分母为二次多项式时求和放缩技巧
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.1求的值;2求证:.解析:1因为,所以2因为,所以奇巧积累:1 2 34 5 6 7 8 9 10 11111213 14 15 15 例2.1求证: 2求证: 3求证: 4 求证:解析:1因为,所以2 3先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案4首先,所以容易经过裂项得到再证而由均值不等式知道这是显然成立的,所以例3.求证: 解析:一方面:因为,所以另一方面: 当时,,当时,,当时,,所以综上有例 4.2008年全国一卷设函数.数列满足..设,整数.证明:解析:由数学归纳法可以证明是递增数列,故存在正整数,使,则,否则若,则由知,,因为,于是例5.已知,求证: 解析:首先可以证明: 所以要证只要证:故只要证,即等价于,即等价于而正是成立的,所以原命题成立.例6.已知,,求证:.解析:所以从而例7.已知,,求证:证明: ,因为,所以所以二、函数放缩例8.求证: 解析:先构造函数有,从而因为所以例9.求证:1 解析:构造函数,得到,再进行裂项,求和后可以得到答案函数构造形式: ,例10.求证:解析:提示:函数构造形式:当然本题的证明还可以运用积分放缩如图,取函数,首先:,从而,取有,,所以有,,…,,,相加后可以得到:另一方面,从而有取有,,所以有,所以综上有例11.求证:和.解析:构造函数后即可证明例12.求证: 解析:,叠加之后就可以得到答案函数构造形式:加强命题例13.证明: 解析:构造函数,求导,可以得到:,令有,令有,所以,所以,令有,所以,所以例14. 已知证明.解析: ,然后两边取自然对数,可以得到然后运用和裂项可以得到答案放缩思路:。
函数放缩法技巧全总结
函数放缩法技巧全总结函数放缩法是数学中常用的一种方法,用于求解函数的极限、导数、积分等问题。
它通过对函数进行适当的放缩,从而得到更简单、更易处理的形式,进而解决原问题。
在实际应用中,函数放缩法可以帮助我们更加灵活地处理复杂的数学问题,提高问题求解的效率和准确性。
下面,我们将对函数放缩法的技巧进行全面总结,希望能够帮助大家更好地掌握这一方法。
首先,函数放缩法的核心思想是利用已知函数的性质,构造一个比较简单的函数,从而对原函数进行放缩。
常用的放缩方法包括利用三角函数的性质、利用幂函数的性质、利用指数函数的性质等。
在具体应用中,我们需要根据具体问题的特点,选择合适的放缩方法,以达到简化问题、加快求解的目的。
其次,对于常见的函数放缩技巧,我们可以总结如下:1. 利用三角函数的性质,对于涉及三角函数的问题,可以利用三角函数的周期性、奇偶性、单调性等性质,构造合适的三角函数放缩原函数,从而简化问题的求解。
2. 利用幂函数的性质,对于幂函数的问题,可以利用幂函数的增减性、凹凸性等性质,构造合适的幂函数放缩原函数,从而简化问题的求解。
3. 利用指数函数的性质,对于指数函数的问题,可以利用指数函数的增减性、单调性等性质,构造合适的指数函数放缩原函数,从而简化问题的求解。
4. 利用函数的极限性质,对于函数的极限问题,可以通过构造逼近原函数的序列或函数,利用函数的极限性质,对原函数进行放缩,从而求得原函数的极限。
5. 利用函数的导数性质,对于函数的导数问题,可以利用导数的定义、性质,构造合适的导数函数,对原函数进行放缩,从而简化导数的计算。
最后,需要注意的是,在使用函数放缩法时,我们需要充分理解原函数的性质,灵活选择合适的放缩方法,并且要注意放缩后的函数与原函数之间的关系,以确保放缩后的函数能够准确反映原函数的性质。
另外,对于一些特殊的函数,我们也可以通过函数的泰勒展开、泰勒公式等方法,对函数进行适当放缩,进而求解问题。
放缩法的注意问题以及解题策略
n n2 n n2 2 2; n2 n n2 n
(4)二项式定理放缩:如 2 1 2n 1( n 3) ; ( 5)舍掉(或加进)一些项,如: | an a1 || a2 a1 | | a3 a2 | | an an 1 | ( n 2) 。 例题选用
bn 1 3 2(bn 3) , n N * ,迭乘得: bn 3 2n 1 (b1 3) 2n 1
1 1 1 1 1 1 1 1 1 n 1 , n N * Tn 2 3 4 ... n 1 n 1 2 2 2 2 2 2 2 bn 3 2
放缩法的注意问题以及解题策略
1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩
小。
2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放
缩。
3、放缩法的常见技巧及常见的放缩式:
( 1)根式的放缩:
1 1 1 ; k k 1 2k k k 1
例 6、 .[2014·新课标全国卷Ⅱ] 已知数列{an}满足 a1=1,an+1=3an+1.
1 (1)证明 an+ 是等比数列,并求{an}的通项公式; 2 1 1 1 3 (2)证明 1+ 2+…+ n< . a a a 2 1 1 解:(1)由 an+1=3an+1 得 an+1+ =3 an+ . 2 2 1 3 3 1 3n 1 又 a1+ = ,所以 an+ 是首项为 ,公比为 3 的等比数列,所以 an+ = ,因此数列{an}的通项公 2 2 2 2 2 2 3n-1 式为 an= . 2 1 2 (2)证明:由(1)知 n= n . 因为当 n≥1 时,3n-1≥2×3n-1, a 3 -1 1 1 1 2 1 1 1 1 1 1 3 1 3 - 1 所以 n ≤ ,即 = ≤ . 于是 + + … + ≤ 1 + + … + = < . - n - 2 - a 3n-1 3n 1 3 3 -1 2 × 3n 1 a1 a 3n 1 2 3n 2 an 1 1 1 3 所以 1+ 2+…+ n< . a a a 2
放缩法在数列求和中的基本策略
“放缩法”在数列求和中的基本策略放缩法:为放宽或缩小不等式的范围的方法。
常用在多项式中“舍掉一些正(负)项”而使不等式各项之和变小(大),或“在分式中放大或缩小分式的分子分母”,或“在乘积式中用较大(较小)因式代替”等效法,而达到其证题目的。
所谓放缩的技巧:即欲证B A ≤,欲寻找一个(或多个)中间变量C ,使B C A ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”。
常用的放缩技巧有:(1)若,A t A ,A t A ,0t <->+>(2,n 1n <-n n 2>,1n 11n ,1n ->-+-+),0n (n n )1n (n 2>=>+<<+=+-2n 1)1n (n 11n 1n 1).1n n (2n1n n 21n n 2)n 1n (2),1n (n 11n 1)1n (n 1--<=+<++=-+>--=-(3)若,R m b a +∈、、则.b ma ba ,mb a b a +<+>(4)+++<++++221211!n 1!31!211 .211n -+ (5).n 12n 11n 1()3121()211(1n131211222-=--++-+-+<++++ (6)11n n 1n 11n 11n 1n 212n 11n 1<+=++++++≤+++++ 或≥+++++n 212n 11n 1 .21n 2n n 21n 21n 21==++ (7)nn n n 1n 1n 1n 131211==+++>++++ 等等。
注:1、放缩法的理论依据,是不等式的传递性,即若,D C ,C B ,B A >>>则D A >。
