《导数的概念》说课稿与教学说明
导数的概念 说课稿 教案 教学设计
变化率与导数一、教学目标: 知识与技能:1.使学生掌握函数()f x 在0x x =处的导数()/0fx 的几何意义就是函数的图像在0x x =处的切线的斜率.2.会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法. 过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,体会“以直代曲”的数学思想方法. 情感、态度与价值:让学生探索、发现数学知识和掌握数学知识的内在规律的过程中不,不断获得成功积累愉快的体验,不断增进学习数学的兴趣,同时还通过探索这一活动培养学生善于和他人合作的精神. 二、教学重点、难点重点:导数的几何意义及“数形结合,以直代曲”的思想方法 难点:发现、理解及应用导数的几何意义 三、教学模式与教法、学法教学模式:本课采用“探究——发现”教学模式.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线. “抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点. 学法:突出探究、发现与交流.四、教学过程T x yoPy=f(x)环节二:问题2:P 是一定点,当动点n P 沿着曲线y=f(x)趋近于点P 时,观察割线n PP 的变化趋势图.导数的几何意义:函数在0x x =处的导数就是切线PT 的斜率k ,即()()00/000()limlim x x f x x f x y k f x x x ∆→∆→+∆-∆===∆∆学生动手画图并小组交流思考结果.教师配合运用《几何画板》动态演示,动点n P 沿着曲线y=f(x)趋近于点P 时,割线变切线的过程。
学生尝试说出导数的几何意义及切线的定义。
引导学生分别由数和形两个方面认识导数的几何意义. 提高数形结合能力.环节三:(一)导函数:由函数f(x)在x=x0处求导数的过程可以看到,当时, 0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f(x)的导函数.记作:()f x '或y ', 即: 0()()()limx f x x f x f x y x∆→+∆-''==∆教师讲解,学生对导函数的概念类比函数的概念进行理解.与函数概念相类比,提出导函数概念.环节四:例1.如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h x x x =-++根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况.例2.(课本例3)如图它表示人体血管中药物浓度()c f t = (单位:/mg mL )随时间t (单位:min )变化的图象.根据图像,估计0.2,0.4,0.6,0.8t =时,血管中学生思考交流回答:曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况.1).当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线比较平坦, 2)1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近曲线下降,即函数在1t t =附近单调递减.例2. 解:血管中某一时刻药物浓度的瞬时变化率,就是药物浓度()f t 在此时刻的导数,从图像上看,它表示曲线()f t 在此点引导学生总结:(1)以直代曲思想:函数就某点附近的曲线可以用过该点的切线近似代替;(2)函数的单调性与其导函数的关系 ;五、小结。
导数的概念教案及说明
导数的概念教案及说明一、教学目标1. 让学生理解导数的定义和几何意义。
2. 掌握导数的计算方法。
3. 能够应用导数解决实际问题,如速度、加速度等。
二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 重点:导数的定义、几何意义和计算方法。
2. 难点:导数的计算方法和在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习、讨论相结合的方法。
2. 使用多媒体课件辅助教学。
五、教学过程1. 导入:回顾函数的斜率概念,引导学生思考函数在某一点的瞬时变化率。
2. 导数的定义:介绍导数的定义,强调极限的思想,引导学生理解导数的含义。
3. 导数的几何意义:通过图形演示,让学生直观地理解导数表示曲线在某一点的切线斜率。
4. 导数的计算方法:讲解导数的计算方法,包括基本导数公式、导数的四则运算等。
5. 应用导数解决实际问题:举例说明导数在实际问题中的应用,如速度、加速度等。
6. 练习:布置练习题,让学生巩固导数的概念和计算方法。
7. 总结:对本节课的内容进行总结,强调导数的重要性和应用价值。
8. 作业:布置作业,巩固所学内容。
六、教学反思在教学过程中,注意观察学生的反应,根据学生的实际情况调整教学节奏和难度。
针对学生的薄弱环节,加强讲解和练习。
七、教学评价通过课堂表现、作业和练习,评价学生对导数的理解和应用能力。
鼓励学生积极参与讨论,提高解决问题的能力。
八、课时安排本节课安排2课时,共计45分钟。
九、教学资源1. 多媒体课件2. 练习题3. 相关参考资料十、教学拓展1. 导数的进一步应用,如函数的单调性、极值等。
2. 导数在其他学科中的应用,如物理、化学等。
六、教学策略1. 案例分析:通过分析具体的函数实例,让学生理解导数的计算过程和应用场景。
2. 小组讨论:鼓励学生分组讨论导数问题,培养合作解决问题的能力。
3. 实际操作:让学生利用计算器求解导数,增强实践操作能力。
导数的概念说课稿(精选5篇)
导数的概念说课稿(精选5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!导数的概念说课稿(精选5篇)导数的概念说课稿(1)一、教材分析导数的概念是高中新教材人教A版选修2—2第一章1.1.2的内容,是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。
高中数学新教材人教A版《导数的概念》优秀说课稿模板
高中数学新教材人教A版《导数的概念》优秀说课稿模板一、教学目标•通过本节课的学习,使学生掌握导数的概念和计算方法。
•培养学生分析问题、解决问题的能力。
•培养学生的逻辑思维和推理能力。
二、教学重点•导数的概念的理解。
•导数的计算方法的掌握与运用。
三、教学内容1.导数的定义–导数的定义及其基本含义。
–导数的几何意义。
2.导数的计算–导数的计算公式。
–导数的运算法则。
–利用导数计算函数的极值。
四、教学过程1. 导入导出介绍本节课将学习的内容:《导数的概念》。
2. 导数的定义引导学生思考:如何理解导数的定义?导数的几何意义是什么?通过实际例子向学生解释导数的定义及其基本含义,并讲解导数的几何意义。
3. 导数的计算a. 导数的计算公式•引导学生回顾常见函数的导数计算公式,并通过练习题让学生熟悉常见函数的导数计算方法。
b. 导数的运算法则•介绍导数的四则运算法则,并通过例题让学生掌握导数的运算法则。
c. 利用导数计算函数的极值•引导学生了解导数与函数极值之间的关系,并通过例题让学生掌握如何利用导数计算函数的极值。
4. 练习与巩固通过一些练习题,让学生巩固所学的内容,并引导学生在解题过程中养成合理思维和推理的习惯。
5. 拓展延伸通过拓展延伸的问题,提高学生的思维拓展能力和创新思维能力,并培养学生独立解决问题的能力。
6. 总结与反思总结本节课所学内容,帮助学生巩固所学知识,并引导学生进行思考和反思。
五、教学资源•课本:高中数学教材人教A版。
六、教学评价与作业布置1. 教学评价•对学生掌握导数的概念和计算方法的程度进行评价。
•通过讲解中与学生的互动,对学生的思维能力和逻辑推理能力进行评价。
2. 作业布置布置若干道练习题作为课后作业,巩固所学知识。
七、板书设计•导数的定义•导数的计算公式•导数的运算法则•利用导数计算函数的极值八、教学反思通过此次课堂教学,我发现学生对导数的概念理解较为深刻,能熟练运用导数的计算方法。
导数的概念教案及说明
