黑龙江绥化市2020年中考数学试题卷附答案解析

合集下载

黑龙江省绥化市2020年中考数学试题(Word版,含答案与解析)

黑龙江省绥化市2020年中考数学试题(Word版,含答案与解析)

黑龙江省绥化市2020年中考数学试卷一、单选题(共10题;共20分)1.化简|√2−3|的结果正确的是()A. √2−3B. −√2−3C. √2+3D. 3−√2【答案】 D【考点】实数的绝对值【解析】【解答】解:|√2−3|=3−√2;故答案为:D.【分析】由绝对值的意义,化简即可得到答案.2.两个长方体按图示方式摆放,其主视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】解:由图可得,几何体的主视图是:.故答案为:C.【分析】依据从该几何体的正面看到的图形,即可得到主视图.3.下列计算正确的是()A. b2⋅b3=b6B. (a2)3=a6C. −a2÷a=aD. (a3)2⋅a=a6【答案】B【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】解:A、b2⋅b3=b5,A不符合题意;B、(a2)3=a6,B符合题意;C 、 −a 2÷a =−a ,C 不符合题意;D 、 (a 3)2⋅a =a 6⋅a =a 7 ,D 不符合题意,故答案为:B .【分析】根据同底数幂的乘法法则、幂的乘方法则、同底数幂的的除法法则计算即可. 4.下列图形是轴对称图形而不是..中心对称图形的是( )A. B. C. D.【答案】 C【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A .是轴对称图形,也是中心对称图形,故本选项不符合题意;B .是轴对称图形,也是中心对称图形,故本选项不符合题意;C .是轴对称图形,但不是中心对称图形,故本选项符合题意;D .是轴对称图形,也是中心对称图形,故本选项不符合题意;故答案为:C .【分析】根据轴对称图形和中心对称图形的概念对各个选项判断即可解答.5.下列等式成立的是( )A. √16=±4B. √−83=2C. −a√1a=√−a D. −√64=−8 【答案】 D【考点】算术平方根,立方根及开立方,二次根式的性质与化简【解析】【解答】解:A. √16=4 ,本选项不成立;B. √−83=−2 ,本选项不成立;C. −a√1a =−a ·√a a= −√a ,本选项不成立; D. −√64=−8 ,本选项成立.故答案为:D.【分析】根据算术平方根、立方根、二次根式的化简等概念分别判断.6.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车 x 辆,37座客车 y 辆,根据题意可列出方程组( )A. {x +y =1049x +37y =466B. {x +y =1037x +49y =466C. {x +y =46649x +37y =10D. {x +y =46637x +49y =10【答案】 A【考点】二元一次方程组的实际应用-鸡兔同笼问题【解析】【解答】解 :设49座客车 x 辆,37座客车 y 辆,根据题意得 :{x +y =1049x +37y =466) 故答案为:A 。

