°,∴)22BC FB AB BE ==+=二、填空题12.0.9 13.11m - 14.30°或150° 15.24 第15题 ()23206002y t =--+当t =20时,滑行到最大距离600m 时停止;当t =16时,y =576,所以最后4s 滑行24m .第16题 延长BC 至点F ,使CF =AC ,∵DE 平分△ABC 的周长,AD =BC ,∴AC +CE =BE ,∴BE =CF +CE =EF ,∴DE ∥AF ,DE =12AF ,又∵∠ACF =120°,AC =CF,∴AF =,∴2DE =. FEDCB ABD第16题法一答图 第16题法二答图法二 第16题 解析 作BC 的中点F ,连接DF ,过点F 作FG ⊥DE 于G ,设CE =x ,则BE =1+x ,∴BE =1+x ,∴BC =1+2x ,∴12C F x =+,∴12E F C F C E =-=,而1122DF AC ==,且∠C =60°,∴∠DFE =120°,∴∠FEG =30°,∴1124GF EF ==,∴EG =,∴2DE EG ==三、解答题17、原方程组的解为64x y =⎧⎨=⎩18.∵BE =CF ,∴BE +EF =CF +EF ,∴BF =CE ,在△ABF 和△DCE 中,AB DC B C BF CE =??,,,∴△ABF ≌△DCE ,∴∠DEC =∠AFB ,∴GE =GF . 19.(1)m =50,a =10,b =20 (2)11521032045500115050⨯+⨯+⨯+⨯⨯=(本)答:略.20.(1)设A 型钢板x 块,则B 型钢板有(100-x )块. ()21001203100250x x x x +-≥⎧⎪⎨+-≥⎪⎩,解得2025x ≤≤.X =20或21或22或23或24或25,购买方案共有6种.(2)设总利润为W 元,则()()1002100120310014046000w x x x x x =+-++-=-+⎡⎤⎣⎦ X =20时,max 140204600043200W =-⨯+=元.,获利最大的方案为购买A 型20块,B 型80块.21.(1)如图①,连接OB ,OP ,在△OAP 和△OBP 中,OA OB OP OP AP BP =⎧⎪=⎨⎪=⎩,∴△OAP ≌△OBP ,∴∠OBP =∠OAP ,∵PA是⊙O的切线,∴∠OBP=∠OAP=90°,∴PB是⊙O的切线.图②图①⑵如图②,连接BC,AB与OP交于点H∵∠APC=3∠BPC,设∠BPC=x,则∠APC=3x,∠APB=x+3x=4x由⑴知∠APO=∠BPO=2x,∴∠OPC=∠CPB=x∵AC是⊙O的直径,∴∠ABC=90°∵易证OP⊥AB,∴∠AHO=∠ABC=90°,即OP∥BC ∴∠OPC=∠PCB=∠CPB=x,∴CB=BP易证△OAH∽△CAB,∴OHCB=OAAC=12,设OH=a,∴CB=BP=2a易证△HPB∽△BPO,∴HPBP=BPOP,设HP=ya,∴2yaa=2aa ya+解得1y=(舍)或2y=∵OP∥CB,易证△HPE∽△BCE,∴PECE=HPCB=2yaa22、⑴将x A=-2代入y=8x中得:y A=82-=-4∴A(-2,-4),B(-2,0)①∵t=1∴P(1,0),BP=1-(-2)=3∵将点B绕点P顺时针旋转90°至点C∴x C=x P=t PC=BP=3∴C(1,3)②∵B(-2,0),P(t,0)第一种情况:当B在P的右边时,BP=-2-t,∴x C=x P=t PC1=BP=-2-t,∴C1(t,t+2) 第二种情况:当B在P的左边时,BP=2+t,∴x C=x P=t PC2=BP=2+t,∴C2(t,t+2)综上:C的坐标为(t,t+2)∵C在y=8x上∴t(t+2)=8解得t=2或-4⑵作DE⊥y轴交y轴于点E,将y A=m代入y=8x得:x A=8m,∴A(8m,m) ∴AO2=OB2+AB2=228m+m2,将y D =n 代入y =8x 得:x D =8n ,∴D(-8n ,n) ∴DO 2=DE 2+OE 2=28n ⎛⎫- ⎪⎝⎭+n 2,∴228m +m 2=28n ⎛⎫- ⎪⎝⎭+n 2,228m -228n =n 2-m 2,222264()n m m n -=n 2-m 2,(64-m 2n 2)(n 2-m 2)=0 ①当n 2-m 2=0时,n 2=m 2,∵m <0,n >0 ∴m +n =0②当64-m 2n 2=0时,m 2n 2=64,∵m <0,n >0 ∴mn =-8 综合得:m +n =0,或 mn =-823、⑴∵∠ABC =90°,∴∠3+∠2=180°-∠ABC =180°-90°=90°又∵AM ⊥MN ,CN ⊥MN ,∴∠M =∠N =90°,∠1+∠3=90° ∴∠1=∠2,∴△ABM ∽△BCNC⑵方法一:过P 点作PN ⊥AP 交AC 于N 点,过N 作NM ⊥BC 于M 点 ∵∠BAP +∠APB =90°,∠APB +∠NPC =90° ∴∠BAP =∠NPC ,△BAP ∽△MPNA PB AB PP N M PM N== ∵tanPN PAC PA ∠==,设MN =,PM =,则5BP a =,5AB b = ∵BAP BCA ∠=∠,∴NPC BCA ∠=∠,∴NP NC =,2PC PM ==又△BAP ∽△BCA ,BA BCBP BA=,∴2B A B PB C =⋅,()()2555b aa =⋅+,解得a =,∴tan MN a C MC b ∠====方法二:过点C 作CE AP ⊥的延长线交于E 点,过P 作PF AC ⊥交AC 于点F ∵90ABC CEP ∠=∠=︒,BPA EPC ∠=∠,∴BAP ECP ACB∠=∠=∠∵tan PAC ∠=,∴设CE =,则5AE m = 由勾股定理得AC =, ∵ACP ECP ∠=∠,∴PF PE = ∴32APC CPE S AC AP S CE PE ∆∆=== ∵5AE m =,∴2PE m =,∴tan tan 5PE ECP ACB EC ∠=∠===方法三:作AP 的垂直平分线交AB 于D 点,连DP 设C BAP x ∠=∠=,PAC y ∠=,∴290x y +=︒2BDP BAP DPA x ∠=∠+∠=,902DPB x y PAC ∠=︒-==∠∵tan 5PAC ∠=,令2BD a =,BP =由勾股定理得:3DP a AD ==,∴tan tan 5BP C BAP AB ∠=∠==⑶过A 作AH EB ⊥交EB 于H ,过C 作CK EB ⊥交EB 的延长线于K ∵AE AB = ∴EH HB =,易知△AHB ∽△BKC ,25EH DA HK AC ==设3CK x =,∵△AHB ∽△BKC ,∴AB HBBC CK=,∴4HB EH x == ∴5201022EH x HK x ===,∴3tan 14CK CEB EK ∠==24、⑴221y x x =-++⑵∵直线()40y kx k k =-+<,则()14y k x =-+, ∴直线MN 过定点P (1,4) 联立2421y kx k y x x =-+⎧⎨=-++⎩得()2230x k x k +--+= ∴2M N x x k +=-,3M N x x k ⋅=-∴()()()1211222N N M M BMN EBN EBM EB x x x EB x S S S D D D ---=-=-==∵N M x x -===1=,∴3k =± ∵0k <,∴3k =-⑶设1L 为:22y x x t =-++ ∴1m t =-且C (0,t ),D (2,t ),F (1,0),设P (0,a )①△PCD ∽△POF 时, ∴CD CP OF OP =, ∴21t a a -=, ∴3t a =,此时必有一点P 满足条件 ②△DCP ∽△POF 时, ∴CD CP OP OF =, ∴21t a a -=, ∴220a at -+= ∵符合条件的点P 恰有两个,∴第一种情况:220a at -+=有两个相等的实数根,0∆=,∴t =±∵0t > ∴t = ∴11m =将t =代入3t a =得13a =∴1P (0,3)将t =代入220a at -+=得2a = ∴2P (0第二种情况:220a at -+=有两个不相等的实数根且其中一根为3t a =的解,∴0∆>,将3t a =代入220a at -+=得22320a a -+=,∴1a =±∵0a > ∴1a =, ∴3t =, 22m =将3t =代入220a at -+=得31a =, ∴3P (0,1); 42a =, ∴4P (0,2)综上所述:当11m =时,P (0,3)或P (0, 当22m =时,P (0,1)或P (0,2)。

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)

2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。

2018年湖北省武汉二中、广雅中学中考数学二模试卷(包含答案解析)

2018年湖北省武汉二中、广雅中学中考数学二模试卷(包含答案解析)