导数的概念教案及说明教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学内容:第一章:导数的定义1.1 引入导数的概念1.2 导数的定义及其几何意义1.3 导数的计算法则第二章:导数的计算2.1 基本导数公式2.2 导数的四则运算2.3 高阶导数第三章:导数的应用3.1 函数的单调性3.2 函数的极值3.3 曲线的切线与法线第四章:导数与实际问题4.1 运动物体的瞬时速度与加速度4.2 函数的优化问题4.3 导数在经济学中的应用第五章:导数的进一步应用5.1 曲线的凹凸性与拐点5.2 函数的单调区间与最大值、最小值5.3 函数的渐近线教学步骤:1. 引入导数的概念:通过生活中的例子,如物体运动的瞬时速度,引出导数的定义。
2. 讲解导数的定义及其几何意义:解释导数的定义,并通过图形演示导数的几何意义。
3. 导数的计算法则:讲解基本导数公式,引导学生掌握导数的计算方法。
4. 导数的应用:通过实例讲解函数的单调性、极值等概念,并引导学生运用导数解决实际问题。
5. 总结与拓展:总结本章内容,提出进一步的学习要求和思考题。
教学评价:1. 课堂讲解:评价教师的讲解是否清晰、生动,能否引导学生理解和掌握导数的概念和计算方法。
2. 课堂练习:评价学生是否能够正确计算导数,并应用导数解决实际问题。
3. 课后作业:评价学生是否能够独立完成作业,并对导数的应用有深入的理解。
教学资源:1. 教案、PPT等教学资料;2. 数学软件或计算器;3. 实际问题案例。
教学建议:1. 注重引导学生从实际问题中抽象出导数的概念,提高学生的学习兴趣和积极性;2. 通过图形演示导数的几何意义,帮助学生直观理解导数的概念;3. 鼓励学生进行课堂练习和课后作业,及时巩固所学知识;4. 结合实际问题,引导学生运用导数解决实际问题,提高学生的应用能力。
第六章:导数与函数的单调性6.1 单调增函数与单调减函数6.2 利用导数判断函数的单调性6.3 单调性在实际问题中的应用第七章:函数的极值与导数7.1 极值的概念7.2 利用导数求函数的极值7.3 极值在实际问题中的应用第八章:曲线的切线与法线8.1 切线方程的求法8.2 法线方程的求法8.3 切线与法线在实际问题中的应用第九章:导数与函数的图像9.1 凹凸性的定义与判断9.2 拐点的定义与判断9.3 利用导数分析函数的图像特点第十章:导数在经济、物理等领域的应用10.1 导数在经济学中的应用10.2 导数在物理学中的应用10.3 导数在其他领域的应用案例分析教学步骤:6.1-6.3:通过具体例子讲解单调增函数与单调减函数的概念,引导学生利用导数判断函数的单调性,并应用于实际问题。
《导数的概念》教案及说明
高中数学说课教案第三册(选修Ⅱ)说课课题:导数的概念(第三课时)教材:全日制普通高级中学教科书数学第三册(选修Ⅱ)(人民教育出版社)说课教师:一、【教材分析】1. 本节内容:《导数的概念》这一小节分“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”四个部分展开,大约需要4个课时.第一、二课时学习“曲线的切线”,“瞬时速度”,今天说的是第三课时的内容导数概念的形成.2. 导数在高中数学中的地位与作用:导数作为微积分的核心概念之一,在高中数学中具有相当重要的地位和作用.从横向看,导数处于一种特殊的地位.它是解决函数、不等式、数列、几何等多章节相关问题的重要工具,它以更高的观点和更简捷的方法简化中学数学的许多问题.从纵向看,导数是对函数知识的深化,对极限知识的发展,同时为以后研究导数的几何意义及应用打下必备的基础,具有承前启后的重要作用.二、【学情分析】1. 有利因素:学生已较好地掌握了函数极限的知识,又刚刚学过曲线的切线、瞬时速度,并积累了大量的关于函数变化率的经验;另外,我班学生思维比较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础.2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度.三、【目标分析】1. 教学目标(1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法.(2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.(3)情感、态度与价值观目标:①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度.②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观.2. 教学重、难点【确定依据】依据教学大纲的要求,结合本节内容和本班学生的实际重点:导数的定义和用定义求导数的方法.难点:对导数概念的理解.【难点突破】本课设计上从瞬时速度、切线的斜率两个具体模型出发,由特殊到一般、从具体到抽象利用类比归纳的思想学习导数概念;把新知的核心“可导”和“导数”两个问题结合起来,利用转化的思想与学生已有的极限知识相联系,将问题化归为考察一个关于自变量x∆的函数x xxfxF∆∆∆)()(0+=当0→x∆时极限是否存在以及极限是什么的问题.四、【教学法分析】1. 教法、学法:引导发现式教学法,类比探究式学习法教学中遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的“四主”原则.以恰当的问题为纽带,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念.引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.2. 教学手段:多媒体辅助教学【设计意图】通过多媒体弥补传统教学的不足,增强教学效果的直观性,帮助学生更好地理解无限逼近思想,揭示导数本质.五、【教学过程分析】【确定依据】为更好落实教学目标, 把数学知识的“学术形态”转化为数学课堂的“教学形态”,,为学生创设探究空间,让学生充分经历、体验数学知识再发现的过程,从中获取知识,发展思维,感受探索的乐趣.(一)教学环节小结整理形成系统展发展分层作业深化概念复习引入提出问题入新课引申拓展发展概念景导练习反馈巩固概念调节展类比探索形成概念共性(二)教学过程教学环节内容师生活动设计意图复习引入提出问题【回顾1】当运动员从10米高台跳水时,从腾空到进入水面的过程中,不同时刻的速度是不同的.假设t秒后运动员相对地面的高度为:105.69.4)(2++-=tttH,问在2秒时运动员的瞬时速度为多少?【回顾2】已知曲线C是函数105.69.4)(2++-=xxxf的图象,求曲线上点P),(yx处的切线斜率.【思考】对瞬时速度和和切线的斜率两个具体问题,解决方法上有什么共同之处?学生相互交流探讨瞬时速度和和切线的斜率两个具体问题,解决方法上有什么共同之处.针对新概念创设相应的学生熟悉的问题情景,让学生从概念的现实原型,体验、感受直观背景和概念间的关系,为学生主动建构新知提供自然的生长点.类比探索形成概念①归纳共性揭示本质研究对象求解问题求解方法本质思想具体例子物体运动规律H=h(t)物体在0t时的瞬时速度求时间增量t∆求位移增量h∆求平均速度th∆∆求瞬时速度=vtht∆∆∆0lim→平均速度的极限极限思想曲线y=f(x)曲线上P),(yx点处切线的斜率求横坐标增量x∆求纵坐标增量y∆求割线的斜率xy∆∆求切线的斜率limxykx∆→∆=∆割线斜率的极限极限思想一般情形函数y=f(x)函数在0xx=处的变化率??????【师生活动】将学生分成若干学习小组,以表格为载体为师生、生生互动搭起积极交流的探究平台.教师巡视,鼓励学生参与,对个别学有困难的小组加以指导.探究后,共同归纳得出:两个问题的解决在方法、本质、思想上都有相同之处.一个是“位移改变量与时间改变量之比”的极限,一个是“纵坐标改变量与横坐标改变量之比”的极限.如果舍去它们的具体含义,都可以概括为求平均变化率的极限.【设计意图】给学生创设探究的平台,分析瞬时速度和切线的斜率两个具体问题,讨论解决这两个问题的方法、本质、思想上有什么共同之处,引导学生分析、观察、归纳,打通揭示事物本质的思维通道.类比探索形成概念②类比迁移形成概念【思考】考虑求一般函数y=f(x) 在点x到x+x∆之间的平均变化率的极限问题,也就是怎样计算函数在点x处的变化率?引出导数定义后,回归问题情景,反思概念的“原型”解释“切线的斜率”、“物体的瞬时速度”的本质.引导学生利用求瞬时速度的方法和思想类比探究,猜想得出函数在点x处的变化率xyx∆∆∆0lim→=xxfxxfx∆∆∆)()(lim0-+→,并对猜想的合理性进行分析后,引出定义1:(函数在一点处可导及其导数)用具体到抽象,特殊到一般的思维方式,利用瞬时速度进行类比迁移,自然引出函数在一点处可导和导数的概念.