黑龙江省绥化市2020年中考数学试卷

黑龙江省绥化市2020年中考数学试卷

2020年黑龙江省绥化市中考数学试卷一、选择题(共10小题).1.(3分)化简|﹣3|的结果正确的是()A.﹣3B.﹣﹣3C.+3D.3﹣2.(3分)两个长方体按图示方式摆放,其主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.b2•b3=b6B.(a2)3=a6C.﹣a2÷a=a D.(a3)2•a=a6 4.(3分)下列图形是轴对称图形而不是中心对称图形的是()A.B.C.D.5.(3分)下列等式成立的是()A.=±4B.=2C.﹣a=D.﹣=﹣8 6.(3分)“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆.根据题意,得()A.B.C.D.7.(3分)如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,不能保证△ABE 和△ADF一定全等的条件是()A.∠BAF=∠DAE B.EC=FC C.AE=AF D.BE=DF8.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A.B.C.D.9.(3分)将抛物线y=2(x﹣3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是()A.y=2(x﹣6)2B.y=2(x﹣6)2+4C.y=2x2D.y=2x2+410.(3分)如图,在Rt△ABC中,CD为斜边AB的中线,过点D作DE⊥AC于点E,延长DE至点F,使EF=DE,连接AF,CF,点G在线段CF上,连接EG,且∠CDE+∠EGC=180°,FG=2,GC=3.下列结论:①DE=BC;②四边形DBCF是平行四边形;③EF=EG;④BC=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内11.(3分)数字8500000用科学记数法表示为.12.(3分)甲、乙两位同学在近五次数学测试中,平均成绩均为90分,方差分别为S甲2=0.70,S乙2=0.73,甲、乙两位同学成绩较稳定的是同学.13.(3分)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x(h)的函数关系如图所示,2小时后货车的速度是km/h.14.(3分)因式分解:m3n2﹣m=.15.(3分)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是度.16.(3分)在Rt△ABC中,∠C=90°,若AB﹣AC=2,BC=8,则AB的长是.17.(3分)在平面直角坐标系中,△ABC和△A1B1C1的相似比等于,并且是关于原点O 的位似图形,若点A的坐标为(2,4),则其对应点A1的坐标是.18.(3分)在函数y=+中,自变量x的取值范围是.19.(3分)如图,正五边形ABCDE内接于⊙O,点P为上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于度.20.(3分)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.21.(3分)如图各图形是由大小相同的黑点组成,图1中有2个点,图2中有7个点,图3中有14个点,…,按此规律,第10个图中黑点的个数是.三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内22.(6分)(1)如图,已知线段AB和点O,利用直尺和圆规作△ABC,使点O是△ABC 的内心(不写作法,保留作图痕迹);(2)在所画的△ABC中,若∠C=90°,AC=6,BC=8,则△ABC的内切圆半径是.23.(6分)如图,热气球位于观测塔P的北偏西50°方向,距离观测塔100km的A处,它沿正南方向航行一段时间后,到达位于观测塔P的南偏西37°方向的B处,这时,B处距离观测塔P有多远?(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19.)24.(6分)如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O 均为格点(每个小正方形的顶点叫做格点).(1)作点A关于点O的对称点A1;(2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线段A1B1;(3)连接AB1,求出四边形ABA1B1的面积.25.(6分)为了解本校九年级学生体育测试项目“400米跑”的训练情况,体育教师在2019年1﹣5月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:A,B,C,D四个等级,并绘制如图两幅统计图根据统计图提供的信息解答下列问题:(1)月份测试的学生人数最少,月份测试的学生中男生、女生人数相等;(2)求扇形统计图中D等级人数占5月份测试人数的百分比;(3)若该校2019年5月份九年级在校学生有600名,请你估计出测试成绩是A等级的学生人数.26.(7分)如图,△ABC内接于⊙O,CD是直径,∠CBG=∠BAC,CD与AB相交于点E,过点E作EF⊥BC,垂足为F,过点O作OH⊥AC,垂足为H,连接BD、OA.(1)求证:直线BG与⊙O相切;(2)若=,求的值.27.(7分)如图,在矩形OABC中,AB=2,BC=4,点D是边AB的中点,反比例函数y1=(x>0)的图象经过点D,交BC边于点E,直线DE的解析式为y2=mx+n(m≠0).(1)求反比例函数y1=(x>0)的解析式和直线DE的解析式;(2)在y轴上找一点P,使△PDE的周长最小,求出此时点P的坐标;(3)在(2)的条件下,△PDE的周长最小值是.28.(9分)如图,在正方形ABCD中,AB=4,点G在边BC上,连接AG,作DE⊥AG于点E,BF⊥AG于点F,连接BE、DF,设∠EDF=α,∠EBF=β,=k.(1)求证:AE=BF;(2)求证:tanα=k•tanβ;(3)若点G从点B沿BC边运动至点C停止,求点E,F所经过的路径与边AB围成的图形的面积.29.(10分)如图1,抛物线y=﹣(x+2)2+6与抛物线y1=﹣x2+tx+t﹣2相交y轴于点C,抛物线y1与x轴交于A、B两点(点B在点A的右侧),直线y2=kx+3交x轴负半轴于点N,交y轴于点M,且OC=ON.(1)求抛物线y1的解析式与k的值;(2)抛物线y1的对称轴交x轴于点D,连接AC,在x轴上方的对称轴上找一点E,使以点A,D,E为顶点的三角形与△AOC相似,求出DE的长;(3)如图2,过抛物线y1上的动点G作GH⊥x轴于点H,交直线y2=kx+3于点Q,若点Q'是点Q关于直线MG的对称点,是否存在点G(不与点C重合),使点Q'落在y轴上?若存在,请直接写出点G的横坐标,若不存在,请说明理由.参考答案1.解:∵,∴|﹣3|==.故选:D.2.解:从正面看有两层,底层是一个矩形,上层是一个长度较小的矩形.故选:C.3.解:A.b2•b3=b5,故本选项不合题意;B.(a2)3=a6,故本选项符合题意;C.﹣a2÷a=﹣a,故本选项不合题意;D.(a3)2•a=a7,故本选项不合题意.故选:B.4.解:A、既是轴对称图形又是中心对称图形,故本选项不符合题意;B、既是轴对称图形又是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项符合题意;D、既是轴对称图形又是中心对称图形,故本选项不符合题意.故选:C.5.解:A.,故本选项不合题意;B.,故本选项不合题意;C.,故本选项不合题意;D.,故本选项符合题意.故选:D.6.解:依题意,得:.故选:A.7.解:A.∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵∠BAF=∠DAE,∴∠BAE=∠CAF,∴△ABE≌△ADF(AAS),故选项A不符合题意;B..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=BD,∵EC=FC,∴BE=DF,∴△ABE≌△ADF(SAS),故选项B不符合题意;C..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵AE=AF,∴△ABE和△ADF只满足两边和一边的对角相等,两个三角形不一定全等,故选项C符合题意;D..∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,∵BE=DE,∴△ABE≌△ADF(SAS),故选项D不符合题意.故选:C.8.解:∵袋子中一共有(m+n+3)个小球,其中红球有3个,∴任意摸出一个球是红球的概率是,故选:B.9.解:将将抛物线y=2(x﹣3)2+2向左平移3个单位长度所得抛物线解析式为:y=2(x ﹣3+3)2+2,即y=2x2+2;再向下平移2个单位为:y=2x2+2﹣2,即y=2x2.故选:C.10.【解答】解;∵CD为斜边AB的中线,∴AD=BD,∵∠ACB=90°,∴BC⊥AC,∵DE⊥AC,∴DE∥BC,∴DE是△ABC的中位线,∴AE=CE,DE=BC;①正确;∵EF=DE,∴DF=BC,∴四边形DBCF是平行四边形;②正确;∴CF∥BD,CF=BD,∵∠ACB=90°,CD为斜边AB的中线,∴CD=AB=BD,∴CF=CD,∴∠CFE=∠CDE,∵∠CDE+∠EGC=180°,∠EGF+∠EGC=180°,∴∠CDE=∠EGF,∴∠CFE=∠EGF,∴EF=EG,③正确;作EH⊥FG于H,如图所示:则∠EHF=∠CHE=90°,∠HEF+∠EFH=∠HEF+∠CEH=90°,FH=GH=FG=1,∴∠EFH=∠CEH,CH=GC+GH=3+1=4,∴△EFH∽△CEH,∴=,∴EH2=CH×FH=4×1=4,∴EH=2,∴EF===,∴BC=2DE=2EF=2,④正确;故选:D.11.解:数字8500000用科学记数法表示为8.5×106,故答案为:8.5×106.12.解:∵S甲2=0.70,S乙2=0.73,∴S甲2<S乙2,∴甲、乙两位同学成绩较稳定的是甲同学,故答案为:甲.13.解:由图象可得:货车行驶的路程y(km)与行驶时间x(h)的函数关系为y=78x(x ≤2),和x>2时设其解析式为:y=kx+b,把(2,156)和(3,221)代入解析式,可得:,解得:,所以解析式为:y=65x+26(x>2),所以2小时后货车的速度是65km/h,故答案为:65.14.解:m3n2﹣m=m(m2n2﹣1)=m(mn+1)(mn﹣1).故答案为:m(mn+1)(mn﹣1).15.解:设这个圆锥的侧面展开图的圆心角为n°,根据题意得2π•2.5=,解得n=100,即这个圆锥的侧面展开图的圆心角为100°.故答案为:100.16.解:∵在Rt△ABC中,∠C=90°,AB﹣AC=2,BC=8,∴AC2+BC2=AB2,即(AB﹣2)2+82=AB2,解得AB=17.故答案为:17.17.解:∵△ABC和△A1B1C1的相似比等于,并且是关于原点O的位似图形,而点A的坐标为(2,4),∴点A对应点A1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4),即(4,8)或(﹣4,﹣8).故答案为(4,8)或(﹣4,﹣8).18.解:由题可得,,解得,∴自变量x的取值范围是x≥3且x≠5,故答案为:x≥3且x≠5.19.解:连接OC、OD,如图所示:∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,∵DG⊥PC,∴∠PGD=90°,∴∠PDG=90°﹣∠CPD=90°﹣36°=54°,故答案为:54.20.解:设原计划每天加工零件x个,则实际每天加工零件1.5x个,依题意,得:﹣=2.故答案为:﹣=2.21.解:∵图1中黑点的个数2×1×(1+1)÷2+(1﹣1)=2,图2中黑点的个数2×2×(1+2)÷2+(2﹣1)=7,图3中黑点的个数2×3×(1+3)÷2+(3﹣1)=14,……∴第n个图形中黑点的个数为2n(n+1)÷2+(n﹣1)=n2+2n﹣1,∴第10个图形中黑点的个数为102+2×10﹣1=119.故答案为:119.22.解:(1)如图,△ABC即为所求.(2)设内切圆的半径为r.∵∠C=90°,AC=6,BC=8,∴AB===10,∴•AC•BC=•r•(AB+AC+BC),∴r==2,故答案为2.23.解:由已知得,∠A=50°,∠B=37°,P A=100,在Rt△P AC中,∵sin A=,∴PC=P A•sin50°≈77,在Rt△PBC中,∵sin B=,∴PB=≈128(km),答:这时,B处距离观测塔P有128km.24.解:(1)如图所示,点A1即为所求;(2)如图所示,线段A1B1即为所求;(3)如图,连接BB1,过点A作AE⊥BB1,过点A1作A1F⊥BB1,则四边形ABA1B1的面积=+=×8×2+×8×4=24.25.解:(1)根据折线统计图给出的数据可得:1月份测试的学生人数最少,4月份测试的学生中男生、女生人数相等;故答案为:1,4;(2)D等级人数占5月份测试人数的百分比是:1﹣25%﹣40%﹣=15%;(3)根据题意得:600×25%=150(名),答:测试成绩是A等级的学生人数有150名.26.解:(1)连接OB,如图,∵CD是⊙O的直径,∴∠DBC=90°,∴∠D+∠BCD=90°,∵OB=OC,∴∠OCB=∠OBC,∴∠D+∠OBC=90°,∵∠D=∠BAC,∠BAC=∠CBG,∴∠CBG+∠OBC=90°,即∠OBG=90°,∴直线BG与⊙O相切;(2)∵OA=OC,OH⊥AC,∴∠COH=∠COA,CH=,∵∠ABC=∠AOC,∴∠EBF=∠COH,∵EF⊥BC,OH⊥AC,∴∠BEF=∠OHC=90°,∴△BEF∽△COH,∴,∵=,OC=OD,∴,∵CH=AC,∴,27.解:(1)∵点D是边AB的中点,AB=2,∴AD=1,∵四边形OABC是矩形,BC=4,∴D(1,4),∵反比例函数y1=(x>0)的图象经过点D,∴k=4,∴反比例函数的解析式为y=(x>0),当x=2时,y=2,∴E(2,2),把D(1,4)和E(2,2)代入y2=mx+n(m≠0)得,,∴,∴直线DE的解析式为y=﹣2x+6;(2)作点D关于y轴的对称点D′,连接D′E交y轴于P,连接PD,此时,△PDE的周长最小,∵D点的坐标为(1,4),∴D′的坐标为(﹣1,4),设直线D′E的解析式为y=ax+b,∴,解得:,∴直线D′E的解析式为y=﹣x+,令x=0,得y=,∴点P的坐标为(0,);(3)∵D(1,4),E(2,2),∴BE=2,BD=1,∴DE==,由(2)知,D′的坐标为(﹣1,4),∴BD′=3,∴D′E==,∴△PDE的周长最小值=DE+D′E=+,故答案为:+.28.解:(1)证明:在正方形ABCD中,AB=BC=AD,∠BAD=∠ABC=90°,∵DE⊥AG,BF⊥AG,∴∠AED=∠BF A=90°,∴∠ADE+∠DAE=90°,∵∠BAF+∠DAE=90°,∴∠ADE=∠BAF,∴△ABF≌△DAE(AAS),∴AE=BF;(2)在Rt△DEF和Rt△EFB中,tanα=,tanβ=,∴.由①可知∠ADE=∠BAG,∠AED=∠GBA=90°,∴△AED∽△GBA,∴,由①可知,AE=BF,∴,∴,∵=k,AB=BC,∴=k,∴=k.∴tanα=k tanβ.(3)∵DE⊥AG,BF⊥AG,∴∠AED=∠BF A=90°,∴当点G从点B沿BC边运动至点C停止时,点E经过的路径是以AD为直径,圆心角为90°的圆弧,同理可得点F经过的路径,两弧交于正方形的中心点O,如图.∵AB=AD=4,∴所围成的图形的面积为S=S△AOB=×4×4=4.29.解:(1)当x=0时,得y=﹣(x+2)2+6=﹣2+6=4,∴C(0,4),把C(0,4)代入y1=﹣x2+tx+t﹣2得,t﹣2=4,∴t=6,∴y1=﹣x2+3x+4,∵ON=OC,∴N(﹣4,0),把N(﹣4,0)代入y2=kx+3中,得﹣4k+3=0,解得,k=;∴抛物线y1的解析式为y1=﹣x2+3x+4,k的值为.(2)连接AE,如图1,令y=0,得y1=﹣x2+3x+4=0,解得,x=﹣1或4,∴A(﹣1,0),B(4,0),∴对称轴为:x=,∴D(,0),∴OA=1,OC=4,OD=,AD=,①当△AOC∽△EDA时,,即,∴DE=,②当△AOC∽△ADE时,,即,∴DE=10,综上,DE=或10;(3)点G的横坐标为或或或.如图,点Q'是点Q关于直线MG的对称点,且点Q'在y轴上时,由轴对称性质可知,QM =Q'M,QG=Q'G,∠Q'MG=∠QMG,∵QG⊥x轴,∴QG∥y轴,∴∠Q'MG=∠QGM,∴∠QMG=∠QGM,∴QM=QG,∴QM=Q'M=QG=Q'G,∴四边形QMQ'G为菱形,∴GQ'∥QN,作GP⊥y轴于点P,设G(a,﹣a2+3a+4),则Q(a,a+3),∴PG=|a|,Q'G=GQ=|(a+3)﹣(﹣a2+3a+4)|=|a2﹣a﹣1|,∵GQ'∥QN,∴∠GQ'P=∠NMO,在Rt△NMO中,MN==5,∴sin∠GQ'P=sin∠NMO=,∴.解得a1=,a2=,a3=,a4=.经检验,a1=,a2=,a3=,a4=都是所列方程的解.综合以上可得,点G的横坐标为或或或.。