2、使用放缩法时,“放”、“缩”都不要过头。
3、放缩法是一种技巧性较强的不等变形,一般用于两边差别较大的不等式。
证明数列求和不等式的两种放缩技巧
求和(Sum)不等式是数学中一种有用的工具,用来估计数列的总和。
这种不等式经常被用来证明一些性质,比如收敛性、最大最小值等等。
在解决一些复杂的问题时,求和的不等式经常要求使用特殊的技巧,如放缩。
本文将介绍两种求和不等式的放缩技巧:前项放缩和后项放缩。
前项放缩指的是一种能够让前n项值成比例证明一个求和不等式的技巧。
例如,假设我们有如下的求和不等式:S = x <sub>1 </sub> + x <sub>2 </sub> + ... + x <sub>n </sub> ≤ A那么我们可以用前项放缩的技巧来证明这个不等式:首先,假定 n 个x <sub>i<sub> (i=1,2,…,n) 的值分别为 a<sub>i </sub>,则有S = a<sub>1 </sub> + a<sub>2 </sub> + ... + a<sub>n </sub> ≤ A其次,将所有的x <sub>i </sub>(i=1,2,…,n) 都放缩至 b<sub>i </sub>值,意思是你将每一项都扩展或缩小一倍(例如,a<sub>1 </sub> 会放缩至2a<sub>1 </sub>)。
此时有 S = b<sub>1 </sub> + b<sub>2 </sub> + ... + b<sub>n </sub> ≤ A(由此可见,前 n 项值放缩后,左边的总和 S 仍小于右边的 A,因此原来的不等式:S≤A 成立)另一种求和不等式的放缩技巧是后项放缩。
此时我们可以将最后一项x<sub>n</sub> 放缩成 b<sub>n</sub>(通常要求b<sub>n</sub> ≤a<sub>n</sub>),这样就有实数范围[a<sub>n</sub>, b<sub>n</sub>]了。
常见方程放缩公式
常见方程放缩公式在数学中,方程的放缩是一种常见的运算方法,它可以通过改变方程的系数或变量的取值范围来简化方程或得到更多的解。
以下是一些常见的方程放缩公式:一次方程对于一次方程 ax + b = 0,其中 a 和 b 是已知的常数,可以进行下列放缩:1. 求解 x 的值:x = -b/a。
通过将方程中的 a 和 b 带入这个公式,可以得到方程的解。
2. 改变系数:如果方程的系数 a 和 b 都乘以相同的非零常数 k,得到新的方程 kax + kb = 0。
这样做不改变方程的解,但可以简化计算过程。
二次方程对于二次方程 ax^2 + bx + c = 0,其中 a、b 和 c 是已知的常数,可以进行下列放缩:1. 求解 x 的值:使用二次方程公式 x = (-b ± √(b^2 - 4ac))/(2a)计算方程的实根。
2. 改变系数:如果方程的系数 a、b 和 c 都乘以相同的非零常数 k,得到新的方程 kax^2 + kbx + kc = 0。
这样做不改变方程的解,但可以简化计算过程。
指数方程对于指数方程 a^x = b,其中 a 和 b 是已知的常数,可以进行下列放缩:1. 求解 x 的值:使用对数运算,x = log(base a)b。
通过将方程的底数 a 和结果 b 带入这个公式,可以得到方程的解。
2. 改变底数和结果:如果方程的底数 a 和结果 b 都乘以相同的非零常数 k,得到新的方程 (ka)^x = kb。
这样做不改变方程的解,但可以简化计算过程。
对数方程对于对数方程 log(base a)x = b,其中 a 和 b 是已知的常数,可以进行下列放缩:1. 求解 x 的值:使用指数运算,x = a^b。
通过将方程的底数 a 和结果 b 带入这个公式,可以得到方程的解。
2. 改变底数和结果:如果方程的底数 a 和结果 b 都乘以相同的非零常数 k,得到新的方程 log(base ka)x = kb。
放缩法技巧全总结
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
“放缩法”解不等式的8个例子,难题轻松解决!
“放缩法”解不等式的8个例⼦,难题轻松解决!添加或舍弃⼀些正项(或负项)若多项式中加上⼀些正的值,多项式的值变⼤,多项式中加上⼀些负的值,多项式的值变⼩。
由于证明不等式的需要,有时需要舍去或添加⼀些项,使不等式⼀边放⼤或缩⼩,利⽤不等式的传递性,达到证明的⽬的。
本题在放缩时就舍去了,从⽽是使和式得到化简.先放缩再求和(或先求和再放缩)此题不等式左边不易求和,此时根据不等式右边特征, 先将分⼦变为常数,再对分母进⾏放缩,从⽽对左边可以进⾏求和. 若分⼦, 分母如果同时存在变量时, 要设法使其中之⼀变为常量,分式的放缩对于分⼦分母均取正值的分式。
如需放⼤,则只要把分⼦放⼤或分母缩⼩即可;如需缩⼩,则只要把分⼦缩⼩或分母放⼤即可。
先放缩,后裂项(或先裂项再放缩)本题先采⽤减⼩分母的两次放缩,再裂项,最后⼜放缩,有的放⽮,直达⽬标.放⼤或缩⼩“因式”本题通过对因式放⼤,⽽得到⼀个容易求和的式⼦,最终得出证明.逐项放⼤或缩⼩本题利⽤,对中每项都进⾏了放缩,从⽽得到可以求和的数列,达到化简的⽬的。
固定⼀部分项,放缩另外的项此题采⽤了从第三项开始拆项放缩的技巧,放缩拆项时,不⼀定从第⼀项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
利⽤基本不等式放缩本题通过化简整理之后,再利⽤基本不等式由放⼤即可.先适当组合, 排序, 再逐项⽐较或放缩以上介绍了⽤“放缩法”证明不等式的⼏种常⽤策略,解题的关键在于根据问题的特征选择恰当的⽅法,有时还需要⼏种⽅法融为⼀体。
在证明过程中,适当地进⾏放缩,可以化繁为简、化难为易,达到事半功倍的效果。
但放缩的范围较难把握,常常出现放缩后得不出结论或得到相反的现象。
因此,使⽤放缩法时,如何确定放缩⽬标尤为重要。
要想正确确定放缩⽬标,就必须根据欲证结论,抓住题⽬的特点。
掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题⽬的类型,采⽤恰到好处的放缩⽅法,才能把题解活,从⽽培养和提⾼⾃⼰的思维和逻辑推理能⼒,分析问题和解决问题的能⼒。
用分拆法探索数列不等式放缩裂项的途径
裂项成b..再累加(或累积)就得到数列不等式∑口…;
;以n)(或兀吼;以n))的证明,我们把它称为分拆法.
例1 若n E N‘,求证:l·2·3+2·3·4+3·4
,5
+
…
+
,I
·
(n
+ 1)
·
(n
+ 2)
<
【地兰产盟】2.
分析 设以n)= 【地等粤盟】2=
【虹半】2-【呜山】2幽+1)3· 酗n测6l-f(1)_【学】2>1·2-3, 当n≥2时,b。=八,1)一以n一1)=
分析 当n≥2时,由八儿)=虿1,得6。=l,6。
大于(1一歹毛),“分拆法”失效,命题要强钯.
(1) 假 设 命题 可 强 化 为
(-一÷)(,一吉)…1一面1)≥÷[-+
g(n)](/'t∈N+时,g(n)恒正),再“分拆”处理:设
以凡)=虿1·[1+g(尼)]=鱼6i,则6,=f(1)=
r揣.只要能够证明:1一丽1耋;毫 2[1+g(1)].而当n≥2时,6。=页争拿万=
2薏≥揣h宁2凰即一},
≥≯1 l+g(1)]④.
=志(a,6为待定常数,口>o),将g(n)代入 (2)如何确定g(rt)?观察③式结构,可设g(it/,)
12
万方数据
③式得:口·2孙+6≥虿1(口2+Ⅱ)·228+i3(口+b)28
口 、一 ●一2 on 2+a)
+26+b2对n∈N+恒成立,则
分析n≥2时,b。=0,b。小于专,“分拆法”失
效,命题要强化.