由具体到抽象再回到具体的过程,感知上升到了理性,强化了对概念的理解.类比探索形成概念③剖析概念加深理解【探讨1】怎样判断函数在一点是否可导?判断函数)(xfy=在点x处是否可导判断极限xxfxxfx∆∆∆)()(lim0-+→是否存在【探讨2】导数是什么?描述角度本质文字语言瞬时变化率符号语言lim→x∆xy∆∆图形语言(切线斜率)组织学生阅读“导数”定义,抓住定义中的关键词“可导”与“导数”交流探讨,然后通过师生互动挖掘这些概念之间的深层含义.分析导数的本质后,同时简单提及导数产生的时代背景.引导学生以数学语言(文字语言、符号语言、图形语言)的理解、把握、运用为切入点去揭示概念的内涵与外延,提高学生数学阅读和自主学习的能力.让学生感受数学文化的熏陶,了解导数的文化价值、科学价值和应用价值.转化类 比 探 索 形 成 概 念【探讨3】求导数的方法是什么?【例1】求函数y=x 2在点1=x 处的导数.让学生类比瞬时速度的问题,根据导数定义归纳出求函数)(x f y =在点0x 处导数的方法步骤:(1)求函数的增量; (2)求平均变化率; (3)取极限,得导数.学生动手解答,老师强调符号语言的规范使用,对诸如2)(x ∆忘写括号的现象加以纠正.用定义法求导数是本课的重点之一.有了可导这个逻辑基础,导数成为可导的自然结果,求导数的方法则是对导数概念的理解与应用.让学生积极主动参与,进行有意义的建构,有利于重点知识的掌握.本题是教材上的一道例题.在学生建立起导数概念,明确用定义求导数的方法之后,进行强化训练, 渗透算法思想,加深对导数概念的理解,强化对重点知识的巩固.引 申 拓 展 发 展 概 念 利用例1继续设问,函数在1=x 处可导,那么-1=x ,2=x ,3=x 这些点也可导吗?从而引申拓展出定义2:(函数在开区间),(b a 内可导)【探讨1】函数在开区间内可导,那么对于每一个确定的值,都有唯一确定的导数值与之相对应,这样在开区间内存在一个映射吗?【探讨2】存在的这个映射是否构成一个新的函数呢?若能,新函数的定义域和对应法则分别是什么呢?师生互动,共同探讨归纳函数在开区间),(b a 的每一点可导,每一点就有确定的唯一的导数.这样在开区间),(b a 内构成一个特殊的映射,这里的映射是数集到数集的映射,就是函数,我们把这个新函数叫做)(x f 在开区间),(b a 内的导函数。
导数的概念教案及说明
导数的概念教案及说明一、教学目标1. 理解导数的定义和物理意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
二、教学内容1. 导数的定义:引入极限的概念,讲解导数的定义及求导法则;2. 导数的计算:讲解基本函数的导数公式,四则运算法则,复合函数的链式法则;3. 导数的应用:讲解导数在实际问题中的应用,如运动物体的瞬时速度、加速度,函数的单调性、极值等。
三、教学重点与难点1. 导数的定义及求导法则;2. 导数的计算方法;3. 导数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解导数的定义、求导法则及应用;2. 利用例题,演示导数的计算过程;3. 引导学生运用导数解决实际问题。
五、教学过程1. 引入极限的概念,讲解导数的定义:导数表示函数在某一点的瞬时变化率,通过极限的概念来理解导数;2. 讲解基本函数的导数公式,四则运算法则,复合函数的链式法则:引导学生掌握导数的计算方法;3. 利用例题,演示导数的计算过程:让学生通过例题,加深对导数计算方法的理解;4. 讲解导数在实际问题中的应用:如运动物体的瞬时速度、加速度,函数的单调性、极值等,培养学生运用导数解决实际问题的能力;5. 课堂练习:布置相关练习题,巩固所学知识。
教学评价:通过课堂讲解、例题演示、练习题等方式,评价学生对导数的概念、计算方法及应用的掌握程度。
六、教学拓展1. 导数的几何意义:讲解导数表示曲线在某一点的切线斜率,引导学生理解导数的几何interpretation;2. 导数与函数的单调性:讲解导数与函数单调性的关系,引导学生理解如何利用导数判断函数的单调性;3. 导数与函数的极值:讲解导数与函数极值的关系,引导学生如何利用导数求函数的极值。
七、教学案例分析1. 分析实际问题,引导学生运用导数求解:如物体运动的速度、加速度问题,函数的单调性问题等;2. 分析复杂函数的导数求解过程:引导学生理解并掌握复杂函数导数的求解方法。
导数的概念说课稿
开始:各位老师,大家下午好!今天我的说课题目是导数的概念首先,我对本节教材进行一些分析一、教材结构与内容简析本节内容在全书及章节的地位:导数所研究的是函数随自变量变化的快慢问题,它来源于许多实际问题中的变化率,俗称变化率问题,它描述了非匀速变化的现象在某瞬间的变化快慢.导数的概念是高等数学(工专)课本中第三章第一节的内容.在此之前,学生已学习了极限与连续,并且在物理学中学过平均速度与瞬时速度的求法,以及平均变化率,本节课阐述了平均变化率和瞬时变化率的关系以及切线斜率的求法,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础.教材从平均变化率入手,用形象直观的“逼近”方法定义导数,是通过下面两个问题引出导数的定义:问题一,曲线的切线问题;问题二,自由落体运动的瞬时速度问题 .数学思想方法分析:作为一名数学老师,既要传授给学生数学知识,又要传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:传授逼近的思想,从这个逼近思想而引出导数定义二、教学目标根据上述教材结构与内容分析,考虑到学生已有的认知水平,制定如下教学目标:1.知识与技能目标:知识与技能目标:通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数.2.过程与方法:(1)通过生活中的实例,培养学生观察分析、比较和归纳能力.(2)通过问题的探究,体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法.3.情态与价值:通过运动的观点体会到导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习的兴趣.三、教学重点、难点本着课程标准,我确立了如下的教学重点、难点:重点:导数概念的形成,导数的内涵的理解.通过问题一与问题二突出重点难点:在平均变化率的基础上去探求瞬时变化率,理解导数内涵,会运用导数的定义式求一些函数在某一点处的导数.通过讲例题、做练习突破难点下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:四、学法与教法(一)教法基于本节课的特点:从其他问题通过类比而总结出导数的定义,应着重采用师生互动、共同探索;教师引导、循序渐进的教学方法,引导学生发挥主观能动性,主动探索新知识.通过以下几点体现:(1)看(新课引入):提出问题、激发学生的求知欲.(2)想(理解导数的内涵):数型结合、动手计算、组织学生自主探索.(3)议(例题处理):从问题出发,层层设疑,在探索中得到知识.(4):练(变式练习):深化对导数内涵的理解,巩固新知.(二)学法(1)合作学习:引导学生分组讨论、合作交流,共同探讨问题.(2)自主学习:引导学生通过亲生经历、动口动脑、动手参与教学活动. (3)探究学习:引导学生发挥主观能动性,主动探索新知识.最后我来具体谈一谈这一堂课的教学设想:五、教学设想由两个问题引入:问题一:自由落体运动中瞬时速度问题问题二:曲线的切线问题1、由实例得出本课新的知识点:导数的定义导数的定义:2、讲解例题。
《导数的概念》说课稿
