物理学发展简史
物理学发展简史
物理学发展简史物理学是自然科学中研究物质、能量和它们之间相互作用的学科。
它的发展可以追溯到古代,随着时间的推移,物理学经历了许多重要的里程碑和发展阶段。
本文将为您详细介绍物理学的发展历程。
1. 古代物理学古代物理学主要集中在希腊和中国。
在希腊,早期的物理学家如毕达哥拉斯、阿那克西曼德和柏拉图提出了一些关于自然界的基本理论。
他们认为世界是由基本元素构成的,这些元素具有不同的性质和特征。
在中国,古代科学家如张衡和沈括对自然现象进行了观察和研究,并提出了一些关于地震、天文学和气象学的理论。
2. 文艺复兴时期的物理学文艺复兴时期是物理学发展的重要时期。
伽利略·伽利莱是这一时期最重要的物理学家之一。
他通过实验和观察,提出了地球并不是宇宙的中心的理论,并发展了运动学和力学的基本原理。
同时,伽利略的研究也为后来牛顿的力学定律奠定了基础。
3. 牛顿力学的革命艾萨克·牛顿的力学定律是物理学史上的一个重大突破。
牛顿提出了万有引力定律,解释了行星运动、物体的自由落体和天体力学等现象。
他的工作为后来的科学家提供了重要的思想和方法,对物理学的发展产生了深远的影响。
4. 电磁学的诞生19世纪,电磁学成为物理学的一个重要分支。
迈克尔·法拉第和詹姆斯·克拉克·麦克斯韦等科学家的工作,奠定了电磁学的基本原理。
麦克斯韦提出了电磁场的理论,并预言了电磁波的存在。
这一理论为后来的无线电通信和电磁辐射等领域的发展奠定了基础。
5. 相对论和量子力学的兴起20世纪初,爱因斯坦的相对论和量子力学的兴起引起了物理学界的巨大震动。
爱因斯坦的相对论理论彻底改变了人们对时间、空间和物质的认识。
量子力学则研究微观世界的行为,提出了不确定性原理和波粒二象性等重要概念。
这两个理论的提出对物理学的发展产生了深远的影响,并为现代物理学的诞生奠定了基础。
6. 当代物理学的发展当代物理学涉及了广泛的领域,如粒子物理学、宇宙学、量子场论等。
物理学发展简史
物理学发展简史物理学是自然科学的一个重要分支,研究物质、能量和它们之间相互作用的规律。
它的发展可以追溯到古代,经历了数千年的演变和进步。
以下是物理学发展的简史。
古代物理学:古代物理学主要集中在古希腊时期,其中最重要的贡献来自于亚里士多德。
他提出了一种关于物质构成和运动的理论,称为亚里士多德哲学。
他认为地球是宇宙的中心,万物都环绕着地球运动。
这一理论在几个世纪内占领主导地位,直到科学革命时期被推翻。
科学革命时期:科学革命时期是物理学发展的重要里程碑。
伽利略·伽利莱是这一时期的重要人物之一,他通过实验和观察提出了一些重要的理论。
他的研究揭示了自由落体运动的规律,并提出了地球绕太阳运动的观点,这与当时的教会观点相矛盾。
伽利略的工作为现代科学方法的发展奠定了基础。
牛顿力学:艾萨克·牛顿是物理学史上最重要的科学家之一。
他在17世纪末提出了经典力学的三大定律,这些定律描述了物体运动的规律。
牛顿的研究不仅解释了地球上的物体运动,还成功地预测了天体运动。
他的工作为后来的科学研究提供了基础,并被广泛应用于工程和技术领域。
电磁学的兴起:19世纪是电磁学发展的时期。
迈克尔·法拉第和詹姆斯·克拉克·麦克斯韦是这一时期的重要人物。
法拉第的研究揭示了电磁感应和电磁感应定律,为电动机和发机电的发展奠定了基础。
麦克斯韦则通过数学形式化了电磁理论,并预测了电磁波的存在。
他的工作为后来的无线电通信和电磁波谱的研究提供了理论基础。
相对论和量子力学:20世纪是相对论和量子力学的时期。
阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论,这些理论改变了我们对时间、空间和引力的理解。
量子力学的发展由多位科学家共同推动,如马克斯·波恩、尼尔斯·玻尔和沃纳·海森堡等。
量子力学研究了微观世界的行为,揭示了粒子的波粒二象性和量子纠缠等神奇现象。
现代物理学:现代物理学涵盖了广泛的领域,如固体物理学、核物理学、粒子物理学和宇宙学等。
物理学的发展历程
物理学的发展历程物理学是自然科学中研究物质及能量以及它们之间相互作用的学科。
它的发展可以追溯到人类历史的早期。
本文将带你了解物理学的发展历程和一些重要里程碑。
1. 早期物理学的起源早在古代,人们就开始对物质和自然现象进行观察和探索。
希腊哲学家亚里士多德提出了一些关于物质和运动的理论,如四元素说和自然进程的目标论。
这些理论虽然有一定的启示意义,但缺乏实证和实验基础。
2. 物理学的科学方法论在科学方法论方面,伽利略·伽利莱是一位重要的先驱。
他通过实验和观察提出了关于运动的实证法则,如斜面实验和自由落体实验。
伽利略的工作奠定了实验和观察作为物理学研究方法的基础。
3. 牛顿力学的诞生17世纪末,艾萨克·牛顿以他的《自然哲学的数学原理》一书,建立了经典力学的基础。
牛顿提出了质点力学和万有引力定律,解释了行星运动和物体运动的规律。
这一理论框架支撑了几个世纪的物理学研究,被誉为现代物理学的起点。
4. 热学和热力学的发展18世纪末至19世纪,热学和热力学的发展成为物理学的热点。
詹姆斯·瓦特等科学家研究了热和能量之间的关系,提出了热力学第一、第二定律,并发展了蒸汽机等热能转化装置。
这些成果为工业革命的推动提供了先决条件。
5. 电磁学的崛起19世纪初,电学和磁学的发展引起了物理学界的广泛关注。
奥斯特、法拉第、安培等科学家的研究成果奠定了电磁学基础,如奥斯特发现的电流感生磁场定律和法拉第电磁感应定律。
这些定律为电磁现象的解释和应用奠定了基础。
6. 相对论和量子力学的革命20世纪初,爱因斯坦的相对论和普朗克、玻尔等科学家的量子力学开创了新的物理学时代。
相对论理论解释了高速运动物体和引力的效应,量子力学则揭示了微观世界的规律和不确定性原理。
这两个理论的出现颠覆了牛顿经典力学的观念,为现代物理学发展带来了新的视角。
7. 现代物理学的分支发展20世纪后期至今,物理学逐渐形成了多个分支和学科领域。
物理学发展历程
物理学发展历程一、古代物理学的发展在古代,人们对物质和运动的规律进行了观察和研究。
早期的物理学思想主要由古希腊的哲学家提出,如柏拉图和亚里士多德等。
他们提出了关于天体和物质的各种假设和观点,但缺乏实验证据。
二、实证主义的兴起17世纪,随着实证科学的兴起,物理学开始朝着实证主义的方向发展。
伽利略·伽利莱通过实验和观察,发现了自由落体和摆钟的规律,提出了相对运动的概念。
他的研究方法成为了现代物理学的基础。
三、牛顿力学的建立17世纪末,艾萨克·牛顿提出了力学的基本原理,即牛顿三定律。
他运用数学工具,成功描述了天体运动的规律,并建立了经典力学的体系。
牛顿力学成为了物理学的基石,为后续学科奠定了基础。
四、电磁学和热力学的发展18世纪末到19世纪初,由法拉第、欧姆、安培等科学家的研究,奠定了电磁学的基础。
迈克尔·法拉第提出了电磁感应定律和电磁场的概念,从而建立了电磁学的基本理论。