2018年湖北省武汉二中、广雅中学中考数学二模试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 某市2010年元旦这天的最高气温是8℃,最低气温是-2℃,则这天的最高气温比最低气温高()A.10℃B.-10℃C.6℃D.-6℃2、(3分) 若代数式1在实数范围内有意义,则x的取值范围是()2−xA.x>2B.x<2C.x≠-2D.x≠23、(3分) 运用乘法公式计算(3-a)(a+3)的结果是()A.a2-6a+9B.a2-9C.9-a2D.a2-3a+94、(3分) 在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中5个黑球,从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出m的值是()A.5B.10C.15D.205、(3分) 下列计算正确的是()A.x2+2x=3x2B.x6÷x2=x3C.x2•(2x3)=2x5D.(3x2)2=6x26、(3分) 已知点A(-2,4)关于y轴对称的点的坐标是()A.(-2,-4)B.( 2,-4)C.(2,4)D.(-2,4)7、(3分) 有个零件(正方体中间挖去一个圆柱形孔)如图放置,它的主视图是()A. B. C. D.8、(3分) 某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示,已知这15个数据的中位数为5.这15名员工每人所创年利润的众数、平均数分别是()A.10,5B.7,8C.5,6.5D.5,69、(3分) 如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n)个图形中面积为1的正方形的个数为()A.n(n+1)2B.n(n+2)2C.n(n+3)2D.n(n+4)210、(3分) 如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是()A.√2B.2√2C.2D.4√3二、填空题(本大题共 6 小题,共 18 分)11、(3分) √6+(√2−√6)=______.12、(3分) 化简1a−2-2aa 2−4的结果等于______.13、(3分) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是______. 14、(3分) 如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于______°.15、(3分) 如图,在四边形ABCD 中,AD∥BC ,∠B=90°,AD=8cm ,AB=6cm ,BC=10cm ,点Q 从点A 出发以1cm/s 的速度向点D 运动,点P 从点B 出发以2cm/s 的速度向C 点运动,P 、Q 两点同时出发,其中一点到达终点时另一点也停止运动.若DP≠DQ ,当t=______s 时,△DPQ 是等腰三角形.16、(3分) 已知抛物线y=x 2-mx-3与直线y=2x-5m 在-2≤x <2之间有且只有一个公共点,则m 的取值范围是______.三、计算题(本大题共 1 小题,共 8 分) 17、(8分) 解方程组:{x +2y =4x −y =1四、解答题(本大题共 7 小题,共 64 分)18、(8分) 如图,已知AB=AD ,AC=AE ,∠BAD=∠CAE .求证:BC=DE .19、(10分) 武汉二中广雅中学为了进一步改进本校九年级数学教学,提高学生学习数学的兴趣.校教务处在九年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查:我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A-非常喜欢”、“B-比较喜欢”、“C-不太喜欢”、“D-很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计.现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是______,图②中A所在扇形对应的圆心角是______;(3)若该校九年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?20、(8分) 某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表.(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?21、(8分) 如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E . (1)求证:DE⊥AC ;(2)连接OC 交DE 于点F ,若sin∠ABC=34,求OFFC 的值.22、(10分) 在平面直角坐标系中,点A (1,0),B (0,2),将直线AB 平移与双曲线y=kx (x >0)在第一象限的图象交于C 、D 两点.(1)如图1,将△AOB 绕O 逆时针旋转90°得△EOF (E 与A 对应,F 与B 对应),在图1中画出旋转后的图形并直接写出E 、F 坐标; (2)若CD=2AB ,①如图2,当∠OAC=135°时,求k 的值;②如图3,作CM⊥x 轴于点M ,DN⊥y 轴于点N ,直线MN 与双曲线y=kx 有唯一公共点时,k 的值为______.23、(10分) 如图,Rt△ABC 中,∠ACB=90°,CE⊥AB 于E ,BC=mAC=nDC ,D 为BC 边上一点.(1)当m=2时,直接写出CE BE =______,AEBE =______.(2)如图1,当m=2,n=3时,连DE 并延长交CA 延长线于F ,求证:EF=32DE .(3)如图2,连AD 交CE 于G ,当AD=BD 且CG=32AE 时,求mn 的值.24、(10分) 如图,已知二次函数y=x 2-2mx+m 2+38m −14的图象与x 轴交于A ,B 两点(A 在B 左侧),与y 轴交于点C ,顶点为D .(1)当m=-2时,求四边形ADBC 的面积S ;(2)在(1)的条件下,在第二象限抛物线对称轴左侧上存在一点P ,使∠PBA=2∠BCO ,求点P 的坐标;(3)如图2,将(1)中抛物线沿直线y=38x −14向斜上方向平移√734个单位时,点E 为线段OA上一动点,EF⊥x 轴交新抛物线于点F ,延长FE 至G ,且OE•AE=FE•GE ,若△EAG 的外角平分线交点Q 在新抛物线上,求Q 点坐标.2018年湖北省武汉二中、广雅中学中考数学二模试卷【答案】A【解析】解:8-(-2)=8+2=10℃.故选:A.用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.本题利用有理数的减法运算法则求解.【第 2 题】【答案】D【解析】解:由题意,得2-x≠0,解得x≠2,故选:D.根据分母不能为零,可得答案.本题考查了分是有意义的条件,利用分母不能为零得出不等式是解题关键.【第 3 题】【答案】C【解析】解:(3-a)(a+3)=32-a2=9-a2,故选:C.根据平方差公式计算可得.本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.【第 4 题】【答案】解:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,=0.5,∴5m解得:m=10.故选:B.利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黑球的频率得到相应的等量关系.【第 5 题】【答案】C【解析】解:A、x2与2x不是同类项,不能合并,此选项错误;B、x6÷x2=x4,此选项错误;C、x2•(2x3)=2x5,此选项正确;D、(3x2)2=9x4,此选项错误;故选:C.根据合并同类项法则、同底数幂除法、单项式乘单项式、幂的乘方与积的乘方分别计算可得.本题主要考查合并同类项法则、同底数幂除法、单项式乘单项式、幂的乘方与积的乘方,熟练掌握其运算法则是解题的关键.【第 6 题】【答案】C【解析】解:点A(-2,4)关于y轴对称的点的坐标是:(2,4).故选:C.直接利用关于y轴对称点的性质得出答案.此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.【第 7 题】【答案】解:从正面看一个正方形被分成三部分,两条分式是虚线,故C 正确; 故选:C .根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,主视图是从正面看得到的图形.【 第 8 题 】 【 答 案 】 D 【 解析 】解:∵这15个数据的中位数是第8个数据,且中位数为5, ∴x=5,则这15个数据为3、3、3、3、5、5、5、5、5、5、5、8、8、8、19,所以这组数据的众数为5万元,平均数为1×19+3×8+7×5+4×315=6万元,故选:D .先根据中位数为5得出x=5,据此可得这15个数据,再利用众数和平均数的定义求解可得. 本题考查众数和中位数、平均数,解答本题的关键是明确众数和中位数的定义,会找一组数据的众数和中位数.【 第 9 题 】 【 答 案 】 C 【 解析 】解:∵第(1)个图形中面积为1的正方形有2个, 第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个, …,∴第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=n(n+3)2个, 故选:C .由第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,得第n 个图形中面积为1的正方形有2+3+4+…+(n+1)个.此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.【 第 10 题 】【 答 案 】 C 【 解析 】解:设⊙O 与MN 相切于点K ,设正方形的边长为2a .∵BC 、CD 、MN 是切线,∴BE=CE=CF=DF=a ,MK=ME ,NK=NF ,设MK=ME=x ,NK=NF=y , 在Rt△CMN 中,∵MN=x+y ,CN=a-y ,CM=a-x , ∴(x+y )2=(a-y )2+(a-x )2, ∴ax+ay+xy=a 2,∵S △AMN =S 正方形ABCD -S △ABM -S △CMN -S △ADN =4,∴4a 2-12×2a×(a+x )-12(a-x )(a-y )-12×2a×(a+y )=4, ∴32a 2-12(ax+ay+xy )=4,∴a 2=4,∴a=2或-2(负值舍去), ∴AB=2a=4,∴⊙O 的半径为2. 故选:C .设⊙O 与MN 相切于点K ,设正方形的边长为2a .因为BC 、CD 、MN 是切线,可得BE=CE=CF=DF=a ,MK=ME ,NK=NF ,设MK=ME=x ,NK=NF=y ,在Rt△CMN 中,因为MN=x+y ,CN=a-y ,CM=a-x ,可得到(x+y )2=(a-y )2+(a-x )2,推出ax+ay+xy=a 2,根据S △AMN =S 正方形ABCD -S △ABM -S △CMN -S △ADN ,构建方程求出a 即可解决问题.本题考查正方形的性质、勾股定理切线长定理等知识,解题的关键是学会利用参数解决问题,属于中考选择题中的压轴题.【 第 11 题 】 【 答 案 】 √2 【 解析 】解:原式=√6+√2−√6 =√2故答案为:√2根据二次根式的性质即可求出答案本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.【 第 12 题 】【 答 案 】-1a+2【 解析 】解:原式=a+2(a+2)(a−2)-2a (a+2)(a−2)=2−a (a+2)(a−2)=−(a−2)(a+2)(a−2)=-1a+2,故答案为:-1a+2.根据异分母分式的加减运算顺序和运算法则计算可得.本题主要考查分式的加减法,解题的关键是掌握异分母分式的加减运算顺序和法则.【 第 13 题 】【 答 案 】59【 解析 】解:画树状图得:∵共有9种等可能的结果,至少有一辆汽车向左转的有5种情况,∴至少有一辆汽车向左转的概率是:59.故答案为:59. 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与至少有一辆汽车向左转的情况,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.【 第 14 题 】【 答 案 】50【 解析 】解:∵AD∥BC ,∠EFB=65°,∴∠DEF=65°,又∵∠DEF=∠D′EF=65°,∴∠D′EF=65°,∴∠AED′=180°-65°-65°=50°.故答案是:50.先根据平行线的性质得出∠DEF 的度数,再根据翻折变换的性质得出∠D′EF 的度数,根据平角的定义即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.【 第 15 题 】【 答 案 】83或74【 解析 】解:由运动知,AQ=t ,BP=2t ,∵AD=8,BC=10,∴DQ=AD -AQ=(8-t )(cm ),PC=BC-BP=(10-2t )(cm ),∵△DPQ 是等腰三角形,且DQ≠DP ,∴①当DP=QP 时,∴点P 在DQ 的垂直平分线上, ∴AQ+12DQ=BP ,∴t+12(8-t )=2t ,∴t=83, ②当DQ=PQ 时,如图,Ⅰ、过点Q 作QE⊥BC 于E ,∴∠BEQ=∠OEQ=90°,∵AD∥BC ,∠B=90°,∴∠A=∠B=90°,∴四边形ABEQ 是矩形,∴EQ=AB=6,BE=AQ=t ,∴PE=BP -BE=t ,在Rt△PEQ 中,PQ=√PE 2+EQ 2=√t 2+36,∵DQ=8-t∴√t 2+36=8-t , ∴t=74,∵点P 在边BC 上,不和C 重合,∴0≤2t <10,∴0≤t <5,∴此种情况符合题意, 即t=83或74s 时,△DPQ 是等腰三角形.故答案为:83或74. 先由运动速度表示出AQ ,BP ,再分两种情况讨论计算,求出时间,判断时间是否符合题意. 主要考查了勾股定理,平行线的性质,等腰三角形的判定,关键是分情况讨论,是一道中等难度的题目.【 第 16 题 】【 答 案 】−57≤m <1或m=8-4√3【 解析 】解:联立{y =x 2−mx −3y =2x −5m可得:x 2-(m+2)x+5m-3=0,令y=x 2-(m+2)x+5m-3,∴抛物线y=x 2-mx-3与直线y=2x-5m 在-2≤x <2之间有且只有一个公共点,即y=x 2-(m+2)x+5m-3的图象在-2≤x <2上只有一个交点,当△=0时,即△=(m+2)2-4(5m-3)=0解得:m=8±4√3,当m=8+4√3时,x=m+22=5+2√3>2当m=8-4√3时,x=m+22=5-2√3,满足题意,当△>0,∴令x=-2,y=7m+5,令x=2,y=3m-3,∴(7m+5)(3m-3)<0,∴−57<m <1 令x=-2代入0=x 2-(m+2)x+5m-3解得:m=−57,此该方程的另外一个根为:−237,故m=−57也满足题意, 故m 的取值范围为:−57≤m <1或m=8-4√3根据二次函数图象与系数之间的关系即可求出答案.本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于难题.【第 17 题】【答案】解:{x+2y=4①x−y=1②,①-②,得:3y=3,解得:y=1,将y=1代入①,得:x+2=4,解得:x=2,则方程组的解为{x=2 y=1.【解析】利用加减消元法求解可得.本题考查了二元一次方程的解法.解二元一次方程实际上是通过消元,将二元一次方程转化为一元一次方程,通过解一元一次方程解得原方程组的解.【第 18 题】【答案】证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,在△ABC和△ADE中,{AB=AD∠BAC=∠DAEAC=AE,∴△ABC≌△ADE(SAS),∴BC=DE.【解析】先求出∠BAC=∠DAE,再利用“边角边”证明△ABC和△ADE全等,根据全等三角形对应边相等证明即可.本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.【第 19 题】【答案】(1)∵被调查的学生总人数为6÷5%=120人,∴C 程度的人数为120-(18+66+6)=30人, 则A 的百分比为18120×100%=15%、B 的百分比为66120×100%=55%、C 的百分比为30120×100%=25%,补全图形如下:(2)所抽取学生对数学学习喜欢程度的众数是B 、图②中A 所在扇形对应的圆心角是360°×15%=54°,故答案为:B 、54°;(3)估算该年级学生中对数学学习“不太喜欢”的有960×25%=240人.【 解析 】解:(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以得选C 的学生数和选AB 、C 的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数. 本题考查众数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.【 第 20 题 】【 答 案 】解:(1)设生产A 种产品x 件,则生产B 种产品(10-x )件,依题意得:x+3(10-x )=14,解得 x=8,则10-x=2,答:生产A 产品8件,生产B 产品2件;(2)设生产A 产品y 件,则生产B 产品(10-y )件{2y +5(10−y )≤44y +3(10−y )>22, 解得:2≤y <4.因为x 为正整数,故y=2或3;方案①,A种产品2件,则B种产品8件;方案②,A种产品3件,则B种产品7件.【解析】(1)设生产A种产品x件,则生产B种产品有(10-x)件,根据计划获利14万元,即两种产品共获利14万元,即可列方程求解;(2)根据计划投入资金不多于35万元,且获利多于14万元,这两个不等关系即可列出不等式组,求得x的范围,再根据x是非负整数,确定x的值,x的值的个数就是方案的个数.本题考查了一元一次方程的应用,一元一次不等式组的应用.关键从表格种获得成本价和利润,然后根据利润这个等量关系列方程,根据第二问中的利润和成本做为不等量关系列不等式组分别求出解,然后求出哪种方案获利最大从而求出来.【第 21 题】【答案】(1)证明:连接OD.∵DE是⊙O的切线,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直径,∴O是AB的中点.又∵D是BC的中点,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC;(2)解:连接AD.∵OD∥AC,∴OF FC =ODEC.∵AB为⊙O的直径,∴∠ADB=∠ADC=90°.又∵D为BC的中点,∴AB=AC.∵sin∠ABC=ADAB =3 4,故设AD=3x,则AB=AC=4x,OD=2x.∵DE⊥AC,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD,∴△ADC∽△AED.∴AD AE =ACAD.∴AD2=AE•AC.∴AE=94x.∴EC=74x.∴OF FC =ODEC=87.【解析】(1)连接OD.根据三角形中位线定理判定OD是△ABC的中位线,则OD∥AC,所以∠DEC=∠ODE=90°,即DE⊥AC;(2)连接AD.通过解直角三角形得到sin∠ABC=ADAB =34,故设AD=3x,则AB=AC=4x,OD=2x;由相似三角形△ADC∽△AED的对应边成比例得到AD2=AE•AC.则AE=94x,EC=74x,所以OF FC =ODEC=87.本题考查了切线的性质、相似三角形的判定与性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.【第 22 题】【答案】(1)∵点A (1,0),B (0,2),∴OA=1,OB=2,如图1,由旋转知,∠AOE=∠BOF=90°,∴点E在y轴正半轴上,点F在x轴负半轴上,由旋转知,△EOF≌△AOB,∴OE=OA=1,OF=OB=2,∴E(0,1),F(-2,0);(2)过点D作DG⊥x轴于G,过点C作CH⊥x轴于H,过点C作CP⊥DG于P,∴PC=GH,∠CPD=∠AOB=90°,∵CD∥AB,∴∠OAB=∠OQD,∵CP∥OQ,∴∠PCD=∠AQD,∴∠PCD=∠OAB,∵∠CPD=∠AOB=90°,∴△PCD∽△OAB,∴PC OA =PDOB=CDAB,∵OA=1,OB=2,CD=2AB,∴PC=2OA=2,PD=2OB=4,∴GH=PC=2,设D(m,n),∴C(m+2,n-4),∴CH=n-4,AH=m+2-1=m+1,∵点C,D在双曲线y=kx (x>0)上,∴mn=k=(m+2)(n-4),∴n=2m+4(Ⅰ)①∵∠OAC=135°,∴∠CAQ=45°,∵∠OHC=90°,∴AH=CH,∴m+1=n-4(Ⅱ),联立(Ⅰ)(Ⅱ)解得,m=1,n=6,∴k=mn=6;②如图3,∵D(m,n),C(m+2,n-4),∴M(m+2,0),N(0,n),∵n=2m+4,∴N(0,2m+4),∴直线MN的解析式为y=-2x+2m+4(Ⅲ),∵双曲线y=kx =mnx=m(2m+4)x(Ⅳ),联立(Ⅲ)(Ⅳ)得,-2x+2m+4=m(2m+4)x,即:x2-(m+2)x+(m2+2m)=0,∴△=(m+2)2-4(m2+2m),∵直线MN与双曲线y=kx 有唯一公共点,∴△=0,∴△=(m+2)2-4(m2+2m)=0,∴m=-2(舍)或m=23,∴n=2m+4=2×23+4=163,∴k=mn=329,故答案为:329.【 解析 】解:(1)利用旋转的性质得出点E 在y 轴坐标轴上,点F 在x 轴的负半轴上,再判断出OE=1,OF=2,即可得出结论;(2)先判断出△PCD∽△OAB ,进而得出PC=2OA=2,PD=2OB=4,设出D (m ,n ),得出C (m+2,n-4),进而判断出n=2m+4;①先判断出AH=CH ,得出m+1=n-4联立即可求出m ,n 的值,即可得出结论;②先确定出直线MN 的解析式,联立得出方程x 2-(m+2)x+(m 2+2m )=0,此方程△=0,进而求出m ,n 的值,即可得出结论.此题是反比例函数综合题,主要考查了旋转的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰直角三角形的性质,待定系数法,一元二次方程根的判别式,平行线的性质和判定,表示出点C ,D 坐标是解本题的关键.【 第 23 题 】【 答 案 】(1)解:如图1中,当m=2时,BC=2AC . ∵CE⊥AB ,∠ACB=90°,∴△BCE∽△CAE∽△BAC , ∴CE EB =AC BC =AE EC =12,∴EB=2EC ,EC=2AE , ∴AE EB =14,故答案为12,14.(2)证明:如图1-1中,作DH∥CF 交AB 于H .∵m=2,n=3,∴BE=4AE ,BD=2CD ,设AE=a ,则BE=4a , ∵DH∥AC , ∴BH AH =BD CD =2, ∴AH=53a ,FH=53a-a=23a ,∵DH∥AF , ∴EF DF =AE EH =a 23a=32,∴EF=32DF .(3)解:如图2中,作DH⊥AB 于H .∵∠ACB=∠CEB=90°,∴∠ACE+∠ECB=90°,∠B+∠ECB=90°, ∴∠ACE=∠B ,∵DA=DB ,∠EAG=∠B ,∴∠EAG=∠ACE ,∵∠AEG=∠AEC=90°, ∴△AEG∽△CEA ,∴AE 2=EG•EC , ∵CG=32AE ,设CG=3a ,AE=2a ,EG=x , 则有4a 2=x (x+3a ),解得x=a 或-4a (舍弃),∴tan∠EAG=tan∠ACE=tan∠B=EG AE =12,∴EC=4a ,EB=8a ,AB=10a ,∵DA=DB ,DH⊥AB ,∴AH=HB=5a ,∴DH=52a ,∵DH∥CE ,∴BD :BC=DH :CE=5:8,设BD=AD=5m ,BC=8m ,CD=3m ,在Rt△ACD 中,AC=√AD 2−CD 2=4m ,∴AC :CD=4:3,∵mAC=nDC ,∴AC :CD=n :m=4:3, ∴m n =34.【 解析 】(1)利用相似三角形的性质即可解决问题;(2)如图1-1中,作DH∥CF 交AB 于H .由m=2,n=3,推出BE=4AE ,BD=2CD ,设AE=a ,则BE=4a ,由DH∥AC ,推出BH AH =BD CD =2,推出AH=53a ,FH=53a-a=23a ,由DH∥AF ,推出EF DF =AE EH =a 23a=32; (3)如图2中,作DH⊥AB 于H .首先证明△AEG∽△CEA ,可得AE 2=EG•EC ,由CG=32AE ,设CG=3a ,AE=2a ,EG=x ,则有4a 2=x (x+3a ),解得x=a 或-4a (舍弃),推出tan∠EAG=tan∠ACE=tan∠B=EG AE =12,推出EC=4a ,EB=8a ,AB=10a ,由DA=DB ,DH⊥AB ,推出AH=HB=5a ,推出DH=52a ,由DH∥CE ,推出BD :BC=DH :CE=5:8,设BD=AD=5m ,BC=8m ,CD=3m ,在Rt△ACD 中,AC=√AD 2−CD 2=4m ,可得AC :CD=4:3,延长即可解决问题;本题考查相似三角形综合题、直角三角形的性质、勾股定理、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考压轴题.【 第 24 题 】【 答 案 】(1)当m=-2时,得到y=x 2+4x+3=(x+2)2-1,∴顶点D (-2,-1),由x 2+4x+3=0,得x 1=-3,x 2=-1;令x=0,得y=3;∴A (-3,0),B (-1,0),C (0,3),∴A B=2 ∴S=S △ABC +S △ABD =12AB×3+12AB×1=2AB=4.(2)如图1,设点P (t ,t 2+4t+3)是第二象限抛物线对称轴左侧上一点,将△BOC 沿y 轴翻折得到△COE ,点E (1,0),连接CE ,过点B 作BF⊥CE 于F ,过点P 作PG⊥x 轴于G ,由翻折得:∠BCO=∠ECO ,∴∠BCF=2∠BCO ;∵∠PBA=2∠BCO ,∴∠PBA=∠BCF ,∵PG⊥x 轴,BF⊥CE ,∴∠PGB=∠BFC=90°, ∴△PBG∽△BCF ,∴PG BG =BF CF 由勾股定理得:BC=EC=√OE 2+OC 2=√12+32=√10, ∵CO×BE=BF×CE ∴BF =OC×BE CE =√10=3√105, ∴CF =√BC 2−BF 2=√(√10)2−(3√105)2=4√105, ∴PG BG =BF CF =34,∴4PG=3BGPG=t 2+4t+3,BG=-1-t ,∴4(t 2+4t+3)=3(-1-t ),解得:t 1=-1(不符合题意,舍去),t 2=−154;∴P (−154,3316).(3)原抛物线y=(x+2)2-1的顶点D (-2,-1)在直线y=38x −14上, 直线y=38x −14交y 轴于点H (0,−14),如图2,过点D 作DN⊥y 轴于N ,DH=√DN 2+NH 2=√22+(34)2=√734; ∴由题意,平移后的新抛物线顶点为H (0,−14),解析式为y=x 2−14,设点E (m ,0),T (n ,0),则OE=-m ,AE=m+12,EF=14−m 2,过点Q 作QM⊥EG 于M ,QS⊥AG 于S ,QT⊥x 轴于T ,∵OE•AE=FE•GE ,∴GE=2m 2m−1,∴AG =√AE 2+EG 2=√(m +12)2+(2m2m−1)2=4m 2+12−4m∵GQ 、AQ 分别平分∠AGM ,∠GAT ,∴QM=QS=QT , ∵点Q 在抛物线上,∴Q (n ,n 2−14), 根据题意得:{m −n =n 2−144m 2+12−4m +12+n =n 2−14−2m 2m−1 解得:{m =−14n =−1 ∴Q (-1,34) 【 解析 】(1)当m=-2时,得到y=x 2+4x+3=(x+2)2-1,S=S △ABC +S △ABD =12AB×3+12AB×1,即可求解;(2)证明△PBG∽△BCF ,则PG BG =BF CF ,BC=EC=√OE 2+OC 2=√12+32=√10,CO×BE=BF×CE ,即可求解;(3)DH=√DN 2+NH 2=√22+(34)2=√734,而OE•AE=FE•GE ,QM=QS=QT ,即可求解. 本题考查的是二次函数综合运用,重点考查了二次函数图象平移,相似三角形,几何变换等,其中(3),GQ 、AQ 分别平分∠AGM ,∠GAT ,则QM=QS=QT ,是本题解题的关键,本题难度较大.。