一、指导思想与理论依据本课内容是人教社A版普通高中课程标准实验教科书《数学》(选修2-2)第一章《导数及应用》1.1.2导数的概念(课本P4—P6).数学概念教学的核心价值是“凸现数学本质,强化问题教学,营造思维过程,实现育人价值”.本节课采用了探究式、发现式的教学方式,就是让学生观察、操作、比较有关的学习材料,自己去探索发现知识,获得概念、公式和原理(李伯黎、燕国材主编:《教育心理学》,华东师范大学出版社,1993年版,第319页).二、教学背景分析(一)授课内容分析自17世纪牛顿和莱布尼兹发明微积分之后,微积分得到了突飞猛进的发展,并广泛应用于物理学、天文学、经济学等其它学科和生产生活的各个领域,推动了科学技术的迅猛发展,揭开了人类事业发展的新篇章.导数作为微积分的核心概念,其地位举足轻重.中学数学教材把“导数及应用”单独作为一章,“导数的概念”是全章重点内容之一,这不仅源于导数自身的严谨结构,更重要的是,对导数的深入理解与熟练应用是一种高明而又复杂的数学思维.用导数处理函数的相关问题更具普遍性,更能获得理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量、无限逼近的极限思想,从而运用更高的数学工具和更为一般的方法解决或简化中学数学中的不少问题.为了使导数的概念更容易被理解、接受,新教材改进了旧教材的方法,依据高中学生的认知水平,从平均变化率入手,用直观形象的“无限逼近”方法定义导数,深入浅出的展示了导数概念的要领和实质.(二)学生情况分析通过对高一物理中平均速度、瞬时速度及前节课中平均变化率的学习,学生已经对变化率的概念有了初步的了解和和直观的认知,这些将对本课程(导数的概念)的学习起到重要的铺垫作用.此外,本班是高二年级理科实验班,学生思维活跃,学习积极性高,已经基本具备了对数学问题进行合作探究的意识与能力.(三)教学方式、学习方式与教学手段说明1.关于教学方式的选择为了充分调动学生学习的积极性,变被动学习为主动愉快的学习,本课程将采用“教师适时引导和学生自主探究发现相结合”的教学方式.课堂教学始终贯彻“教师、学生为主体,探究为主线,思维为核心”的教学思想,通过创设问题情景,使学生们都能充分地动手、动口、动脑,参与教学全过程;注重思考方法的渗透,以已知探求未知,激发学生的学习热情;注重抽象概念不同意义间的转换,从实际意义入手,阐述数值意义,揭示几何意义;深入挖掘具体知识中所蕴涵的数学思想方法,使学生在数学知识的广度和思维的深度上有所收获,逐步掌握数学研究的思考方式和方法.2.关于学习方式的指导丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念.通过“导数概念”的学习,使学生学习数学家研究数学的方法,掌握“以已知探求未知”的学习方式,培养自主探索、动手实践、合作交流的良好学习习惯.在本课程教学中,从“求高台跳水运动员在s时的瞬时速度”这个具体问题入手,t2引导和帮助学生动手计算、观察、分析、比较、归纳、发现规律,亲身经历数学研究过程,自然获得导数的概念—本节课的核心概念,实现从具体问题抽象为一般问题的目标;然后指导学生运用导数的概念解决实际问题,体现导数的工具作用和数学的应用价值.3.关于教学手段的选择现代信息技术的广泛应用正在对数学教学和数学学习产生深刻的影响,我们提倡信息技术与教学方式的适当结合,更好地揭示数学的本质,帮助学生正确地理解数学知识.鼓励学生用信息技术进行探索和发现,有利于学生的数学学习.本课程将运用计算机辅助教学.利用PowerPoint幻灯片,活跃课堂气氛,丰富教学内容,提高学习效率;利用flash课件的动态演示,展示数与形的优美结合,使信息技术真正为教学服务;学生相互合作,动手实践,利用计算器(还有同学用到了电脑),真正经历从发现、类比到创新的全过程.三、教学目标设计(一)关于教学目标的制订1.通过对高台跳水实例的分析,与学生共同体验由平均变化率到瞬时变化率的过渡,体会导数概念的实际背景.2.领会瞬时变化率的实质,形成导数概念,了解导数内涵.3.通过导数概念的形成过程,学习归纳、类比的推理方式;体验无限逼近、从特殊到一般、化归与转化的数学思想;提高广泛联系、抽象概括能力;培养学生正确认识量变与质变、运动与静止等对立统一观点,形成正确的数学观.(二)教学重点与难点的确定1.教学重点:导数定义的形成过程和导数的内涵.2.教学难点:对导数定义的理解.四、教学过程与教学资源设计教学基本流程:教学过程:五、学习效果评价设计本节课对学生学习效果及教师自身教学效果的评价,围绕教学目标的落实情况,以过程性评价为主,形成性评价为辅的原则进行.(一)过程性评价在课堂教学过程中,从学生的参与程度、概括能力、推理能力、学习兴趣、交流合作、情绪情感方面对学习进行评价.对出现问题的学生,教师善于发现其可取之处,耐心引导,对其问题细心分析,有助于培养他们勇于面对挫折、持之以恒的科学探索精神.当学生做的精彩、有创新时,教师及时地给予了充分的鼓励,从而进一步激发了学生创造的潜能和学习的兴趣.(二)阶段性评价通过作业完成情况对学生的阶段性学习成果进行评价.准备下节课用如下练习来检测学生对导数概念的掌握情况.根据学生的完成情况,采取相应的教学策略.六、教学设计的特点数学是由概念与命题等内容组成的知识体系,它是一门充满思维的学科,而概念又是这种思维的语言,因此概念教学是中学数学教学中至关重要的一项内容,是基础知识和基本技能教学的根基.正确理解概念是学好数学的基础,学好概念是学好数学重要的环节.结合新课程的理念和我所教的学生的实际情况,进行了这样的教学设计,与自己以往的教学设计及其他教学设计相比主要有以下两个特点:(一)设计理念1.体现数学来源于实践的认识论每一个概念的产生都有丰富的实际背景,舍弃这些背景,直接抛给学生一连串的概念是传统教学模式中司空见惯的做法,这种做法常常使学生感到茫然,失去了感受数学来源于生产实际的极好机会. 弗兰登塔尔认为,数学教育应从学生熟悉的现实生活开始. 根据这一观点,我引导学生从高台跳水这一实际问题出发进行研究,揭示数学来源于实践的真谛.通过师生共同活动,着力体现教师“导”、学生“学”及其教学过程中的“悟”三个子系统中多要素的和谐统一.2.遵循特殊到一般的认知规律本节课的设计,通过将实际问题数学化,从具体问题到抽象概念,很好地遵循了特殊到一般的认知规律,符合可接受性和可操作性原则,本能地把教学目标的落实融入到教学过程之中.通过演绎导数的形成、发展和应用过程,帮助学生主动建构概念.3.重在提高学生的实践能力与创新意识贯彻新课程精神,根据学生实际情况和教师的自身特点,采用有针对性的教学策略,因材施教.教学中,通过引导学生动手实践、自主探索、合作交流,培养其良好的学习习惯,提高其实践能力与创新意识,树立终身学习的理念.时的动能.开始运动后第体.求物表示,并且物体的动能)的关系可用函数(单位:)与时间(单位:运动距离的物体作直线运动,设练习:一个质量s mv E t t s s tm s kg m k 5211)(322=+==(二)运用“支架式过程法”,教学有实效.所谓“支架式过程法”,即:=a学习,也就是:⨯b:a教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习任务转移给学生.:b学生接受任务,探究问题,完成任务.a⨯以问题为核心,通过对知识的发生、发展和运用过程的演绎、揭示和探究,:b组织和推动教学.在导数概念教学中教师引导学生自主探究得出导数概念,实际上让学生体验了导数概念的发现过程,从而加深学生对导数概念的认识、理解与应用.。
导数的概念说课稿
《导数的概念》教学设计【课题】导数的概念(第十五章第一节)——滁州三中:王瑞一、教材分析:导数是微积分的重要部分,是从生产技术和自然科学的需要中产生的;同时,又促进了生产技术和自然科学的发展。
它不但在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。
二、学情分析:1、现有知识储备:(1)物体运动的速度;(2)电流强度;(3)函数的极限等。
2、现有能力特征:具有一定归纳、概括、类比、抽象思维能力。
3、现有情感态度:对导数这一新鲜的概念具有强烈求知欲和渴望探究的积极情感。
三、本节课教学内容:共三部分。
一是物理学中的两个实例:非匀速直线运动物体的瞬时速度和非恒定电流的电流强度;二是导数的定义;三是根据导数的定义,求已知函数的导数。
用两个引例是为了引出导数的概念,加深对导数概念的理解。
四、教学目标1、知识与技能目标(1)通过实例的分析,理解变化率的概念,与已有概念建立联系;(2)通过导数概念的形成过程,了解导数概念的实际背景,体会导数的思想及内涵;(3)通过观察和动手实践培养学生的分析、比较和归纳的能力,并感悟到极限思想.2、过程与方法目标(1)通过问题的探究,体会逼近、类比、以已知求未知、从特殊到一般的数学思想方法;(2)通过问题的探究,培养学生的探究意识和探究方法.3、情感、态度与价值观目标(1)通过导数概念的学习,体验“有限和无限对立统一”的辩证观点,接受用运动变化的辩证唯物主义思想处理数学问题的方法;(2)通过了解导数产生的实际背景及现实意义,认识学习导数的必要性,从而激发学生学习导数的兴趣.五、教学重点:导数的概念及计算;.教学难点:导数概念的形成过程及导数概念的内涵理解。
重难点突破措施:1、创设情境:“二例”开题,丝丝入扣,层层探究,形成概念。
2、数形结合:通过直观、形象展示,突破重、难点。
3、分层提高:利用分层训练和分层作业达到因材施教的效果。