(1)假设命题可以强化为l+刍+尹1+…+≯1
≤2一g(n)(11,∈N+时,g(n)恒正),再“分拆”处
理:设以,I)=2-g(n)=∑bi,则b。=八1)=2一
放缩法技巧及经典例题讲解
放缩法技巧及经典例题讲解 一.放缩技巧所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤,由A 到C 叫做“放”,由B 到C 叫做“缩”.常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2)<>11>n >=(3)21111111(1)1(1)(1)1n n n n n n n n n n-=<<=->++-- (4)=<=<=(5)若,,a b m R +∈,则,a a a a mb b m b b+><+ (6)21111111112!3!!222n n -+++⋅⋅⋅+<+++⋅⋅⋅+(7)2221111111111(1)()()232231n n n+++⋅⋅⋅+<+-+-+⋅⋅⋅+--(因为211(1)n n n <-) (7)1111111112321111nn n n n n n n n +++⋅⋅⋅+≤++⋅⋅⋅+=<+++++++或11111111123222222n n n n n n n n n +++⋅⋅⋅+≥++⋅⋅⋅+==+++ (8)1⋅⋅⋅+>⋅⋅⋅+== (9))1(11)1(12-<<+k k k k k ,⎥⎦⎤⎢⎣⎡--≤!!(!k k k 1)11211(10) 12112-+<<++k k k k k【经典回放】例1、设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<.【解析】(Ⅰ) 依题意,12122133S a =---,又111S a ==,所以24a =; (Ⅱ) 当2n ≥时,32112233n nS na n n n +=---, ()()()()321122111133n n S n a n n n -=------- 两式相减得()()()2112213312133n n n a na n a n n n +=----+--- 整理得()()111n n n a na n n ++=-+,即111n n a a n n+-=+,又21121a a-=故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列, 所以()111na n n n=+-⨯=,所以2n a n =. (Ⅲ) 当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n=<=---,此时 222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-< 综上,对一切正整数n ,有1211174n a a a +++<. 例2:【经典例题】例1、设数列{}n a 满足12,311+-==+n a a a n n(1) 求{}n a 的通项公式; (2) 若11111,1,1++-=-=-==n n n n n n n c c d n a c c b c 求证:数列{}n n d b ⋅的前n 项和31<n S 分析:(1)此时我们不妨设)(2)1(1B An a B n A a n n ++=++++即BA An a a n n +-+=+21与已知条件式比较系数得.0,1=-=B A )(2)1(1n a n a n n -=--∴+又}{,211n a a n -∴=-是首项为2,公比为2的等比数列。
2023高考专题篇:5种放缩方法汇总
学习札记钻研数学钻研数学5种放缩方法汇总放缩法就是针对不等式的结构特征,运用不等式的性质,将不等式的一边或两边进行放大或缩小,也就是对代数式进行恰到好处的变形,使问题便于解决.放缩方法众多,各有优劣,黑猫花猫能抓住耗子就是好猫……放缩法大致分为以下几类:.将代数式中的分母和分子同时扩大和缩小Ⅰ;Ⅱ.利用均值不等式或其它的不等式放缩数式;Ⅲ.也可以在不等式两边同时加上或减去某一项;Ⅳ.可以把代数式中的一些项进行分解再重新组合,这样就可以消去一些项便于求解,这也是我们常用的裂项法.导数的解答题中,经常会用到一些不等式进行放缩,主要分为五类:.Ⅰ切线不等式①e x ≥x +1;②ln x ≤x -1;③e x ≥ex ;④ln x ≤e 1x ;⑤ln x ≥1-x1.xyy =x +1y =x -11=y e xy =lnxy =exy =exⅡ.与三角有关的一些不等式①当x ≥0时,sin x ≤x ,cos x ≥1-x 22;2时,cos x ≤1-x 24②当0≤x ≤π③当0<x <;π2时,sin x <x <tan x ;学习札记④当0<x ≤钻研数学钻研数学π2时,sin x x ≥π2.Ⅲ.一些常见不等式(稍微提高)①当x >1时,x 2-x +2121<(x -1)x +1<ln x <x -1x<21 x -x 1;②当0<x <1时,21 x -x 1 <x -12x<ln x <(x -1)x +1<x 2-x +211;1x ③对数平均不等式:∀x 1>x 2>0,x 1x 2<ln 2x x -1-ln x 2x 1<+x 22.Ⅳ.一些不常见的不等式①当x >0时,e x >1+x +21x 2;+②当0<x <1时,ln1x 1-x >2x +32x 3;+ 当-1<x <0时,ln 1x 1-x <2x +32x 3.Ⅴ.偶尔用上的不等式1≤1+n1x .当n >1,n ∈N ∗,x >-1时,则:(1+x )n≥1+nx ,(1+x )n(当且仅当x =0时等号成立.)在解答导数问题时,我们经常使用到函数的切线、割线逼近进行放缩,两个常用的结论为ln x ≤x -1(当且仅当x =1时取等号),e x ≥x +1(当且仅当x =0时取等号),借助这两个结论可以将超越函数放缩成一次函数.针对高考压轴导数问题,放缩法可以起到很好的效果.使用放缩法需要较高的拆分组合技巧,一定要注意同向传递,还要把握好放缩的“尺度”,否则将达不到预期的目的,或者会得出错误的结论.在不等式“改造”或证明的过程中,有时借助于e x ,ln x 有关的常用不等式进行适当的放缩,再进行证明,会取得意想不到的效果.典例1.已知函数f (x )=ae x +2x -1(其中常数e =2.71828⋯,是自然对数的底数).ⅰ讨论f (x )的单调性;ⅱ证明:对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .典例剖析指数放缩学习札记钻研数学钻研数学解析:ⅰ求导,得f(x )=ae x+2.当a ≥0时,f (x )>0,f (x )在R 上单调递增;当a <0时,令f (x )=0,得x =ln -a2.2当x ∈ -∞,ln -a 时,f (x )>0,f (x )单调递增;当x ∈ ln - a2,+∞时,f (x )<0,f (x ) 单调递减.综上,当a ≥0时,f (x )在R 上单调递增;2当a <0时,f (x )在 -∞,ln -a上单调递增 ,2,+∞ 上单调递减.在 ln -aⅱ解法1:指对处理技巧exx 型当a ≥1,x >0时,要证f (x )≥(x +ae )x ,x 2-(2即ae x -x 2+(2-ae )x -1≥0,即1--)x +ae 1ae x≥0,x 2-(2令g (x )=1--)x +ae 1x,ae x (x -1则g (x )=)(+ae -3)ae x,①当a ≥e3时,令g (x )=0,得x =1,故当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞),g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .②当1≤a <e3吋,令g (x )=0,得x =1,或x =3-ae .当x ∈(0,3-ae ),(1,+∞),g (x )>0,g (x )单调递增;当x ∈(3-ae ,1),g (x )<0,g (x )单调递减.又g (0)=1-a1≥0,g (1)=0,故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .解法2:指对处理技巧e xx+主元放缩 当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x -ex -(x -1)2≥0,即证e x x -x a -ax 1+a2-e ≥0,令g (x )=e x x -x a -ax 1+a2-e ,(x -1)-x -ae 则g (x )=x1ax 2,学习札记当a ≥1时,ae x -x -1≥e x -x -1,当且仅当a =1时等号成立,令ℎ(x )=e x-x -1,则ℎ(x )=e x-1>0在(0,+∞)上恒成立,故ℎ(x )单调递增,ℎ(x )>ℎ(0)=0,g (x )=0,则x =1,所以x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )钻研数学钻研数学单调递增.所以g (x )≥g (1)=0,即e x x -x a -ax 1+a2-e ≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .解法3:直接讨论法当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x -ex -(x -1)2≥0,令g (x )=ae x -x 2+(2-ae )x -1,则g (x )=ae x -2x -(ae -2),因此g (x )=ae x -2在(0,+∞)上单调递增.①当a ≥2时,g (x )>0在(0,+∞)上恒成立,故g (x )单调递增,又g (1)=0,故当x ∈(0,1)时,g (x )<0,g (x )单调递减,当x ∈(1,+∞)时,g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .当1≤a <2时,令g (x )=0,得x =ln a2∈(0,1).当x ∈ 0,ln a 2,g (x )<0,g (x )单调递减;当x ∈ ln a 2,+∞,g (x )>0,g (x )单调递增.2②当e -1≤a <2时,g (0)=a (1-e )+2≤0,又g (1)=0,g ln a2<g (1)=0,故当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即f (x )≥(x +ae )x .2③当1≤a <e -1时,则g (0)=a (1-e )+2>0,又g ln a 2<g (1)=0,故存在唯一x 0∈ 0,ln a2,使得ℎ x 0=0,当x ∈ 0,x 0,(1,+∞)时,g (x )>0,g (x )单调递增;当x ∈ x 0,1时,g (x )<0,g (x )单调递减.又g (0)=a -1≥0,g (1)=0.故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .学习札记钻研数学钻研数学解法4:主元放缩+指数放缩法当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即a e x-ex -(x -1)2≥0,令g (x )=e x -ex ,则g (x )=e x -e ,令g (x )=0,得x =1.当x ∈(-∞,1),g (x )<0,g (x )单调递减;当x ∈(1,+∞),g (x )>0,g (x )单调递增.所以g (x )≥g (1)=0,即e x -ex ≥0,当且仅当x =1时等号成立,故a e x -ex ≥e x -ex ,当且仅当a =1,x =1时等号成立;要证a e x -ex -(x -1)2≥0,只需要证e x -ex -(x -1)2≥0.策略一:直接讨论法令ℎ(x )=e x -ex -(x -1)2(x >0),则ℎ (x )=e x -e -2(x -1),ℎ (x )=e x -2,令ℎ (x )=0,得x =ln2.当x ∈(0,ln2)时,ℎ (x )<0,ℎ (x )单调递减;当x ∈(ln2,+∞)时,ℎ (x )>0,ℎ (x )单调递增.又ℎ (0)=3-e >0,ℎ (1)=0,ℎ (ln2)<0,因此存在唯一x 0∈(0,ln2),使得ℎ x 0=0.当x ∈ 0,x 0时,ℎ (x )>0,ℎ(x )单调递增;当x ∈ x 0,1,ℎ (x )<0,ℎ(x )单调递减.又ℎ(0)=0,ℎ(1)=0,故此时ℎ(x )≥0恒成立,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .策略二:指数处理,同解法 1ex 即证1-+(-1)x 2e x ex ≥0,令g (x )=1-+(-1)x 2e x ,(x -1则g (x )=)(+e -3x )e x,令g (x )=0,得x =1,或x =3-e .当x ∈(0,3-e ),(1,+∞)时,g (x )>0,g (x )单调递增;当x ∈(3-e ,1)时,g (x )<0,g (x )单调递减.又g (0)=0,g (1)=0,故此时g (x )≥0,即f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .策略三:指对处理,同解法2即证e x x -x -x1+2-e ≥0,令g (x )=e x x -x -x (x -1)-x -e 1+2-e ,则g(x )=x 1 x 2.令ℎ(x )=e x -x -1,则ℎ (x )=e x -1>0在(0,+∞)上恒成立,故ℎ(x )单调递增,从而ℎ(x )>ℎ(0)=0,令g (x )=0,则x =1.当x ∈(0,1)时,g (x )<0,g (x )单调递减;学习札记当x ∈(1,+∞)时,g (x )>0,g (x )钻研数学钻研数学单调递增.所以g (x )≥g (1)=0,即e x x -x -x1+2-e ≥0,从而f (x )≥(x +ae )x .综上,对任意的a ≥1,当x >0时,f (x )≥(x +ae )x .点评:本题的第ⅱ问是一道开放性较强的试题,可以从多角度入手分析.当a ≥1,x >0时,要证f (x )≥(x +ae )x ,即ae x -x 2+(2-ae )x -1≥0,观察此时含有指数项ae x ,也含有二次项,直接讨论至少要求两次导数才便于探究(解法2),结合指对处理技巧,可考虑同时除以ae x ,这样求导后就只需要讨论二次型函数即可.x 2-(2即证g (x )=1--)x +ae 1ae x≥0,求导后是可因式分解的二次函数,且两根易求,分别为x =1与x =3-ae .但对于x =3-ae 是否在区间(0,+∞)内不能确定,因此需要进行讨论.解法1采用的是整理为ex x 型函数,解法2则是整理为e xx 型的函数,解法2采用的是直接讨论.对于解法4,观察到所证不等式中含有e x 与ex ,即可联想到e x ≥ex ,为此将待证式整理成a e x -ex -(x -1)2≥0, 借助e x ≥ex ,只需要证明e x -ex -(x -1)2≥0即可.接下来的证明与前述含参讨论的情形大同小异,可直接讨论,也可采用指对处理.1.已知函数f (x )=e x -x (e 为自然对数的底数).ⅰ求函数f (x )的最小值;ⅱ若n ∈N *,证明: n 1n + n 2n +⋯+ n n -1n + n n en <e -1.解析:ⅰ∵f (x )=e x -x ,∴f (x )=e x -1,令f (x )=0,得x =0.∴当x >0时,f (x )>0,当x <0时,f (x )<0.∴函数f (x )=e x -x 在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x =0时,f (x )有最小值1.ⅱ由(1)知,对任意实数x 均有e x -x ≥1,即1+x ≤e x .令x =-nk(n ∈N *,k =1,2,n -1),则0<1-n k ≤e -k n ,∴ 1-nk n≤ e -n k n =e -k (k =1,2,n -1).典例精练学习札记钻研数学钻研数学即n n -k n ≤e -k(k =1,2,n -1).∵ n n n =1 ,∴ n 1n + n 2n +⋯+ n n -1n +n n n ≤e -(n -1)+e -(n -2)+⋯⋅+e -2+e -1+1.∵e -(n -1)+e -(n -2)+⋯+e -2+e -1+1=1-e -n 1-e -1<1-1e-1=e e -1,∴ n 1n + n 2n +⋯+ n n -1n + n n e n <e -1.典例1.已知函数f (x )=x ln -x1.ⅰ求函数f (x )的单调区间;ⅱ证明:在x >21且x ≠1时,f (x )<x 2+43恒成立.解析:f (x ⅰ)=1ln x -1+x(ln x )2(x >0,且x ≠1),令g (x )=ln x -1+x 1,则g (x )=x 1-x 12=x x -21,当x ∈(0,1)时,g (x )<0,g (x )单调递减;当x ∈(1,+∞)时,g (x )>0,g (x )单调递增;故g (x )>g (1)=0,即f (x )>0恒成立,故f (x )在(0,1),(1,+∞)上单调递增.综上,f (x )的单调递增区间为(0,1),(1,+∞),无单调递减区间.ⅱ解法1:放缩法今ℎ(x )=x -1-ln x (x >0),则ℎ (x )=x -x1,当x ∈(0,1),ℎ (x )<0,ℎ(x )单调递减;当x ∈(1,+∞),ℎ (x )>0,ℎ(x )单调递增.故ℎ(x )≥ℎ(1)=0,即x -1≥ln x ,当且仅当x =1时等号成立.因此,当x ∈2 1,1,x -1>ln x ,则x ln -x 1<1,而此时x 2+43>1,所以x ln -x 1<x 2+43;另一方面,x ∈(1,+∞),由(1)可知ln x >1-x 1,对数放缩典例剖析学习札记因此x ln -x 1钻研数学钻研数学<x -1-x 11=x ,而x 2+4故x 2+43-x >0在(1,+∞)恒成立,3>x >x ln -x1成立.3在x >2综上,不等式x ln -x 1<x 2+4解法2:1,且x ≠1时恒成立.等价变形当x ∈ 21,1时, 即证x -2x +431>ln x ;当x ∈(1,+∞),即证x -31<ln x x 2+4;令F (x )=x -3x 2+41-ln x x >21,且x ≠1 ,x 2+则F (x )=43-2x (x -1) x 2+43 2-x 11=-x 4+x 3-22x -43x 9+1632x +4x 2,令G (x )=x 4+x 3-21x 2-43x +169,3则G (x )=4x 3+3x 2-x -4=4x 2 x +4 33- x +4= x +434x 2-1>0,故G (x )单调递增,G (x )>G 2 1=41>0,故F (x )<0,所以F (x )单调递减,而F (1)=0,故当x ∈ 2 1,1时,F (x )>0,即x -2x +431>ln x ;当x ∈(1,+∞)时,F (x )<0,即x -31<ln x x 2+4.综上,不等式x ln -x 1<x 2+43在x >21且x ≠1时成立.典例精练1.已知函数f (x )=a ln x +x 2,其中a ∈R .ⅰ讨论f (x )的单调性;ⅱ当a =1时,证明:f (x )≤x 2+x -1;ⅲ求证:对任意的n ∈N *且n ≥2,学习札记钻研数学钻研数学都有:2 1+2 2 1+3 1+4 2⋯ 1+n 2<e.(其中e ≈2.7183为自然对数的底数).解析:ⅰ函数f (x )的定义域为(0,+∞),f(x )=x a +2x =a +x2x 2,①当a ≥0时,f (x )>0,所以f (x )在(0,+∞)上单调递增,-②当a <0时,令f (x )=0,解得x =a 2.