硚口区2018届中考数学模拟试题及答案(1)

硚口区2018届中考数学模拟试题及答案(1)

硚口区2018届中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案得代号涂黑.1.计算2×(-3)- (-4)得结果为A.10B.-2C. 2D.102.若代数式在实数范围内有意义,则实数得取值范围为A.=-2B.≠-2C.<-2D.≠23.下列计算正确得就是A、 3a+4b=7abB、C、2(a+b)=2a+2bD、4、某林业部门要考察某种幼树在一定条件下得移植成活率,实验结果统计如下:由此可以估计该种幼树移植成活得概率为(结果保留小数点后两位)A.0、88 B、 0、89 C、 0、90 D、 0、925.计算(x+3)2正确得就是A.x2+9B.x2+3x+9C.x2+6x+9D.x2-6x+96.点P(3,-2)关于x轴对称得点得坐标为A.(3,2)B.(-3,2)C.(-3,-2)D.(-2, 3)7.某个零件(正方体中间挖去一个圆柱形孔)如图放置,它得左视图就是A、 B、 C、 D、8.爱心图书馆决定给A、B、C、D、E、F、G、H、I共9个贫困山区捐赠图书,管理员小张对各地区捐赠情况作了分析,并绘制了如下统计图与扇形图,则下列结论中不正确得就是CABDA.捐书得总数为200万册、B.捐书数据得中位数就是16万册、C.捐书数据得众数就是15万册、D.山区G 获赠图书数超过9个地区获赠图书数得平均数、9、下列图形都就是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,…,依此规律,第八个图形中三角形得个数就是A.26B.32C.39D.4410、△ABC 中,AB=AC=5,BC=8,⊙O 与边AC 及BC 、BA 延长线相切,则⊙半径就是 A 、 2 B 、 C 、 3 D 、 二、填空题(共6小题,每小题3分,共18分) 11. 、12.计算得结果为 _______、13.在一个不透明得袋中装有5个小球,分别为2个红球与3个黑球,它们除颜色外无其她差别.随机摸出两个小球,则摸出两个颜色不同得小球得概率为___________、14.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′得位置,若∠EFB =65°,则∠AED ′=______ 15、已知点A(2,0),B(3,0),若二次函数得图象与线段AB 只有一个交点,则得取值范围就是 、 16.如图,点D 就是等边△ABC 外一点,若∠BDC=750,DA=13,DC=7,则DB= 、第16题图三、解答题(共8题,共72分) 17.(本题8分)解方程组:18.(本题8分)如图,点B 、E 、C 、F 在一条直线上,AC=DF,AC ∥DF,BE=CF,求证:AB=DE,AB ∥DE19.(本题8分)某区九年级有5000名学生参加“网络安全”知识竞赛活动,为了解本次知识竞赛得成绩分布情况,从中抽取了部分学生得成绩进行分析,并绘制成如下不完整统计图表 成绩x (分)频数频率第14题D /C /F EDCB AFBDCE请您根据以上得信息,解答下列问题: (1)a =__________,b =__________(2)若要画扇形统计图,则“成绩x 满足50≤x <60”对应扇形得圆心角度数就是__________(3) 若将成绩转化为等级,规定:50≤x <60评为D 等、60≤x <70评为C 等、70≤x <90评为B 等、90≤x <100评为A 等.估计这次参赛得学生约有多少人成绩被评为“B ” 等?20、(本题8分)为积极响应政府提出得“绿色发展•低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,女式单车得单价就是男式单车得单价,购买5辆男式单车与4辆女式单车共需16000元. (1)求男式单车得单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车得费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用就是多少?21、(本题8分) 在⊙中,AB ⌒=AC ⌒,点F 就是AC 上一点,连接AO 并延长交BF 于E 、 (1)如图1,若BF 就是△ABC 高,求证:∠CBF=∠CAE ;(2)如图2,若BF 就是△ABC 内得角平分线,BC=10,COS ∠BCA=,求AE 得长、22、(本题10分)已知P(0,a),A(2,0),B(1,1)、 (1)若a=1、①画出线段AB 绕点P 逆时针旋转90°所得得对应线段CD,并直接写出点②直线CD 与反比例函数得图象相交于E(,b),F 点,求k 值及F 点坐标;(2)直线AP 与(1)中反比例函数得图象交于M 、N,若AM ·PM=,求a 得值、23、在(1)图1图2(2)如图2,设DE=t,将△ABE沿着BE折叠后得到△GBE,请直接用含t得式子表示tan∠GBC;(3)如图3,点Q就是对角线AC上一点,∠BAC=2∠AQE,作AF⊥QE,交QE得延长线于点F,求、24、(本题12分)抛物线经过点(2,1),与x轴交于A(1,0),B两点,与y轴交于点C、(1)求抛物线解析式;(2)点P就是抛物线第四象限内一动点,PA交y轴于D,BP交y轴于E,过P作PN⊥y轴于N,求值、(3)经过点Q(4,2)得射线与线段BC交于点S,与抛物线交于点T(T在S左侧),求得最大值、)11、6 12、x+1 13、 14、50° 15、16、三.解答题17、(注意解题得步骤与书写格式)18、略19、(1) 0、05, 40 (2)18° (3)2550名20、 (1)设男式单车x元/辆,女式单车元/辆,1分根据题意,得:5x+4×=160002分解得:x=2000答:男式单车2000元/辆,女式单车1500元/辆、3分(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意得:, 4分解得:9≤m≤12 5分∵m为整数,∴m得值可以就是9、10、11、12,即该社区有四种购置方案; 6分图2GEBA DC图3QFECDAB图1EFDCBA设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000, 7分∵W随m得增大而增大,∴当m=9时,W取得最小值,最小值为39500, 8分21、(1)延长AE交BC于G,证明OA平分∠BAC,从而AG⊥BC 3分(2)延长AE交BC于G, 8分22、(1)、画图1分,C(1,3) ,D(0,2) 3分(2)k=1 , F(1, 1) 6分(3)a=4,1,4 10分23、(1)DF=2,可证△BAE∽△EDF,列出方程,求出AE=2 ; 3分(2)延长EG交BC于H,可证明HE=HB,再用勾股定理求EH,tan∠GBC=6分(3)过Q作QM∥CD交AF延长线于M,交AD于N,由△AMN∽△QEN得,又由QM∥CD得△ANQ∽△ADC,从而∴易证:AM=2AF,∴10分24、(1) 3分(2)、设直线PA解析式为:y=kx+b,则D(0,k)联立得∴, 4分设直线PB解析式为:y=mx3m,则E(0,3m)联立得∴,∴3+k=m+1 ∴m=k+2 ,5分∴∴当k=3时直线PA:y=3x+3,则直线PA经过点C,与已知条件不符合、∴k≠3, 7分(3)过Q作y轴得平行线交BC延长线于G,过T作y轴平行线交BC于K、设T,直线BC: ∴K(t,t+3),G(4,1) 8分∴GQ=3, KT=t+3= 9分∵△KTS∽△GQS 10分∴== 11分∵0<t<3,故当t=1、5时,最大值为、12分。

2018届中考数学二模试卷(带答案) (18)

2018届中考数学二模试卷(带答案)  (18)

2018年中考数学二模试卷一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=33.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.20157.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.49.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.10.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c11.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.B. C. D.712.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为.16.方程x2﹣2x﹣1=0的解是.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2007•台州)如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B处测得海丰塔最高点P的仰角为45°,又前进了18米到达A处,在A处测得P的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.参考答案与试题解析一、.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b6【考点】幂的乘方与积的乘方.【分析】根据积的乘方的性质进行计算,然后直接选取答案即可.【解答】解:(ab2)3=a3•(b2)3=a3b6.故选D.【点评】本题考查积的乘方,把积中的每一个因式分别乘方,再把所得的幂相乘.2.下列各式中,不成立的是()A.|﹣3|=3 B.﹣|3|=﹣3 C.|﹣3|=|3| D.﹣|﹣3|=3【考点】绝对值.【分析】根据绝对值的意义选择.【解答】解:A中|﹣3|=3,正确;B中﹣|3|=﹣3,正确;C中|﹣3|=|3|=3,正确;D中﹣|﹣3|=﹣3,不成立.故选D.【点评】本题考查绝对值的化简:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.在实数﹣,0,,,,中,无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式求解.【解答】解:=3,=﹣2,无理数有:,,共2个.故选B.【点评】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.4.如图,AB是⊙O直径,∠AOC=130°,则∠D=()A.65°B.25°C.15°D.35°【考点】圆周角定理.【专题】压轴题.【分析】先根据邻补角的定义求出∠BOC,再利用圆周角定理求解.【解答】解:∵∠AOC=130°,∴∠BOC=180°﹣∠AOC=180°﹣130°=50°,∴∠D=×50°=25°.故选B.【点评】本题利用了圆周角定理和邻补角的概念求解.5.如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D.2015【考点】抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.7.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD=()A.B.C.D.【考点】三角形的内切圆与内心;切线长定理.【专题】压轴题.【分析】首先根据切线的性质和切线长定理证得四边形OECD是正方形,那么AC+BC﹣AB即为2R(⊙O 的半径R)的值,由此可得到OD、CD的值,进而可在Rt△OBD中求出∠OBD的正切值.【解答】解:∵BC、AC、AB都是⊙O的切线,∴CD=CE、AE=AF、BF=BD,且OD⊥BC、OE⊥AC;易证得四边形OECD是矩形,由OE=OD可证得四边形OECD是正方形;设OD=OE=CD=R,则:AC+BC﹣AB=AE+R+BD+R﹣AF﹣BF=2R,即R=(AC+BC﹣AB)=1,∴BD=BC﹣CD=3﹣1=2;在Rt△OBD中,tan∠OBD==.故选C.【点评】此题考查的是三角形的外切圆,切线长定理以及锐角三角形函数的定义,难度适中.8.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E 是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.9.某快餐店用米饭加不同炒菜配制了一批盒饭,配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒.每盒盒饭的大小、外形都相同,从中任选一盒,不含辣椒的概率是()A.B.C.D.【考点】概率公式.【分析】让不含辣椒的盒饭数除以总盒饭数即为从中任选一盒,不含辣椒的概率.【解答】解:配土豆丝炒肉的有25盒,配芹菜炒肉丝的有30盒,配辣椒炒鸡蛋的有10盒,配芸豆炒肉片的有15盒,全部是80盒,不含辣椒的有70盒,所以从中任选一盒,不含辣椒的概率是=.故选A .【点评】本题比较容易,考查等可能条件下的概率.用到的知识点为:概率=所求情况数与总情况数之比.10.定义:如果一元二次方程ax 2+bx+c=0(a ≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax 2+bx+c=0(a ≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ) A .a=c B .a=b C .b=c D .a=b=c 【考点】根的判别式. 【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,化简即可得到a 与c 的关系.【解答】解:∵一元二次方程ax 2+bx+c=0(a ≠0)有两个相等的实数根, ∴△=b 2﹣4ac=0,又a+b+c=0,即b=﹣a ﹣c ,代入b 2﹣4ac=0得(﹣a ﹣c )2﹣4ac=0,即(a+c )2﹣4ac=a 2+2ac+c 2﹣4ac=a 2﹣2ac+c 2=(a ﹣c )2=0, ∴a=c . 故选A【点评】一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.11.如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是( )A.B. C. D.7【考点】勾股定理;全等三角形的性质;全等三角形的判定.【专题】计算题;压轴题.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,,∴△ABD≌△BCE∴BE=AD=3在Rt△BCE中,根据勾股定理,得BC==,在Rt△ABC中,根据勾股定理,得AC=×=2;故选A.【点评】此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【考点】二次函数图象与系数的关系.【专题】计算题;压轴题.【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分.13.因式分解:x2﹣2xy+y2=(x﹣y)2.【考点】因式分解-运用公式法.【专题】计算题.【分析】根据完全平方公式直接解答即可.【解答】解:原式=(x﹣y)2.故答案为(x﹣y)2.【点评】本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.将三角板(不是等腰的)顶点放置在直线AB上的O点处,使AB∥CD,则∠2的余弦值是.【考点】特殊角的三角函数值;平行线的性质.【专题】探究型.【分析】先根据平行线的性质及直角三角板的特点求出∠2的度数,再根据特殊角的三角函数值进行解答即可.【解答】解:由三角板的特点可知,∠D=60°,∵AB∥CD,∴∠D=∠2=60°,∴cos∠2=cos60°=.故答案为:.【点评】本题考查的是直角三角板的特点及平行线的性质、特殊角的三角函数值,熟记特殊角的三角函数值是解答此题的关键.15.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为45°.【考点】线段垂直平分线的性质.【专题】计算题.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°(已知)∴∠ABC=∠ACB==75°∵DE垂直平分AC,∴AD=CD;∴∠A=∠ACD=30°,∴∠BCD=∠ACB﹣∠ACD,∴∠BCD=45°;故答案为:45°.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,难度一般.16.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是76.【考点】勾股定理;正方形的性质.【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【解答】解:∵在Rt△AEB中,∠AEB=90°,AE=6,BE=8,∴由勾股定理得:AB==10,∴正方形的面积是10×10=100,∵△AEB的面积是AE×BE=×6×8=24,∴阴影部分的面积是100﹣24=76,故答案是:76.【点评】本题考查了正方形的性质,三角形的面积,勾股定理的应用,主要考查学生的计算能力和推理能力.18.猜数字游戏中,小明写出如下一组数:,,,,…,小亮猜想出第六个数字是,根据此规律,第n个数是.【考点】规律型:数字的变化类.【分析】根据分数的分子是2n,分母是2n+3,进而得出答案即可.【解答】解:∵分数的分子分别是:2 2=4,23=8,24=16,…分数的分母分别是:2 2+3=7,23+3=11,24+3=19,…∴第n个数是.故答案为:.【点评】此题主要考查了数字变化规律,根据已知得出分子与分母的变化规律是解题关键.三、选修题、本小题满分6分,请在下列两个小题中,任选其一完成即可19.(1)解方程组:(2)解不等式组:.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)①+②得:4x=20,即x=5,把x=5代入①得:y=1,则方程组的解为;(2),由①得:x<﹣1,由②得:x≤2,则不等式组的解集为x<﹣1.【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.四、解答题:本大题共7个小题,满分54分.解答时请写出必要的演推过程.20.计算﹣2sin45°+(﹣2)﹣3+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用二次根式性质化简,第二项利用特殊角的三角函数值计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣1﹣2×﹣+1=﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.为了解学生的课余生活情况,某中学在全校范围内随机抽取部分学生进行问卷调查.问卷中请学生选择最喜欢的课余生活种类(2)易知选择音乐类的有4人,选择美术类的有3人.记选择音乐类的4人分别是A1,A2,A,小丁;选择美术类的3人分别是B1,B2,小李.可画出树状图如下:由树状图可知共有12种选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是或列表:由表可知共有12中选取方法,小丁和小李都被选中的情况仅有1种,所以小丁和小李恰好都被选中的概率是;(3)由(1)可知问卷中最喜欢体育运动的学生占40%,由样本估计总体得得500×40%=200名.所以该年级中最喜欢体育运动的学生约有200名.【点评】本题考查的是条形统计图和扇形统计图及用样本估计总体等知识的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【专题】几何综合题.【分析】(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD﹣S扇形OCB求得阴影部分的面积.【解答】解:(1)直线CD 与⊙O 相切, ∵在⊙O 中,∠COB=2∠CAB=2×30°=60°, 又∵OB=OC , ∴△OBC 是正三角形, ∴∠OCB=60°, 又∵∠BCD=30°, ∴∠OCD=60°+30°=90°, ∴OC ⊥CD , 又∵OC 是半径, ∴直线CD 与⊙O 相切.(2)由(1)得△OCD 是Rt △,∠COB=60°, ∵OC=1, ∴CD=,∴S △COD =OC •CD=,又∵S 扇形OCB =,∴S 阴影=S △COD ﹣S 扇形OCB =.【点评】此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.23.海丰塔是无棣灿烂文化的象征(如图①),喜爱数学实践活动的小伟查资料得知:海丰塔,史称唐塔,原名大觉寺塔,始建于唐贞观十三年(公元639年),碑记为“尉迟敬德监建”,距今已1300多年,被誉为冀鲁三胜之一.小伟决定用自己所学习的知识测量海丰塔的高度.如图②,他利用测角仪站在B 处测得海丰塔最高点P 的仰角为45°,又前进了18米到达A 处,在A 处测得P 的仰角为60°.请你帮助小伟算算海丰塔的高度.(测角仪高度忽略不计,≈1.7,结果保留整数).【考点】解直角三角形的应用-仰角俯角问题.【分析】设海丰塔的高OP=x,在Rt△POB中表示出OB,在Rt△POA中表示出OA,再由AB=18米,可得出方程,解出即可得出答案.【解答】解:设海丰塔的高OP=x,在Rt△POB中,∠OBP=45°,则OB=OP=x,在Rt△POA中,∠OAP=60°,则OA==x,由题意得,AB=OB﹣OA=18m,即x﹣x=18,解得:x=27+9,故海丰塔的高度OP=27+9≈42米.答:海丰塔的高度约为42米.【点评】本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.24.如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.(1)求证:△ABE∽△ADF;(2)若AG=AH,求证:四边形ABCD是菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质;相似三角形的判定与性质.【专题】证明题.【分析】(1)利用两角对应相等可证出△ABE∽△ADF;(2)利用(1)的结论,先证出△ABG≌△ADH,得到AB=AD,那么平行四边形ABCD是菱形.【解答】证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90度.∵四边形ABCD是平行四边形,∴∠ABE=∠ADF.∴△ABE∽△ADF.(2)∵△ABE∽△ADF,∴∠BAG=∠DAH.∵AG=AH,∴∠AGH=∠AHG,从而∠AGB=∠AHD,∴△ABG≌△ADH,∴AB=AD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.【点评】本题利用了相似三角形的判定和性质,全等三角形的判定和性质以及菱形的判定.25.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,点M为圆心,A点坐标为(﹣2,0),B点坐标为(4,0),D点的坐标为(0,﹣4).(1)你能求出经过点C的“蛋圆”切线的解析式吗?试试看;(2)请你求出“蛋圆”抛物线部分的解析式,并写出自变量x的取值范围.(3)你能求出经过点D的“蛋圆”切线的解析式吗?能,请写出过程,不能,请说明理由.【考点】二次函数综合题.【分析】(1)易得点A、B的坐标,用交点式设出二次函数解析式,把D坐标代入即可.自变量的取值范围是点A、B之间的数.(2)先设出切线与x轴交于点E.利用直角三角形相应的三角函数求得EM的长,进而求得点E坐标,把C、E坐标代入一次函数解析式即可求得所求的解析式.(3)设出所求函数解析式,让它与二次函数组成方程组,消除y,让跟的判别式为0,即可求得一次函数的比例系数k.【解答】解:(1)如图,设经过点C“蛋圆”的切线CE交x轴于点E,连结CM,∴CM⊥CE,又∵A点坐标为(﹣2,0),B点坐标为(4,0),AB为半圆的直径,点M为圆心,∴M点的坐标为(1,0),∴AO=2,BO=4,OM=1.又因为CO⊥x轴,所以CO2=AO•OB,解得:CO=2,又∵CM⊥CE,CO⊥x轴,∴CO2=EO•OM,解之得:EO=8,∴E点的坐标是(﹣8,0),∴切线CE的解析式为:y=x+2;(2)根据题意可得:A(﹣2,0),B(4,0);则设抛物线的解析式为y=a(x+2)(x﹣4)(a≠0),又∵点D(0,﹣4)在抛物线上,∴a=;∴y=x2﹣x﹣4自变量取值范围:﹣2≤x≤4;(3)设过点D(0,﹣4),“蛋圆”切线的解析式为:y=kx﹣4(k≠0),由题意可知方程组只有一组解.即kx﹣4=x2﹣x﹣4有两个相等实根,∴k=﹣1,∴过点D“蛋圆”切线的解析式y=﹣x﹣4;【点评】本题以半圆与抛物线合成的封闭图形“蛋圆”为背景,考查一次函数、二次函数有关性质,解题过程中涉及解一元一次方程、一元二次方程、方程组相关知识与技能,是一道综合性很强的试题.。