黑龙江省绥化市2020年中考数学试卷C卷

黑龙江省绥化市2020年中考数学试卷C卷

黑龙江省绥化市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·柯桥月考) 下列各个运算中,结果为负数的是()A .B .C .D .2. (2分) (2018七上·郓城期中) 如图所示的几何体的左视图是()A .B .C .D .3. (2分)(2020·南京) 计算的结果是()A .B .C .D .4. (2分) (2019七下·昭通期末) 36的算术平方根是()A . 6B . ﹣6C . ±6D .5. (2分)(2019·三亚模拟) 不等式组的解集为()A . ﹣3<x<2B . ﹣3<x<﹣2C . x<2D . x>﹣36. (2分) (2015八上·青山期中) 以下列每组长度的三条线段为边能组成三角形的是()A . 2、3、6B . 2、4、6C . 2、2、4D . 6、6、67. (2分) (2020八下·陆丰期中) 如图,矩形内三个相邻的正方形面积分别为4,3和2,则图中阴影部分的面积为()A . 2B .C .D .8. (2分)(2017·泰安) 化简(1﹣)÷(1﹣)的结果为()A .B .C .D .9. (2分) (2018九上·岐山期中) 岐山县各学校开展了第二课堂的活动,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加,则小斌和小宇选到同一活动的概率是()A .B .C .D .10. (2分) (2019九上·湖州月考) 如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A . 25min~50min,王阿姨步行的路程为800mB . 线段CD的函数解析式为s=32t+400(25≤t≤50)C . 5min~20min,王阿姨步行速度由慢到快D . 曲线段AB的函数解析式为s=-3(t-20)2+1200(5≤t≤20)二、填空题 (共6题;共24分)11. (1分)若M=(2015﹣1985)2 , O=(2015﹣1985)×(2014﹣1986),N=(2014﹣1986)2 ,则M+N ﹣2O的值为________12. (1分) (2020七上·遂宁期末) 如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=52°,则∠AEG 的度数是________.13. (9分) (2019九下·长春开学考) 某校“两会”知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验.①收集数据:分别记录甲、乙两名学生10次测验成绩(单位:分)次数成绩学生12345678910甲74848983868186848686乙82738176818781909296②整理数据:两组数据的平均数、中位数、众数、方差如下表所示:统计量学生平均数中位数众数方差甲83.9______8615.05乙83.981.5______46.92③分析数据:根据甲、乙两名学生10次测验成绩绘制折线统计图:④得出结论:结合上述统计全过程,回答下列问题:(1)补全②中的表格.(2)判断甲、乙两名学生中,________(填甲或乙)的成绩比较稳定,说明判断依据:________.(3)如果你是决策者,从甲、乙两名学生中选择一人代表学校参加知识竞赛,你会选择________(填“甲”或“乙),理由是:________.14. (1分)(2017·遵义) 一个正多边形的一个外角为30°,则它的内角和为________.15. (1分)(2020·盐城) 一组数据的平均数为________.16. (11分) (2017八上·大石桥期中) 如图,在等边△ABC中,M为BC边上的中点,D是射线AM上的一个动点,以CD为一边且在CD的下方作等边△CDE,连接BE.(1)填空:若D与M重合时(如图1)∠CBE=________度;(2)如图2,当点D在线段AM上时(点D不与A、M重合),请判断(1)中结论是否成立?并说明理由;(3)在(1)的条件下,若AB=6,试求CE的长.三、解答题 (共8题;共92分)17. (10分)(2019·汇川模拟) 计算:(1);(2)18. (5分)如图,在△ABC和△DCB中,AB=DC,AC=DB,求证:△ABC≌△DCB.19. (20分)(2018·宁波模拟) 某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.20. (10分) (2020九上·宁波月考) 如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⊙O交BD于E,交AD于F,且弧AE=弧CE,连接OA、OF.(1)求证:四边形ABCD是菱形;(2)若∠AOF=3∠FOE,求∠ABC的度数.21. (15分)(2016·黄石模拟) M为双曲线y= 上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D,C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B.(1)求AD•BC的值.(2)若直线y=﹣x+m平移后与双曲线y= 交于P、Q两点,且PQ=3 ,求平移后m的值.(3)若点M在第一象限的双曲线上运动,试说明△MPQ的面积是否存在最大值?如果存在,求出最大面积和M的坐标;如果不存在,试说明理由.22. (7分) (2017九上·鸡西月考) 某城区近几年通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加。

2020年黑龙江绥化中考数学试卷(解析版)

2020年黑龙江绥化中考数学试卷(解析版)