与此同时,热力学的发展也取得了重要进展。
提出了能量守恒和熵增原理等基本理论,解释了热现象的本质,为工业革命和能源应用做出了贡献。
五、相对论和量子力学的出现20世纪初,爱因斯坦提出了狭义相对论和广义相对论,颠覆了牛顿力学的观念,提出了时间和空间的相对性以及引力的几何描述。
此后,量子力学的出现进一步挑战了经典物理学的观念,揭示了微观世界的奇特规律。
六、现代物理学的发展21世纪,物理学正朝着更深入、更广泛和更应用的方向发展。
许多新领域的研究涉及基本粒子物理学、宇宙学、量子计算和纳米技术等。
尽管我们对宇宙和微观世界的理解仍有限,但不断的实验和理论推动着物理学的前进。
物理学发展简史
物理学发展简史物理学是自然科学的一个重要分支,研究物质、能量以及它们之间的相互作用。
它的发展历史可以追溯到古代文明时期,经历了数千年的演变和进步。
本文将为您详细介绍物理学的发展简史。
1. 古代物理学的起源古代的物理学主要集中在希腊、中国、印度和阿拉伯等文明中。
在希腊,著名的哲学家亚里士多德提出了乾坤万物的四要素理论,即地、水、火、气。
而中国的古代科学家们则研究了天文学、力学和声学等领域。
印度的古代科学家开展了对光学和声学的研究,而阿拉伯的科学家则在物理学和天文学方面取得了重要的发展。
2. 文艺复兴时期的物理学文艺复兴时期标志着物理学的复兴和进一步发展。
尼古拉·哥白尼提出了地心说的观点,认为地球是宇宙的中心。
这个观点在当时得到了广泛的接受,但随着后来伽利略·伽利莱的浮现,他的地心说受到了挑战,伽利略提出了日心说的观点,并用实验证明了这个观点的正确性,从而推动了物理学的进一步发展。
3. 牛顿力学的诞生17世纪末,艾萨克·牛顿提出了力学的三大定律,即牛顿三定律。
这些定律奠定了经典力学的基础,解释了物体的运动规律和相互作用原理。
牛顿的力学理论极大地推动了科学的进步,成为物理学的重要里程碑。
4. 电磁学和光学的发展19世纪初,奥斯丁·法拉第和迈克尔·法拉第等科学家在电磁学领域取得了重要的突破。
法拉第提出了电磁感应和电磁场的概念,揭示了电磁现象的本质。
同时,詹姆斯·克拉克·麦克斯韦提出了麦克斯韦方程组,统一了电磁学的理论框架。
光学方面,托马斯·杨和奥古斯特·菲涅耳等科学家的研究推动了光的波动理论的发展。
5. 相对论和量子力学的革命20世纪初,阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时空和引力的理解。
狭义相对论解释了光速不变和质能等价的原理,广义相对论则描述了引力的曲率效应。
与此同时,量子力学的发展也引起了物理学的革命。
物理学发展简史
物理学发展简史物理学是自然科学中的一门重要学科,研究物质的性质、运动和相互作用。
它的发展可以追溯到古代希腊时期,经历了漫长而丰富的历史。
本文将为您详细介绍物理学发展的历程,从古代到现代,让您对物理学的发展有一个清晰的了解。
一、古代物理学的起源古代物理学的起源可以追溯到古希腊时期的哲学家们。
他们通过观察自然现象和思考,提出了一些关于宇宙的基本理论。
其中最著名的是亚里士多德的自然哲学,他认为地球是宇宙的中心,万物都是由四种元素(地、水、火、气)组成的。
这些理论在当时被广泛接受,但后来被科学实验和观察所推翻。
二、近代物理学的诞生近代物理学的诞生可以追溯到16世纪末的科学革命时期。
伽利略·伽利莱是物理学的奠基人之一,他通过实验和观察,提出了地球不是宇宙的中心,而是围绕太阳运转的理论,这一理论被称为“日心说”。
同时,伽利略还研究了物体的运动规律,提出了“落体定律”和“惯性定律”,为后来牛顿的力学奠定了基础。
三、经典物理学的发展17世纪末至19世纪初,经典物理学迎来了快速发展的时期。
艾萨克·牛顿的《自然哲学的数学原理》被认为是经典物理学的里程碑,其中包括了牛顿三大定律和万有引力定律。
牛顿的理论不仅解释了地球和天体的运动规律,还奠定了力学和运动学的基础。
随着科学技术的进步,电磁学和热力学也得到了重要的发展。
迈克尔·法拉第和詹姆斯·克拉克·麦克斯韦等科学家研究了电磁场的性质和电磁波的传播规律,建立了电磁学的基本理论。
同时,卡尔·弗里德里希·高斯、安德烈·玛丽·安培和乔治·西蒙·欧姆等科学家的贡献也推动了电磁学的发展。
热力学的发展也是经典物理学的重要组成部分。
詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼等科学家研究了热力学定律和热力学过程,为工业革命和能源利用提供了理论基础。
物理学发展简史
物理学发展简史引言概述:物理学是自然科学的一个重要分支,研究物质的性质、运动和相互作用。
自古以来,人类对于物理学的研究向来在不断发展,推动了科学技术的进步。
本文将以物理学发展的历史为线索,从古代到现代,介绍物理学的重要里程碑。
一、古代物理学的发展1.1 古希腊的自然哲学古希腊哲学家们对自然界的观察和思量,奠定了物理学的基础。
例如,泰勒斯认为水是宇宙的基本构成物质,安纳克西曼德认为万物都来自于无穷无尽的原子。
1.2 亚里士多德的物理学亚里士多德的物理学思想在古代占领主导地位。
他提出了地心说,认为地球是宇宙的中心,天体环绕地球旋转。
亚里士多德的物理学思想影响了几个世纪的科学研究。
1.3 阿拉伯物理学的贡献中世纪的阿拉伯学者对物理学的发展做出了重要贡献。
他们翻译了古希腊和古罗马的著作,并进行了进一步的研究。
他们的工作在欧洲文艺复兴时期被重新发现,对物理学的发展起到了推动作用。
二、近代物理学的诞生2.1 伽利略的实验物理学伽利略通过实验和观察,提出了许多重要的物理学原理。
他的研究包括物体的自由落体、斜面上的运动等,为后来的物理学家们提供了珍贵的思路。
2.2 牛顿的经典力学牛顿的经典力学是物理学的重要里程碑。
他提出了运动定律和万有引力定律,解释了行星运动和物体的运动规律。
牛顿的理论为后来的科学研究提供了基础。
2.3 麦克斯韦方程组的建立19世纪,麦克斯韦通过实验和理论推导,建立了电磁场理论。
他的方程组描述了电磁波的传播和电磁现象的规律,开创了电磁学的新时代。
三、量子力学的诞生与发展3.1 普朗克的量子假设20世纪初,普朗克提出了能量量子化的假设,为量子力学的建立奠定了基础。
他的工作为后来的量子力学研究提供了重要的启示。
3.2 爱因斯坦的光电效应理论爱因斯坦通过对光电效应的研究,提出了光的粒子性,即光子的概念。
他的理论为量子力学的发展做出了重要贡献。
3.3 薛定谔的波函数理论薛定谔通过对粒子的波动性的研究,提出了著名的波函数理论。
物理学发展简史
物理学发展简史物理学是一门探索自然界基本规律和物质性质的科学。
它的发展可以追溯到古代,随着时间的推移,物理学经历了许多重要的里程碑和突破。
本文将为您呈现物理学发展的简史。
1. 古代物理学古代物理学起源于古希腊时期,最早的物理学思想可以追溯到毕达哥拉斯学派。