2018年湖北省武汉市中考数学模拟题含答案(共4套).doc

2018年湖北省武汉市中考数学模拟题含答案(共4套).doc

、-、-2C.-D.-、--12.化简:-b13.在-1、0、、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分)1.25的平方根为()A.5B.±5C.-5D.±42.如果分式A.x≠0xx-1无意义,那么x的取值范围是()B.x=1C.x≠1D.x=-13.(-a+3)2的计算结果是()A.-a2+9B.-a2-6a+9C.a2-6a+9D.a2+6a+94.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件5.下列运算结果是a6的是()A.a3·a3B.a3+a3C.a6÷a3D.(-2a2)36.将点A(1,-2)绕原点逆时针旋转90°得到点B,则点B的坐标为()A.(-1,-2)B.(2,1)C.(-2,-1)D.(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为()8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为()册数人数311321631741A.2和3B.3和3C.2和2D.3和29.在如图的4×4的方格中,与△ABC相似的格点三角形(顶点均在格点上)(且不包括△ABC)的个数有()A.23个B.24个C.31个D.32个10.二次函数y=mx2-nx-2过点(1,0),且函数图象的顶点在第三象限.当m+n为整数时,则mn的值为()A.-1322B.-1、34132434、2二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:-7-2=__________1-b+1b+1=__________1314.如图,△ABC中,AB=AC,∠BAC=66°,OD垂直平分线段AB,AO平分∠BAC,将∠C沿EF(点E在BC 上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC=___________=,AD=7,A⎩3x-y=1615.如图,在四边形ABCD中,AC与BD交于点O,∠DAB与∠ACB互补,C=6,AB=8,则BC=___________OD5OB316.如图,C是半径为4的半圆上的任意一点,AB为直径,延长AC至点P使CP=2CA.当点C从B运动到A时,动点P的运动路径长为___________三、解答题(共8题,共72分)⎧x+2y=317.(本题8分)解方程组:⎨18.(本题8分)如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AC∥DF,求证:ABC≌△DEF△19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B级所占的圆心角是__________(2)补全条形统计图(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1)求1辆大客车和1辆小客车的租金各为多少元?(2)若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC为⊙O的直径,点A为⊙O上一点,点E△为ABC的内心,OE⊥EC(1)若BC=10,求DE的长(2)求sin∠EBO的值22.(本题10分)如图,直线y=2x与函数y k(x>0)的图象交于第一象限的点A,且A点的x横坐标为1,过点A作AB⊥x轴于点B,C为射线BA上一点,作CE⊥AB交双曲线于点E,延长OC 交AE于点F(1)则k=__________(2)作EM∥y轴交直线OA于点M,交OC于点G①求证:AF=FE②比较MG与EG的大小,并证明你的结论(2)若点G在线段EF上,点D在线段BC上,且GF==,α=90°,EB=1,求线段GD的长23.(本题10分)如图,在△ABC△与AFE中,AC=2AB,AF=2AE,∠CAB=∠FAE=α(1)求证:∠ACF=∠ABECD1EF CB3(3)将(2)中改为120°,其它条件不变,请直接写出GDCF的值24.(本题12分)在平面直角坐标系中,抛物线C1:y=ax2+bx-1的最高点为点D(-1,0),将C1左移1个单位,上移1个单位得到抛物线C2,点P为C2的顶点(1)求抛物线C1的解析式(2)若过点D的直线l与抛物线C2只有一个交点,求直线l的解析式(3)直线y=x+c与抛物线C2交于D、B两点,交y轴于点A,连接AP,过点B作BC⊥AP于点C,点Q为C2上PB之间的一个动点,连接PQ交BC于点E,连接BQ并延长交AC于点F,试说明:FC·(AC+E C)为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分)1.64的算术平方根是()A.8B.-8C.4D.-42.要使分式5x1有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠-13.下列计算结果为x8的是()A.x9-x B.x2·x4C.x2+x6D.(x2)44.有两个事件,事件A:投一次骰子,向上的一面是3;事件B:篮球队员在罚球线上投篮一次,投中,则()A.只有事件A是随机事件C.事件A和B都是随机事件5.计算(a-3)2的结果是()B.只有事件B是随机事件D.事件A和B都不是随机事件A.a2-4B.a2-2+4C.a2-4a+4D.a2+46.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(a,b)B.(-a,b)C.(b,-a)D.(-b,a)7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是()8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时)人数313.51424.51A.中位数是4,平均数是3.75C.中位数是4,平均数是3.8B.众数是4,平均数是3.75D.众数是2,平均数是3.89.把所有正奇数从小到大排列,并按如下规律分组:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A89=()A.(6,7)B.(7,8)C.(7,9)D.(6,9)10.二次函数y=2x2-2x+m(0<m<y的取值范围为()A.y<0B.0<y<m12),如果当x=a时,y<0,那么当x=a-1时,函数值C.m<y<m+4D.y>m二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:(-3)+8=___________12.计算:a⎩3x+2y=81+a-1a-1=___________13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC.若∠ADF=25°,则∠BEC=__________15.如图,从一张腰为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM⊥ON,斜边长为4的等腰直角△ABC的斜边AC在射线ON上,顶点C与O重合.若点A沿NO方向向O运动,△ABC的顶点C随之沿OM方向运动,点A移动到点O为止,则直角顶点B运动的路径长是__________三、解答题(共8题,共72分)⎧2x-y=317.(本题8分)解方程组:⎨18.(本题8分)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF,求证:∠B=∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是___________(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题 8 分)荔枝是深圳的特色水果,小明的妈妈先购买了 2 千克桂味和 3 千克糯米糍,共 花费 90 元;后又购买了 1 千克桂味和 2 千克糯米糍,共花费 55 元.(每次两种荔枝的售价都不 变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共 12 千克,要求糯米糍的数量不少于桂味数量的 2 倍,请设计一种 购买方案,使所需总费用最低21.(本题 8 分)如图,直径 AE 平分弦 CD ,交 CD 于点 G ,EF ∥CD ,交 AD 的延长线于 F ,AP ⊥ AC 交 CD 的延长线于点 P (1) 求证:EF 是⊙O 的切线(2) 若 AC =2,PD = 1CD ,求 tan ∠P 的值222.(本题 10 分)已知,直线 l 1:y =-x +n 过点 A (-1,3),双曲线 C : y m x(x >0),过点B (1,2),动直线 l 2:y =kx -2k +2(k <0)恒过定点 F (1) 求直线 l 1,双曲线C 的解析式,定点 F 的坐标(2) 在双曲线 C 上取一点 P (x ,y ),过 P 作 x 轴的平行线交直线 l 1 于 M ,连接 PF ,求证:PF =PM (3) 若动直线 l 2 与双曲线 C 交于 P 1、P 2 两点,连接 OF 交直线 l 1 于点 E ,连接 P 1E 、P 2E ,求证:EF 平分∠P 1EP 223.(本题10分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE =∠ABC=∠ACB=α(1)如图1,当α=60°时,求证:△DCE是等边三角形(2)如图2,当α=45°时,求证:①CD2;②CE⊥DE DE(3)如图3,当α为任意锐角时,请直接写出线段CE与DE的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy中,抛物线c1:y=ax2-4a+4(a<0)经过第一象限内的定点P(1)直接写出点P的坐标(2)若a=-1,如图1,点M的坐标为(2,0)是x轴上的点,N为抛物线c1上的点,Q为线段MN的中点,设点N在抛物线c1上运动时,Q的运动轨迹为抛物线c2,求抛物线c2的解析式(3)直线y=2x+b与抛物线c1相交于A、B两点,如图2,直线PA、PB与x轴分别交于D、C两点,当PD=PC时,求a的值12.计算:2x2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分)1.4的值为()A.±22.要使分式1x+3B.2C.-2D.2有意义,则x的取值应满足()A.x≥3B.x<3C.x≠-3D.x≠33.下列计算结果为x6的是()A.x·x6B.(x2)3C.x7-x D.x12÷x24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A.摸出的三个球中至少有一个红球C.摸出的三个球都是红球5.计算(a-1)2正确的是()B.摸出的三个球中有两个球是黄球D.摸出的三个球都是黄球A.a2-1B.a2-2a+1C.a2-2a-1D.a2-a+16.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标为()A.(3,1)B.(2,-1)C.(4,1)D.(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是()8.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:每天使用零花钱(单位:元)人数52105158209256则这30名同学每天使用的零花钱的众数和中位数分别是()A.20、15B.20、17.5C.20、20D.15、159.正方形A1B1C1O、A2B2C2C1、A3B3C3C2、……按如图的方式放置,点A1、A2、A3……和点C1、C2、C3……分别在直线y=x+1和x轴上,则点B6的坐标是()A.(31,16)B.(63,32)C.(15,8)D.(31,32)10.已知关于x的二次函数y=x2-2x-2,当a≤x≤a+2时,函数有最大值1,则a的值为()A.-1或1C.-1或3B.1或-3D.3或-3二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:2-(-4)=___________2-x-1x-1=___________13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,⎩3x + 2 y = 1则从这 6 名学生中选取 2 名同时跳绳,恰好选中一男一女的概率是 ___________14.如图,将矩形 ABCD 沿 BD 翻折,点 C 落在 P 点处,连接 AP .若∠ABP =26°,则∠APB = ___________15.已知平行四边形内有一个内角为 60°,且 60°的两边长分别为 3、4.若有一个圆与这个平行 四边形的三边相切,则这个圆的半径为___________16.如图,已知线段 AB =6,C 、D 是 AB 上两点,且 AC =DB =1,P 是线段 CD 上一动点,在 AB 同侧分别作等边△APE 和△PBF ,G 为线段 EF 的中点,点 P 由点 C 移动到点 D 时,G 点移动的路 径长度为___________三、解答题(共 8 题,共 72 分)⎧x - y = 217.(本题 8 分)解方程组: ⎨ 18.(本题 8 分)已知:如图,BD ⊥AC 于点 D ,CE ⊥AB 于点 E ,AD =AE ,求证:BE =CD19.(本题 8 分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长 假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别: A 、游三个景区; B 、游两 个景区;C 、游一个景区; D 、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计 图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B 类别”的扇形的圆心角的度数为______ (2) 请将条形统计图补充完整(3) 若该校九年级有 1000 名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1)每辆大卡车与每辆小汽车平均各装多少吨化肥?(2)现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O△是ABC的外接圆,弧AB=弧AC,AP是⊙O的切线,交BO的延长线于点P(1)求证:AP∥BC(2)若tan∠P=3,求tan∠PAC的值422.(本题10分)如图,一次函数y=kx+b(k≠0)的图象与反比例函数ymx(m≠0)的图象交于A(-3,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)设直线AB与y轴交于点C,若点P在x轴上,使BP=AC,请直接写出点P的坐标(3)点H为反比例函数第二象限内的一点,过点H作y轴的平行线交直线AB于点G.若HG=2,求此时H的坐标(3)若点P是线段AG上一点,连接BP.若∠PBG=1∠BAF,AB=3,AF=2,求(E23.本题10分)如图,射线BD是∠MBN的平分线,点A、C分别是角的两边BM、BN上两点,且AB=BC,是线段BC上一点,线段EC的垂直平分线交射线BD于点F,连接AE交BD于点G,连接AF、EF、FC(1)求证:AF=EF(2)求证:△AGF△∽BAFEG2GP24.(本题12分)如图,抛物线y=ax2-(2a+1)x+b的图象经过(2,-1)和(-2,7)且与直线y=kx-2k-3相交于点P(m,2m-7)(1)求抛物线的解析式(2)求直线y=kx-2k-3与抛物线y=ax2-(2a+1)x+b的对称轴的交点Q的坐标(3)在y轴上是否存在点T△,使PQT的一边中线等于该边的一半?若存在,求出点T的坐标;若不存在,请说明理由2018武汉中考数学模拟题四一、选择题(共10小题,每小题3分,共30分)1.364=()A.4B.±8C.8D.±42.如果分式x没有意义,那么x的取值范围是()x1A.x≠0B.x=0C.x≠-1D.x=-13.下列式子计算结果为2x2的是()A.x+x B.x·2x C.(2x)2D.2x6÷x34.下列事件是随机事件的是()A.从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B.通常温度降到0℃以下,纯净的水结冰C.任意画一个三角形,其内角和是360°D.随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x)(x-4)的结果是()A.x2-16B.16-x2C.x2+16D.x2-8x+166.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B为位似中心,在网格内画出△A 1B1C1△,使A1B1C1与△ABC位似,且位似比为2∶1,点C1的坐标是()A.(1,0)B.(1,1)C.(-3,2)D.(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是()A.B.C.D.8.统计学校排球队员的年龄,发现有12、13、14、15等四种年龄,统计结果如下表:年龄(岁)12131415人数(个)2468根据表中信息可以判断该排球队员的平均年龄为()A.13B.14C.13.5D.59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为()A.50B.51C.48D.522C.m≤2D.m>12.计算:x-1P⎩x-2y=5L L10.已知二次函数y=x2-(m+1)x-5m(m为常数),在-1≤x≤3的范围内至少有一个x的值使y≥2,则m的取值范围是()A.m≤0B.0≤m≤1二、填空题(共6小题,每小题3分,共18分)11.计算:计算7-(-4)=___________1=___________-x-2x-211213.在-2、-1、0、1、2这五个数中任取两数m、n,求二次函数y=(x-m)2+n的顶点在坐标轴上的概率是___________14.为正方形ABCD内部一点,PA=1,PD=2,PC=3,求阴影部分的面积SABCP=______15.如图,将一段抛物线y=x(x-3)(0≤x≤3)记为C1,它与x轴交于点O和点A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C2,交x轴于点A3.若直线y=x+m于C1、C2、C3共有3个不同的交点,则m的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O,且⊙O内有一定点A(2,1)、B、D为圆弧上的两个点,且∠BAD=90°,以AB、AD为边作矩形ABCD,则AC的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)⎧3x+2y=317.(本题8分)解方程:⎨18.(本题8分)如图,AB∥DE,AC∥DF,点B、E、C、F在一条直线上,求证:△ABC∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1)从上述统计图可知,此厂需组装L1、2、3型自行车的辆数分别是,________辆,________辆,________辆(2)若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利___________元(3)若组装L1型自行车160辆与组装L3型自行车120辆花的时间相同,求a((m2-1)x y(m+1)2+21是否为一个固定的值?若是,求出其值;若不20.本题8分)为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?21.(本题8分)如图,⊙O是弦AB、AC、CD相交点P,弦AC、BD的延长线交于E,∠APD =2m°,∠PAC=m°+15°(1)求∠E的度数(2)连AD、BC,若BC=3,求m的值AD22.(本题10分)如图,反比例函数y=为kx与y=mx交于A、B两点.设点A、B的坐标分别A(x1,y1)、B(x2,y2),S=|x1y1|,且(1)求k的值34=s-1s(2)当m变化时,代数式12是,请说理由2x ym+1(3)点C在y轴上,点D的坐标是(-1,32).若将菱形ACOD沿x轴负方向平移m个单位,在平移过程中,若双曲线与菱形的边AD始终有交点,请直接写出m的取值范围②如图2,若AD=,作∠MDN=2α,使点M在AC上,点N在BC的延长线上,完成图G点的直线y=-x+交于点P,C、D两点关于原点对称,DP的延长线交抛物线于点M.当23.(本题10分)如图,△ABC中,CA=CB(1)当点D为AB上一点,∠A=1∠MDN=α2①如图1,若点M、N分别在AC、BC上,AD=BD,问:DM与DN有何数量关系?证明你的结论1BD42,判断DM与DN的数量关系,并证明(2)如图3,当点D为AC上的一点,∠A=∠BDN=α,CN∥AB,CD=2,AD=1,直接写出AB·CN的积24.(本题12分)如图1,直线y=mx+4与x轴交于点A,与y轴交于点C,CE∥x轴交∠CAO的平分线于点E,抛物线y=ax2-5ax+4经过点A、C、E,与x轴交于另一点B(1)求抛物线的解析式(2)点P是线段AB上的一个动点,连CP,作∠CPF=∠CAO,交直线BE于F.设线段PB的长为x,线段BF的长为65y,当P点运动时,求y与x的函数关系式,并写出自变量x的取值范围(3)如图2,点G的坐标为(16,0),过A点的直线y=kx+3k(k<0)交y轴于点N,与过3116k3kk的取值发生变化时,问:tan∠APM的值是否发生变化?若不变,求其值,若变化,请说明理由=22-316.22018武汉中考数学模拟题三答案一、选择题(共10小题,每小题3分,共30分)题号答案1B2C3B4D5B6B7A8B9D10A第10题选A(1)a+a+2<1,即a<0 2当x=a时,y最大=a2-2a-2=1a=-1,a=3(舍去)(2)a+a+2=1,即a=0 2x=a或a+2时,y最大=a2-2a-2=(a+2)2-2(a+2)-2=1无解。