2020年黑龙江绥化中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)A. B. C. D.1.化简的结果正确的是( ).A.B. C. D.2.两个长方体按图示方式摆放,其主视图是( ).A. B. C. D.3.下列计算正确的是( ).4.下列图形是轴对称图形而不是中心对称图形的是( ).A.B.C.D.5.下列等式成立的是( ).A.B.C.D.6.“十一”国庆期间,学校组织名八年级学生参加社会实践活动,现已准备了座和座两种客车共辆,刚好坐满,设座客车辆,座客车辆.根据题意,得( ).A.B.C.D.7.如图,四边形是菱形,、分别是、两边上的点,和一定全等的条件是( ).A.B.C.D.不.能.保.证.8.在一个不透明的袋子中装有黑球个、白球个、红球个,除颜色外无其它差别,任意摸出一个球是红球的概率是( ).A.B.C.D.9.将抛物线向左平移个单位长度,再向下平移个单位长度,得到抛物线的解析式是( ).A.B.C.D.10.如图,在中,为斜边的中线,过点作于点,延长至点,使,连接,,点在线段上,连接,且,,.下列结论:①;②四边形是平行四边形;③;④.其中正确结论的个数是( ).A.个B.个C.个D.个二、填空题(本大题共11小题,每小题3分,共33分)11.新型蔓延全球,截至北京时间年月日,全球累计确诊病例超过例,数字用科学记数法表示为 .12.甲、乙两位同学在近五次数学测试中,平均成绩均为分,方差分别,.甲、乙两位同学成绩较稳定的是 同学.甲乙13.黑龙江省某企业用货车向乡镇运送农用物资,行驶小时后,天空突然下起大雨,影响车辆行驶速度,货车行驶的路程与行驶时间的函数关系如图所示,小时后货车的速度是.()()()()14.因式分解:.15.已知圆锥的底面圆的半径是,母线长是,其侧面展开图的圆心角是 度.16.在中,,若,,则的长是 .17.在平面直角坐标系中,和的相似比等于,并且是关于原点的位似图形,若点的坐标为,则其对应点的坐标是 .18.在函数中,自变量的取值范围是 .19.如图,正五边形内接于⊙,点为上一点(点与点,点不重合),连接、,,垂足为,等于 度.20.某工厂计划加工一批零件个,实际每天加工零件的个数是原计划的倍,结果比原计划少用天.设原计划每天加工零件个,可列方程 .21.下面各图形是由大小相同的黑点组成,图中有个点,图中有个点,图中有个点,,按此规律,第个图中黑点的个数是 .图图图图三、解答题(本大题共8小题,共57分)(1)(2)22.解答题.如图,已知线段和点,利用直尺和圆规作,使点是的内心(不写作法,保留作图痕迹).在所画的中,若,,,则的内切圆半径是 .23.如图,热气球位于观测塔的北偏西方向,距离观测塔的处,它沿正南方向航行一段时间后,到达位于观测塔的南偏西方向的处,这时,处距离观测塔有多远?(结果保留整数,参考数据:,,,,,)北24.如图,在边长均为个单位长度的小正方形组成的网格中,点,点,点均为格点(每个小正方形的顶点叫做格点).(1)(2)(3)作点关于点的对称点.连接.将线段绕点顺时针旋转得点对应点,画出旋转后的线段.连接,求出四边形的面积.(1)(2)(3)25.为了解本校九年级学生体育测试项目“米跑”的训练情况,体育教师在年月份期间,每月随机抽取部分学生进行测试,将测试成绩分为:,,,四个等级,并绘制如下两幅统计图.根据统计图提供的信息解答下列问题:每月抽取测试的学生中男、女学生人数折线统计图五月份抽取的学生米跑测试成绩情况扇形统计图x12345678yO人数月份男生女生月份测试的学生人数最少, 月份测试的学生中男生、女生人数相等.求扇形统计图中等级人数占月份测试人数的百分比.若该校年月份九年级在校学生有名,请你估计出测试成绩是等级的学生人数.26.如图,内接于⊙,是直径,,与相交于点,过点作,垂足为,过点作,垂足为,连接、.(1)(2)求证:直线与⊙相切.若,求的值.xyO(1)(2)(3)27.如图,在矩形中,,,点是边的中点,反比例函数的图象经过点,交边于点,直线的解析式为.求反比例函数的解析式和直线的解析式.在轴上找一点,使的周长最小,求出此时点的坐标.在()的条件下,的周长最小值是 .(1)(2)28.如图,在正方形中,,点在边上,连接.作于点,于点,连接、.设,,.求证:.求证:.【答案】解析:∵,∴.故选.(3)若点从点沿边运动至点停止,求点,所经过的路径与边围成的图形的面积.(1)(2)(3)29.如图,抛物线与抛物线相交轴于点,抛物线与轴交于、两点(点在点的右侧),直线交轴负半轴于点,交轴于点,且.图求抛物线的解析式与的值.抛物线的对称轴交轴于点,连接,在轴上方的对称轴上找一点,使以点,,为顶点的三角形与相似,求出的长.如图,过抛物线上的动点作轴于点,交直线于点,若点是点关于直线的对称点,是否存在点(不与点重合),使点落在轴上?若存在,请直接写出点的横坐标,若不存在,请说明理由.图D 1.解析:由已知几何体可知其主视图为:故选:.解析:由题意得:,故选.解析:∵有黑球个,白球个,红球个,∴共有()个球,则任意摸出一球为红球的概率为.故选.解析:抛物线向左平移个单位,再向下平移个单位得到,故得到抛物线的解析式为.故选.解析:C 2.B 3.C 4.D 5.A 6.C 7.B 8.C 9.D 10.∵,是的中线,∴,∵,∴,∵,∴四边形是平行四边形,∴,,∵,∴,∴四边形是平行四边形,故②正确;∵,,∴,故①正确;∵,,∴,∵,∴,∴,∵,,∴,∴,∴,∴,,∴,故④正确;过点作于,∴,∴,∴,∴,∴,∴,故③正确.∴正确的是①②③④,一共个,故选.解析:.故答案为:.解析:∵,∴,∴甲比较稳定,故答案为:甲.解析:由函数关系图可知,货车行驶小时,行驶了,改变车速后又行驶了小时,共行驶了,则小时后汽车的速度为:.故答案为:.11.甲12.甲乙甲乙13.解析:原式.故答案为:.解析:设圆锥侧面积展开图的圆心角为,则,解得:.故答案为:.解析:设为,∵在中,,,∵,,∴.解得:.解析:∵和的相似比等于,并且是关于原点的位似图形,∴点的坐标为,则其对应点的坐标是或,即为或.故答案为:或.14.15.16.或17.解析:根据题意可得,解得且,故自变量的取值范围是且.故答案为:且.解析:连接,,∵五边形为正五边形,∴,∵,∵,∴,∴.故答案为:.解析:设原计划每天加工零件件,则实际每天加工零件件,根据题意可得:.故答案为:.解析:且18.19.20.21.(1)(2)图含有个点,图含有个点,图含有个点,图含有个点,图含有个点,图含有个点.故答案为:.解析:作,作,则即为所求.如图,作于点,于点,于点,连接,,,∵为的内心,∴,∵,,,∴在中,,∵,∴,(1)画图见解析.(2)22.(1)(2),.故答案为:.解析:由已知,得,,,在中,∵,∴,在中,∵,∴(千米),答:这时,处距离观测塔约为千米.解析:点关于的对称点如图所示.连接,将线段绕点顺时针旋转得点对应点,旋转后的线段如图所示.千米.23.(1)画图见解析.(2)画图见解析.(3).24.(3)(1)(2)连接,过点作于点,过点作于点;.∴四边形的面积是.解析:由折线统计图可知:月份测试的学生人数最少;月份测试的学生中男生、女生人数相等,均为人.由题意得:等级人数所占五月份抽取学生的百分比为:,则等级人数占月份测试人数的百分比为:.答:等级人数占月份测试人数的百分比是.四边形(1) ;(2).(3)名.25.(3)(1)(2)由题意得:(名).故答案为:.解析:连接,∵是圆的直径,∴.∴.∵,∴.∵,∴,∴,∵,∴.∴.∴.∴.∵是圆半径,∴直线与圆相切.∵,,∴,,(1)证明见解析.(2).26.(1)∵,∴,∴.∵,,∴.∴,∴,∵,,∴.∵,∴,∴的值是.解析:∵为的中点,,∴,∵四边形是矩形,,∴点坐标为,∵在的图象上,∴,∴反比例函数解析式为,当时,,∴点坐标为,∵直线过点和点,∴,解得,∴直线的解析式为,(1),.(2).(3)27.(2)(3)∴反比例函数解析式为,直线的解析式为.作点关于轴的对称点,连接,交轴于点,连接,xyO此时的周长最小,∵点的坐标为,∴点的坐标为,设直线的解析式为,∵直线经过,∴,解得,∴直线的解析式为,令,得,∴点坐标为.∵,,,∴,,∴.解析:(1)证明见解析.(2)证明见解析.(3).28.(1)(2)(3)在正方形中,,.∵,,∴.∴.∵,∴,在和中,,∴≌,∴.在和中,,,∴,由()可知,,∴.∴,由()可知,,∴,∴,∵,,∴,∴,∴.∵,.∴,(1)(2)∴当点从点沿边运动至点停止时,点经过的路径是以为直径,圆心角为的圆弧,同理可得点经过的路径,两弧交于正方形的中心点.(如图所示)∵,∴所围成图形的面积.解析:当时,,∴点的坐标为.∵点在抛物线的图象上,∴.∴.∴抛物线的解析式为.∵,,∴.∵直线过,∴.解得.∴抛物线的解析式为,的值为.连接,令,则.(1),.(2)或.(3)存在,点的横坐标为或或或.29.(3)解得,,∴,,∴抛物线的对称轴为直线.∴,∵,∴,,.①当时,,∴,∴.②当时,,∴,∴.综上,的长为或.点的横坐标为或或或.如图,点是点关于直线的对称点,且点在轴上时,由轴对称性质可知,,,.∵轴,∴轴,∴.∴.∴.∴.∴四边形为菱形.∴.作轴于点.设,则.∴,.∵,∴.在中,.∴.∴.解得,,,.经检验,,,都是所列方程的解.综上,点的横坐标为或或或.。