【依据】高职教育的培养目标,学生未来的发展要求。
导数的概念教案及说明
导数的概念教案及说明一、教学目标1. 理解导数的定义及物理意义;2. 掌握导数的计算方法;3. 能够运用导数解决实际问题。
二、教学内容1. 导数的定义;2. 导数的计算;3. 导数在实际问题中的应用。
三、教学重点与难点1. 导数的定义及其几何意义;2. 导数的计算方法;3. 导数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解导数的定义、计算方法及应用;2. 利用图形展示导数的几何意义;3. 通过例题演示导数的计算过程;4. 引导学生运用导数解决实际问题。
五、教学准备1. 教学课件;2. 练习题;3. 相关实际问题。
第一章:导数的定义1.1 引入导数的概念1.2 解释导数的几何意义1.3 导数的计算方法第二章:导数的计算2.1 基本导数公式2.2 导数的计算规则2.3 高阶导数第三章:导数在实际问题中的应用3.1 运动物体的瞬时速度和加速度3.2 函数的极值问题3.3 曲线的凹凸性和拐点第四章:导数的其他应用4.1 曲线的切线和法线4.2 函数的单调性4.3 函数的凸性第五章:练习与拓展5.1 导数计算的练习题5.2 实际问题的练习题5.3 拓展练习题六、教学过程6.1 导入:通过回顾函数图像,引导学生思考如何描述函数在某一点的瞬时变化率。
6.2 新课讲解:详细讲解导数的定义,通过图形和实例直观展示导数的几何意义。
6.3 例题演示:挑选典型例题,展示导数的计算过程,引导学生理解和掌握计算方法。
6.4 课堂练习:布置练习题,让学生独立完成,巩固所学知识。
七、导数的计算7.1 基本导数公式:讲解常见函数的导数公式,如幂函数、指数函数、对数函数等。
7.2 导数的计算规则:介绍导数的四则运算法则、复合函数的导数等。
7.3 高阶导数:讲解函数的二阶导数、三阶导数等高阶导数的概念及计算方法。
八、导数在实际问题中的应用8.1 运动物体的瞬时速度和加速度:结合物理知识,讲解导数在描述物体运动中的应用。
8.2 函数的极值问题:引导学生利用导数求解函数的极值,探讨极值在实际问题中的应用。
《导数的概念》说课稿
《导数的概念》说课稿一、教学目标本节课的主要教学目标是引导学生理解导数的概念,掌握导数的计算过程,培养学生的分析、推导和应用能力,为后续学习微积分知识奠定坚实的基础。
二、教学内容与步骤1. 导入新课首先回顾上一节课的内容,简要介绍微积分的发展历程及其在现实生活中的应用。
通过举例(如速度、加速度等问题),引出导数的概念,激发学生的学习兴趣。
2. 导数的概念(1)定义:通过具体函数(如线性函数、二次函数等)的实例,引出导数的定义。
让学生理解导数描述的是函数在某一点的局部变化率,同时介绍函数的瞬时变化率这一概念,为后续学习导数定义打下基础。
(2)导数的几何意义:讲解导数与函数切线斜率之间的关系,帮助学生直观地理解导数的几何意义。
(3)导数的代数意义:介绍导数在解决实际问题(如速度、加速度等)中的应用,让学生理解导数的实际意义。
同时介绍基本初等函数的导数公式,为后续学习做准备。
3. 导数的计算过程通过具体函数(如多项式函数、三角函数等)的实例,详细讲解导数的计算过程,包括求极限的方法和导数公式的应用。
同时强调计算过程中的注意事项和易错点。
4. 巩固练习布置几道典型例题,让学生动手计算,巩固所学知识。
教师在此过程中进行辅导和答疑,帮助学生解决遇到的问题。
5. 课堂小结与作业布置对本节课内容进行小结,强调重点和难点。
布置课后作业,包括基本习题和拓展题目,帮助学生巩固所学知识和提高解题能力。
同时要求学生预习下一节课的内容,为新课学习做好准备。
三、教学方法与手段本节课采用讲授法、演示法、练习法等多种教学方法相结合的手段进行教学。
通过实例引入新课,讲解导数的概念、几何意义和代数意义,引导学生理解导数的本质。
通过具体函数的实例,讲解导数的计算过程,培养学生的解题能力。
同时注重与学生的互动,鼓励学生提问和讨论,激发学生的学习兴趣和主动性。
利用多媒体教学设备辅助教学,提高教学效果。
四、教学评估与反馈在教学过程中,通过观察学生的课堂表现、作业完成情况以及课堂测试等方式,了解学生对导数的概念、计算过程以及应用等方面的掌握情况。
导数概念说课稿
导数概念说课稿《导数的概念》说课稿一、教材分析《高等数学》是高职院校面向各个专业,各个层次的学生开设的一门公共基础课程,是学习后继专业课的基础。
它对学生后继课程的学习以及抽象概括能力、逻辑思维能力、空间想象能力和自学能力以及分析问题、解决问题能力的培养都起着极其重要的作用。
《高等数学》主要由微分学和积分学两部分组成,而微分学又是积分学的基础。
“导数的概念”是高职高专“十二五”规划教材《高等数学》(西安电子科技大学出版社2012年第1版)第二章第一节的教学内容,包括两个引例、导数的概念、求导举例和函数可导与连续的关系。
考虑到铁道机车专业学生的实际情况,函数可导与连续的关系部分略去不讲。
导数的概念是学习微分学的基础,它为即将学习导数的运算、高阶导数、函数的微分等知识的奠定了基础,更是我们研究函数单调性、极值、最值和解决生活中优化等问题的有力工具,其地位不容忽视。
二、教学目标1、知识目标:通过实例的分析,理解导数的概念;利用导数概念推到求导公式。
2、技能目标:利用极限思想解决问题的能力;运用数学软件进行数学探究活动的能力。
3、情感目标:通过合作交流,让学生感受探索的乐趣和成功的喜悦,体会数学的理性和严谨;培养学生正确认识量变和质变,运动与静止等辩证唯物主义观点,形成正确的数学观。
三、教学重点与难点重点:了解导数概念的形成,理解导数的内涵。
难点:理解导数的思想,在教学中通过实例引入、多媒体演示、背景知识介绍等方式来突破难点。
四、教法学法分析1、教法分析学生在物理中已学过瞬时速度,对圆的切线割线已有了基本认识,因此,学生已经具备了一定的认知基础,于是,在教学设计中,我主要采用“教师适时引导和学生自主探究发现相结合”的教学方式。
课堂教学始终贯彻“以学生为主体,以教师为主导”的教学思想,通过创设问题情景,使学生们都能充分地参与到教学全过程;相互讨论、探究规律,通过师生互动、共同探索,形成概念,并学与致用。
2、学法分析本节课的教学对象是铁道机车专业学生,其特点是数学基础较好,逻辑思维好,动手能力强,学习态度积极。
高二《导数的概念》数学说课稿
高二《导数的概念》数学说课稿
为了帮助老师们能够更好地讲课,精心为大家搜集整理了《导数的概念》数学说课稿,希望对大家的数学教学有所帮助!
一、教材分析
导数的概念是高中新教材人教A 版选修2-2 第一章1.1.2 的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的逼近方法定义导数。
问题1 气球平均膨胀率--→瞬时膨胀率
问题2 高台跳水的平均速度--→瞬时速度
--→
根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点。
导数的概念说课稿
1、知识与技能:
通过大量的实例的分析,让学生经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。
2、过程与方法:
通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。
3、情感态度与价值观:
《导数的概念》说课稿
林金灿
一、教材分析
《导数的概念》是《普通高中课程标准实验教科书·数学选修2-2》(人教A版)第一章1.1.2的内容,是在学生学习了变化率的内容后,通过实例探究,从平均变化率过渡到瞬时变化率的过程,并抽象概括出导数的概念。它为即将学习的导数的几何意义、导数的计算、导数的应用等知识的奠定了基础,更是我们研究函数单调性、极值、最值和解决生活中优化等问题的有力工具。
然后教师运用多媒体展示,让学生更生动具体的体验了逼近的思想。
使学生通过理性的分析,发现规律,经历了自我探索和互相交流的过程,有利于提高学生的逻辑思维能力和自学能力。通过多媒体展示,能更有助于学生对逼近思想的理解
问题4:同学们已经知道了t=2时的瞬时速度的表示方法了,那么在某个时刻 的瞬时速度又如何表示呢?
学生不难发现,只需将 代替2,可类比得到
用这种方式给出某一时刻的瞬时速度公式,避免了因极限思想难以理解造成的困难,一切显得顺理成章,有助于学生的理解。同时,这种从特殊到一般,用已知去发现未知的思考方法,有利于学生更进加深刻的理解导数的内涵。
问题5:如果将这两个变化率问题中的函数用 来表示,那么函数 在 处的瞬时变化率如何呢?