硚口区2018届中考数学模拟试题及答案(1)

硚口区2018届中考数学模拟试题及答案(1)

硚口区2018届中考数学模拟试卷(一)一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑. 1 .计算2X(— 3) — ( — 4)的结果为 A. -10 B .— 2C. 2 D. 1012 .若代数式在实数范围内有意义,则 实数X 的取值范围为x 2A .X = — 2 B . X 工一2 C . X V — 2 D. X 工 23.下列计算正确的是A. 3a+4b=7abB. 6 6 12XXXC.-2(a+b)=-2a+2bD.2 22x -3x -x移植总数n 50 270 400 750 1500 3500 7000 9000 14000 成活数m472353696621335320363358073 12628成活频率mn0.94 0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902由此可以估计该种幼树移植成活的概率 为(结果保留小数点后两位) A . 0.88 B. 0.89 C. 0.90 D. 0.92 5. 计算(x + 3) 2正确的是A . 2 x + 9B. 2x + 3x+9 C . x + 6x + 9 D. x — 6x + 96 .点R3 , — 2)关于x 轴对称的点的坐标为 A . (3 , 2)B. ( — 3, 2)C. ( — 3,— 2)D.(—2,3)7.某个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是作了分析,并绘制了如下统计图和扇形图,则下列结论中不正确的是 A. 捐书的总数为200万册. B.捐书数据的中位数是 16万册.C. 捐书数据的众数是 15万册.D. 山区G 获赠图书数超过9个地区获赠图书数的平均数8.爱心图书馆决定给 A B 、C 、 I 共9个贫困山区捐赠图书,管理员小张对各地区捐赠情况B.D严~十图TBCDEF G H 区9.下列图形都是按照一定规律组成, 第一个图形中共有 2个三角形,第二个图形中共有 8个三角形,…,依此规律,第八个图形中三角形的个数是11.计算361—的结果为x-113. ________________________________________________ 在一个不透明的袋中 装有5个小球,分别为2个红球和3个黑球,它们除颜色外 无其他差别.随机摸出两 个小球,则摸出两个颜色不同的小球的概率为 .14. ____________________________________________________________________________________________ 如图,把一个长方形纸片沿 EF 折叠后,点DC 分别落在D'、C '的位置,若/ EFB= 65°,则/ AED = _______________ 15. 已知点A ( 2, 0), B (3, 0),若二次函数 y x 2 a 1 X 1的图象与线段 AB 只有一个交点,则 a 的 取值范围是____ .三、解答题(共8题,共72分)10. △ ABC 中, AB=AC=5,BC=8 O O 与边 AC 及 BG94 A. 2 B. C. 3D. BA 延长线相切,则O O 半径是 27 4二、填空题(共 6小题,每小题3分,共18 分) 12.计算2x x-116.如图,点D 是等边△ABC 外一点,若/BDC=75 0, DA=13 , DC=7,贝U DB=17.(本题8分)解方程组:x y 5 ① 2x y 7②18. (本题8分)如图,点 B 、E 、C F 在一条直线上, AC =DF AC // DF , BE =CF 求证: AB=DE,AE3/DErD第16题图AD19. (本题8分)某区九年级有 5000名学生参加“网络安全”知识竞赛活动,为了解本次知识竞赛的成绩分 布情况,从中抽取了部分学生的 成绩进行分析,并绘制成如下不完整统计图表请你根据以上的信息,解答下列问题: (1) a = _________ , b = __________(2) 若要画扇形统计图,则“成绩 x 满足50< x v 60”对应扇形的圆心角度数是 ________________⑶ 若将成绩转化为等级,规定:50 < x v 60评为D 等、60< x v 70评为C 等、70< x v 90评为B 等、90< x v100评为A 等•估计这次参赛的学生 约有多少人成绩被评为“ B ”等? 20.(本题8分)为积极响应政府提出的“绿色发展?低碳出行”号召,某社区决定购置一批共享单车.经市场3调查得知,女式单车的单价是男式单车的单价 ,购买5辆男式单车与4辆女式单车共需16000元.4(1) 求男式单车的单价; (2)该社区要求男式单车比女式单车多 4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少? 21. (本题8分) 在O O 中,AB=AC 点F 是AC 上一点,连接 AO 并延长交BF 于E.(1)如图 1,若 BF 是厶 ABC 高,求证:/ CBF=Z CAE ;1(2)如图2,若BF 是厶ABC 内的角平分线,BC=1Q CO M BCA^ ,求AE 的长.322. (本题 10 分)已知 P(0,a),A(2,0),B(1,1).成绩x(分) 频数 频率50< x v 60 10 a60< x v 70 160.08 70W x v 80 b0.2080W x v 90 62 90 w x v 10072合计1图1(1)若a=1.①画出线段AB绕点P逆时针旋转90°所得的对应线段CD并直接写出点C,D坐标;②直线CD与反比例函数y二兰的图象相交于E^. 2-1 , b),F点,求k值及F点坐标;x* x“ x (2)直线AP与(1)中反比例函数-4yL L4-4-3-3-221B1B*A1 11—卜711AII 1 1■O 1 2 34x-4-3-2-1 O 1 2 34-1一-1--2一-2--3一-3--4一-4-5PM=5,求a的值.2-3 -2 -1ky= 的图象交于M N( x M x N),若AM-x23.(本题(1)如图(2)如图10 分)在矩形ABCD中, AB=6,AD=8,点E 在AD上(DE>AE).1, 若EF丄BE交DC于F,2, 设DE=t,将△ ABE沿着CF 2DF , 求AE的长;BE折叠后得到△ GBE请直接用含t的式子表示tan / GBC;⑶如图3,点Q是对角线AC上一点,AF/ BAC=2/ AQE作AF丄QE,交QE的延长线于点F,求——QEA(1,0),B 两点,24.(本题12分)抛物线 2ax bx 3经过点(2,-1 ),与x轴交于与y轴交于点C.(1)求抛物线解析式;(2)点P是抛物线第四象限内一动点, PA交y轴于D, BP交y轴于E,过P作PN L y轴于N 求匹值.PN (3)TSBC交于点S,与抛物线交于点T (T在S左侧),求一一的最大值.QS 经过点Q(4,2)的射线与线段硚口区2018届中考数学模拟试卷(一)参考答案4解得:x=2000答:男式单车 2000元/辆,女式单车 1500元/辆.----- 3分(2)设购置女式单车 m 辆,则购置男式单车(m+4)辆,'nr^iurl-4^22(2000 (i^4)+ 1500rr< 50CCC ,解得:9W m < 12•/ m 为整数,••• m 的值可以是9、10、11、12,即该社区有四种购置方案; -----6分 设购置总费用为 W ,贝U W=2000 ( m+4) +1500m=3500m+8000, -----7 分 •/ W 随m 的增大而增大,•当 m=9时,W 取得最小值,最小值为 39500, -----8分 21.(1)延长AE 交BC 于G ,证明 OA 平分/ BAC ,从而 AG 丄BC-----3分15 L(2)延长AE 交BC 于G, AE 尹22. (1) •画图 1 分,C(1,3) ,D(0,2)-----3 分(2) k=1, F(-1-1-.2) -----6 分3根据题意,得:5x+4 X x =16000-----2 分根据题意得:•选择题(3) a=-4, -1, 4 -----10 分23. (1) DF=2,可证△ BAE s\ EDF,列出方程,求出 AE=2 ;2t 2 16t 28 (2)延长EG 交BC 于H ,可证明HE=HB ,再用勾股定理求 EH , tan / GBC=-----612t-96(3) 过Q 作QM // CD 交AF 延长线于 M ,交AD 于N ,由厶 AMNQEN 得,又由 QM // CD 得厶 ANQ ADC ,从而QE QN• k z 3,匹 2PN•/△ KTS GQS -----10 分d 空=U ( t-1.5)23SQ GQ 3 3 43•/ 0<t<3,故当t=1.5时,最大值为 -4(3)过Q 作y 轴的平行线交 BC 延长线于 G,过T 作y 轴平行线交BC 于K. 设 T (t,t 24t 3 ),直线 BC : y X• K(t,-t+3),G(4,-1)GQ=3,KT=-t+3-( t4t 3)=-t 23tAD ANQNCD AM QE易证:AM=2AFAF 2 QE 31024.( 1)yX 2 4X(2).设直线 PA 解析式为:y=kx+b ,则 (0, -k )联立 yy kx bx 24X 3得 x 2 (4 k)x 3 k• •• X p 1 4 k ,X Pk -----4 分设直线PB 解析式为: y=mx-3m ,则 E (0, -3m )联立y m x 3my X 4X 3 2 得 X (4 m)x 33m • x P m , x Pk 3m • 3+k=m+1 • m=k+2 , -- 5 分•PN k 32 (k+3) k 3•••当k=-3时直线PA : y=-3x+3,则直线 PA 经过点C , 与已知条件不符合11分12分。