-当0<x <a 2时,a +2x 2<0,所以f (x )<0,0,-所以f (x )在a 2上单调递减;-当x >a 2时,a +2x 2>0,所以f (x )>0,-所以f (x )在a 2 ,+∞ 上单调递增.综上,当a ≥0时,函数f (x )在(0,+∞)上单调递增;0,-当a <0时,函数f (x )在a 2 上单调递减,-在a 2,+∞ 上单调递增.ⅱ当a =1时,f (x )=ln x +x 2,要证明f (x )≤x 2+x -1,即证ln x ≤x -1,即ln x -x +1≤0.即ln x -x +1≤0.设g (x )=ln x -x +1则g (x )=1-xx,令g ′(x )=0得,x =1.当x ∈(0,1)时,g ′(x )>0,当x ∈(1,+∞)时,g ′(x )<0.所以x =1为极大值点,也为最大值点所以g (x )≤g (1)=0,即ln x -x +1≤0.故f (x )≤x 2+x -1.ⅲ证明:由(2)ln x ≤x -1,(当且仅当x =1时等号成立)2,则ln 1+n 1 2<n 12,令x =1+n 1所以ln 1+21 2+ln 1+31 22+⋅⋅⋅+ln 1+n1<212+312+⋅⋅⋅+n 121<1×12+2×3+⋯+n (n 1-1)=11-21+21-31+⋯+n 1-11-n=1-n 1<1=ln e ,2 2 1+31 1+41 22⋯ 1+n 1 1+2即ln 1<ln e ,学习札记钻研数学钻研数学2所以 1+2 2 1+3 1+4 2⋯ 1+n 2<e.典例1. 已知函数f (x )=e x .ⅰ讨论函数g (x )=f (ax )-x -a 的单调性;ⅱ证明:f (x )+ln x +x 3>4x .解析:ⅰg (x )=f (ax )-x -a =e ax -x -a ,g (x )=ae ax -1,①若a ≤0时,g (x )<0,g (x )在R 上单调递减;②若a >0时,当x <-a 当x >-a1ln a 时,g (x )<0,g (x )单调递减;1ln a 时,g (x )>0,g (x )单调递增;综上若a ≤0时,g (x )在R 上单调递减;若a >0时,g (x )在 -∞,-a1ln a 上单调递减 ;在 -a1ln a ,+∞上单调递增;ⅱ证明:要证f (x )+ln x +x 3>4x,只需证x ln x +e x -4x +3>0,由(1)可知当a =1时,e x -x -1≥0,即e x ≥x +1,当x +1>0时,上式两边取以e 为底的对数,可得ln (x +1)≤x (x >-1),用x -1代替x 可得ln x ≤x -1(x >0),又可得ln x 1≤x所以ln x ≥1-x1-1(x >0),1(x >0),所以x ln x +e x -4x +3>x 1-x1+x +1-4x +3=x 2+2x +2-4x=(x +1)2-4x +1≥(2x )2-4x +1=(2x -1)2≥0,指对混合放缩典例剖析学习札记从而不等式f (x )+ln x +钻研数学钻研数学x 3>4x成立. 典例2. 已知函数f (x )=e x -ax 2,g (x )=x ln x -x 2+(e -1)x +1,且曲线y =f (x )在x =1处的切线方程为y =bx +1.ⅰ求a ,b 的值;ⅱ求函数f (x )在[0,1]上的最小值;ⅲ证明:当x >0时,g (x )≤f (x ).解析:ⅰa =1,b =e -2.ⅱf (x )min =1;ⅲ即证:e x +(1-e )x -x ln x -1≥0,因为f (0)=1,且曲线y =f (x )在x =1处的切线方程为y =(e -2)x +1,故可猜测:当x >0且x ≠1时,f (x )的图象恒在切线y =(e -2)x +1的上方.下面证明:当x >0时,f (x )≥(e -2)x +1.解法1:设φ(x )=f (x )-(e -2)x -1(x >0),则φ (x )=e x -2x -(e -2),令F (x )=φ (x ),F (x )=e x -2,当x ∈(0,ln2)时,F (x )<0,φ (x )单调递减;当x ∈(ln2,+∞)时,F (x )>0,φ (x )单调递增.又φ (0)=3-e >0,φ (1)=0,0<ln2<1,φ (ln2)<0所以,存在x 0∈(0,1),使得φ x 0=0.当x ∈ 0,x 0∪(1,+∞)时,φ (x )>0;当x ∈ x 0,1,φ (x )<0;故φ(x )在 0,x 0上单调递增,在 x 0,1上单调递减,在(1,+∞)上单调递增.又φ(0)=φ(1)=0,所以φ(x )=e x -x 2-(e -2)x -1≥0,当且仅当x =1 时取等号.e x +(2-e )x -故1x≥x (x >0).由(2)知,e x ≥x +1,故x ≥ln (x +1),所以x -1≥ln x ,当且仅当x =1时取等号.e x +(2-e )x -所以1x≥x ≥ln x +1,e x +(2-e )x -即1x第11/20页≥ln x +1.所以e x +(2-e )x -1≥x ln x +x ,即e x +(1-e )x -x ln x -1≥0成立(当x =1时等号成立).学习札记故当x >0时,g (x )≤f (x )钻研数学钻研数学.解法2:要证x ln x -x 2+(e -1)x +1≤e x -x 2,等价于证明x ln x +(e -1)x +1-e x ≤0,又x >0,可转化为证明ln x +e -1+x 1-e xx≤0,令F (x )=ln x +e -1+x 1-e xx ,则F(x )=x 1-x 1e x(2-x -1)x 2(x -1=)1-e x x 2,因为x >0,所以当x ∈(0,1)时,F (x )>0,F (x )单调递增;当x ∈(1,+∞)时,F (x )<0,F (x )单调递减;所以F (x )有最大值F (1)=0,故F (x )≤0恒成立,即当x >0时,g (x )≤f (x ).典例精练1.已知函数f (x )=ln x -a 2x 2+ax .ⅰ试讨论f (x )的单调性;ⅱ若a =1,求证:当x >0时,f (x )<e 2x -x 2-2.解析:f (x )的定义域为(0,+∞)ⅰ,当a =0时,当a >0f (x )=ln x 在(0,+∞)上单调递增;时,f ′(x )=x1-2a 2x +a=-2a 2x 2+ax +1x=-(ax -1)(2ax +1)x,当0<x <a 1时,f ′(x )>0,当x >a1时,f ′(x )<0,所以f (x )在 0,a 1上单调递增,在 a1,+∞上单调递减;f ′(x )=-(ax -1当a <0时,)(2ax +1)x,当0<x <-21a 时,f ′(x )>0,当x >-21a时,f ′(x )<0, 所以f (x )在 0,-21a 上单调递增,在 -21a,+∞上单调递减.ⅱ当a =1时,f (x )=ln x -x 2+x ,要证当x >0时,f (x )<e 2x -x 2-2,只需证ln x <e 2x -x -2.学习札记令g (x )=e 2x -2x -1,则g ′(x )=2e 2x -2=2(e 2x -1)钻研数学钻研数学,当x >0时,g ′(x )>0,所以g (x )在(0,+∞)上单调递增,所以g (x )>g (0)=0,所以,当x >0时,e 2x >2x +1,所以e 2x -x -2>x -1.令h (x )=x -1-ln x ,x >0,则h ′(x )=1-x1,当0<x <1时,h ′(x )<0,当x >1时,h ′(x )>0,所以h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以h (x )min =h (1)=0,所以当x >0时,h (x )≥h (1)=0,即当x >0时,x -1≥ln x ,所以,当x >0时,所以,当x >0时,e 2x -x -2>x -1≥ln x ,即ln x <e 2x -x -2,f (x )<e 2x -x 2-2.典例1. 设a >0,且a ≠1,函数f (x )=sin ax -a sin x .ⅰ若f (x )在区间(0,2π)上有唯一极值点x 0, 证明:f x 0<min {2a π,(1-a )π};ⅱ若f (x )在区间(0,2π)没有零点,求a 的取值范围.解析:f (x )=a cos ax -a cos ⅰx=a (cos ax -cos x )=-2a sin a +21x sin a -21x ,若a >1,则f (x )在区间(0,2π)至多有x 1=a 2π+1,x 2=a 4π+1两个变号零点,故0<a <1,令f (x )=0,得x m =a 2m +π1,x n =a 2n +π1,其中m ,n ∈Z ,仅当m =1时,x 1=a 2π+1∈(0,2π),且在x 1的左右两侧,导函数的值由正变负,故当0<a <1时,f (x )在区间(0,2π)有唯一极值点x 0=a 2π+1,此时f x 0=sin ax 0-a sin x 0.解法1:将x 0=a 2π +1代入得f x 0=sin a 2+a π1-a sin a 2π+1三角函数放缩典例剖析学习札记=sina 2+a 钻研数学钻研数学π1+a sin 2π-a 2π+1=(1+a )sin a 2+aπ1,①当a 2+a 1≤21,即0<a ≤31时,2a π≤(1-a )π,由不等式x >0,sin x <x 知:(1+a )sin a 2+a π1<(1+a )a 2+a π1=2a π;②当a 2+a 1>21,即当31<a <1时,(1-a )π<2a π,(1+a )sin a 2+a π1=(1+a )sin π-a 2+a π1=(1+a )sin (1a -+a 1)π,由不等式x >0,sin x <x知:(1+a )sin a 2+a π1<(1+a )(1a -+a 1)π=(1-a )π.