学生有了前面两个问题作铺垫,容易得到 在 处的瞬时变化率可表示为: 即 在 处的导数,记作
(也可记为 )
将瞬时速度一般化,由具体的问题抽象为数学问题,引出导数定义。帮助学生完成了思维的飞跃;并借此机会介绍有导数在微积分,以及现实生活中的广泛应用,让学生在感受数学文化的熏陶同时,体会到学习导数的重要意义。
导数的概念说课稿
《导数的概念》说课稿(完成稿)(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--实验探究,让数学概念自然生长——《导数的概念》说课江苏省常州市第五中学张志勇一. 教学内容与内容解析1、教学内容:本节课的教学内容选自苏教版普通高中课程标准实验教科书数学选修2-2第一章第一节的《导数的概念》第2课时“瞬时变化率——导数”,导数的概念包括三部分教学内容,即平均变化率、瞬时变化率、导数,其中瞬时变化率包括曲线上一点处的切线和瞬时速度、瞬时加速度,本节课之前学生已完成平均变化率的学习.2、内容解析:导数是研究现代科学技术必不可少的工具,是进一步学习数学和其他自然科学的基础,在物理学、经济学等领域都有广泛的应用.对于中学阶段而言,导数是研究函数的有力工具,在求函数的单调性、极值、曲线的切线以及一些优化问题时有着广泛的应用,同时对研究几何、不等式起着重要作用.从而导数在函数研究中的应用应是整个章节的重点,但不能仅仅将导数作为一种规则和步骤来学习,导数的概念无疑是教学的起点也是关键,否则学生很难体会导数的思想及其内涵.事实上导数概念的建立基于“无限逼近”的过程,这与初等数学所涉及的思想方法有本质的不同.囿于学生的认知水平和可接受能力,教材中并没有引进极限概念(过多的极限知识可能会冲淡甚至干扰对导数本质的理解),而是从学生的生活经验出发,通过实例引导学生经历由平均变化率到瞬时变化率的过程,直至建立起导数的数学模型.3、教学设想:导数的本质在于从平均变化率到瞬时变化率的“无限逼近”,而无限逼近有三种方式:数值逼近、几何直观感知、解析式抽象;而达成学生极限思想形成之教学目标,需要以问题为背景,关键是设计活动让学生经历从平均变化率到瞬时变化率的过程.因此教学处理时,试图还原知识建构的完整过程,实现导数概念的“再创造”,其中数学探究环节采用数学实验的方式,用数值逼近法感知导数作为逼近值的存在性,用解析式抽象法从数学角度加以确认;模型解释环节则是教材中“曲线上一点处的切线”的流程再造(原来是作为导数知识的引入环节).二.目标设定及目标解析1、知识与技能目标:会从数值逼近、几何直观感知、解析式抽象三个角度认识导数的涵义,应用导数定义求简单函数在在某点处的导数,掌握求导数的基本步骤,初步学会求解简单函数在一点处的切线方程.2、过程与方法目标:经历从平均变化率到瞬时变化率的过程,感知“无限逼近”与“量变到质变”、“近似与精确”的哲学思想,在实验观察、归纳抽象的过程中建构导数概念,在解释应用与拓展的过程中领悟数学发现的完整过程.3、情感、态度、价值观目标:经历数学发现过程、感受数学研究方法,提升数学学习兴趣和信念;应用手持技术进行数学实验中改善数学学习方法,从向书本学习数学转向用技术研究数学.教学重点导数概念的建构及导数的解释应用.教学难点导数的几何解释及切线概念的形成.三.教学问题诊断分析本节课需要用到的知识储备包括平均变化率、直线的斜率、物理中物体运动的瞬时速度、解析几何中的切线等,而所要用到的归纳、概括、类比、抽象思维能力等也已具备,特别地实验班的学生均能熟练操作图形计算器,也多次经历过数学再创造的过程,对“问题情境—建立模型—解释应用与拓展”这样的学习程序并不陌生,这些都是开展本节课学习的基础.可能存在的问题:一是对学生而言,“无限逼近”的思想闻所未闻,需要精心设计活动帮助学生经历从平均变化率到瞬时变化率的过程;二是数值逼近的运算繁琐,不能采取简单告诉的方式而需应用技术来实现计算;三是概念建构很难一蹴而就,需要有丰富的实例作支持,于是在数学探究环节中就需要从数值计算走向解析式抽象,从而实现概念形成的“水到渠成”;四是导数概念的几何解释是从数走向形的基本保证,需要有几何直观作支持,需要创设资源支持“以直代曲”;五是尽管学生的图形计算器操作较熟练,但CAS系统还很陌生,在教学中需要有示范性讲解并提供即时帮助.四.教学支持条件分析导数知识再创造教学设想的达成,离不开教育技术的支持,本教学案例中利用HP Prime的表征优势,为学生提供如下支持平台:一是数值逼近计算平台,在电子表格中设置图2所示的情境,其中x Row∆=,()0.1^g x则在CAS中设置(如图1);JIEGUO g x=∆,而()二是几何直观解释平台,在几何学模块中,设置好图4所示的APP,学生在操作时可以改变Q点位置,观察割线斜率的变化,然后再与相应的瞬时变化率作比较;三是导数求值验证平台:如图5,导数运算对学生而言是含有字母的运算,过程中涉及因式分解问题,操作中可以让学生先进行纸笔运算,然后再作计算器验证.教学过程中前两个平台通过Connkit 课堂管理系统发送给学生,让他们进行自主操作、探索发现.后面一个平台用于教师演示,必要时还可开发GeoGebra 用于几何解释演示.五.教学流程设计1、问题情境问题一、气球膨胀率我们都吹过气球,回忆一下吹气球的过程可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢,能否从数学角度来描述这种现象呢?气球的体积为V ,半径为r ,则113334334V r r r ππ⎛⎫=⇒= ⎪⎝⎭ 问题二、高台跳水在高台跳水运动中,运动员的助跑、起跳、空中和入水动作都是评判的依据,科学训练时需要测量每一瞬间的运算速度.如果假设某次跳水中,运动员相对于水面的高度h 与起跳后的时间t 存 在 函 数 关 系2()4,9 6.510h t t t =-++,那么你是否能描述该运动员每一瞬间的运动状态?设计意图:通过实例来体会平均变化率的应用局限性,使学生有机会经历由平均变化率过渡到瞬时变化率的过程.2、数学探究教师讲授:问题1、如何对瞬时变化率进行数学刻画?当0x ∆→时,平均变化率21112121()()()()(=f x f x f x x f x x x x x x x-+∆-=∆--∆其中)就趋近于瞬时变化率. 问题2、如何体现0x ∆→让平均变化率的取值间隔x ∆逐渐缩小,如0.10.010.0010.00010.00001→→→→…问题3、这么繁琐的运算怎么实现?借助图形计算器进行数值计算. 数值逼近:以计算2t =时高台跳水的跳水速度为例,进入“电子表格”模块,在CAS 系统中先定义两个函数2() 4.9 6.510h t t t =-++、(2)(2)()h x h g x x +-=,然后计算(0.1),(0.01),(0.001),(0.0001)g g g g ,可以发现当0x →时,运动速度稳定在13.1-(如图1);也可以“电子表格”模块中进行即时运算(如图2).解析式抽象:∵2222(2)(2) 4.9(2) 6.5(2)10 4.92 6.52104.9(4) 6.513.1h h t h t tt t t t t⎡⎤⎡⎤∆=+∆-=-⨯+∆+⨯+∆+--⨯+⨯+⎣⎦⎣⎦=-⨯∆+∆+⨯∆=-∆+∆∴2(2)(2)13.113.1h h t h t ttt t t∆+∆--∆+∆===-+∆∆∆∆∴当0t∆→时,13.1ht∆→-∆学生活动:借助于教师发送的APP,分组计算(共同完成下表的填写).如V=1,2时气球的变化率,t=1,3时高台跳水运动员的跳水速度等.t值跳水瞬时速度V值气球膨胀率1122设计意图:导数概率中涉及的极限思想不能采取简单的“告诉”方式,而是在图形计算器的支持下,让学生有一个亲身操作的过程,通过学生的亲身操作,在x∆的取值逐渐变小(0.10.010.0010.00010.00001→→→→…)中观察相应的变化率的变化,从而经历由平均变化率过渡到瞬时变化率的过程,切实感知极限的涵义,以保证导数概念的建构“水到渠成”.