毕达哥拉斯学派认为世界是由数学规律构成的,他们的研究重点是几何学和数学。
此外,亚里士多德也对物理学做出了重要贡献,他提出了天体运动的观点,并将物质分为四个元素:地、水、火、气。
2. 文艺复兴时期文艺复兴时期是物理学发展的重要阶段。
尼古拉·哥白尼提出了地心说的反对者——日心说,认为地球绕太阳运动。
这一观点对物理学和天文学产生了深远的影响。
同时,伽利略·伽利莱通过实验和观察,提出了自由落体定律和斜面上物体滑动的规律,奠定了现代物理学实验方法的基础。
3. 经典物理学时期经典物理学时期是物理学发展的黄金时代。
伊萨克·牛顿的《自然哲学的数学原理》是经典物理学的里程碑之一。
牛顿提出了万有引力定律和运动定律,解释了行星运动、物体运动和力的关系。
此外,光的波动性也是经典物理学时期的重要研究领域,光的波动性理论由克里斯蒂安·惠更斯和托马斯·杨提出。
4. 20世纪的物理学革命20世纪是物理学发展的革命性时期,许多重要的理论和发现改变了我们对自然界的理解。
阿尔伯特·爱因斯坦提出了相对论,揭示了时间和空间的相互关系,同时提出了质能等效原理,即著名的E=mc²公式。
量子力学的发展也是20世纪物理学的重要里程碑,特别是马克斯·波恩和埃尔温·薛定谔的工作。
量子力学描述了微观世界的行为,解释了原子和份子的结构和性质。
5. 当代物理学当代物理学继续推动着科学的边界。
粒子物理学的发展揭示了基本粒子的性质和相互作用,如标准模型理论。
宇宙学也成为物理学研究的热点,我们对宇宙的起源、演化和结构有了更深入的了解。
物理学的发展历程
物理学的发展历程物理学是自然科学的一门重要学科,研究物质的本质、结构、运动以及相互作用规律。
它的发展历程可以追溯到古代的自然哲学时期,经历了数千年的发展和演变。
下面将以物理学的发展历程为主题,简要介绍物理学的发展过程。
一、古代物理学的萌芽古代物理学起源于古希腊,最早的物理学思想可以追溯到古希腊哲学家毕达哥拉斯、亚里士多德等人。
毕达哥拉斯强调数学与自然的联系,提出了宇宙的数学结构理论,奠定了物理学的基础。
亚里士多德则从观察自然现象入手,提出了四元素理论和天地有机体观念,为古代物理学奠定了基础。
二、近代物理学的诞生近代物理学的诞生可以追溯到17世纪的科学革命时期。
伽利略、牛顿等科学家通过实验和观察,提出了力学和引力定律,建立了经典物理学的基础。
伽利略的实验和牛顿的三大定律为物理学的实验方法和数学方法的结合提供了范例,开创了物理学的新纪元。
三、电磁学的发展19世纪,电磁学的发展成为物理学的重要里程碑。
法拉第、麦克斯韦等科学家通过实验和理论的研究,建立了电磁理论,揭示了电磁波的存在和传播规律。
麦克斯韦方程组的发现为电磁学奠定了基础,也为后来的相对论和量子力学的发展提供了重要的理论基础。
四、相对论和量子力学的诞生20世纪初,爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时空观念的理解。
狭义相对论揭示了光速不变原理和相对性原理,广义相对论则解释了引力的本质和时空的弯曲。
同时,普朗克、波尔等科学家的量子理论研究,奠定了量子力学的基础,揭示了微观粒子的奇特性质和量子力学的统计规律。
五、现代物理学的发展20世纪以来,物理学发展迅速,涌现出了许多重要的理论和实验成果。
狄拉克方程、量子电动力学、量子色动力学等理论的提出,揭示了微观世界的精细结构和基本相互作用规律。
同时,超导、激光、半导体等新材料和新技术的应用也推动了物理学的发展。
总结起来,物理学的发展历程经历了从古代的自然哲学到近代科学革命,再到现代物理学的诞生和发展的过程。
(完整版)物理学发展简史
欢迎共阅一、古典物理学与近代物理学:1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为力学、热学、光学、电磁学等主要分支。
2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学,以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。
理12341)和化(1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。
(2)半导体制成二极管具整流能力。
(3)集成电路(IC):(A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集成电路。
(B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。
(C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。
(4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。
2、雷射:(一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并放射同频率之光子,藉以将光加以增强。
(二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。
(三)应用:(1)工业上:测量、切割、精密加工……(2)医学上:切割手术(肿瘤、近视)……(3)军事上:定位、导引……(4)生活、娱乐上:激光视盘、光纤通讯……3、光纤:(一)光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层(纤芯)及外层(包层)两层。
(二)原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而传递至另一端。
(三)特性:(核2。
(1)向量:兼具大小及方向性者,如:速度、力……(2)纯量:仅具大小无方向性者,如:体积、时间、功……(二)依定义方式而分:(1)基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强度(光度)、物质的量(物量)七种。
物理学发展简史
物理学发展简史物理学是一门研究自然界最基本规律和物质运动的科学,它涵盖了从微观领域的粒子物理学到宏观领域的天体物理学的广泛范围。
以下是物理学发展的简史。
1. 古代物理学古代物理学起源于古希腊,早期的物理学家主要是哲学家。
他们提出了一些关于自然界的基本观点和理论,如亚里士多德的四元素理论和地心说。
然而,这些理论主要是基于推理和观察,缺乏实验验证。
2. 实验物理学的兴起随着科学方法的发展,实验物理学开始兴起。
伽利略·伽利莱是实验物理学的奠基人之一,他进行了一系列著名的实验,如斜面实验和自由落体实验,为物理学的发展奠定了基础。
3. 牛顿力学的建立17世纪末,艾萨克·牛顿提出了经典力学的三大定律,即牛顿定律。
这些定律描述了物体的运动和力的作用关系,成为物理学的重要里程碑。