黑龙江省绥化市2020中考数学经典试题

黑龙江省绥化市2020中考数学经典试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .32.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( )A .49B .13C .29D .193.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为( )A .0.86×104B .8.6×102C .8.6×103D .86×1024.如图,AB ∥CD ,点E 在CA 的延长线上.若∠BAE=40°,则∠ACD 的大小为( )A .150°B .140°C .130°D .120°5.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同6.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴7.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A .25︒B .30︒C .35︒D .40︒8.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米B .30sinα米C .30tanα米D .30cosα米9.一元二次方程x 2+kx ﹣3=0的一个根是x=1,则另一个根是( )A .3B .﹣1C .﹣3D .﹣210.下列各数中是有理数的是( )A .πB .0C .2D .35二、填空题(本题包括8个小题)11.已知二次函数y=ax 2+bx (a≠0)的最小值是﹣3,若关于x 的一元二次方程ax 2+bx+c=0有实数根,则c 的最大值是_____.12.若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为_____.13.如图:图象①②③均是以P 0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P 1P 2P 3,第二次移动后图形①②③的圆心依次为P 4P 5P 6…,依此规律,P 0P 2018=_____个单位长度.14.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.15.因式分解:9a 2﹣12a+4=______.16.因式分解:223x 6xy 3y -+- =17.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.18.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为__________2cm.三、解答题(本题包括8个小题)19.(6分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.20.(6分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,7,2,求AD的长.22.(8分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.23.(8分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?24.(10分)两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA在x轴上,已知∠COD=∠OAB=90°,OC=2,反比例函数y=kx的图象经过点B.求k的值.把△OCD沿射线OB移动,当点D落在y=kx图象上时,求点D经过的路径长.25.(10分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.26.(12分)已知关于x 的一元二次方程x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求k 的取值范围;写出一个满足条件的k 的值,并求此时方程的根.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=1.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.2.A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为4,9故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.3.C【解析】【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).4.B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.5.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.6.C【解析】【分析】根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.【详解】解:二次函数y=x2的对称轴为y轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).7.B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.8.C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.9.C【解析】试题分析:根据根与系数的关系可得出两根的积,即可求得方程的另一根.设m、n是方程x2+kx﹣3=0的两个实数根,且m=x=1;则有:mn=﹣3,即n=﹣3;故选C.【考点】根与系数的关系;一元二次方程的解.10.B【解析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C是无理数,故本选项错误;D故选B.【点睛】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.二、填空题(本题包括8个小题)11.3【解析】【分析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c 有交点是解决问题的关键.12.1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.13.1【解析】【分析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.【详解】由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=1,故答案为1.【点睛】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.同位角相等,两直线平行.【解析】试题解析:利用三角板中两个60°相等,可判定平行考点:平行线的判定15.(3a﹣1)1【解析】【分析】直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.16.﹣3(x﹣y)1【解析】解:﹣3x1+6xy﹣3y1=﹣3(x1+y1﹣1xy)=﹣3(x﹣y)1.故答案为:﹣3(x﹣y)1.点睛:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.60 17.【解析】【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论. 【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC =ADAC,∴x5=12-x12,∴x=6017,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.18.16【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题(本题包括8个小题)19.(1)证明见解析;(2)3 2【解析】试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.试题解析:(1)证明:连接OD,CD,∵BC为⊙O直径,∴∠BDC=90°,即CD ⊥AB ,∵△ABC 是等腰三角形,∴AD=BD ,∵OB=OC ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DE ⊥AC ,∴OD ⊥DE ,∵D 点在⊙O 上,∴DE 为⊙O 的切线;(2)解:∵∠A=∠B=30°,BC=4,∴CD=12BC=2, ∴,∴S△ABC =12AB•CD=12, ∵DE ⊥AC ,∴DE=12AD=12, AE=AD•cos30°=3,∴S△ODE =12OD•DE=12S △ADE =12AE•DE=12, ∵S△BOD =12S △BCD =12×12S △ABC =14,∴S△OEC =S △ABC -S △BOD -S △ODE -S △ADE 2=2. 20. (1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A 型电脑每台利润×A 电脑数量+B 型电脑每台利润×B 电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,3313≤x≤60,①当0<a<100时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②a=100时,a﹣100=0,y=50000,即商店购进A型电脑数量满足3313≤x≤60的整数时,均获得最大利润;③当100<a<200时,a﹣100>0,y随x的增大而增大,∴当x=60时,y取得最大值.即商店购进60台A型电脑和40台B型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.21.(1)证明见解析;(2)【解析】【分析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:AB AC,FB=12BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA ,交BC 于F ,则OA=OB ,∴∠D=∠DAO ,∵∠D=∠C ,∴∠C=∠DAO ,∵∠BAE=∠C ,∴∠BAE=∠DAO ,∵BD 是⊙O 的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE ⊥OA ,∴AE 与⊙O 相切于点A ;(2)∵AE ∥BC ,AE ⊥OA , ∴OA ⊥BC ,∴AB AC =,FB=12BC , ∴AB=AC ,∵72,∴7,2,在Rt △ABF 中,()()22227-,在Rt △OFB 中,OB 2=BF 2+(OB ﹣AF )2,∴OB=4,∴BD=8,∴在Rt △ABD 中,22648214BD AB --=【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.22.(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:1 3(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=1 3.考点:概率的计算.23.(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】【分析】(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PE⊥MN,垂足为E,由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP22PE EB=2≈42海里,故AP=60海里,BP=42(海里);(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得604224 1.260x x-=,解得x=20,经检验,x=20是原方程的解,甲船的速度为1.2x=1.2×20=24(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.24.(1)k=2;(2)点D6.【解析】【分析】(1)根据题意求得点B的坐标,再代入kyx=求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC 于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,2,∴2,∴点B22),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵OC=OD=2,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得t=31-或t=﹣3﹣1(舍去),∴D′(3﹣1,3+1),∴DD′=22-+++-=,(311)(311)6即点D经过的路径长为6.【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.25.(1);(2),见解析.【解析】【分析】(1)根据四只鞋子中右脚鞋有2只,即可得到随手拿出一只恰好是右脚鞋的概率;(2)依据树状图即可得到共有12种等可能的结果,其中两只恰好为一双的情况有4种,进而得出恰好为一双的概率.【详解】解:(1)∵四只鞋子中右脚鞋有2只,∴随手拿出一只,恰好是右脚鞋的概率为=,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中两只恰好为一双的情况有4种,∴拿出两只,恰好为一双的概率为=.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.26.方程的根120=2x x =-或【解析】【分析】(1)根据方程的系数结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【详解】(1)∵关于x 的一元二次方程x 1﹣1(k ﹣a )x+k (k+1)=0有两个不相等的实数根,∴△=[﹣1(k ﹣1)]1﹣4k (k ﹣1)=﹣16k+4>0, 解得:k <14. (1)当k=0时,原方程为x 1+1x=x (x+1)=0,解得:x 1=0,x 1=﹣1.∴当k=0时,方程的根为0和﹣1.【点睛】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个2.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°3.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=5.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.86.正方形ABCD在直角坐标系中的位置如图所示,将正方形ABCD绕点A按顺时针方向旋转180°后,C点的坐标是( )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)7.已知如图,△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315°B.270°C.180°D.135°8.4的算术平方根为()A.2±B.2C.2±D.29.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.60050x-=450xB.60050x+=450xC.600x=45050x+D.600x=45050x-10.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.二、填空题(本题包括8个小题)11.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).13.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=10,AC=6,则DF 的长为__.14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 15.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______.16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 .17.如图,在ABCD 中,AB=6cm ,AD=9cm ,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=42cm ,则EF +CF 的长为 cm .18.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为_____.三、解答题(本题包括8个小题)19.(6分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A 、B 、C 、D 四份听力材料,它们的难易程度分别是易、中、难、难;a ,b 是两份口语材料,它们的难易程度分别是易、难.从四份听力材料中,任选一份是难的听力材料的概率是 .用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,20.(6分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。

黑龙江省绥化市2020年中考数学试卷C卷

黑龙江省绥化市2020年中考数学试卷C卷

黑龙江省绥化市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、填空题 (共12题;共13分)1. (1分) (2019九下·包河模拟) 64的立方根是________ 。