操作说明:在学生操作时,需要将教师提供的APP进行适当修改,先在CAS系统中拖曳改动(如图1-1),然后再在电子表格模块中重新运算(如图2-1,按JIEGUO列名后编辑完成).图1图2图1-图2-3、模型建构教师带领学生就操作过程中得到的表格(图2、图2-1或通过Connkit 课堂管理系统截取的任何学生操作界面),进行归纳总结并进行形式化表述(可逐步递进),形成导数模型:(1)x ∆无限趋近于0时,(2)(2)h x h x+∆-∆无限趋近常数,(2)(2)r x r x +∆-∆无限趋近常数,…(2)这个常数可称为导数,记作0()f x ',即(2)13.1h '=-、(2)0.13026r '=、…(3)设函数()y f x =在区间(),a b 上有定义,()0,x a b ∈,若0x ∆→时,00()()f x x f x A x +∆-→∆常数,则称()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '.设计意图:导数的概念比较抽象,从具体案例的归纳提炼出发,层层递进逐步抽象,可以帮助学生实现导数概念的生成和建构;教学中一方面需要需要关注形式化抽象的进阶性,另一方面要关注学生的参与度,尤其是归纳的过程让学生多参与,随机截图分析概括是一个比较理想的组织形式.4、模型解释提问:我们已经知道“0x ∆→时,00()()f x x f x A x+∆-→∆常数”,这是从代数的角度刻画的,那么是不是可以从几何角度加以描述呢?(1)教师解释几何构造:如图3,设点()()1111,(),,()P x f x Q x x f x x +∆+∆, 则211121()()()()f x f x f x x f x x x x-+∆-=-∆可表示曲线的割线PQ 的斜率; (2)学生活动:在几何学的APP (如图4)中进行操作,探索x ∆无限趋近于0(即Q 向P 无限靠近),那么11()()f x x f x x+∆-∆的无限逼近值的何几何意义; (3)总结概括:Q 向P 无限靠近,割线PQ 逼近曲线在点P 处的切线,如图5所示;(4)学生验证:在几何学中,将图形放大可以发现,曲线接近于一条直线,而此直线与相应的切线非常接近,经计算可以发现切线的斜率即是相应的导数值.完善结论如下: 设曲线C 上一点(,())P x f x ,过点P 的一条割线交曲线C 于另一点(,())Q x x f x x +∆+∆,则割线PQ 的斜率为()()()()()PQ f x x f x f x x f x k x x x x+∆-+∆-==+∆-∆ 当点Q 沿曲线C 向点P 运动,并无限靠近点P 时,割线PQ 逼近点P 的切线l 的斜率,即当x ∆无限趋近于0时,()()f x x f x x+∆-∆无限趋近于点(,())P x f x 处的切线的斜率.设计意图:“割线斜率→切线斜率”是“平均变化率→瞬时变化率”的“视觉化”,让学生动手实验感知“切线的存在性”以及“局部以直代曲”的思想.5、应用拓展1、求函数2()2f x x =+在1x =处的导数.简解:(1)(1)2f x f x x+∆-=∆+∆ 0x ∆→时,22x ∆+→ ∴(1)2f '=说明:1、求导的基本步骤:求函数的增量→求平均变化率→无限趋近于0得瞬时变化率→得到导数值.2、在学生纸笔运算后可用图形计算器CAS 命令进行检验(如图5),在运算时可借助于“simplify ”命令将解析式化简.2、求函数1()f x x =在2x =处的导数. 图3图4图53、求曲线1y x =在点12,2⎛⎫⎪⎝⎭处的切线方程. 4(思考题)、已知酒杯的形状为倒立的圆锥,杯深8cm ,上口宽6cm ,水以220cm /s 的流量倒入杯中,当水深为4cm 时,求水深的瞬时变化率.设计意图:1、采用多层次、多角度的变式训练方式,由易到难,梯度明显,实现了从知觉水平的应用到思维水平应用的自然过渡;2、考虑到学生在运算中可能有的问题,于是图形计算器成了学生学习导数中的必要工作.3、“函数在某一点的导数”、“导函数”以及“导数”三个不同的概念:(1)“函数在某一点的导数”是一个值,而“导函数”或“导数”是一个函数;(2)“函数在某一点的导数”就是导函数在这点的函数值()0f x '与()f x '的关系()()00x x f x f x =''= 知识链接:导数产生的背景十七世纪,有许多科学问题需要解决,归结起来,大约有四种主要类型的问题:第一类是研究运动运动物体的瞬时速度的问题;第二类问题是求曲线的切线的问题;第三类问题是求函数的最大、小值问题;第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力.这些问题成了促使微积分产生的因素.十七世纪的许多著名的数学家、天文学家、物理学家为解决上述几类问题作了大量的研究工作,十七世纪下半叶,在前人工作的基础上,英国科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,牛顿着重从运动学考虑—研究运动物体的瞬时速度,莱布尼茨侧重于几何学来考虑的—研究了曲线切线斜率的求法.他们的最大功绩是把两个貌似毫不相关的问题联系在一起.正所谓“求积问切难题多,瞬速极值奈若何.群贤同趋坎坷路,双雄竞渡智慧河.百年寻谜无穷小,万代受益财富多.撑起数学参天树,人类精神奏凯歌.”(引自湘教版教材).。
数学导数的概念说课稿高二
数学导数的概念说课稿高二
为大家提供数学导数的概念说课稿一文,供大家参考使用:
数学导数的概念说课稿高二
一、教材分析
导数的概念是高中新教材人教A 版选修2-2 第一章1.1.2 的内容, 是在学生学习了物理的平均速度和瞬时速度的背景下,以及前节课所学的平均变化率基础上,阐述了平均变化率和瞬时变化率的关系,从实例出发得到导数的概念,为以后更好地研究导数的几何意义和导数的应用奠定基础。
新教材在这个问题的处理上有很大变化,它与旧教材的区别是从平均变化率入手,用形象直观的逼近方法定义导数。
问题1 气球平均膨胀率--→瞬时膨胀率
问题2 高台跳水的平均速度--→瞬时速度--→
根据上述教材结构与内容分析,立足学生的认知水平,制定如下教学目标和重、难点
二、教学目标。
导数的概念说课稿市公开课一等奖课件名师大赛获奖课件
h0
h
三、证明:若 f ( x)为偶函数且 f (0)存在,则 f (0) 0 .
四、设函数
f
(x)
x k
sin
1 x
,
x
0问
k
满足什么条
0 , x 0
件, f ( x)在 x 0处 (1)连续; (2)可导;
(3)导数连续.
__________________.
二、在下列各题中均假定 f ( x0 ) 存在,按照导数的定 义观察下列极限,分析并指出A 表示什么?
1、 lim f ( x) f ( x0 ) A;
x x0
x x0
2、lim f (h) A,其中 f (0) 0且f (0)存在; h0 h
3、lim f ( x0 h) f ( x0 h) A.
k y x1 2
( 1 ) x
x1 2
1 x2
x1 2
4.
所求切线方程为 y 2 4( x 1), 即 4x y 4 0.
2
法线方程为 y 2 1 ( x 1), 即 2x 8 y 15 0.
42
2.物理意义 非均匀变化量的瞬时变化率.
变速直线运动:路程对时间的导数为物体的 瞬时速度.
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
★ 函数 f ( x)在点x0 处可导 左导数 f( x0 )和右 导数 f( x0 )都存在且相等.