此外,牛顿还提出了万有引力定律,解释了行星运动和物体受力的原理。
4. 热力学和统计物理学的发展18世纪末和19世纪初,热力学和统计物理学开始崭露头角。
詹姆斯·瓦特和萨迪·卡诺提出了热力学的基本原理,揭示了热量和能量的转化关系。
而鲁道夫·克劳修斯和路德维希·玻尔兹曼则发展了统计物理学,通过统计分析粒子的运动和行为,解释了宏观物质的性质。
5. 电磁学的建立19世纪中叶,詹姆斯·克拉克·麦克斯韦提出了电磁场理论,将电学和磁学统一在一起。
他的方程组描述了电磁波的传播和电磁感应现象,为电磁学的发展奠定了基础。
这一理论的重要性在于揭示了光是电磁波的一种形式。
6. 相对论和量子力学的革命20世纪初,爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时空的认识。
狭义相对论描述了高速运动物体的行为,广义相对论则描述了引力的本质。
与此同时,量子力学的发展也引起了物理学的革命。
马克斯·普朗克、阿尔伯特·爱因斯坦、尼尔斯·玻尔等物理学家提出了量子力学的基本原理,解释了微观领域的粒子行为。
物理学发展简史
一、古典物理学与近代物理学:1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为力学、热学、光学、电磁学等主要分支.2、近代物理学:廿世纪以后1900年卜朗克提出量子论后所发展的物理学称为近代物理学,以微观的角度研究物理,量子力学与相对论为近代物理的两大基石.一、古典物理学对人类生活的影响:1、力学:简单机械杠杆、轮轴、滑轮、斜面、螺旋、劈……2、光学:一反射原理:1平面镜:镜子……2凹面镜:手电筒、车灯、探照灯……3凸面镜:路口、商店监视镜……二折射原理:1凸透镜:放大镜、显微镜、相机……2凹透镜:眼镜、相机……3、热学:蒸汽机、内燃机、引擎、冰箱、冷暖气机……4、电学:一利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机……二利用电磁感应:发电机、变压器……三利用电磁波原理:无线通讯、雷达……二、近代物理学对人类生活的影响:1、半导体:一半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体如:硅、锗等和化合物半导体如:砷化镓等两种.二用途:1半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能.2半导体制成二极管具整流能力.3集成电路IC:A1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为集成电路.BIC之特性:体积小、效率高、耗电低、稳定性高、可大量生产.CIC之应用:计算机、手机、电视、计算器、手表等电子产品.4计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命.2、雷射:一原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁并放射同频率之光子,藉以将光加以增强.二特性:聚旋光性好、强度高、光束集中、频率单一单色光.三应用:1工业上:测量、切割、精密加工……2医学上:切割手术肿瘤、近视……3军事上:定位、导引……4生活、娱乐上:激光视盘、光纤通讯……3、光纤:一光纤:将高纯度石英熔融抽丝制成极细之圆柱体,柔软可挠曲,含内层纤芯及外层包层两层.二原理:纤芯之折射率大于包层,光讯号以特定角度射入纤芯之一端后,因连续之全反射而传递至另一端.三特性:1通讯容量大频宽较大,约为传统铜线之10倍以上.2重量轻、价格便宜.3传输过程中耗能低,利于长程传输.4不受干扰,保密性佳.四应用:通讯.4、核能发电:一核能:较大原子核发生分裂核裂变,如:核弹、核电厂内部或较小原子核发生融合核聚变,如:氢弹、太阳内部时,因生成物质量减少而转变成能量,此能量称为核能.二原理:质量与能量之转换遵守爱因斯坦狭义相对论中之「质能互换公式」:2E mc=.三过程:利用铀235在可控制的情形下进行核分裂反应,产生之核能转变成热能使水变成水蒸气后,推动发电机产生电能,核能⇒热能⇒动能⇒电能.5、超导体:一超导体:1908年翁内斯发现部份物质于某特定温度临界温度T以下,c其电阻完全消失,此时此物称为超导体.二特性:超导体具有「零电阻」及「完全反磁性」之特性.三高温超导体:1987年朱经武、吴茂昆发现钇钡铜氧化物之临界温度约为92K,高于液态氮之沸点77K,称为「高温超导体」.四应用:超强力磁铁、磁浮列车.一、物理量:1、定义:物理学上所使用的量.2、分类:一依有无方向性而分:1向量:兼具大小及方向性者,如:速度、力……2纯量:仅具大小无方向性者,如:体积、时间、功……二依定义方式而分:1基本量:由基本概念定义而出之物理量,共有时间、长度、质量、电流、温度、发光强度光度、物质的量物量七种.2导出量:由基本量所定义出之物理量,如:体积、面积、速度等. 3物理学力学上最常用的三个基本量:时间、长度、质量.二、测量:1、定义:将待测物理量与一标准量做比较的过程.2、结果:⎧⎧⎫⎪⎨⎬⎨⎩⎭⎪⎩準確值 數值有效數字測量結果一位估計值單位 3、科学记号:将一数字化为n a 10(1a 10)⨯≤<之形式,称为科学记号.4、数量级:一数化为科学记号后一若a 3.16≥≈,则其数量级为n 110+ 二若a 3.16<≈,则其数量级为n 10三、单位:1、定义:物理量之比较标准.2、条件:单位须具「恒常性」及「方便性」.3、SI 单位:国际度量衡局选定七个基本量之单位基本单位作为单位系统之基础,简称SI 单位,亦称为公制单位.45、辅助前缀:一意义:置于单位前方,用以表示极大或极小物理量之符号.四、物理学三大基本量之测量及单位:1、时间之测量及单位:一秒之定义:11967年前:A定义:以太阳日为标准.地球上任一点连续2次对正太阳之时间间隔称为太阳日,一年内太阳日之平均值称为平均太阳日,再将一平均太阳日分为24小时,1小时分为60分,1分分为60秒,故1秒1=平均太阳日.86400B缺点:a平均太阳日逐年改变.b使用不便.21967年后:原子间之振动具良好之恒常性,故国际度量衡局于1967年会议中,选定了以铯原子之某一固定振动70次的时间定义为1秒,此标准沿用至今.二单摆之等时性:1当单摆之摆角不大摆角<︒时,其周期T25=只与摆长有关.g2周期T2=秒之单摆称为秒摆,其摆长1m≈三半衰期半生期τ:1定义:放射性物质衰变数量达原来总数之一半即剩下一半尚未衰变所需的时间,称为半衰期或半生期.2公式:设半衰期为τ之某放射性物质原数量为0N ,经过时间t 后,剩下数量为N,则:τ=t 210)(N N 3应用:利用物体所含C 14之浓度可鉴定其年代.2、长度之测量及单位: 一公尺之定义: 118世纪:以北极经巴黎至赤道的子午线长之一千万分之一为1公尺,并以此标准制作了一标准尺铂铱合金棒.21889年后:因标准尺长之一千万倍不等于子午线长,遂改以标准尺为1公尺之标准,其缺点为易受环境影响.31961年:国际间同意将公尺之标准改订为氪的同位素所发出某一特定光的波长的倍.41983年:国际度量衡会议决议将光在真空中8分之一秒所行之距离定义为1公尺.