2. (2分) (2016·青海) 分解因式:2a2b﹣8b=________,计算:8x6÷4x2=________.3. (1分) (2020七上·宜春期末) 据不完全统计,今年“十一”黄金周期间,某风景区累计接待游客138.3万人次,138.3万用科学记数法可表示为________.4. (1分)(2013·贺州) 函数的自变量x的取值范围是________.5. (1分) (2020七下·株洲期末) 如图,直线,平分,交于点D,,那么的度数为________.6. (1分) (2017八下·海安期中) 如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,将△BCE 绕点C顺时针旋转90°得到△DCF.若CE=1cm,则BF=________ cm.7. (1分)在平面直角坐标系xOy中,已知反比例函数y= (k≠0)满足:当x<0时,y随x的增大而减小.若该反比例函数的图象与直线y=﹣x+ k都经过点P,且|OP|=4 ,则实数k的值为________.8. (1分) (2018九上·临沭期末) 如图,半径为2的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.9. (1分)(2017·湘潭) 某同学家长应邀参加孩子就读中学的开放日活动,他打算上午随机听一节孩子所在1班的课,下表是他拿到的当天上午1班的课表,如果每一节课被听的机会均等,那么他听数学课的概率是________.班级节次1班第1节语文第2节英语第3节数学第4节音乐10. (1分)(2019·昌图模拟) 如图,AB为⊙O的直径,弦CD⊥直径AB,垂足为E,连接OC,BD,如果∠D =55°,那么∠DCO=________°.11. (1分)(2014·宿迁) 如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是________.12. (1分) (2019七上·兴平月考) 按一定规律排列的一列数依次为,- ,,- ,,…,若按此规律排列下去,则这列数中第7个数是________.二、选择题 (共8题;共16分)13. (2分)(2017·环翠模拟) 下列计算正确的是()A . a6÷a3=a2B . (ab3)3=ab6C . (a+2)2=a2+4D . x12÷x6=x614. (2分) (2018八上·辽宁期末) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .15. (2分)不等式组:的解集在数轴上表示正确的是()A .B .C .D .16. (2分)问题:“如图,已知点O在直线l上,以线段OD为一边画等腰三角形,且使另一顶点A在直线l上,则满足条件的A点有几个?”.我们可以用圆规探究,按如图的方式,画图找到4个点:A1、A2、A3、A4 .这种问题说明的方式体现了()的数学思想方法A . 归纳与演绎B . 分类讨论C . 函数与方程D . 转化与化归17. (2分)为了提高学生的跳绳水平,将某校九年级(1)班全体同学分为两人一组,分别进行了5次一分钟摇绳训练,训练后其中一组两名同学的5次跳绳的总成绩相同,现需要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A . 平均数B . 众数C . 中位数D . 方差18. (2分)某农场开挖一条长480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么求x时所列方程正确的是()A .B .C .D .19. (2分) (2018八上·南召期末) 如图1,在矩形中,动点从点出发,沿方向运动至点处停止,设点运动的路程为,△BCE的面积为,如果关于的函数图象如图2所示,则当时,点应运动到()A . 点处B . 点处C . 点处D . 点处20. (2分)(2020·桂林) 如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A . πB . πC . 2 πD . 2π三、解答题 (共8题;共75分)21. (5分)(2019·颍泉模拟) 计算:(π﹣2019)0+(1﹣sin30°)×()﹣322. (5分)先化简,再求值:÷(1+ ),其中a= .23. (10分) (2017八下·南江期末) 如图,将口ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF.(2)若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.24. (10分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA=75厘米.展开小桌板使桌面保持水平,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与BC的长度之和等于OA的长度.(1)求∠CBO的度数;(2)求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)25. (6分)(2019·沈阳) 如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD⊥MN 于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4 ,CD=4,则⊙O的半径是________.26. (13分)(2017·昆都仑模拟) 某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有________人;在扇形图中,m=________;将条形图补充完整________;(2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率.27. (11分) (2019八上·邢台期中) 已知:∠ACB=90°,AC=BC ,AD⊥CM ,BE⊥CM ,垂足分别为D ,E ,(1)如图1,线段CD和BE的数量关系是________;(2)请写出线段AD , BE , DE之间的数量关系并证明.(3)如图2,上述结论②还成立吗?如果不成立,请直接写出线段AD , BE , DE之间的数量关系.28. (15分) (2016九上·临洮期中) 如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围;(3)点P为抛物线上一点,若S△PAB=10,求出此时点P的坐标.参考答案一、填空题 (共12题;共13分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、选择题 (共8题;共16分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共8题;共75分)21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。

2020年黑龙江省绥化中考数学试题(word版答案扫描)

2020年黑龙江省绥化中考数学试题(word版答案扫描)

二0二零年绥化市初巾毕业学业考试数学试卷一.填空题(每题3分.满分33分)1.2020年l0月31日.上海世博会闭幕.累计参观者突破7308万人次.创造了世博会历史上新的纪录。

用科学记数法表示为_____________人次.(结果保留两个有效数字) 2.函数2x y +=中.白变量x 的取值范围是____________。

3.如图.点B ,F 、C .E 在同一条直线上.点A ,D 在直线BE 的两侧.AB ∥DE .BF=CE .请添加一个适当的条件;____________.使得AC=DF . 4.因式分解:22363x xy y -+-=_____________________.5.中田象棋红方棋子按兵种不同分布如下:l 个帅.5个兵.“士、象、马、车,炮”各两个.将所有棋子反面朝上放在棋盘中,任取一个不是..士,象,帅的概率是___________.6.将一个半径为6cm .母线长为l5cm 的圆锥形纸筒沿一条母线剪开并展平.所得的侧面展开图的圆心角是___________度.7. '一元二次方程2470a a --=的解为___________.8.如图,A 、B 、C 、D 处⊙O 上的四个点.AB=AC .AD 交BC 于点E .AE=3,ED=4.则 AB 的长为___________.9.某班级为筹备运动会,准备用365元购买两种运动服.其中甲种运动服20元/套,乙种运动服35元/套.在钱都用尽的条件下.有___________种购买方案. 10.已知三角形相邻两边长分别为20cm 和30cm .第三边上的高为10cm ,则此三角形的面积为___________2cm 。

11.如图.△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB .EF ∥AC .得到四边形EDAF .它的面积记作1S ;取BE 中点1E .作11E D ∥FB ,11E F ∥EF .得到四边形111E D FF .它的面积记作2S .照此规律作下去,2011S =________________。

黑龙江省绥化市2020年(春秋版)中考数学试卷(II)卷

黑龙江省绥化市2020年(春秋版)中考数学试卷(II)卷

黑龙江省绥化市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) -7的绝对值是()A .B .C . -7D . 72. (2分) (2016九上·北京期中) 将抛物线y=x2平移得到抛物线y=x2+5,下列叙述正确的是()A . 向上平移5个单位B . 向下平移5个单位C . 向左平移5个单位D . 向右平移5个单位3. (2分)小军旅行箱的密码是一个三位数,每位上的数字是0至9中的一个,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A .B .C .D .4. (2分) (2018七上·龙港期中) 下列代数式的书写,正确规范的是()A .B .C .D .5. (2分) (2017七下·嘉兴期末) 把一块直角三角板的直角顶点放在直尺的一边上,如图所示,现用量角器量得∠2=112°,则∠1的度数为()A . 30°B . 28°C . 22°D . 20°6. (2分)不等式3x+2<2x+3的解集在数轴上表示正确的是()A .B .C .D .7. (2分) (2018七上·唐山期末) 如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A . 10克B . 15克C . 20克D . 25克8. (2分)(2014·宜宾) 如图,将n个边长都为2的正方形按如图所示摆放,点A1 , A2 ,…An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A . nB . n﹣1C . ()n﹣1D . n9. (2分) (2019八下·雅安期中) 如图,平面直角坐标系中放置一个直角三角板OAB,∠OAB=60°,顶点A的坐标为(﹣1,0),现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A . (1,0)B . ()C . (1,)D . (﹣1,)10. (2分) (2018九上·大石桥期末) 已知二次函数(a是常数,),下列结论正确的是()A . 当a = 1时,函数图像经过点(一1,0)B . 当a = 一2时,函数图像与x轴没有交点C . 若,函数图像的顶点始终在x轴的下方D . 若,则当时,y随x 的增大而增大二、填空题 (共6题;共6分)11. (1分) (2019七上·义乌月考) 的相反数是________12. (1分) (2017七上·东台月考) 把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略括号的和的形式是________.13. (1分) (2017七下·苏州期中) 若ax=2,ay=3,则a3x-y=________.14. (1分)从下面两题中只选做一题,如果做了两题的,只按第(1)题评分:(1)用“=>”与“<=”表示一种运算法则:(a=>b)=﹣b,(a<=b)=﹣a,如(2=>3)=﹣3,则(2010=>2011)<=(2009=>2008)=________ (括号运算优先)(2)用“>”或“<”号填空:sin40°cos50°﹣________ 0.(可用计算器计算)15. (1分) (2016八上·淮阴期末) 一次函数y=2x+4的图象与y轴交点的坐标是________.16. (1分)(2019·河南模拟) 如图1,△ABC中,∠ACB=90°,∠A=30°,点P是斜边AB上一动点过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,图2是y关于x的函数图象,则图象上最高点M的坐标是________.三、解答题 (共10题;共87分)17. (5分)(2012·钦州) 计算:2﹣1+|﹣3|﹣ +(π﹣3)0 .18. (5分) (2017八下·临洮期中) 如图,在数轴上画出表示的点(不写作法,但要保留画图痕迹).19. (5分) (2019八上·民勤月考) 如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.20. (5分)(2019·乐山) 化简: .21. (10分)(2018·淮安) 如图,在平面直角坐标系中,一次函数y=kx+b的图像经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图像交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD=S△BOC,求点D的坐标.22. (7分)某市为了了解高峰时段16路公交车从总站乘该路车出行的人数情况,随机抽查了10个班次乘该路车的人数,结果如下:14,23,16,25,23,28,26,27,23,25.(1)这组数据的众数为________,中位数为________;(2)计算这10个班次乘该路车人数的平均数;(3)如果16路公交车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?23. (15分)如图,☉I是Rt△ABC(∠C=90°)的内切圆,☉I和三边分别切于点D,E,F.(1)求证:四边形IDCE是正方形;(2)设BC=a,AC=b,AB=c,求☉I的半径r.24. (10分)菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.(1)如图1,当∠ABC=90°时,△OEF的形状是;(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且=时,直接写出线段CE的长.25. (15分) (2019九下·镇原期中) 如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB 交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.26. (10分) (2019八下·长春期中) 如图,在□ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于点F.(1)若∠F=20°,求∠A的度数;(2)若AB=5,BC=8,CE⊥AD,求□ABCD的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共87分)17-1、18-1、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。