2018年武汉市九年级中考数学真题模拟卷及答案解析

2018年武汉市九年级中考数学真题模拟卷及答案解析

九年级中考数学模拟试卷(120分卷)一、选择题(本大题共10小题,每题3分,共30分)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.若分式有意义,则x的取值范围是()A.x≠1 B.x=2 C.x≠2 D.x>23.下列式子计算结果为x2﹣4的是()A.(x+1)(x﹣4)B.(x+2)(x﹣2)C.(x+2)(2﹣x)D.(x﹣2)2 4.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是115.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6 C.a4÷a2=2a D.(a+b)2=a2+ab+b26.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)7.图中三视图对应的正三棱柱是()A.B.C.D.8.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如29.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y=的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个10.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为()A.B.C.或D.二、填空题(本大题共6小题,每题3分,共18分)11.计算式子﹣2﹣(+3)的结果为.12.计算﹣的结果是.13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为.14.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=.15.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为.16.定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为.三、解答题(本大题共8小题,共72分)17.解方程:5x﹣1=3(x﹣1)18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A商品的单价是元,B商品的单价是元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元①求y与x的函数关系式②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?21.如图,⊙O与直线l相离,OA⊥l于点A,OA交⊙O于点C,过点A作⊙O 的切线AB,切点为B,连接BC交直线l于点D(1)求证:AB=AD;(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.22.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为(请直接写出结果)②求ME•MF的值.23.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.24.如图,抛物线y=x2+x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1)如图1,若∠ACB=90°①求k的值;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+的值.2018年湖北省武汉市中考数学预测试卷参考答案与试题解析一、选择题(本大题共10小题,每题3分,共30分)1.9的平方根为()A.3 B.﹣3 C.±3 D.【考点】21:平方根.【分析】根据平方根的定义求解即可,注意一个正数的平方根有两个.【解答】解:9的平方根有:=±3.故选C.2.若分式有意义,则x的取值范围是()A.x≠1 B.x=2 C.x≠2 D.x>2【考点】62:分式有意义的条件.【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≠0,解得x≠2.故选:C.3.下列式子计算结果为x2﹣4的是()A.(x+1)(x﹣4)B.(x+2)(x﹣2)C.(x+2)(2﹣x)D.(x﹣2)2【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=x2﹣3x﹣4,不符合题意;B、原式=x2﹣4,符合题意;C、原式=4﹣x2,不符合题意;D、原式=x2﹣4x+4,不符合题意,故选B4.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机事件的是()A.掷一次骰子,在骰子向上的一面上的点数大于0B.掷一次骰子,在骰子向上的一面上的点数为7C.掷三次骰子,在骰子向上的一面上的点数之和刚好为18D.掷两次骰子,在骰子向上的一面上的点数之积刚好是11【考点】X1:随机事件.【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【解答】解:掷一次骰子,在骰子向上的一面上的点数大于0是必然事件;掷一次骰子,在骰子向上的一面上的点数为7是不可能事件;掷三次骰子,在骰子向上的一面上的点数之和刚好为18是随机事件;掷两次骰子,在骰子向上的一面上的点数之积刚好是11是不可能事件,故选:C.5.下列运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【考点】4I:整式的混合运算.【分析】分别利用积的乘方运算法则以及同底数幂的除法运算法则、完全平方公式、单项式乘以单项式运算法则化简求出答案.【解答】解:A、2a•3a=6a2,故此选项错误;B、(3a2)3=27a6,正确;C、a4÷a2=a2,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.6.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位、再向下平移3个单位得到点A1;再将线段OA1绕原点O顺时针旋转90°得到OA2.则A2的坐标为()A.(﹣1,2)B.(2,1) C.(2,﹣1)D.(3,﹣1)【考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.【分析】根据平移、中心旋转的定义画出图形,即可解决问题.【解答】解:如图所示,点A向右平移两个单位再向下平移3个单位得A1(1,2),再将线段OA1绕原点O顺时针旋转90°得到OA2,A2坐标(2,﹣1).故选C.7.图中三视图对应的正三棱柱是()A.B.C.D.【考点】U3:由三视图判断几何体.【分析】利用俯视图可淘汰C、D选项,根据主视图的侧棱为实线可淘汰B,从而判断A选项正确.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选A.8.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如2【考点】W6:极差;W2:加权平均数;W4:中位数;W5:众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误.故选D.9.在平面直角坐标系中,点A、B的坐标分别为(﹣3,0)、(3,0),点P在反比例函数y=的图象上.若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【考点】G6:反比例函数图象上点的坐标特征.【分析】设点P的坐标为(x,y),分∠APB=90°、∠PAB=90°和∠PBA=90°三种情况考虑:当∠APB=90°时,以AB为直径作圆,由圆与双曲线无交点可知此时点P 不存在;当∠PAB=90°时,可找出x=﹣3,进而可得出点P的坐标;当∠PBA=90°时,可找出x=3,进而可得出点P的坐标.综上即可得出结论.【解答】解:设点P的坐标为(x,y),当∠APB=90°时,以AB为直径作圆,如图所示,∵圆与双曲线无交点,∴点P不存在;当∠PAB=90°时,x=﹣3,y==﹣3,∴点P的坐标(﹣3,﹣3);当∠PBA=90°时,x=3,y==3,∴点P的坐标为(3,3).综上所述:满足条件的点P有2个.故选A.10.如果函数y=2x2﹣3ax+1,在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为﹣23,则a的值为()A.B.C.或D.【考点】H7:二次函数的最值.【分析】分a<、≤a≤4和a>4三种情况,找出函数值y的最小值,令其等于﹣23,即可得出关于a的一元一次(或一元二次)方程,解之即可得出结论.【解答】解:抛物线y=2x2﹣3ax+1的对称轴为x=a.当a<1,即a<时,有2﹣3a+1=﹣23,解得:a=(舍去);当1≤a≤3,即≤a≤4时,有a2=24,解得:a=或a=﹣(舍去);当a>3,即a>4时,有18﹣9a+1=﹣23,解得:a=.综上所述:a的值为或.故选C.二、填空题(本大题共6小题,每题3分,共18分)11.计算式子﹣2﹣(+3)的结果为﹣5.【考点】1A:有理数的减法.【分析】减去一个数,等于加上这个数的相反数.【解答】解:﹣2﹣(+3)=﹣2﹣3=﹣(2+3)=﹣5,故答案为:﹣5.12.计算﹣的结果是.【考点】6B:分式的加减法.【分析】根据同分母分式加减运算法则计算即可,最后要注意将结果化为最简分式.【解答】解:原式===,故答案为:.13.袋中有三个小球,分别为1个红球和2个黄球,它们除颜色外完全相同.随机取出一个小球然后放回,再随机取出一个小球,则两次取出的小球颜色不相同的概率为.【考点】X6:列表法与树状图法.【分析】根据题意列表,再根据表格即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.4种,所以两次取出的小球颜色不相同的概率=,故答案为:.14.如图,把一张长方形纸条ABCD沿EF折叠,若∠1=50°,则∠AEG=80°.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【分析】根据长方形性质得出平行线,根据平行线的性质求出∠DEF,根据折叠求出∠FEG,即可求出答案.【解答】解:∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=∠1=50°,∵沿EF折叠D到D′,∴∠FEG=∠DEF=50°,∴∠AEG=180°﹣50°﹣50°=80°,故答案为:80°.15.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,取BC的中点P.当点B从点O向x轴正半轴移动到点M(2,0)时,则点P移动的路线长为.【考点】O4:轨迹;D5:坐标与图形性质;KD:全等三角形的判定与性质;KW:等腰直角三角形;LF:正方形的判定.【分析】先过P作PD⊥x轴于D,作PE⊥y轴于E,根据△AEP≌△BDP(AAS),得出PE=PD,进而得到点P的运动路径是∠AOM的角平分线,再分别求得当点B与点O重合时,OP=OC=,当点B与点M重合时,OP=OD=,进而得到点P移动的路线长.【解答】解:如图所示,过P作PD⊥x轴于D,作PE⊥y轴于E,则∠DPE=90°,∠AEP=∠BDP=90°,连接AP,∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC=BP,且AP⊥BC,即∠APB=90°,∴∠APE=∠BPD,在△AEP和△BDP中,,∴△AEP≌△BDP(AAS),∴PE=PD,∴点P的运动路径是∠AOM的角平分线,如图所示,当点B与点O重合时,AB=AO=1,OC=,∴OP=OC=;如图所示,当点B与点M重合时,过P作PD⊥x轴于D,作PE⊥y轴于E,连接OP,由△AEP≌△BDP,可得AE=BD,设AE=BD=x,则OE=1+x,OD=2﹣x,∵矩形ODPE中,PE=PD,∴四边形ODPE是正方形,∴OD=OE,即2﹣x=1+x,解得x=,∴OD=2﹣=,∴等腰Rt△OPD中,OP=OD=,∴当点B从点O向x轴正半轴移动到点M时,则点P移动的路线长为﹣=.故答案为:.16.定义函数f(x),当x≤3时,f(x)=x2﹣2x,当x>3时,f(x)=x2﹣10x+24,若方程f(x)=2x+m有且只有两个实数解,则m的取值范围为m>﹣3或﹣12<m<﹣4.【考点】HA:抛物线与x轴的交点.【分析】分别画出x≤3和x>3的函数图象,得出两抛物线的交点坐标(3,3),结合函数图象知①直线f(x)=2x+m过点(3,3)时;②当直线f(x)=2x+m与f(x)=x2﹣2x只有一个交点时,方程只有一个实数解,分别求出m的值,结合函数图象可得m的取值范围.【解答】解:∵x≤3时,f(x)=x2﹣2x=(x﹣1)2﹣1,∴该抛物线的顶点坐标为(1,﹣1),当f(x)=0时,由x2﹣2x=0得x=0或x=2,∴抛物线与x轴的交点为(0,0)和(2,0),∵x>3时,f(x)=x2﹣10x+24=(x﹣5)2﹣1,∴此时抛物线的顶点坐标为(5,﹣1),当f(x)=0时,由x2﹣10x+24=0得x=4或x=6,∴此时抛物线与x轴的交点为(4,0)和(6,0),由可得,即两抛物线交点坐标为(3,3),如图所示:直线f(x)=2x+m可看作直线y=2x平移得到,①当直线f(x)=2x+m过点(3,3),即6+m=3,得m=﹣3时,直线f(x)=2x+m与f(x)=x2﹣2x的图象有两个交点;②当直线f(x)=2x+m与f(x)=x2﹣2x有一个交点,即x2﹣2x=2x+m只有一个解时,方程f(x)=2x+m有且只有两个解,解得:m=﹣4,当直线f(x)=2x+m与f(x)=x2﹣10x+24只有1个交点时,即2x+m=x2﹣10x+24只有一个解,解得:m=﹣12,由图象可知当m>﹣3或﹣12<m<﹣4时,方程f(x)=2x+m有且只有两个实数解,故答案为:m>﹣3或﹣12<m<﹣4.三、解答题(本大题共8小题,共72分)17.解方程:5x﹣1=3(x﹣1)【考点】86:解一元一次方程.【分析】根据去括号,移项,合并同类项,可得答案.【解答】解:去括号,得5x﹣1=3x﹣3,移项,合并同类项,得﹣2x=﹣2,系数化为1,得x=﹣1.18.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD.【考点】KD:全等三角形的判定与性质;J9:平行线的判定.【分析】根据条件证明△AOB≌△COD就可以得出∠A=∠C就可以得出结论.【解答】证明:在△AOB和△COD中,∴△AOB≌△COD(SAS),∴∠A=∠C,∴AB∥CD.19.为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数(3)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)由体育社团的人数除以占的百分比,确定出共调查的人数即可;(2)由文学社团的人数除以总人数,再乘以360°即可得到结果;(3)由体育社团的百分比乘以1500即可得到结果.【解答】解:(1)根据题意得:80÷40%=200(人),则此次共调查了200人;(2)根据题意得:60×200×360°=108°,则文学社团在扇形统计图中所占的圆心角度数为108°;(3)根据题意得:1500×40%=600(人),则喜欢体育类社团的学生约有600人.20.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元(1)A商品的单价是16元,B商品的单价是4元(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,设购买A商品的件数为x件,该商店购买的A、B两种商品的总费用为y元①求y与x的函数关系式②如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,求购买B商品最多有多少件?【考点】FH:一次函数的应用;CE:一元一次不等式组的应用.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)①根据题意可以得到y与x的函数关系式;②根据题意可以列出相应的不等式组,从而可以解答本题.【解答】解:(1)A商品的单价是x元,B商品的单价是y元,,解得,即A商品的单价是16元,B商品的单价是4元,故答案为:16,4;(2)①由题意可得,y=16x+4(2x﹣4)=24x﹣16,即y与x的函数关系式是y=24x﹣16;②由题意可得,,解得,12≤x≤13,∴20≤2x﹣4≤22,∴购买B商品最多有22件,答:购买B商品最多有22件.21.如图,⊙O与直线l相离,OA⊥l于点A,OA交⊙O于点C,过点A作⊙O 的切线AB,切点为B,连接BC交直线l于点D(1)求证:AB=AD;(2)若tan∠OCB=2,⊙O的半径为3,求BD的长.【考点】MC:切线的性质;T7:解直角三角形.【分析】(1)连接OB,利用切线的性质以及等腰三角形的性质证明∠ADB=∠ABD,利用等角对等边证得;(2)设AC=a,则AB=AD=2a,在Rt△AOB中利用勾股定理即可列方程求得a的值,进而求得BD的长.【解答】解:(1)证明:连接OB.∵AB是⊙O的切线,OA⊥l,∴∠OBA=∠OAD=90°,又OB=OC,∴∠OBC=∠COB=∠ACD,∴∠ADB=∠ABD,∴AB=AD;(2)∵tan∠OCB=tan∠ACD==2,⊙O的半径是3,设AC=a,则AB=AD=2a,在Rt△AOB中,OA2=AB2+OB2,∴(a+3)2=(2a)2+32,∴a=2.过点A作AE⊥BD,设AE=x,DE=2x,则5x2=16,x=,∴BD=BE=,∴BD=.22.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3(1)求反比例函数y=的解析式;(2)若直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F(点E在点F的左边),与y轴相交于点M①则m的取值范围为m>4(请直接写出结果)②求ME•MF的值.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)设D的坐标是(4,a),则A的坐标是(4,a+3),由点C是OA的中点,可用含a的代数式表示出点C的坐标,再根据反比例函数图象上点的坐标特征即可找出4a=2×=k,解之即可得出a、k的值,进而即可得出反比例函数的解析式;(2)①将一次函数解析式代入反比例函数解析式中,整理后可得出关于x的一元二次方程,由m>0以及根的判别式△>0,即可得出关于m的不等式组,解之即可得出结论;②由一次函数解析式可得出∠MEG=∠MFH=45°,进而可得出ME=GE、MF= HF,将一次函数解析式代入反比例函数解析式中,由根与系数的关系可得出x E•x F=4,进而可得出ME•MF=2x E•x F=8,此题得解.【解答】解:(1)设D的坐标是(4,a),则A的坐标是(4,a+3).又∵点C是OA的中点,∴点C的坐标是(2,),∴4a=2×=k,解得a=1,k=4,∴反比例函数的解析式为y=;(2)①将y=﹣x+m代入y=中,﹣x+m=,整理,得:x2﹣mx+4=0,∵直线y=﹣x+m与反比例函数y=(x>0)的图象相交于两个不同点E、F,∴,解得:m>4.故答案为:m>4.②过点E、F分别作y轴的垂线,垂足分别为G、H.由y=﹣x+m可知:∠MEG=∠MFH=45°,∴ME=GE,MF=HF.由y=﹣x+m=,得x2﹣mx+4=0,∴x E•x F=4,∴ME•MF=2x E•x F=8.23.已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E,如图1(1)求证:AD•CD=BD•DE;(2)若BD是边AC的中线,如图2,求的值;(3)如图3,连接AE.若AE=EC,求的值.【考点】SO:相似形综合题.【分析】(1)直接判断出△ABD∽△ECD,即可得出结论;(2)先设AB=AC=2a,CD=a,则BC=a,AD=a.求出BD,而△BAD∽△CED,得出,代入求出CE即可解决问题.(2)如图3,延长CE、BA相交于点F.只要证明△BEC≌△BEF,推出CE=EF,CF=2CE,由ABD≌△ACF,推出BD=CF,即可解决问题.【解答】解:(1)∵CE⊥BD,∴∠A=∠E=90°,∵∠ADB=∠EDC,∴△BAD∽△CED,∴,∴AD•CD=BD•DE;(2)设CD=AD=a,则AB=AC=2a.在Rt△ABD中,由勾股定理得:BD=a,由(1)知,△BAD∽△CED,∴,∴,解得:CE=a,∴==;(3)如图3,延长CE、BA相交于点F.∵BE是∠ABC的角平分线,且BE⊥CF在△BEC和△BEF中,,∴△BEC≌△BEF,∴CE=EF,∴CF=2CE又∵∠ABD+∠ADB=∠CDE+∠ACF=90°,且∠ADB=∠CDE,∴∠ABD=∠ACF∵AB=AC,∠BAD=∠CAF=90°,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∴BD=2CE,∴=2.24.如图,抛物线y=x2+x﹣(k>0)与x轴交于点A、B,点A在点B的右边,与y轴交于点C(1)如图1,若∠ACB=90°①求k的值;②点P为x轴上方抛物线上一点,且点P到直线BC的距离为,则点P的坐标为(﹣4﹣,)(请直接写出结果)(2)如图2,当k=2时,过原点O的任一直线y=mx(m≠0)交抛物线于点E、F(点E在点F的左边)①若OF=2OE,求直线y=mx的解析式;②求+的值.【考点】HF:二次函数综合题.【分析】(1)①选将函数关系式变形为y=(x﹣2)(x+k),从而可得到点A和点B的坐标,然后再求得点C的坐标,接下来再证明△OBC∽△OCA,依据相似三角形的性质可得到OC2=AO•OB,从而列出关于k的方程,故此可求得k的值;②将k=8代入抛物线的解析式得:y=x2+x﹣4,然后再求得点A、B、C的坐标,依据勾股定理可求得AC的长,由点B和点C的坐标可求得BC的解析式,设M 为AC的中点,则M(1,﹣2),过点M作PM∥BC,交抛物线与点P.然后求得PM的解析式,最后求得PM与抛物线的交点P的坐标即可;(2)①过点E、F分别作x轴的垂线,垂直分别为M,N.把k=2代入得:y=x2﹣1.将y=mx代入得:x2﹣1=mx,依据一元二次方程根与系数的关系得到x E+x F=4m,x E•x F=﹣4,由OF=2OE,可得到x F=﹣2x E,从而可求得m的值;②设∠FON=α,则+=cosα(+).由直线的解析式可知cosα=,然后依据一元二次方程根与系数的关系得到+=,故此可求得问题的答案.【解答】解:(1)①∵y= [x2+(k﹣2)x﹣2k]=(x﹣2)(x+k),∴点A的坐标为(2,0),点B的坐标为(﹣k,0).∵将x=0代入抛物线的解析式为y=﹣.∴点C的坐标为(0,﹣).∵∠BCO+∠ACO=90°,∠OBC+∠BCO=90°,∴∠OBC=∠OCA.又∵∠BOC=∠AOC,∴△OBC∽△OCA.∴=.∴OC2=AO•OB.∴k2=2k,解得:k=8或k=0(舍去).②将k=8代入抛物线的解析式得:y=x2+x﹣4.当x=0时,y=﹣4,∴C(0,﹣4).令y=0得:x2+x﹣4=0,解得x=﹣8或x=2.∴A(2,0)B(﹣8,0).∴AC==2.设直线BC的解析式为y=kx+b,将点B和点C的坐标代入得:,解得:,∴直线BC的解析式为y=x﹣4.设M为AC的中点,则M(1,﹣2),如图1所示:过点M作PM∥BC,交抛物线与点P.设直线PM的解析式为y=﹣x+c,将点M的坐标代入得:﹣+c=﹣2,解得:c=﹣.∴直线PM的解析式为y=﹣x﹣.∴﹣x﹣=x2+x﹣4,解得x=﹣4﹣或x=﹣4+(舍去).当x=﹣4﹣时,y=.∴点P的坐标为(﹣4﹣,).故答案为:(﹣4﹣,).(2)①过点E、F分别作x轴的垂线,垂直分别为M,N.把k=2代入得:y=x2﹣1.由x2﹣1=mx,得到x E+x F=4m,x E•x F=﹣4.∵OF=2OE,∴x F=﹣2x E,且x E<0,∴﹣2x E•x E=﹣4,解得:x E=﹣.∴﹣+2=4m,解得:m=.②设∠FON=α,则+=cosα(+).∵直线EF的解析式为y=mx,∴tanα=m,∴cosα=.∴+====.∴+=cosα(+)=•=1.。