二常用特殊长度单位:1光年.:光在一年中所行之距离159.4610m ≈⨯.2天文单位.:地球绕日公转轨道之平均半径111.4910m ≈⨯500光秒 3埃oA :o101A 10m -≈,常用于表示原子之大小.3、质量之测量及单位: 一公斤之定义: 11889年前:A 定义:定义4C ︒、1公升之纯水其质量为1公斤.B 缺点:a 纯水取得不易.b 易受环境温度影响.21889年后:国际度量衡会议决议采用铂铱合金制之「公斤原器」为1公斤之标准.4五、密度ρ之测量:1、密度之定义:单位体积中所含的质量.2、公式:M()V=ρ=質量密度體積 3、质量可由天平测得.4、形状规则之物体如:正立方体、长方体、圆柱体等体积可由边长测量求出,形状不规则之物体其体积则可用「排水法」求出.5、单位: 一SI 制:3kg m二常用:3gcm 三换算:33g kg 11000cm m =。
物理学的发展历程
物理学的发展历程物理学是科学中的一个重要分支,研究物质和能量相互作用的规律和现象。
它的发展历程可以追溯到古代,而现代物理学的形成是在西方科学革命和实验方法的推动下逐渐发展起来的。
以下是物理学发展的关键阶段和里程碑事件的概述。
古代物理学(公元前3000年-公元500年)物理学的早期发展与古代文明的出现和进展密切相关。
古代人类对于物体的运动和自然现象有基本的认知,并形成了一些自然哲学的观点。
公元前6世纪的古希腊是物理学的发源地之一、居住在此地的哲学家们开始系统地研究自然现象,并尝试从理性的角度解释它们。
毕达哥拉斯学派提出了宇宙的数学结构观点,认为宇宙是由数学规律组成的。
而原子学派则认为物质由不可分割的微小粒子组成。
另一位古代物理学家亚历山大的亚里士多德,则提出了自己的物理学理论。
亚里士多德认为世界是由四个基本元素(土、火、水和空气)组成的,并且物体的运动需要外力来维持。
古代物理学虽然有一些有价值的理论和观点,但它们大多是从宇宙观和哲学出发,缺乏实验验证和定量研究。
中世纪和文艺复兴时期(公元500年-1700年)中世纪的物理学发展相对停滞,主要受到宗教教义的限制。
然而文艺复兴时期(14世纪至17世纪)的到来为科学的发展提供了条件。
尼古拉斯·哥白尼在16世纪提出了地心说的反对理论,他认为地球是绕太阳旋转的。
这个观点对物理学和天文学都产生了重要影响。
17世纪的启蒙运动时期是物理学的重要发展阶段。
伽利略·伽利莱通过实验和观察,提出了物体运动的定律。
他也研究了在真空中下落物体的规律,并进行了大量实验验证。
而伊萨克·牛顿的《自然哲学的数学原理》(也称《牛顿定律》)则被认为是现代物理学的奠基之作。
牛顿提出了质量和力的概念,并建立了力学的数学理论。
他的三大运动定律对于描述物体运动的规律至今仍然适用。
牛顿的工作为实验方法和定量研究的推动铺平了道路,从而开启了现代物理学的发展时代。
19世纪的科学革命19世纪是科学研究的极为重要的一个时期,许多物理学原理和理论被发现和建立。
物理学发展简史
物理学发展简史引言概述:物理学是自然科学的一个重要分支,研究物质的性质、运动和相互作用规律。
本文将从物理学的起源开始,逐步介绍物理学的发展历程,包括古代物理学、经典物理学、现代物理学以及当代物理学的发展。
一、古代物理学1.1 古希腊物理学的兴起古希腊哲学家们开始对自然现象进行观察和思考,提出了一些关于宇宙和自然的理论。
例如,毕达哥拉斯学派认为世界是由数字和几何形状构成的,而柏拉图则提出了“理念”和“物质”之间的关系。
1.2 亚里士多德的自然哲学亚里士多德对物质的性质和运动进行了深入研究,提出了“四元素”(土、水、火、气)的理论,并认为天体运动是由“天体之神”驱动的。
他的理论在中世纪成为主流观点。
1.3 阿拉伯物理学的传承阿拉伯学者在古希腊物理学的基础上进行了进一步的研究和发展,尤其是在光学和力学方面取得了重要成果。
他们的工作为欧洲文艺复兴时期的科学发展奠定了基础。
二、经典物理学2.1 牛顿力学的建立伽利略和牛顿的工作使得力学成为物理学的重要分支。
牛顿三大定律和万有引力定律为物理学提供了统一的理论框架,解释了物体的运动和天体的运动规律。
2.2 热学的发展热学的发展始于卡尔文和卡诺等科学家的研究,随后由卡尔·弗里德里希·高斯和鲁道夫·克劳修斯等人进一步完善。
他们提出了热力学定律和热力学循环,为工业革命的进展做出了重要贡献。
2.3 电磁学的兴起奥斯特和法拉第等科学家的研究奠定了电磁学的基础,而麦克斯韦的电磁场理论进一步推动了电磁学的发展。
电磁学的成就包括电磁波的发现和电磁感应定律的提出。
三、现代物理学3.1 相对论的提出爱因斯坦的狭义相对论和广义相对论彻底改变了我们对时空和引力的认识。
狭义相对论解释了高速运动物体的行为,广义相对论则描述了引力的本质。
3.2 量子力学的建立普朗克和波尔等科学家的研究揭示了微观世界的奇妙规律,量子力学诞生。
量子力学描述了微观粒子的行为,其基本原理包括波粒二象性、不确定性原理等。
物理学发展简史
物理学发展简史物理学作为一门自然科学,研究物质、能量以及它们之间相互作用的规律和现象。
它的发展可以追溯到古代,随着人类对自然界的认识不断深入,物理学也在不断演变和发展。
本文将按照时间顺序,简要介绍物理学的发展历程。
1. 古代物理学的起源古代物理学的起源可以追溯到古埃及和古希腊时期。
古埃及人通过观察天象,研究光的传播和反射现象,提出了光的直线传播理论。
古希腊哲学家亚里士多德提出了四个元素理论,认为宇宙是由地、水、火和空气构成的。
2. 中世纪的物理学中世纪的物理学主要受到宗教和哲学的影响。
在这个时期,人们对自然界的研究相对较少,更多的关注于宗教信仰和神学问题。
然而,一些学者如托勒密和阿尔哈齐就天文学和光学等领域做出了一些重要的贡献。
3. 文艺复兴时期的物理学文艺复兴时期,人们开始重新研究自然界,物理学逐渐成为一门独立的学科。
伽利略·伽利莱通过实验和观察,提出了物体自由下落的定律,并运用望远镜观察了天体。
他的研究为现代物理学的发展奠定了基础。
4. 牛顿力学的诞生17世纪末,英国科学家艾萨克·牛顿提出了经典力学的三大定律,即惯性定律、动力学定律和作用-反作用定律。
牛顿的力学理论解释了物体的运动和相互作用,并被广泛应用于天体力学、机械工程等领域。
5. 电磁学的发展19世纪初,丹麦物理学家奥斯特·安普尔和法国物理学家安培分别发现了电流产生磁场和磁场产生电流的现象,奠定了电磁学的基础。
随后,英国物理学家迈克尔·法拉第提出了电磁感应定律,进一步推动了电磁学的发展。