由(1)(2)知f x 0<min {2a π,(1-a )π} .解法2:由x 0=a 2π+1⇒ax 0=2π-x 0,a =2π-1x 0,代入得f x 0=sin ax 0-a sin x 0=sin 2π-x 0- x 02π-1sin x 0 ,即f x 0=- 2πsin x 0x 0. 以下用分析法可证:f x 0<min {2a π,(1-a )π}.ⅱ①当a >1时,fa π-a sin a π=-a sin aπ<0,f 3π 2 2=sin 3a π=sin a ⋅a π+a >0,所以f a πf 3π2<0,π,3π由零点存在性定理知,f (x )在区间 a 2至少有一个零点;②当21<a <1时,π<a π<2π,π2<a π<π,π<2a π<2π,f a π=-a sin aπ>0,f (π)=sin a π>0,f (2π)=sin2a π<0,由零点存在定理可知,f (x )在区间(π,2π)至少有一个零点;③当0<a ≤21时,f (x )=a cos ax -a cos x =a (cos ax -cos x ),令g (x )=cos ax -cos x ,则g (x )=-a sin ax +sin x ,在区间(0,π)上,cos ax >cos x ,f (x )>0,f (x )是增函数;在区间(π,2π)上,g (x )<0,即g (x )递减,即f (x )递减,f (x )<f (2π)<0,故f (x )在(0,π)上递增,在(π,2π)上递减,学习札记又f (0)=0,f (π)=sin a π>0,f (2π)=sin2a π≥0,即在(π,2π)上,f (x )>0.所以f (x )在区间(0,2π)上没有零点,满足题意.综上所述,若f (x )在区间(0,2π)没有零点钻研数学钻研数学,则正数a 的取值范围是 0,21.典例1. 已知函数f (x )=e x -ax -cos x ,其中a ∈R .ⅰ求证:当a ≤-1时,f (x )无极值点;ⅱ若函数g (x )=f (x )+ln (x +1),是否存在a ,使得g (x )在x =0处取得极小值?并说明理由.解析:ⅰ证明:f (x )=e x -a +sin x ,显然e x >0,-1≤sin x ≤1,当a ≤-1时,e x -a +sin x >0-a -1≥0,即f (x )>0,所以函数f (x )在其定义域上为增函数,故f (x )无极值点;1ⅱg (x )=e x -ax -cos x +ln (x +1),g (x )=e x -a +sin x +x +1,显然x =0是g (x )的极小值点的必要条件,为g (0)=2-a =0,即a =2.1此时g (x )=e x +x +1+sin x -2,显然当x ∈ 0,π2时,1g (x )=e x +x +11+sin x -2>1+x +x +1+sin x -2>sin x >0,当x ∈ -4 1,0时,(1+x ) 1-x +3 2x 2=1+x 22(3x +1)>1,1故1+x <1-x +32x 2,2令m (x )= 1+x +x 2e -x ,则m (x )=-x 22e -x ≤0,故m (x )是减函数,故当x <0时,m (x )>m (0)=1,即e x<1+x +x 22,令ℎ(x )=sin x -21x ,则ℎ (x )=cos x -21,当-1<x <0时,ℎ (x )>cos1-21>0,故ℎ(x )在(-1,0)单调递增,故当-1<x <0时,ℎ(x )<ℎ(0)=0,即sin x <21x ,含三角函数的指对放缩典例剖析学习札记钻研数学钻研数学故当x ∈ -41,0时,g (x )=e x +x 1+1+sin x -22≤ 1+x +x 2+ 1-x + 32x 2-2+x2=2x 2+x2<0,因此,当a =2时,x =0是g (x )的极小值点,即充分性也成立.综上,存在a =2,使得g (x )在x =0处取得极小值.点评:本题第(2)问先由必要性探路可知a =2,再证明当a =2时,x =0是函数g (x )的极小值点,即证明其充分性,由此即可得出结论.典例2. 已知函数f (x )=2ln (x +1)+sin x +1,函数g (x )=ax -1-ln x (a ∈R ,且a ≠0).ⅰ讨论函数g (x )的单调性;ⅱ证明:当x ≥0时,f (x )≤3x +1;ⅲ证明:当x >-1时,f (x )< x 2+2x +2e sin x .解析:ⅰg (x )定义域为(0,+∞),g (x )=a -x 1=ax x-1.当a <0时,g (x )<0,则g (x )在(0,+∞)上单调递减;当a >0时,令g (x )>0,得x >a1,即g (x )在 a1,+∞上单调递增;令g (x )<0,得0<x <a 1,得g (x )在 0,a1上单调递减.综上所述,当a <0时,g (x )在(0,+∞)上单调递减;1,+∞上单调递增,在 0,a1上单调递减.当a >0时,g (x )在 a ⅱ解法1:作差法+直接求导2设函数ℎ(x )=f (x )-(3x +1),则ℎ (x )=x +1+cos x -3.2因为x ≥0,所以x +1∈(0,2],cos x ∈[-1,1],则ℎ (x )≤0,从而ℎ(x )在[0,+∞)上单调递减,所以ℎ(x )=f (x )-(3x -1)≤ℎ(0)=0,即f (x )≤3x +1.解法2:常用不等式+兵分两路当a =1时,g (x )=x -1-ln x ,由(1)知g (x )min =g (1)=0,学习札记钻研数学钻研数学所以ln x ≤x -1,所以2ln (x +1)≤2x .令φ(x )=x -sin x ,则φ(x )=1-cos x ≥0恒成立,又φ(0)=0,所以当x ≥0时,有φ(x )=x -sin x ≥0,即sin x ≤x .所以f (x )=2ln (x +1)+sin x +1≤2x +x +1=3x +1.ⅲ证明:当a =1时,g (x )=x -1-ln x ,由ⅰ知g (x )min =g (1)=0,所以x ≥ln x +1,当x >-1时,(x +1)2>0,(x +1)2e sin x >0,所以(x +1)2e sin x >ln (x +1)2e sin x +1=2ln (x +1)+sin x +1.从而 x 2+2x +2e sin x >(x +1)2e sin x>ln (x +1)2e sin x +1=2ln (x +1)+sin x +1=f (x ),所以f (x )< x 2+2x +2e sin x .典例精练1.已知函数f (x )=x e +xa(a ∈R )在x =0处取得极值.ⅰ求a ,并求f (x )的单调区间;ⅱ证明:当0<m ≤e ,x ∈(1,+∞)时,xe x -2-m (x -1)ln x >0.解析:f (x )=1-e ⅰx x-a,由题意可得,f (0)=1-a =0,故a =1,f (x )=1e +x x ,f (x )=-exx ,由f (x )>0可得x <0,故函数单调递增区间(-∞,0),由f (x )<0可得x >0,故函数单调递减区间(0,+∞),ⅱ证明:由(1)可知f (x )在(-∞,0)上单调递增,在(0,+∞)单调递减,故f (x )≤f (0)=1,即x e+x1≤1,故e x ≥x +1,所以e x -2≥x -1,当且仅当x =2时取等号,又因为x >0,所以xe x -2≥x (x -1),所以xe x -2-m (x -1)ln x≥x (x -1)-m (x -1)ln x =(x -1)(x -m ln x ),因为x >1,所以ln x >0,因为0<m ≤e ,所以x -m ln x ≥x -e ln x ,令g (x )=x -e ln x ,则g (x )=1-xe,学习札记由g (x )>0可得,x >e ,故g (x )在(e ,+∞)上单调递增,由g(x )<0可得,x <e ,故g (x )在(-∞,e )上单调递减,所以g (x )≥g (e )=0,即x -e ln x ≥0在x =e 处取得等号,所以xe x -2-m (x -1)ln 钻研数学钻研数学x≥(x -1)(x -m ln x )≥(x -1)(x -e ln x )≥0,由于取等条件不同,所以xe x -2-m (x -1)ln x >0.2.已知函数f (x )=ln x -x e.ⅰ若曲线y =f (x )存在一条切线与直线y =ax 垂直,求a 的取值范围.ⅱ证明:f (x )<x 2-ln x -43sin x .解析:f (x )=ⅰx 1-e 1.因为f (x )的定义域为(0,+∞),所以x 1-e 1>-e1.因为曲线y =f (x )存在一条切线与直线y =ax 垂直,所以-a 1>-e1,解得a <0或a >e ,则a 的取值范围为(-∞,0)∪(e ,+∞).ⅱf (x )=x 1-e 1=e xe-x.当x ∈(0,e )时,f (x )>0;当x ∈(e ,+∞)时,f (x )<0.所以f (x )max =f (e )=ln e -ee=0.设函数g (x )=x 2-ln x ,则g(x )=2x -x 1=2x x2-1.2当x ∈ 0,22时,g (x )<0;当x ∈ 2,+∞时,g(x )>0.2所以g (x )min =g 2=21-21ln 21=21+21ln2.因为ln2>ln e =21,g (x )min >43.因为43,43sin x ∈ -4 3,所以x 2-ln x -43sin x >0.又f (x )≤f (x )max =0,所以f (x )<x 2-ln x -43sin x .3.已知函数f (x )=x ln x +32x 2-(a +1)x +b .ⅰ当a =3时,求f (x )的单调区间;ⅱe 为自然对数的底数,若a ∈ e 3-1,3e +1时,f (x )≥0恒成立,学习札记证明:b -2a +6>0钻研数学钻研数学.