2024年黑龙江绥化市中考数学真题试卷及答案

2024年黑龙江绥化市中考数学真题试卷及答案

2024年黑龙江绥化市中考数学真题试卷一、单项选择题(本题共12个小题,每小题3分,共36分) 请在答题卡上用2B 铅笔将你的选项所对应的方框涂黑 1. 实数12025-的相反数是( ) A. 2025B. 2025-C. 12025-D.120252. 下列所述图形中,是轴对称图形但不是中心对称图形的是( ) A. 圆B. 菱形C. 平行四边形D. 等腰三角形3. 某几何体是由完全相同的小正方体组合而成,下图是这个几何体的三视图,那么构成这个几何体的小正方体的个数是( )A. 5个B. 6个C. 7个D. 8个4. ,则m 的取值范围是( ) A. 23m ≤B. 32m ≥-C. 32m ≥D. 23m ≤-5. 下列计算中,结果正确的是( ) A. ()2139--= B. ()222a b a b +=+C.3=±D. ()3263x y x y -=6. 小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2-和5-.则原来的方程是( ) A. 2650x x ++= B. 27100x x -+= C. 2520x x -+=D. 26100x x --=7. 某品牌女运动鞋专卖店,老板统计了一周内不同鞋码运动鞋的销售量如表:如果每双鞋的利润相同,你认为老板最关注的销售数据是下列统计量中的( ) A. 平均数B. 中位数C. 众数D. 方差8. 一艘货轮在静水中的航速为40km /h ,它以该航速沿江顺流航行120km 所用时间,与以该航速沿江逆流航行80km 所用时间相等,则江水的流速为( ) A. 5km /hB. 6km /hC. 7km /hD. 8km /h9. 如图,矩形OABC 各顶点的坐标分别为()0,0O ,()3,0A ,()3,2B ,()0,2C ,以原点O 为位似中心,将这个矩形按相似比13缩小,则顶点B 在第一象限对应点的坐标是( )A. ()9,4B. ()4,9C. 31,2⎛⎫ ⎪⎝⎭D. 21,3⎛⎫ ⎪⎝⎭10. 下列叙述正确的是( )A. 顺次连接平行四边形各边中点一定能得到一个矩形B. 平分弦的直径垂直于弦C. 物体在灯泡发出的光照射下形成的影子是中心投影D. 相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等11. 如图,四边形ABCD 是菱形,5CD =,8BD =,AE BC ⊥于点E ,则AE 的长是( )A.245B. 6C.485D. 1212. 二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x -,则下列结论中:①0bc> ①2am bm a b +≤-(m 为任意实数) ①31a c +< ①若()1,M x y ,()2,N x y 是抛物线上不同的两个点,则123x x +≤-.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(本题共10个小题,每小题3分,共30分) 请在答题卡上把你的答案写在所对应的题号后的指定区域内13. 中国的领水面积约为370 000 km2,将数370 000用科学记数法表示为:__________. 14. 分解因式:2228mx my -=______.15. 如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠=______︒.16. 如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为______m (结果保留根号).17. 计算:22x y xy y x x x ⎛⎫--÷-= ⎪⎝⎭_________.18. 用一个圆心角为126︒,半径为10cm 的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为______cm .19. 如图,已知点()7,0A -,(),10B x ,()17,C y -,在平行四边形ABCO 中,它的对角线OB 与反比例函数()0ky k x=≠的图象相交于点D ,且:1:4OD OB =,则k =______.20. 如图,已知50AOB ∠=︒,点P 为AOB ∠内部一点,点M 为射线OA ,点N 为射线OB 上的两个动点,当PMN 的周长最小时,则MPN ∠=______.21. 如图,已知(11,A ,(23,A ,()34,0A ,()46,0A ,(5A ,(6A ,()710,0A ,(811,A …,依此规律,则点2024A 的坐标为______.22. 在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是______cm . 三、解答题(本题共6个小题,共54分)请在答题卡上把你的答案写在所对应的题号后的指定区域内 23. 已知:ABC .(1)尺规作图:画出ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知ABG的面积等于25cm,则ABC的面积是______ 2cm.24. 为了落实国家“双减”政策,某中学在课后服务时间里,开展了音乐、体操、诵读、书法四项社团活动.为了了解七年级学生对社团活动的喜爱情况,该校从七年级全体学生中随机抽取了部分学生进行“你最喜欢哪一项社团活动”的问卷调查,每人必须选择一项社团活动(且只能选择一项).根据调查结果,绘制成如下两幅统计图.请根据统计图中的信息,解答下列问题:(1)参加本次问卷调查的学生共有______人.(2)在扇形统计图中,A组所占的百分比是______,并补全条形统计图.(3)端午节前夕,学校计划进行课后服务成果展示,准备从这4个社团中随机抽取2个社团汇报展示.请用树状图法或列表法,求选中的2个社团恰好是B和C的概率.25. 为了响应国家提倡的“节能环保”号召,某共享电动车公司准备投入资金购买A,B两种电动车.若购买A种电动车25辆,B种电动车80辆,需投入资金30.5万元;若购买A种电动车60辆,B种电动车120辆,需投入资金48万元.已知这两种电动车的单价不变.(1)求A,B两种电动车的单价分别是多少元?(2)为适应共享电动车出行市场需求,该公司计划购买A,B两种电动车200辆,其中A种电动车的数量不多于B 种电动车数量的一半.当购买A 种电动车多少辆时,所需的总费用最少,最少费用是多少元?(3)该公司将购买的A ,B 两种电动车投放到出行市场后,发现消费者支付费用y 元与骑行时间min x 之间的对应关系如图.其中A 种电动车支付费用对应的函数为1y ;B 种电动车支付费用是10min 之内,起步价6元,对应的函数为2y .请根据函数图象信息解决下列问题.①小刘每天早上需要骑行A 种电动车或B 种电动车去公司上班.已知两种电动车的平均行驶速度均为300m /min (每次骑行均按平均速度行驶,其它因素忽略不计),小刘家到公司的距离为8km ,那么小刘选择______种电动车更省钱(填写A 或B ). ①直接写出两种电动车支付费用相差4元时,x 的值______.26. 如图1,O 是正方形ABCD 对角线上一点,以O 为圆心,OC 长为半径的O 与AD 相切于点E ,与AC 相交于点F .(1)求证:AB 与O 相切.(2)若正方形ABCD 1,求O 的半径.(3)如图2,在(2)的条件下,若点M 是半径OC 上的一个动点,过点M 作MN OC ⊥交CE 于点N .当:1:4CM FM =时,求CN 的长.27. 综合与实践 问题情境在一次综合与实践课上,老师让同学们以两个全等的等腰直角三角形纸片为操作对象. 纸片ABC 和DEF 满足90ACB EDF ∠=∠=︒,2cm AC BC DF DE ====. 下面是创新小组的探究过程. 操作发现(1)如图1,取AB 的中点O ,将两张纸片放置在同一平面内,使点O 与点F 重合.当旋转DEF 纸片交AC 边于点H ,交BC 边于点G 时,设()12AH x x =<<,BG y =,请你探究出y 与x 的函数关系式,并写出解答过程.问题解决(2)如图2,在(1)的条件下连接GH ,发现CGH 的周长是一个定值.请你写出这个定值,并说明理由. 拓展延伸(3)如图3,当点F 在AB 边上运动(不包括端点A ,B ),且始终保持60AFE ∠=︒.请你直接写出DEF 纸片的斜边EF 与ABC 纸片的直角边所夹锐角的正切值______(结果保留根号).28. 综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式. (2)过点B作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B ,D ,E ,F为顶点的四边形是菱形时,请直接写出点F 的坐标.2024年黑龙江绥化市中考数学真题试卷答案一、单项选择题. 1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】D 10.【答案】C 11.【答案】A 12.【答案】B 二、填空题. 13.【答案】3.7×10514.【答案】()()222m x y x y +- 15.【答案】6616.【答案】(50+ 17.【答案】1x y- 18.【答案】7219.【答案】15- 20.【答案】80︒21.【答案】(2891,22.或5或三、解答题.23.【答案】(1)略 (2)15 24.【答案】(1)60 (2)30%,作图略(3)1625.【答案】(1)A ,B 两种电动车的单价分别为1000元,3500元(2)当购买A 种电动车66辆时所需的总费用最少,最少费用为535000元 (3)①B ①5或40 26.【答案】(1)证明略(2(3)527.【答案】(1)()212y x x=<<,见解析;(2)2,略;(3)22 28.【答案】(1)241y x x =-++(2)存在,点P 坐标为1111,24P ⎛⎫ ⎪⎝⎭,215,24P ⎛⎫-- ⎪⎝⎭,补图见解析(3)()11,3F -,(23,4F ,(33,4F +,()41,2F -。