而詹姆斯·克拉克·麦克斯韦通过数学模型将电磁学理论完善,并预言了电磁波的存在。
6. 相对论的提出20世纪初,德国物理学家阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论。
狭义相对论改变了人们对时间和空间的观念,广义相对论则提出了引力是由物体弯曲时产生的现象。
爱因斯坦的相对论理论对于解释宇宙的结构和运动具有重要意义。
物理学发展简史
物理学发展简史物理学是自然科学的一门重要学科,研究物质的本质、物质的运动规律以及物质与能量之间的相互转化关系。
下面将为您介绍物理学的发展简史。
1. 古代物理学的起源物理学的起源可以追溯到古代文明时期。
古希腊的哲学家、数学家、物理学家亚里士多德被认为是古代物理学的奠基人之一。
他提出了关于自然界的观察和理论,并将物质分为四个元素:地、水、火、气。
这种观点在欧洲向来流传到中世纪。
2. 古代物理学的发展古代埃及、巴比伦、印度和中国等文明也都有自己的物理学发展。
例如,中国古代的《易经》中包含了对自然界的观察和理论,探讨了宇宙的起源和运行规律。
3. 文艺复兴时期的物理学发展文艺复兴时期,物理学开始迈入现代化的阶段。
伽利略·伽利莱是这一时期最重要的物理学家之一。
他进行了大量的实验和观察,提出了“等时落体”和“斜面上滚动物体”等重要的物理学定律。
伽利略也是现代科学方法的倡导者,他主张通过实验和观察来验证理论。
4. 牛顿力学的建立17世纪末,伊萨克·牛顿提出了经典力学的三大定律,即“牛顿运动定律”,并通过这些定律解释了行星运动、物体的运动等现象。
牛顿力学的建立标志着物理学迈入了一个新的时代,对后来的物理学发展产生了深远的影响。
5. 电磁学的崛起19世纪初,电磁学开始崭露头角。
迈克尔·法拉第和詹姆斯·克拉克·麦克斯韦等科学家通过实验和理论研究,建立了电磁场理论和电磁波理论,推动了电磁学的发展。
麦克斯韦的方程组成为了电磁学的基石,对后来的电磁学研究产生了重要影响。
6. 相对论的提出20世纪初,阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时空观念的认识。
狭义相对论解释了高速运动物体的运动规律,广义相对论则描述了引力的本质,对宇宙学和黑洞等领域的研究产生了重要影响。
7. 量子力学的诞生20世纪初,量子力学的诞生标志着物理学的又一次革命。
马克斯·普朗克、阿尔伯特·爱因斯坦、尼尔斯·玻尔等科学家通过对辐射现象的研究,提出了量子理论,解释了微观世界的行为规律。
物理学的历史与发展
物理学的历史与发展物理学是自然科学的一个重要分支,研究物质的性质、运动和相互作用规律,是我们理解世界的基础。
下面我将为大家介绍物理学的历史和发展。
一、早期物理学的发展物理学的起源可以追溯到古代的希腊时期。
古希腊哲学家如泰勒斯、安纳克西曼德和毕达哥拉斯等人开始探索自然界的真相。
毕达哥拉斯提出了数学与自然之间的联系,并发现了音乐和数学之间的关系。
这一时期的物理学主要集中在对自然界现象的观察、实验和推理。
进入中世纪,阿拉伯学者的贡献对物理学的发展起到了推动作用。
他们翻译和传播了古希腊的著作,使这些知识在欧洲得以传播。
此外,他们还进行了一些探索,如阿拉伯数学家阿尔哈齐进行了对浮力和光学的研究。
随着文艺复兴的到来,物理学的研究得到了进一步的推动。
伽利略·伽利莱是物理学史上的重要人物之一,他通过实验和观察,建立了运动规律和测量的方法,为经典物理学奠定了基础。
伽利莱的研究为我们认识运动和力的基本规律提供了重要的线索。
二、经典物理学时期伽利略的工作为牛顿的发现铺平了道路。
伊萨克·牛顿通过对物体运动的研究,提出了万有引力定律和三大运动定律,这些定律解释了地球和天体的运动。
牛顿的工作极大地推动了物理学的发展,形成了经典力学的基础。
在18世纪,物理学的研究领域不断扩展。
拉普拉斯提出了著名的拉普拉斯行星形成假说,开辟了宇宙学研究的新领域。
欧姆定律的发现推动了电学的发展,研究者们开始关注电流、电磁场等现象。
Maxwell的电磁学理论成果将电磁学发展到了一个新的高度。
他的方程组统一了电磁学的各个方面,提出了电磁波的概念,为后来无线电通信的发展起到了重要作用。
此外,克劳修斯和卡尔·费尔迪南·韦尔兹尔等研究者们的热力学理论也为物理学领域的发展带来了重要贡献。
三、现代物理学的发展20世纪初,物理学的研究领域发生了革命性的变化。
爱因斯坦的相对论理论在理解光的行为和运动的基础上取得了重要突破。
物理学发展简史
物理学发展简史物理学是自然科学的一个重要分支,研究物质的本质、性质和运动规律。
它的发展与人类认识世界的进步息息相关。
本文将为您介绍物理学的发展历程,从古代到现代,带您回顾物理学的发展简史。
1. 古代物理学的起源古代物理学的起源可以追溯到古希腊时期。
古希腊哲学家提出了一些关于自然界的基本观点和理论。
例如,希腊自然哲学家泰勒斯认为水是构成一切物质的基本元素。
而后来的众多哲学家和数学家,如毕达哥拉斯、亚里士多德等,也对物质的本质和运动规律进行了探索和研究。
2. 文艺复兴时期的突破文艺复兴时期,欧洲浮现了一批杰出的科学家,他们对物理学的发展做出了重要贡献。
例如,伽利略·伽利莱通过实验和观察,提出了物体自由下落的定律,建立了近代物理学的基石。
同时,伽利略还研究了摆钟的运动规律,奠定了力学的基础。
3. 牛顿力学的革命17世纪末,英国科学家艾萨克·牛顿提出了经典力学的三大定律,并通过万有引力定律解释了行星运动和天体力学现象。
牛顿的力学体系奠定了物理学的基础,成为人类认识自然界的重要里程碑。
4. 热学与热力学的发展18世纪,热学和热力学的发展成为物理学的重要分支。
约瑟夫·布莱兹·普吕斯提出了热力学第一定律,即能量守恒定律。
同时,卡尔·弗里德里希·高斯和拉普拉斯等科学家也做出了重要贡献,推动了热力学的发展。
5. 电磁学的突破19世纪初,电磁学的发展引起了科学界的广泛关注。
迈克尔·法拉第提出了电磁感应定律,詹姆斯·克拉克·麦克斯韦通过数学方程组统一了电磁学的基本定律,形成为了麦克斯韦方程组。
这一理论的建立对电磁波的存在提供了理论依据,为电磁学的发展打下了坚实的基础。
6. 相对论与量子力学的革命20世纪初,阿尔伯特·爱因斯坦提出了狭义相对论和广义相对论,彻底改变了人们对时间、空间和引力的认识。
与此同时,量子力学的发展也引起了科学界的革命。
物理学发展简史
物理学发展简史物理学是自古以来人类对自然界的探索和研究的一门学科。
它研究物质的性质、运动规律以及与能量的相互转化等现象。
本文将为您介绍物理学的发展历程,从古代的哲学思考到现代科学的高度发展。
1. 古代物理学古代物理学的起源可以追溯到古希腊时期。
古希腊哲学家们对自然界的现象进行了深入的思考和探索。
其中,柏拉图和亚里士多德是古代物理学的重要代表。
柏拉图认为世界是由一种称为"理念"的永恒不变的实体构成的,物质世界只是这种理念的投影。