解析:ⅰ当a =3时,f (x )=x ln x +32x 2-4x +b ,则f (x )=ln x +3x -3在(0,+∞)上单调递增,又f (1)=0,故当x ∈(0,1)时,f (x )<0,f (x )单调递减;当x ∈(1,+∞)时,f (x )>0,f (x )单调递增.综上,当a =3时,f (x )的单调咸区间为(0,1),单调增区间为(1,+∞).ⅱ解法1:对f (x )求导,得f (x )=ln x +3x -a ,知f (x )在(0,+∞)上单调递增.因为a ∈ e 3-1,3e +1 ,故f e 1= e3-1-a <0,f (e )=3e +1-a >0,故存在唯一x 0∈ e1,e ,使得f x 0=0 ,即ln x 0+3x 0-a =0,所以a =ln x 0+3x 0.当x ∈ 0,x 0时,f (x )<0,f (x )单调递减;当x ∈ x 0,+∞时,f (x )>0,f (x ) 单调递增.又f (x )≥0,故f (x )min =f x 0=x 0ln x 0+ 32-(a +1)x 0+b ≥02x 0,即x 0ln x 0+32x 0 2- ln x 0+3x 0+1x 0+b =-32-x 0+b ≥2x 00在x 0∈ e 1,e 上恒成立.令ℎ(x )=-32x 2-x +b ,则ℎ(x )在 e1,e 上单调递减,故只需ℎ(e )=-3故b -2a +6≥32e 2-e +b ≥0,即b ≥32e 2+e -6e -2+6=32e 2+e ,2e 2-5e +4>0,从而得证.解法2:转化为关于x 0的函数所以b ≥32+x 02x 0,则b -2a +6≥32x 0 2+x 0-2 ln x 0+3x 0+6=32-5x 0-2ln x 0+62x 0,令ℎ(x )=32x 2-5x -2ln x +6 e1<x <e ,则ℎ (x )=3x -5-x 2=3x 2-x (3x +5x -2=1)(x -2)x,令ℎ x 0=0,得x =2.学习札记钻研数学钻研数学当x ∈e1,2,ℎ (x )<0,ℎ(x )单调递减 ;当x ∈(2,e )时,ℎ (x )>0,ℎ(x )单调递增.故ℎ(x )min =ℎ(2)=32×4-10-2ln2+6=2(1-ln2)>0,即b -2a +6>0,从而不等式得证.。
高中数列放缩法技巧大全
高中数列放缩法技巧大全证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-nk k 12142的值; (2)求证:21153nk k=<∑. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn knk (2)因为22211411214121214n n n n n ⎛⎫<==- ⎪--+⎝⎭-, 所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 技巧积累:(1)2221441124412121n n n n n ⎛⎫=<=- ⎪--+⎝⎭(2)1211211(1)(1)(1)(1)n n C C n n n n n n n +==-+--+ (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r rr r r r n r n r n n C T r r rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn n n 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n(8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10)!)1(1!1!)1(+-=+n n n n(11)21212121222)1212(21-++=-++=--+<n n n n n n n(12))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n (13)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (14)3212132122)12(332)13(2221nn n nnnnnn <-⇒>-⇒>-⇒>⋅-=⋅=+(15)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k(16) )2(1)1(1≥--<+n n n n n(17)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n , 所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222n nn -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案(4)首先n n n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式 知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知mmmmm n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n.解析:首先可以证明:nx x n+≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n nn111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:111111111111111[(1)](1)(1)1(1)(1)2[(1)]nnm m m m m m m m m m k k n m m k kk m k n n n n n k k +++++++++==++=--<+<+-=+-+--++-=+-∑∑∑ 故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.例6.已知nnn a 24-=,nnn a a a T +++= 212,求证:23321<++++nT T T T . 解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以111111222244442(41)2(12)222333333232432222(2)321nn nn n n n n n n n nn n n n T ++++++===-+--+-+-⋅==⋅-⋅+⋅-⋅+ ⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫⎝⎛---++-+-=+++++n n n T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++ 因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数x x x f ln )(=,得到22ln ln nn n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案 函数构造形式:当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=, 首先:⎰-<nin ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n ni n --==<⋅--⎰ 取1=i 有,)1ln(ln 1--<n n n, 所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDE x S 1,从而有)ln(ln |ln 11i n n x xi i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++ 例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知112111,(1).2n n na a a n n +==+++证明2n a e <. 解析: n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21n n n n a 211ln 2+++≤。
二项式系数之和用于放缩
二项式系数之和用于放缩在数学中,二项式系数是一种非常常见且重要的数学概念。
它们不仅在数学推导和证明中发挥着关键的作用,还在概率论、组合数学以及离散数学等领域中得到广泛应用。
本文将介绍二项式系数的定义和性质,并通过一个简单的例子来说明如何利用二项式系数之和来进行放缩计算。
一、二项式系数的定义二项式系数,也称作二项式展开系数,是指在二项式展开式中各项的系数。
对于正整数n和非负整数k,二项式系数可以用符号C(n, k)或表示。
其定义如下:C(n, k) = n! / (k! * (n-k)!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。
而0!定义为1。
二项式系数C(n, k)表示从n个元素中选择k个元素的组合数。
二、二项式系数的性质1. 对称性:二项式系数满足对称性,即C(n, k) = C(n, n-k)。
这个性质可以通过二项式系数的定义进行证明。
2. 递推关系:二项式系数之间存在递推关系。
具体来说,C(n, k) = C(n-1, k) + C(n-1, k-1)。
这个递推关系可以用来计算较大的二项式系数。
三、二项式系数之和的应用现在,我们将通过一个例子来说明二项式系数之和的应用。
假设我们需要计算下面的和式:S = C(n, 0) + C(n, 1) + C(n, 2) + ... + C(n, n)其中,n为一个正整数。
我们可以利用递推关系来进行放缩计算。
首先,我们知道C(n, 0) = 1,即只选择0个元素的组合只有一种。
同时,由对称性可得C(n, n) = 1,即只选择n个元素的组合也只有一种。