2018年湖北省武汉市中考数学模拟题含答案共4套

2018年湖北省武汉市中考数学模拟题含答案共4套

2018武汉中考数学模拟题一一、选择题(共10小题,每小题3分,共30分) 1.25的平方根为( ) A .5B .±5C .-5D .±42.如果分式1-x x无意义,那么x 的取值范围是( ) A .x ≠0 B .x =1C .x ≠1D .x =-1 3.(-a +3)2的计算结果是( )A .-a 2+9B .-a 2-6a +9C .a 2-6a +9D .a 2+6a +94.在不透明的布袋中,装有大小、形状完全相同的3个黑球、2个红球,从中摸一个球,摸出的是个黑球,这一事件是( ) A .必然事件B .随机事件C .确定事件D .不可能事件 5.下列运算结果是a 6的是( )A .a 3·a 3B .a 3+a 3C .a 6÷a 3D .(-2a 2)3 6.将点A (1,-2)绕原点逆时针旋转90°得到点B ,则点B 的坐标为( ) A .(-1,-2)B .(2,1)C .(-2,-1)D .(1,2)7.由6个大小相同的小正方体组合成一个几何体,其俯视图如图所示,其中正方形中的数字表示该位置放置的小正方体的个数,则该几何体的主视图为( )8.在我市开展的“好书伴我成长”读书活动中,学校随机调查了九年级50名学生读书的册数统计数据如下表所示,那么这50名学生读书册数的平均数与中位数分别为( )A .2和3B .3和3C .2和2D .3和29.在如图的4×4的方格中,与△ABC 相似的格点三角形(顶点均在格点上)(且不包括△ABC )的个数有( ) A .23个B .24个C .31个D .32个10.二次函数y =mx 2-nx -2过点(1,0),且函数图象的顶点在第三象限.当m +n 为整数时,则mn 的值为( ) A .2321、-B .431--、 C .24321---、、 D .243--、 二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:-7-2=__________ 12.化简:111+-+-b b b =__________ 13.在-1、0、31、1、2、3中任取两个数,两数相乘结果是无理数的概率是__________ 14.如图,△ABC 中,AB =AC ,∠BAC =66°,OD 垂直平分线段AB ,AO 平分∠BAC ,将∠C 沿EF (点E 在BC 上,点F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC =___________15.如图,在四边形ABCD 中,AC 与BD 交于点O ,∠DAB 与∠ACB 互补,35=OB OD ,AD =7,AC =6,AB =8,则BC =___________16.如图,C 是半径为4的半圆上的任意一点,AB 为直径,延长AC 至点P 使CP =2CA .当点C 从B 运动到A 时,动点P 的运动路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程组:⎩⎨⎧=-=+16332y x y x18.(本题8分)如图,已知点E 、C 在线段BF 上,BE =CF ,AB ∥DE ,AC ∥DF ,求证:△ABC ≌△DEF19.(本题8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图请根据以上不完整的统计图提供的信息,解答下列问题:(1) 该课题研究小组共抽查了__________名同学的体育测试成绩,扇形统计图中B 级所占的圆心角是__________ (2) 补全条形统计图(3) 若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)均有名20.(本题8分)某校安排6名教师和300名学生春游,准备租用45座大客车和30座的小客车.若租用1辆大客车和2辆小客车共需租金960元;若租用2辆大客车和1辆小客车共需租金1080元(1) 求1辆大客车和1辆小客车的租金各为多少元?(2) 若总共租用8辆客车,总费用不超过3080元,问有几种租车方案,最省钱的方案是哪种?21.(本题8分)如图,BC 为⊙O 的直径,点A 为⊙O 上一点,点E 为△ABC 的内心,OE ⊥EC (1) 若BC =10,求DE 的长 (2) 求sin ∠EBO 的值22.(本题10分)如图,直线y =2x 与函数xky(x >0)的图象交于第一象限的点A ,且A 点的横坐标为1,过点A 作AB ⊥x 轴于点B ,C 为射线BA 上一点,作CE ⊥AB 交双曲线于点E ,延长OC 交AE 于点F (1) 则k =__________(2) 作EM ∥y 轴交直线OA 于点M ,交OC 于点G ① 求证:AF =FE② 比较MG 与EG 的大小,并证明你的结论23.(本题10分)如图,在△ABC 与△AFE 中,AC =2AB ,AF =2AE ,∠CAB =∠F AE =α (1) 求证:∠ACF =∠ABE(2) 若点G 在线段EF 上,点D 在线段BC 上,且31==CB CD EF GF ,α=90°,EB =1,求线段GD 的长(3) 将(2)中改为120°,其它条件不变,请直接写出CFGD的值24.(本题12分)在平面直角坐标系中,抛物线C 1:y =ax 2+bx -1的最高点为点D (-1,0),将C 1左移1个单位,上移1个单位得到抛物线C 2,点P 为C 2的顶点 (1) 求抛物线C 1的解析式(2) 若过点D 的直线l 与抛物线C 2只有一个交点,求直线l 的解析式(3) 直线y =x +c 与抛物线C 2交于D 、B 两点,交y 轴于点A ,连接AP ,过点B 作BC ⊥AP 于点C ,点Q 为C 2上PB 之间的一个动点,连接PQ 交BC 于点E ,连接BQ 并延长交AC 于点F ,试说明:FC ·(AC +EC )为定值2018武汉中考数学模拟题二一、选择题(共10小题,每小题3分,共30分) 1.64的算术平方根是( ) A .8B .-8C .4D .-42.要使分式15x 有意义,则x 的取值范围是( ) A .x ≠1B .x >1C .x <1D .x ≠-1 3.下列计算结果为x 8的是( )A .x 9-xB .x 2·x4C .x 2+x6D .(x 2)44.有两个事件,事件A :投一次骰子,向上的一面是3;事件B :篮球队员在罚球线上投篮一次,投中,则( )A .只有事件A 是随机事件B .只有事件B 是随机事件C .事件A 和B 都是随机事件D .事件A 和B 都不是随机事件 5.计算(a -3)2的结果是( ) A .a 2-4B .a 2-2+4C .a 2-4a +4D .a 2+46.如图,将△AOB 绕点O 逆时针旋转90°,得到△A ′OB ′.若点A 的坐标为(a ,b ),则点A ′的坐标为( ) A .(a ,b )B .(-a ,b )C .(b ,-a )D .(-b ,a )7.如图是由一些小正方体组合而成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,则这个几何体主视图是( )8.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.89.把所有正奇数从小到大排列,并按如下规律分组:(1) (3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),……,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 89=( ) A .(6,7)B .(7,8)C .(7,9)D .(6,9)10.二次函数y =2x 2-2x +m (0<m <21),如果当x =a 时,y <0,那么当x =a -1时,函数值y 的取值范围为( ) A .y <0B .0<y <mC .m <y <m +4D .y >m二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:(-3)+8=___________12.计算:111-+-a a a =___________ 13.不透明的袋子中有6个除了颜色不同其他都一样的球,其中有3个黑球,2个白球,1个红球.拿出两个球,颜色相同的概率是___________14.如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF =DC .若∠ADF =25°,则∠BEC =__________15.如图,从一张腰为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用次剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为__________16.已知OM ⊥ON ,斜边长为4的等腰直角△ABC 的斜边AC 在射线ON 上,顶点C 与O 重合.若点A 沿NO 方向向O 运动,△ABC 的顶点C 随之沿OM 方向运动,点A 移动到点O 为止,则直角顶点B 运动的路径长是__________ 三、解答题(共8题,共72分)17.(本题8分)解方程组:⎩⎨⎧=+=-82332y x y x18.(本题8分)已知:如图,点B 、F 、C 、E 在一条直线上,BF =CE ,AC =DF ,且AC ∥DF ,求证:∠B =∠E19.(本题8分)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题: (1) 此次抽样调查的样本容量是___________(2) 补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数(3) 如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?20.(本题8分)荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1) 求桂味和糯米糍的售价分别是每千克多少元(2) 如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低21.(本题8分)如图,直径AE 平分弦CD ,交CD 于点G ,EF ∥CD ,交AD 的延长线于F ,AP ⊥AC 交CD 的延长线于点P (1) 求证:EF 是⊙O 的切线 (2) 若AC =2,PD =21CD ,求tan ∠P 的值22.(本题10分)已知,直线l 1:y =-x +n 过点A (-1,3),双曲线C :xmy (x >0),过点B (1,2),动直线l 2:y =kx -2k +2(k <0)恒过定点F (1) 求直线l 1,双曲线C 的解析式,定点F 的坐标(2) 在双曲线C 上取一点P (x ,y ),过P 作x 轴的平行线交直线l 1于M ,连接PF ,求证:PF =PM (3) 若动直线l 2与双曲线C 交于P 1、P 2两点,连接OF 交直线l 1于点E ,连接P 1E 、P 2E ,求证:EF 平分∠P 1EP 223.(本题10分)已知△ABC 中,D 为AB 边上任意一点,DF ∥AC 交BC 于F ,AE ∥BC ,∠CDE =∠ABC =∠ACB =α(1) 如图1,当α=60°时,求证:△DCE 是等边三角形 (2) 如图2,当α=45°时,求证:①2 DECD;② CE ⊥DE (3) 如图3,当α为任意锐角时,请直接写出线段CE 与DE 的数量关系(用α表示)24.(本题12分)在平面直角坐标系xOy 中,抛物线c 1:y =ax 2-4a +4(a <0)经过第一象限内的定点P(1) 直接写出点P 的坐标(2) 若a =-1,如图1,点M 的坐标为(2,0)是x 轴上的点,N 为抛物线c 1上的点,Q 为线段MN 的中点,设点N 在抛物线c 1上运动时,Q 的运动轨迹为抛物线c 2,求抛物线c 2的解析式 (3) 直线y =2x +b 与抛物线c 1相交于A 、B 两点,如图2,直线PA 、PB 与x 轴分别交于D 、C 两点,当PD =PC 时,求a 的值2018武汉中考数学模拟题三一、选择题(共10小题,每小题3分,共30分) 1.4的值为( )A .±2B .2C .-2D .22.要使分式31+x 有意义,则x 的取值应满足( ) A .x ≥3B .x <3C .x ≠-3D .x ≠3 3.下列计算结果为x 6的是( )A .x ·x6B .(x 2)3C .x 7-xD .x 12÷x 24.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同.在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是( ) A .摸出的三个球中至少有一个红球 B .摸出的三个球中有两个球是黄球 C .摸出的三个球都是红球D .摸出的三个球都是黄球 5.计算(a -1)2正确的是( ) A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2-a +16.在平面直角坐标系中,将点A (x ,y )向左平移5个单位长度,再向上平移3个单位长度后与点B (-3,2)重合,则点A 的坐标为( ) A .(3,1)B .(2,-1)C .(4,1)D .(3,2)7.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图是( )则这30名同学每天使用的零花钱的众数和中位数分别是( )A .20、15B .20、17.5C .20、20D .15、159.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、……按如图的方式放置,点A 1、A 2、A 3……和点C 1、C 2、C 3……分别在直线y =x +1和x 轴上,则点B 6的坐标是( ) A .(31,16)B .(63,32)C .(15,8)D .(31,32)10.已知关于x 的二次函数y =x 2-2x -2,当a ≤x ≤a +2时, 函数有最大值1,则a 的值为( ) A .-1或1 B .1或-3C .-1或3D .3或-3二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:2-(-4)=___________ 12.计算:1212---x x x =___________ 13.学校为了了解九年级学生“一分钟跳绳次数”的情况,随机选取了4名女生和2名男生,则从这6名学生中选取2名同时跳绳,恰好选中一男一女的概率是___________14.如图,将矩形ABCD 沿BD 翻折,点C 落在P 点处,连接AP .若∠ABP =26°,则∠APB =___________15.已知平行四边形内有一个内角为60°,且60°的两边长分别为3、4.若有一个圆与这个平行四边形的三边相切,则这个圆的半径为___________16.如图,已知线段AB =6,C 、D 是AB 上两点,且AC =DB =1,P 是线段CD 上一动点,在AB 同侧分别作等边△APE 和△PBF ,G 为线段EF 的中点,点P 由点C 移动到点D 时,G 点移动的路径长度为___________三、解答题(共8题,共72分) 17.(本题8分)解方程组:⎩⎨⎧=+=-1232y x y x18.(本题8分)已知:如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,AD =AE ,求证:BE =CD19.(本题8分)某市三景区是人们节假日游玩的热点景区,某学校对九(1)班学生“五一”小长假随父母到这三个景区游玩的计划做了全面调查.调查分四个类别:A 、游三个景区;B 、游两个景区;C 、游一个景区;D 、不到这三个景区游玩.现根据调查结果绘制了不完整的条形统计图和扇形统计图,请结合图中信息解答下列问题:(1) 九(1)班共有学生______人,在扇形统计图中,表示“B 类别”的扇形的圆心角的度数为______ (2) 请将条形统计图补充完整(3) 若该校九年级有1000名学生,求计划“五一”小长假随父母到该景区游玩的学生多少名?20.(本题8分)运输360吨化肥,装载了6辆大卡车和3辆小汽车;运输440吨化肥,装载了8辆大卡车和2辆小汽车(1) 每辆大卡车与每辆小汽车平均各装多少吨化肥?(2) 现在用大卡车和小汽车一共10辆去装化肥,要求运输总量不低于300吨,则最少需要几辆大卡车?21.(本题8分)如图,⊙O 是△ABC 的外接圆,弧AB =弧AC ,AP 是⊙O 的切线,交BO 的延长线于点P(1) 求证:AP ∥BC(2) 若tan ∠P =43,求tan ∠PAC 的值22.(本题10分)如图,一次函数y =kx +b (k ≠0)的图象与反比例函数xm y(m ≠0)的图象交于A (-3,1)、B (1,n )两点(1) 求反比例函数和一次函数的解析式(2) 设直线AB 与y 轴交于点C ,若点P 在x 轴上,使BP =AC ,请直接写出点P 的坐标(3) 点H 为反比例函数第二象限内的一点,过点H 作y 轴的平行线交直线AB 于点G .若HG =2,求此时H 的坐标23.(本题10分)如图,射线BD 是∠MBN 的平分线,点A 、C 分别是角的两边BM 、BN 上两点,且AB =BC ,E 是线段BC 上一点,线段EC 的垂直平分线交射线BD 于点F ,连接AE 交BD 于点G ,连接AF 、EF 、FC(1) 求证:AF =EF(2) 求证:△AGF ∽△BAF(3) 若点P 是线段AG 上一点,连接BP .若∠PBG =21∠BAF ,AB =3,AF =2,求GPEG24.(本题12分)如图,抛物线y =ax 2-(2a +1)x +b 的图象经过(2,-1)和(-2,7)且与直线y =kx -2k -3相交于点P (m ,2m -7)(1) 求抛物线的解析式(2) 求直线y =kx -2k -3与抛物线y =ax 2-(2a +1)x +b 的对称轴的交点Q 的坐标(3) 在y 轴上是否存在点T ,使△PQT 的一边中线等于该边的一半?