黑龙江省绥化市2020年(春秋版)中考数学试卷A卷

黑龙江省绥化市2020年(春秋版)中考数学试卷A卷

黑龙江省绥化市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案 (共8题;共16分)1. (2分) (2019七上·碑林期中) 在,,,四个数中,最大的数与最小的数的和等于()A . 8B . 1C . -5D . 32. (2分) (2019七下·大兴期末) 不等式的解集在数轴上表示如下,正确的是()A .B .C .D .3. (2分) (2019八下·闽侯期中) 如图,在Rt△ABC中,∠ACB=90°,AB=16,则正方形ADEC和正方形BCFG的面积和为()A . 16B . 32C . 160D . 2564. (2分) (2018七上·银川期末) 如图所示的是由几个相同的小正方体搭成的一个几何体,从左面看到的图为()A .B .C .D .5. (2分)下列事件中,必然事件是()A . 早晨的太阳从东方升起B . 今天考试小明能得满分C . 中秋节晚上能看到月亮D . 明天气温会升高6. (2分)已知相交两圆的半径分别为4和7,则它们的圆心距可能是()A . 2B . 3C . 6D . 117. (2分)(2011·湛江) 四边形的内角和为()A . 180°B . 360°C . 540°D . 720°8. (2分)大年三十晚上,小六驾车从家出发到烟花燃放指定点去燃放烟花炮竹,小六驾车匀速行驶一段时间后,途中遇到堵车原地等待一会儿,然后小六加快速度继续匀速行驶,零点之前到达指定燃放地点,燃放结束后,小六按驾车匀速返回.其中,x表示小六从家出发后所用时间,y表示小六离家的距离.下面能反映y与x的函数关系的大致图象是()A .B .C .D .二、填空题(每小题3分,共24分) (共8题;共9分)9. (1分)(2020·滨湖模拟) 据统计,2019年全国高考人数再次突破千万,高达10310000人.数据10310000用科学记数法可表示为________人.10. (1分) (2019八下·吉林期末) 已知一组数据3、a、4、6的平均数为4,则这组数据的中位数是________.11. (2分)若两个无理数的和是有理数,则这两个无理数可以是:________ ________.12. (1分)(2019·梧州模拟) 如图,直线a和直线b被直线c所截,若a∥b,∠1=40°,则∠2=________.13. (1分) (2020八下·哈尔滨月考) 一含30°角的直角三角形斜边长为4,则斜边上的高为________.14. (1分)(2019·曲靖模拟) 圆锥的母线长是6cm,侧面积是30πcm2 ,该圆锥底面圆的半径长等于________cm.15. (1分) (2019九上·北京期中) 已知抛物线与x轴有两个交点,则m的取值范围是________.16. (1分)如图,在平面直角坐标系中直线y=x-2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).将直线y=x-2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式是________ .三、解答题(17、18、19小题,每小题8分,共24分) (共3题;共35分)17. (5分)(2017·铁西模拟) 先化简,再求值:÷(1﹣),其中x= .18. (15分)(2020·龙泉驿模拟) 随着城市化建设的发展,交通拥堵成为上班高峰时难以避免的现象.为了解龙泉驿某条道路交通拥堵情况,龙泉某中学同学经实地统计分析研究表明:当时,车流速度v(千米/小时)是车流密度x(辆/千米)的一次函数.当该道路的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度为95辆/千米时,车流速度为50千米/小时.(1)当时,求车流速度v(千米/小时)与车流密度x(辆/千米)的函数关系式;(2)为使该道路上车流速度大于40千米/小时且小于60千米/小时,应控制该道路上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过该道路上某观测点的车辆数,即:车流量=车流速度×车流密度.当时,求该道路上车流量y的最大值.此时车流速度为多少?19. (15分) (2019九上·汨罗期中) 如图,直线与轴交于点,与双曲线交于点,其中点在第一象限,点在第三象限。

2020年黑龙江省绥化市中考数学试卷及答案解析

2020年黑龙江省绥化市中考数学试卷及答案解析

第 1 页 共 27 页
2020年黑龙江省绥化市中考数学试卷
一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B 铅笔将你的选项所对应的大写字母涂黑
1.(3分)化简|√2−3|的结果正确的是( )
A .√2−3
B .−√2−3
C .√2+3
D .3−√2
2.(3分)两个长方体按图示方式摆放,其主视图是( )
A .
B .
C .
D .
3.(3分)下列计算正确的是( )
A .b 2•b 3=b 6
B .(a 2)3=a 6
C .﹣a 2÷a =a
D .(a 3)2•a =a 6
4.(3分)下列图形是轴对称图形而不是中心对称图形的是( )
A .
B .
C .
D .
5.(3分)下列等式成立的是( )
A .√16=±4
B .√−83=2
C .﹣a √1a =√−a
D .−√64=−8
6.(3分)“十•一”国庆期间,学校组织466名八年级学生参加社会实践活动,现已准备了
49座和37座两种客车共10辆,刚好坐满,设49座客车x 辆,37座客车y 辆.根据题意,得( )。

二0二o年绥化中考数学试题及答案

二0二o年绥化中考数学试题及答案

二0二o年绥化中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个选项是奇数?A. 2B. 3C. 4D. 5答案:B2. 计算下列算式的结果:\((-3) \times (-2) = ?\)A. 6B. -6C. 3D. -3答案:A3. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形答案:A4. 一个数的平方根是4,这个数是?A. 16B. 8C. -4D. 4答案:A5. 一个等腰三角形的两边长分别为3和5,那么第三边的长度是?A. 3B. 5C. 8D. 无法确定答案:B6. 下列哪个选项是方程\(x^2 - 5x + 6 = 0\)的解?A. 2B. 3C. 1D. 6答案:B7. 计算下列算式的结果:\(\frac{1}{2} + \frac{1}{3} = ?\)A. \(\frac{5}{6}\)B. \(\frac{1}{6}\)C. \(\frac{2}{3}\)D. \(\frac{3}{6}\)答案:A8. 一个圆的半径是5,那么它的周长是?A. 10πB. 15πC. 20πD. 25π答案:C9. 一个数的相反数是-7,这个数是?A. 7B. -7C. 0D. 14答案:A10. 以下哪个选项是不等式\(2x - 5 > 3\)的解?A. 4B. 2C. 1D. -1答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的绝对值是5,这个数可以是______。

答案:±512. 一个数的立方根是2,这个数是______。

答案:813. 一个数的倒数是\(\frac{1}{3}\),这个数是______。

答案:314. 一个数的平方是9,这个数是______。

答案:±315. 一个数的平方根是\(\frac{1}{2}\),这个数是______。

答案:\(\frac{1}{4}\)三、解答题(本题共5小题,共50分)16. 解方程:\(3x - 7 = 11\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档