然后,我们观察C(n, k) = C(n-1, k) + C(n-1, k-1)这个递推关系。
可以发现,这个递推关系可以将和式中的每一项都通过前一项和前一项的前一项来表示。
我们可以按照这个递推关系逐步计算各项。
具体步骤如下:1. 初始化S为0。
2. 对于k从0到n,依次计算C(n, k)并累加到S中。
二次函数的压缩与伸缩规则详解与应用
二次函数的压缩与伸缩规则详解与应用二次函数是一种非常重要的数学函数,具有广泛的应用领域。
在研究二次函数时,我们需要了解其压缩与伸缩规则,这对于深入理解和应用二次函数至关重要。
本文将详细解析二次函数的压缩与伸缩规则,并探讨其在实际问题中的应用。
一、二次函数的基本形式一个一般的二次函数的基本形式如下:y = ax^2 + bx + c其中,a,b,c是常数,且a ≠ 0。
在这个基本形式中,我们可以看到x的最高次数为2,因此这是一个二次函数。
a、b、c分别代表二次项系数、一次项系数和常数项。
二次函数的图像是一个抛物线。
二、二次函数的压缩与伸缩规则1. 压缩规则当a>1时,抛物线会沿y轴向内收缩,造成图像变窄;当0<a<1时,抛物线会沿y轴向外扩展,造成图像变宽。
这是因为二次函数的二次项系数a的取值会对抛物线的形态产生影响。
a的绝对值越大,抛物线越窄;a的绝对值越小,抛物线越宽。
当a的绝对值大于1时,说明a的取值范围大于1,抛物线会被压缩;当a的绝对值小于1时,说明a的取值范围在0到1之间,抛物线会被放大。
2. 伸缩规则当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
这是因为二次函数的二次项系数a的正负会改变抛物线的开口方向。
当a的取值为正时,说明抛物线的开口朝上;当a的取值为负时,说明抛物线的开口朝下。
三、二次函数压缩与伸缩规则的应用示例接下来,我们通过一些实际的例子来应用二次函数的压缩与伸缩规则。
例1:某公司的销售额与广告费用之间存在一定的关系。
已知当广告费用为1000元时,销售额为5000元;当广告费用为2000元时,销售额为4000元。
利用二次函数的压缩与伸缩规则,求出该公司的销售额与广告费用之间的二次函数关系。
解:我们设广告费用为x,销售额为y,根据已知条件可以得到两个关系式:当x = 1000时,y = 5000;当x = 2000时,y = 4000。
两个条件收敛相加口诀
两个条件收敛相加口诀收敛相加口诀:收敛相乘以一,二次式收敛和次函数,不能收敛加减法,算了吧,又是二次函数。
下面结合一个经典案例说一下收敛相加的方法。
下面是这个经典案例:例1:三个周期都不收敛,用“二次”函数(不太难掌握)求最大值。
一、先理解什么是“二次”函数二次函数就是一次函数,只存在于二次方程中。
所以,二次式也叫“二次”函数。
它是用来描述两个相反的函数。
一般情况下,两个函数是互斥关系:一个函数等于另一个函数之和。
所以我们说一个函数不能用另一个函数来表示。
二次方程中存在多种解式:如(1)、(2)等。
所以二次方程只能用另一种解式表示。
二次方程不存在其它解式。
二、看定义域、参数和函数我们可以看到,参数的作用就是求最大值,参数函数(条件收敛)就是给函数赋予唯一值,参数函数没有给出。
接下来我们看一下二次函数“收敛相乘以一”是怎么回事。
定义域是n (n是第一个周期0)。
参数函数是把变量写在变量表里。
下面看一下如何计算最大值(这个时候用到了多项式):这就是“二次函数”在计算中得到的结果。
如果是连续变量 m (k)=(0-1)(k~1)=0 (1~2)(2~3)(3~4)/1 (0~1)=0 (2~3)+1 (1~2)=0 (2~3)+1 (2~3)=0 (1~2))=0(2~3)÷0 (2~3)=0 (1~2)×0 (1~2)=0 (1~2)×0 (1~2)=0 (2~3)×0 (1~2)=0 (2~3)=0(1~3)×0 (1~3)=0 (2~4)=0 (1~4)×0 (1~2)+1 (2~4)×0 (1~3)=0 (2·2)=-11]。
三、计算结果这道题的计算步骤就是将三个函数求最大值。
这里三个函数分别是“二次”,“一次”。
然后求解方程(三次函数中的最大值)。
先将其中任意一个先求出最大值为2,然后求得该函数在解方程中的最大值:()+2*2=2。
高中数学放缩法公式
“放缩法”证明不等式的基本策略1、添加或舍弃一些正项(或负项)例1、已知*21().n n a n N =-∈求证:*122311...().23n n a a a n n N a a a +-<+++∈ 证明:111211111111.,1,2,...,,2122(21)2 3.222232k k k k k k kk a k n a +++-==-=-≥-=--+-1222311111111...(...)(1),2322223223n n n n a a a n n n a a a +∴+++≥-+++=-->-*122311...().232n n a a a n nn N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小。
由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。
本题在放缩时就舍去了22k-,从而是使和式得到化简.2、先放缩再求和(或先求和再放缩)例2、函数f (x )=xx 414+,求证:f (1)+f (2)+…+f (n )>n +)(2121*1N n n ∈-+. 证明:由f (n )=nn 414+=1-1111422n n>-+⋅ 得f (1)+f (2)+…+f (n )>n22112211221121⋅-++⋅-+⋅-)(2121)2141211(41*11N n n n n n ∈-+=++++-=+- .此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。
如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。
分子分母都为二次项的最值
分子分母都为二次项的最值在数学中,我们经常遇到求函数的最值问题。
当函数的分子和分母都是二次项时,我们可以通过一些方法来求得函数的最值。
本文将介绍两种常见的方法:配方法和导数法。
一、配方法配方法,顾名思义就是将函数进行配方,将分子和分母中的二次项进行化简。
通过配方法,我们可以将函数转化为一个更简单的形式,从而更容易求得其最值。
以一个简单的例子来说明配方法的应用。
假设我们要求函数f(x) = (x^2 + 2x + 1)/(x^2 - 3x + 2)的最值。
首先,我们可以对分子和分母进行配方:f(x) = [(x + 1)^2]/[(x - 1)(x - 2)]接下来,我们可以观察函数的性质。
当分子大于零时,函数值大于零;当分子小于零时,函数值小于零。
因此,我们可以得到以下结论:函数的最值出现在分子等于零的时候。
(x + 1)^2 = 0解得 x = -1。
将x = -1代入函数中,可以求得函数的最值为1/2。
所以,函数f(x)的最值为1/2,当且仅当x = -1。
二、导数法导数法是另一种求函数最值的常用方法。
通过求函数的导数,我们可以得到函数的极值点。
当导数等于零时,函数取得极值。
继续以前面的例子来说明导数法的应用。
我们要求函数f(x) = (x^2 + 2x + 1)/(x^2 - 3x + 2)的最值。
首先,我们可以对函数进行化简:f(x) = [(x + 1)^2]/[(x - 1)(x - 2)]接下来,我们需要求函数的导数。
通过对函数进行求导,我们可以得到:f'(x) = [(x - 1)(x - 2) * 2(x + 1) - (x + 1)^2 * (x - 2 - x + 1)]/[(x - 1)^2(x - 2)^2]化简后得到:f'(x) = (x - 1)(x - 2)/[(x - 1)^2(x - 2)^2]接下来,我们需要找到导数等于零的点。
即求解方程:(x - 1)(x - 2) = 0解得 x = 1, 2。
二项式定理放缩
二项式定理放缩二项式定理是代数学中的一个重要定理,描述了任意实数或复数的幂的二项展开形式。
它是基于二项系数的概念,将幂次的二项式展开为一系列项的和。
本文将为你详细介绍二项式定理及其应用。
首先来看二项式系数,即二项式展开中的系数。
二项式系数可以使用组合数来表示,记作C(n, k)或(n choose k),表示从n个元素中选择k个元素的组合数。
它的计算公式为:C(n, k) = n! / (k! * (n - k)!)其中,n!表示n的阶乘,即n! = n * (n - 1) * (n - 2) * … * 2 * 1。
二项式定理可以写作:(x + y)^n = C(n, 0) * x^n * y^0 + C(n, 1) * x^(n-1) * y^1 + C(n, 2) * x^(n-2) * y^2 + … + C(n, n-1) * x^1 * y^(n-1) + C(n, n) * x^0 *y^n其中,n为非负整数,x和y为实数或复数。
二项式定理展示了一个多项式的规律,可以方便地计算多项式的每一项。
利用二项式定理,我们可以通过展开二项式来求解复杂的数学问题。
二项式定理有许多应用。
以下是其中几个常见的应用:1. 幂的展开:通过二项式定理,我们可以很容易地展开幂的表达式。
例如,(a + b)^3的展开为:a^3 + 3a^2b + 3ab^2 + b^3。
这在代数运算中非常有用,可以简化多项式的计算过程。
2. 组合数学:二项式定理与组合数学有着密切的关系。
组合数可以用来计算二项式系数,而二项式定理则为计算组合数提供了数学基础。
组合数在离散数学、概率论等领域有广泛应用,如排列组合、二项式分布等等。
3. 概率问题:二项式定理在概率论中有很多应用。
例如,当我们有一个事件的概率为p,重复实验n次时,可以使用二项式定理来计算特定事件发生的概率。
这就是二项分布的应用,它在统计学、实验设计等领域中非常常见。