北师大版选修2《导数的概念》说课稿
北师大版选修2《导数的概念》说课稿一、教材背景及教学目标教材背景《导数的概念》是《高中数学选修2》北师大版教材中的一章,主要介绍导数的定义、计算方法和应用。
通过本章的学习,学生能够理解导数的几何意义,并掌握导数的计算方法,为后续学习微分学打下坚实的基础。
教学目标•理解导数的几何意义,懂得导数与函数图像的关系;•掌握导数的定义及计算方法,能够对常见函数求导;•能够运用导数解决实际问题,如求解最值、判定函数的单调性等。
二、教学重点和难点教学重点•导数的定义与几何意义;•导数的计算方法;•导数在实际问题中的应用。
教学难点•导数的几何意义的理解;•导数的计算方法的掌握;•导数在实际问题中的应用能力培养。
三、教学内容和学时安排1. 导数的定义与几何意义(2学时)•导数的定义:导数表示函数在某一点的变化率,即切线的斜率;•导数的几何意义:导数为正表示函数递增,导数为负表示函数递减。
2. 导数的计算方法(4学时)•导数的基本运算法则;•常见函数的导数计算方法,如幂函数、指数函数、三角函数等;•利用导数的基本运算法则计算复合函数的导数。
3. 导数的应用(2学时)•导数与函数图像的关系:切线与图像的交点;•求解函数的最值问题;•判定函数的单调性。
四、教学方法与手段教学方法•讲授法:通过讲解导数的定义、几何意义和计算方法,引导学生理解概念;•实例法:通过实际问题的解析和解答,激发学生的学习兴趣和思维能力;•练习法:设计大量的例题和练习题,巩固学生的知识点和解题技巧。
教学手段•板书:用简洁清晰的板书内容总结重点和难点;•多媒体展示:利用PPT演示例题、计算过程和实际应用示例,直观呈现;•小组讨论:组织学生分组进行讨论、分享解题思路,培养合作意识。
五、教学评估与课后作业教学评估•口头回答问题:设计一系列的问题进行提问,考察学生对导数定义、计算方法和应用的理解;•书面作业:布置适量的书面作业,包括选择题、计算题和应用题,考察学生的综合运用能力。
导数的概念》说课稿(附教学设计)
导数的概念》说课稿(附教学设计)导数的概念》说课稿一、教学内容及分析导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度。
导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用。
导数概念是我们今后研究微积分的基础。
同时,导数在物理学、经济学等领域都有广泛的应用,是开展科学研究必不可少的工具。
教材安排导数内容时,学生是没有研究极限概念的。
教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上研究。
因此,让学生通过研究导数这个特殊的极限去体会极限的思想,这为今后研究极限提供了认识基础。
另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先研究导数方便学生研究和研究函数。
基于学生已经在高一年级的物理课程中研究了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的。
进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想。
二、教学目标及分析1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来研究极限概念积累研究经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《导数的概念》说课稿本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.教学内容分析1.导数的地位、作用导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.2.本课内容剖析教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.教学目的1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念.教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.教学准备1.查找实际测速中测量瞬时速度的方法;2.为学生每人准备一台Ti-nspire CAS图形计算器,并对学生进行技术培训;3.制作《数学实验记录单》及上课课件.教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质.教学的主要过程设计如下:教学过程设计理解平均速度与瞬时速度的区别与联系.感受当△t →0时,平均速度逼近于某个常数.从形式上完成从平均速度向瞬时速度的过渡.由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义. 理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义. 通过师生共同小结,使学生进一步感受极限思想对人类思维的重大影响.体在2S的瞬时速度,应该怎么解决?(6)我们一起来看物理中测即时速度(瞬时速度)的视频:(7)提问:这里所测得的真的是瞬时速度吗?(8)提问:怎样使平均速度更好的表示瞬时速度?(9)在学生回答的基础上讲述:真正的瞬时速度根本无法通过仪器测定,我们将平均速度作为瞬时速度的近似值;为了使平均速度更好的表示瞬时速度,应该让时间间隔尽量小.(6)学生观看视频并思考.(7)期望或引导答出“是平均速度”.(8)学生回答,得出“时间间隔越小越好!”(9)学生体会教师所讲结论.(2)应使学生明确平均速度与瞬时速度的关系,为下一阶段实验活动作铺垫.15分钟2.体会模型设计意图:让学生在信息技术平台上,通过定量分析感受平均速度在时间间隔越来越小时向瞬时速度逼近的过程.(1)向学生提出数学实验任务:已知跳水运动员在跳水过程中距离水面的高度与时间的函数h(t)=-4.9t2+6.5t+10,请你用计算器完成下列表格中t0=2秒附近的平均速度的计算并填充好表格,观察平均速度的变化趋势.数学实验记录单(1)x>0时,在[2,2+x]内,(2)(2)h x hvx+-=x<0时,在[2+x,2]内,(2)(2)h h xvx-+=-X v x v0.1 -0.10.01 -0.010.001 -0.0010.0001 -0.00010.00001 -0.000010.000001 -0.000001你认为运动员在t0=2秒处的瞬时速度为m/s.(2)提问:x、g(x)的含义各是什么?(3)提问:观察你自己的实验记录单,你能发现平均速度有什么变化趋势吗?先展示一个同学的实验结果,并让他说说他的发现,再将计算器的结果投影,引导同学们一起观察.(4)将学生分四个组,让他们分别完成t0=1.6、1.7、1.8、1.9时的实验记录单(2)的填(1)学生在TI-nspireCAS上完成以下操作:(2)学生操作得出如下结果,完成数学实验记录单(1)的填写:(3)让学生讲他所发现的规律.(4)学生分4个组再次实验,分别完成本组的数学实验记录单(2)的填写,并观察平均速度的变化趋势,回答教师的提问.(1)应使学生在技术平台上通过多次实验感受到平均速度在t∆→0时趋近于一个常数,并理解这个常数的意义.(2)应使学生从感性上获得求瞬时速度的方法.5 4.形成概念设计意图:完成从运动物体的瞬时速度到函数瞬时变化率的过渡,形成导数的概念并给出定义.(1)给出下列图示:(2)针对上述图示,教师在启发后提问:通过前面的学习,我们知道平均速度就是函数h(t)的平均变化率.瞬时速度就是函数h(t)的瞬时变化率.同时,我们已经知道:平均速度在△t→0时的极限就是瞬时速度.那么,你能否说说,一般情况下,函数的平均变化率与瞬时变化率是一个什么关系?(3)在学生理解了函数的平均变化率与瞬时变化率的关系后提问:函数f(x)在x=x0处的瞬时变化率怎样表示?教师介绍如下的的表示方法:函数f(x)在x= x0处的瞬时变化率可表示为limxfx∆→∆=∆00()()limxf x x f xx∆→+∆-∆.(4)教师给出导数的定义:函数()f x在x x=处的瞬时变化率0000()()lim limx xf x x f x fx x∆→∆→+∆-∆=∆∆称为()y f x=在x x=处的导数,记作()()()limxf x x f xf xx∆→+∆-'=∆或x x='y,即00()()()limxf x x f xf xx∆→+∆-'=∆.(1)在教师的启发下思考函数的平均变化率与瞬时变化率之间的关系.(2)回答教师的提问.(3)理解函数导数的概念与导数的应使学生从“平均速度的极限是瞬时速度”这个具体的模型中抽象出导数的概念,并能理解导数是一个极限,明确导数的表示.《导数的概念》教学说明一、教材分析导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础.同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.教材安排导数内容时,学生是没有学习极限概念的.教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习.所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础.另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生学习和研究函数.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的.进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想.二、教学目标及分析1.使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2.使学生通过运动物体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3.掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4.通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5.通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程.上述目标中,目标1是形成概念的基础,它提供了一个具体的导数模型.目标2是教学重点,是本节课要花近一半时间去完成的目标.目标3体现了算法思想,这是教学中应该充分重视的方面.目标4和5体现了数学育人的重要价值.三、学生分析要使学生能通过观察发现运动的物体在某一时刻的平均速度的极限是一个不变的常数,而且这个常数就是物体在这一时刻的瞬时速度,一个非常难突破的问题就是大量平均速度的计算问题.为解决这个问题,在教学时为每个学生准备一台Ti-nspire CAS图形计算器,利用这种计算器的CAS功能,可以在较短的时间内解决计算问题,从而使学生有更多的时间用于观察与发现.另外,从具体的模型中提炼出一般的概念的困难在于具体模型的数量,因此,设计本节课的教学时,在教材的基础上增加了计算跳水运动员瞬时速度的数目,以此大大方便了学生归纳与概括.四、教法特点及预期效果本节课在教学方法的选择上,充分尊重学生认知事物的基本规律,强调教师的启发与学生的参与度,给学生操作感知、观察发现的时间充分.由于技术的介入,大大方便了学生获得导数概念的表象,因此学生通过表象抽象出导数概念的过程自然到位,并且能帮助学生更准确地理解导数的本质.。