他的理论对后来的物理学发展产生了深远的影响。
亚里士多德则提出了一种关于物质的四元素理论,即地、水、火、气。
他认为这四个元素的不同组合形成了世界上的一切物质。
2. 古典物理学古典物理学是指从17世纪到19世纪初的物理学发展时期。
在这个阶段,一些重要的物理学原理和定律被发现和建立。
伽利略·伽利雷是古典物理学的奠基人之一。
他通过实验研究物体的运动规律,提出了著名的等时落体实验,并得出了物体自由落体的加速度是恒定的结论。
艾萨克·牛顿的力学定律是古典物理学的另一个里程碑。
他在1687年出版了《自然哲学的数学原理》,提出了质点力学、牛顿定律以及引力定律等重要理论。
这些定律成为了后来科学研究的基础。
3. 近代物理学近代物理学是指从19世纪中叶到20世纪初的物理学发展时期。
在这个阶段,一系列重要的物理学理论被提出和发展。
詹姆斯·克拉克·麦克斯韦的电磁理论是近代物理学的重要里程碑。
他在19世纪60年代提出了电磁场的理论,将电磁现象统一起来,并预言了电磁波的存在。
阿尔伯特·爱因斯坦的相对论是近代物理学的另一个重要突破。
他在1905年提出了狭义相对论,改变了人们对时间和空间的观念。
随后,他又在1915年提出了广义相对论,建立了引力的几何理论。
4. 现代物理学现代物理学是指20世纪以来物理学的发展阶段。
在这个阶段,量子力学和粒子物理学等领域取得了重大突破。
物理学发展简史
物理学发展简史物理学是自然科学的一门重要学科,研究物质、能量以及它们之间的相互关系和规律。
本文将为您介绍物理学的发展历程,从古代到现代的重要里程碑和突破。
1. 古代物理学的起源古代物理学起源于人类对自然界的观察和实验。
公元前6世纪的古希腊,出现了一些重要的物理学思想家,如泰勒斯和毕达哥拉斯。
泰勒斯认为万物皆由水构成,而毕达哥拉斯则提出了宇宙是由数学规律支配的观点。
2. 古典物理学时期17世纪至19世纪是古典物理学的时期,这一时期的重要突破包括:- 牛顿的力学:牛顿提出了经典力学的三大定律,解释了物体的运动和力的作用。
他的《自然哲学的数学原理》被认为是物理学的里程碑之作。
- 热力学的发展:卡诺和卢瓦西耶等科学家对热力学进行了重要的研究,提出了热力学第一和第二定律。
- 电磁学的兴起:法拉第和麦克斯韦等科学家对电磁现象进行了研究,提出了电磁场理论和麦克斯韦方程组。
3. 20世纪的物理学革命20世纪是物理学发展的重要时期,出现了一系列的革命性理论和实验发现,包括:- 相对论的提出:爱因斯坦的狭义相对论和广义相对论颠覆了牛顿力学的观念,提出了时间和空间的相对性以及引力的几何解释。
- 量子力学的建立:普朗克和玻尔等科学家提出了量子理论,解释了微观世界的行为和粒子的波粒二象性。
- 核物理学的突破:居里夫人和其他科学家的研究发现了放射性现象和核裂变,开创了核物理学的新时代。
- 粒子物理学的发展:通过加速器实验和探测器技术的进步,科学家们发现了更多的基本粒子,如夸克和轻子,揭示了物质的基本构成。
4. 当代物理学的前沿当代物理学依然在不断发展,以下是一些前沿领域的研究方向:- 弦理论:弦理论是一种试图统一量子力学和引力理论的理论,研究弦的振动和超弦的存在。
- 宇宙学:宇宙学研究宇宙的起源、演化以及宇宙学常数等问题,探索宇宙的奥秘。
- 凝聚态物理学:凝聚态物理学研究固体和液体等凝聚态物质的性质和行为,如超导和量子材料等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理学发展简史专业:物流工程111学生:吴建平学号:2011216031老师:代群摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。
物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。
关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展引言物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。
一古代物理学时期古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。
物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。
人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。
因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。
这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。
在长达近八个世纪的时间里,物理学没有什么大的进展。
古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。
因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。
直到文艺复兴时期,这种状态才得以改变。
文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。
使唯物主义和辩证法思想重新活跃起来。
科学复兴导致来,这一时期,力学、数学、天文学、化学得到了迅速发展。
二近代物理学时期近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。
近代物理学是从天文学的突破开始的。
早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。
公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。
根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。
这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。
公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。
16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。
开普勒的理论为牛顿经典力学的建立提供了重要基础。
从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。
近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。
他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。