若存在,求出点T 的坐标;若不存在,请说明理由2018武汉中考数学模拟题四一、选择题 (共10小题,每小题3分,共30分)1.364=( )A .4B .±8C .8D .±42.如果分式1x x 没有意义,那么x 的取值范围是( ) A .x ≠0 B .x =0 C .x ≠-1 D .x =-13.下列式子计算结果为2x 2的是( )A .x +xB .x ·2xC .(2x )2D .2x 6÷x 34.下列事件是随机事件的是( )A .从装有2个红球、2个黄球的袋中摸出3个球,至少有一个红球B .通常温度降到0℃以下,纯净的水结冰C .任意画一个三角形,其内角和是360°D .随意翻到一本书的某页,这页的页码是奇数5.运用乘法公式计算(4+x )(x -4)的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +166.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度)以点B 为位似中心,在网格内画出△A 1B 1C 1,使△A 1B 1C 1与△ABC 位似,且位似比为2∶1,点C 1的坐标是( )A .(1,0)B .(1,1)C .(-3,2)D .(0,0)7.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,这个几何体的左视图是( )A .B .C .D .8A .13B .14C .13.5D .59.观察下列各图中小圆点的摆放规律,并按这样的规律继续摆放下去,则第5个图形中小圆点的个数为( )A .50B .51C .48D .5210.已知二次函数y =x 2-(m +1)x -5m (m 为常数),在-1≤x ≤3的范围内至少有一个x 的值使y ≥2,则m 的取值范围是( )A .m ≤0B .0≤m ≤21C .m ≤21D .m >21 二、填空题(共6小题,每小题3分,共18分)11.计算:计算7-(-4)=___________12.计算:2121----x x x =___________ 13.在-2、-1、0、1、2这五个数中任取两数m 、n ,求二次函数y =(x -m )2+n 的顶点在坐标轴上的概率是___________14.P 为正方形ABCD 内部一点,PA =1,PD =2,PC =3,求阴影部分的面积S ABCP =______15.如图,将一段抛物线y =x (x -3)(0≤x ≤3)记为C 1,它与x 轴交于点O 和点A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 2,交x 轴于点A 3.若直线y =x +m 于C 1、C 2、C 3共有3个不同的交点,则m 的取值范围是___________16.如图,在平面直角坐标系第一象限有一半径为5的四分之一⊙O ,且⊙O 内有一定点A (2,1)、B 、D 为圆弧上的两个点,且∠BAD =90°,以AB 、AD 为边作矩形ABCD ,则AC 的最小值为___________三、解答题(共8小题,共72分,应写出文字说明、证明过程或演算步骤)17.(本题8分)解方程:⎩⎨⎧=-=+52323y x y x18.(本题8分)如图,AB ∥DE ,AC ∥DF ,点B 、E 、C 、F 在一条直线上,求证:△ABC ∽△DEF19.(本题8分)某厂签订48000辆自行车的组装合同,这些自行车分为L 1、L 2、L 3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1) 从上述统计图可知,此厂需组装L 1、L 2、L 3型自行车的辆数分别是,________辆,________辆,________辆(2) 若组装每辆不同型号的自行车获得的利润分别是L 1:40元/辆,L 2:80元/辆,L 3:60元/辆,且a =40,则这个厂每天可获利___________元(3) 若组装L 1型自行车160辆与组装L 3型自行车120辆花的时间相同,求a20.(本题8分)为了抓住文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元(1) 求购进A 、B 两种纪念品每件各需多少元?(2) 若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A 种纪念品多少件?21.(本题8分)如图,⊙O 是弦AB 、AC 、CD 相交点P ,弦AC 、BD 的延长线交于E ,∠APD =2m °,∠PAC =m °+15°(1) 求∠E 的度数(2) 连AD 、BC ,若3=ADBC ,求m 的值22.(本题10分)如图,反比例函数x k y =与y =mx 交于A 、B 两点.设点A 、B 的坐标分别为A (x 1,y 1)、B (x 2,y 2),S =|x 1y 1|,且s s 413=- (1) 求k 的值(2) 当m 变化时,代数式12)1()1122212+++-m y x m y x m (是否为一个固定的值?若是,求出其值;若不是,请说理由(3) 点C 在y 轴上,点D 的坐标是(-1,23).若将菱形ACOD 沿x 轴负方向平移m 个单位,在平移过程中,若双曲线与菱形的边AD 始终有交点,请直接写出m 的取值范围23.(本题10分)如图,△ABC 中,CA =CB(1) 当点D 为AB 上一点,∠A =21∠MDN =α ① 如图1,若点M 、N 分别在AC 、BC 上,AD =BD ,问:DM 与DN 有何数量关系?证明你的结论② 如图2,若41=BD AD ,作∠MDN =2α,使点M 在AC 上,点N 在BC 的延长线上,完成图2,判断DM 与DN 的数量关系,并证明(2) 如图3,当点D 为AC 上的一点,∠A =∠BDN =α,CN ∥AB ,CD =2,AD =1,直接写出AB ·CN 的积24.(本题12分)如图1,直线y =mx +4与x 轴交于点A ,与y 轴交于点C ,CE ∥x 轴交∠CAO 的平分线于点E ,抛物线y =ax 2-5ax +4经过点A 、C 、E ,与x 轴交于另一点B(1) 求抛物线的解析式(2) 点P 是线段AB 上的一个动点,连CP ,作∠CPF =∠CAO ,交直线BE 于F .设线段PB 的长为x ,线段BF 的长为56y ,当P 点运动时,求y 与x 的函数关系式,并写出自变量x 的取值范围(3) 如图2,点G 的坐标为(316,0),过A 点的直线y =kx +3k (k <0)交y 轴于点N ,与过G 点的直线kx k y 3161+-=交于点P ,C 、D 两点关于原点对称,DP 的延长线交抛物线于点M .当k 的取值发生变化时,问:tan ∠APM 的值是否发生变化?若不变,求其值,若变化,请说明理由2018武汉中考数学模拟题三答案一、选择题(共10小题,每小题3分,共30分)第10题 选A当1222=--==a a y a x 最大时, 舍去),(31=-=a a(212)2(2)2(22222=-+-+=--=+=a a a a y a a x 最大时,或 无解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硚口区2018届中考数学模拟试卷(二)一、选择题(共10小题,每小题3分,共30分) 1.计算2×(-3)-(-4)的结果为( ) A .-10B .-2C .2D .102.若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4B .a >4C .a <4D .a ≠4 3.下列计算正确的是( ) A .a 2·a 3=a 6B .a 6÷a 3=a 2C .4x 2-3x 2=1D .3x 2+2x 2=5x 24.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n 个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n 的值约为( ) A .20B .30C .40D .50 5.计算(x +1)(x +2)的结果为( ) A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +2 6.点A (-3,2)关于x 轴对称的点的坐标为( ) A .(3,-2) B .(3,2)C .(-3,-2)D .(2,-3)7.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱8.若干名同学的年龄如下表所示,这些同学的平均年龄是14.4岁,则这些同学年龄的众数和中位数分别是( )年龄(岁)13 14 15 人数28 mA .14、14B .15、14.5C .14、13.5D .15、159.(2017·十堰)如图,10个不同正整数按下图排列,箭头上方的每个数都等于其下方两数的和.如表示a 1=a 2+a 3,则a 1的最小值为( )A .15B .17C .18D .2010.如图,⊙O 为△ABC 的外接圆,AB =AC ,E 是AB 的中点,连接 OE ,OE =25,BC =8,则⊙O 的半径为( ) A .3B .827C .625D .5二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算28-的结果为___________12.计算1112+-+a a a 的结果为___________D 和E .童威从两个口袋中各随机取出一个小球,它们恰好一个元音一个辅音字母的概率是___________(字母A 和E 是元音,字母B 、C 和D 是辅音)14.如图,在△ABC 中,AB =AC ,D 、E 分别为AB 、AC 上的点,∠BDE 、∠CED 的平分线分别交BC 于点F 、G ,EG ∥AB .若∠BGE =110°,则∠BDF 的度数为___________15.如图,在正方形ABCD 中,E 为BC 边上一点,连接AE ,作AE 的垂直平分线交AB 于G ,交CD 于F .若DF =2,BG =4,则GF 的长为___________16.已知a 、b 为y 关于x 的二次函数y =(x -c )(x -c -1)-3的图象与x 轴两个交点的横坐标,则|a -c |+|c -b |的值为___________三、解答题(共8题,共72分)17.(本题8分)解方程组⎩⎨⎧=-=+8225y x y x18.(本题8分))如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论19.(本题8分)中华文化,源远流长.在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查.根据调查结果绘制成如所示的两个不完整的统计图,请结合图中信息解决下列问题:(1) 本次调查一共抽取了______名学生;扇形统计图中“1部”所在扇形的圆心角为______度 (2) 若该中学有1000名学生,请估计至少阅读3部四大古典名著的学生有多少名?(3) 没有读过四大名著的两名学生准备从四大古典名著中各自随机选择一部来阅读,则他们选中同一名著的概率为_________20.(本题8分)五一假期某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2每辆60座客车租金共计1880元 (1) 求两种车租金每辆各多少元?(2) 若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案21.(本题8分)如图,BC 是⊙O 的直径,AB 交⊙O 于点D ,E 为弧BD 的中点,CE 交AB 于点H ,AC =AH (1) 求证:AC 与⊙O 相切(2) 若CH =3EH ,求sin ∠ABC 的值22.(本题10分)如图,已知A (a ,0)、C (23-a ,2)(23>a ),将线段CA 绕点C 逆时针旋转至CB 使AB ∥y 轴,反比例函数xky =(x >0)的图象经过点C (1) 在图1中画出△ABC ,若S △OAC =4,求k 的值 (2) 如图2,反比例函数xky =(x >0)交AB 于D .若BD =BC ,求OC 的长 (3) 过B 点作射线BF ∥AC 交反比例函数xky =(x >0)的图象于E ,交x 轴于F ,21=BE EF ,则k =___________23.(本题10分)如图1,CD 是△ABC 的高,CD 2=AD ·BD (1) 求证:∠ACB =90°(2) 如图2,BN 是△ABC 的中线,CH ⊥BN 于点I 交AB 于H .若tan ∠ABC =32,求AH BH 的值(3) 如图3,M 是CD 的中点,BM 交AC 于E ,EF ⊥AB 于F .若EF =4,CE =3.2,直接写出AB 的值24.(本题12分)已知抛物线C :y =ax 2-2ax +c 经过点C (1,2),与x 轴交于A (-1,0)、B 两点 (1) 求抛物线C 的解析式 (2) 如图1,直线x y 43=交抛物线C 于S 、T 两点,M 为抛物线C 上A 、T 之间的动点,过M 点作ME ⊥x 轴于点E ,MF ⊥ST 于点F ,求ME +MF 的最大值(3) 如图2,平移抛物线C 的顶点到原点得抛物线C 1,直线l :y =kx -2k -4交抛物线C 1于P 、Q 两点,在抛物线C 1上存在一个定点D ,使∠PDQ =90°,求点D 的坐标硚口区2018届中考数学模拟试卷(二)(5月考)答案1.B2. D3.D4.A5.B6.C7.A8.B9.D 10.C11.2 12.a-1 13.2114.70° 15. 3 10 16.13 三.解答题 17.=1114x y ⎧⎨=⎩(注意解题的步骤与书写格式) 18.证全等5分,结论3分19.(1)40, 126(2分+1分) (2)350(2分)(3)41(3分) 20. (1)设42座客车租金x 元/辆,60座客车租金(x+140)元/辆,-----1分 根据题意,得:3x+2(x+140)=1880 -----2分 解得:x=320答:42座客车租金320元/辆,60座客车租金460元/辆. --- -----3分根据题意得:42m+60(8- m)≥385①, 320m+460 (8- m)≤3200②, -----4分解得:373≤m ≤5185 -----5分 ∵m 为整数,∴m 的值可以是4、5,即有2种方案; -----6分设总费用为W ,则W=320m+460 (8- m)= -140m + 3680, -----7分∵W 随m 的增大而减小大,∴当m=5时,W 取得最小值,最小值为2980, -----8分 (列举两种情况的费用,再比大小也可)21. (1)连CD, AC=AH ,∠AHC=∠ACH ,弧BE=弧DE ,∠DCE=∠BCE ,BC 为圆的直径,∠BDC=90°,∠AHC+∠DCE=90°,∠ACH+∠BCE=90°,AC 与⊙O 相切;(4分) (2)连OE 交AB 于G ,证明OE ∥CD (5分),ΔEGH ∽ΔCDH ,CD EG =CH EH = 31,(6分)设EG=a ,CD=3a ,OG=21CD=23a , OB=OE=25a ,(7分)sin ∠AB C=OB OG =53(8分) 22. (1).画图1分,求出a = 4,(2分),C(2.5,2) ,得k=5,(3分)(2)作CH ⊥AB 于H ,∵AC=BC ,∴AH=BH=2,AB=4,BC=BD=2.5,D (a,23),(4分) ∵C 、D 都在反比例图象上,∴2(a -23)=23a ,(5分) a=6 , C (29,2)(6分) OC=297(7分)(3) k=14 -----10分23、(1)3分,略(2)作AE ∥BC 交直线CH 于E ,∵tan ∠ABC= =∴设AC=2X ,BC=3X ,CN=X, (4分) tan ∠ACE= tan ∠NBC==∴AE=(5分)∆AEH ∽∆BCH (6分)∴==(7分)(3) ----------10分24.(1)213y 22x x =-++ -------- 3分 IHABCEN(2).设直线OT 交ME 于G ,设M (t ,21322t t -++),则G (t ,43t ),(4分) OG=45t ,MG=2113242t t -++,sin ∠OGE=sin ∠MGF =54,MF=54MG=2216555t t -++(5分)ME+MF= 2296279231()1051010310t t t -++=--+,(6分)a <0,当t=32时,ME+MF 的最大值为1031(7分)(3)过D 作EF ∥x 轴,作PE ⊥EF 于E ,QF ⊥EF 于F ,设D (a ,b ),P (x 1,y 1),Q (x 2,y 2),联立2y 2412kx k y x =--⎧⎪⎨=-⎪⎩ 得22480x kx k +--=∴x 1+x 2=-2k ,x 1x 2=-4k- 8 (8分)由△PED ∽△DFQ 得DE PEQF DF=, DE ∙DF=PE ∙QF (9分) (a- x 1)(x 2- a)=(b - y 1)(b - y 2),∵b=212a -,y 1= 2112x -,y 2=2212x - ∴ (a- x 1)(x 2- a)= (2112x 212a -)(2212x 212a -)(a- x 1)(x 2- a)=41(a+ x 1)(a+x 2) ( x 1 -a )(x 2- a), -4=(a+ x 1)(a+x 2) , x 1x 2 +a(x 1+x 2)+ a 2= -4, -4k- 8+ a (-2k )+ a 2= -4 a 2- 4 - 2ak - 4k =0 , (a+2)(a- 2)-2k(a+2)=0 , (11分) ∵k 为任意实数,∴ a+2=0,a=-2,b=-2, D(-2,-2) ---------12分。

相关文档
最新文档