他提出惯性原理,驳斥了亚里士多德外力是维持物体运动的说法,为惯性定律的科学逐渐从哲学中分裂出建立奠定了基础。
伽利略的发现以及他所用的科学推理方法是人类思想史上最伟大的成就之一,而且标志着物理学真正的开端。
16世纪,牛顿总结前人的研究成果,系统的提出了力学三大运动定律,完成了经典力学的大一统。
16世纪后期创立万有引力定律,树立起了物理学发展史上一座伟大的里程碑。
之后两个世纪,是电学的大发展时期,法拉第用实验的方法,完成了电与磁的相互转化,并创造性地提出了场的概念。
19世纪,麦克斯韦在法拉第研究的基础上,凭借其高超的数学功底,创立了了电磁场方程组,在数学形式上完成了电与磁的完美统一,完成了电磁学的大一统。
与此同时,热力学与光学也得到迅速发展,经典物理学逐渐趋于完善。
三现代物理学时期现代物理学时期,即从19世纪末至今,是现代物理学的诞生和取得革命性发展时期。
19世纪末,当力学、热力学、统计物理学和电动力学等取得一系列成就后,许多物理学家都认为物理学的大厦已经建成,后辈们只要做一些零碎的修补工作就行了。
然而,两朵乌云的出现,打破了物理学平静而晴朗的天空。
第一朵乌云是迈克尔孙-莫雷实验:在实验中没测到预期的“以太风”,即不存在一个绝对参考系,也就是说光速与光源运动无关,光速各向同性。
第二朵乌云是黑体辐射实验:用经典理论无法解释实验结果。
这两朵在平静天空出现的乌云最终导致了物理学的天翻地覆的变革。
20世纪初,爱因斯坦大胆地抛弃了传统观念,创造性地提出了狭义相对论,永久性地解决了光速不变的难题。
狭义相对论将物质、时间和空间紧密的联系在一起,揭示了三者之间的内在联系,提出了运动物质长度收缩,时间膨胀的观点,彻底颠覆了牛顿的绝对时空观,完成了人类历史上一次伟大的时空革命。
十年之后,爱因斯坦提出等效原理和广义协变原理的假设,并在此基础上创立了广义相对论,揭示了万有引力的本质,即物质的存在导致时空弯曲。
相对论的创立,为现代宇宙学的研究提供了强有力的武器。
物理学的第二朵乌云——黑体辐射难题,则是在普朗克,爱因斯坦,玻尔等一大批物理学家的努力下,最终导致了量子力学的产生与兴起。
普朗克引入了“能量子”的假设,标志着量子物理学的诞生,具有划时代的意义。
爱因斯坦,对于新生“量子婴儿”,表现出热情支持的态度。
并于1905年提出了“光量子”假设,把量子看成是辐射粒子,赋予量子的实在性,并成功地解释了光电效应实验,捍卫和发展了量子论。
随后玻尔在普朗克和爱因斯坦“量子化”概念和卢瑟福了“原子核核式结构”模型的影响下提出了氢原子的玻尔模型。
德布罗意把光的“波粒二象性”推广到了所有物质粒子,从而朝创造描写微观粒子运动的新的力学——量子力学迈进了革命性的一步。
他认为辐射与粒子应是对称的、平等的,辐射有波粒二象性,粒子同样应有波粒二象性,即对微粒也赋予它们波动性。
薛定谔则用波动方程完美解释了物质与波的内在联系,量子力学逐渐趋于完善。
量子力学与相对论力学的产生成为现代物理学发展的主要标志,其研究对象由低速到高速,由宏观到微观,深入到广垠的宇宙深处和物质结构的内部,对宏观世界的结构、运动规律和微观物质的运动规律的认识,产生了重大的变革。
其发展导致了整个物理学的巨大变革,奠定了现代物理学的基础。
随后的几十年即从1927年至今,是现代物理学的飞速发展阶段,这一期间产生了量子场论、原子核物理学、粒子物理学、半导体物理学、现代宇宙学、现代物理技术等分支学科,物理学日渐趋于成熟。
四发展经典物理学发展史古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。
从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。
到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。
伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。
他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。
但他对力和运动变化关系的分析仍是错误的。
全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。
牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。
史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。
与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。
法国在大革命的前后,人才辈出,以P.S.M.拉普拉斯为首的法国科学家(史称拉普拉斯学派)将牛顿的力学理论发扬光大,把偏微分方程运用于天体力学,求出了太阳系内三体和多体问题的近似解,初步探讨并解决了太阳系的起源和稳定性问题,使天体力学达到相当完善的境界。
在牛顿和拉普拉斯的太阳系内,主宰天体运动的已经不是造物主,而是万有引力,难怪拿破仑在听完拉普拉斯的太阳系介绍后就问:你把上帝放在什么地位?无神论者拉普拉斯则直率地回答:我不需要这个假设。
拉普拉斯学派还将力学规律广泛用于刚体、流体和固体,加上W.R.哈密顿、G.G.斯托克斯等的共同努力,完善了分析力学,把经典力学推进到更高阶段。
该学派还将各种物理现象如热、光、电、磁甚至化学作用都归于粒子间的吸引和排斥,例如用光子受物质的排斥解释反射,光微粒受物质的吸引解释折射和衍射,用光子具有不同的外形以解释偏振,以及用热质粒子相互排斥来解释热膨胀、蒸发等等,都一度取得成功,从而使机械的唯物世界观统治了数十年。
正当这学派声势煊赫、如日中天时,受到英国物理学家T.杨和这个学派的后院法兰西科学院及科学界的挑战,J.B.V.傅里叶从热传导方面,T.杨、D.F.J.阿拉戈、A.-J.菲涅耳从光学方面,特别是光的波动说和粒子说(见光的二象性)的论争在物理史上是一个重大的事件。
为了驳倒微粒说,年轻的土木工程师菲涅耳在阿拉戈的支持下,制成了多种后以他的姓命名的干涉和衍射设备,并将光波的干涉性引入惠更斯的波阵面在介质中传播的理论,形成惠更斯-菲涅耳原理,还大胆地提出光是横波的假设,并用以研究各种光的偏振及偏振光的干涉,他创造了“菲涅耳波带”法,完满地说明了球面波的衍射,并假设光是以太的机械横波解决了光在不同介质界面上反射、折射的强度和偏振问题,从而完成了经典的波动光学理论。
菲涅耳还提出地球自转使表面上的部分以太漂移的假设并给出曳引系数。
也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐测定光速在水中确比空气中为小,从而确定了波动说的胜利,史称这个实验为光的判决性实验。
此后,光的波动说及以太论统治了19世纪的后半世纪,著名物理学家如法拉第、麦克斯韦、开尔文等都对以太论坚信不疑。