聚乙烯概述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.概述

1.1 PE塑料材料结构与性能及用途

1.1.1聚乙烯结构

聚乙烯(PE)塑料一种,我们常常提的方便袋就是聚乙烯(PE).聚乙烯是结构最简单的高分子,也是应用最广泛的高分子材料.聚乙烯是通过乙烯(CH2=CH2 )的加成聚合而成的。

聚乙烯的性能取决于它的聚合方式。在中等压力(15-30大气压)有机化合物催化条件下进行聚合而成的是高密度聚乙烯(HDPE)。这种条件下聚合的聚乙烯分子是线性的,且分子链很长,分子量高达几十万。如果是在高压力(100-300MPa),高温(190–210C),过氧化物催化条件下自由基聚合,生产出的则是低密度聚乙烯(LDPE),它是支化结构的。

聚乙烯是半结晶热塑性材料。它们的化学结构、分子量、聚合度和其他性能很大程度上均依赖于使用的聚合方法。聚合方法决定了支链的类型和支链度。结晶度取决于聚合物的化学结构和加工条件。

聚乙烯(PE)的分类

1.1.2聚乙烯性能

物理性质

1 聚乙烯为白色、蜡状半透明材料,具有优越的介电性能。

2 易燃烧,且离火后继续燃烧。

3 透水率低,对有机蒸汽透过率则较大。

4 透明度随结晶度增加而下降,在一定结晶度下,透明度随分子量增加而提高。

5 高密度聚乙烯熔点范围为132~135℃,低密度聚乙烯熔点较低﹙112℃﹚且范围宽。

6 常温下不溶于任何已知溶剂中,70℃以上可少量溶解于甲苯、乙酸戊酯、三氯乙烯等溶剂中。

化学性质

1 具有优异的化学稳定性,室温下耐盐酸、氢氟酸、磷酸、甲酸、胺类、氢氧化钠、氢氧化钾等各种化学物质,硝酸和硫酸对聚乙烯有较强的破坏作用。

2 聚乙烯容易光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解,炭黑对聚乙烯有优异的光屏蔽作用。

3 受辐射后可发生交联、断链、形成不饱和基团等反应。

☆一般性能

聚乙烯树脂为无毒、无味的白色粉末或颗粒,外观呈乳白色,有似蜡的手感,吸水率低,小于0.01%。聚乙烯膜透明,并随结晶度的提高而降低。聚乙烯膜的透水率低但透气性较大,不适于保鲜包装而适于防潮包装。易燃、氧指数为17.4,燃烧时低烟,有少量熔融落滴,火焰上黄下篮,有石蜡气味。聚乙烯的耐水性较好。制品表面无极性,难以粘合和印刷,经表面处理有所改善。支链多其耐光降解和耐氧化能力差。

☆力学性能

聚乙烯的力学性能一般,拉伸强度较低,抗蠕变性不好,耐冲击性好。冲击强度LDPE >LLDPE>HDPE,其他力学性能LDPE<LLDPE<HDPE。主要受密度、结晶度和相对分子质量的影响,随着这几项指标的提高,其力学性能增大。耐环境应力开裂性不好,但当相对分子质量增加时,有所改善。耐穿刺性好,其中LLDPE最好。

☆热学性能

聚乙烯的耐热性不高,随相对分子质量和结晶度的提高有所改善。耐低温性能好,脆性温度一般可达-50℃以下;并随相对分子质量的增大,最低可达-140℃。聚乙烯的线膨胀系数大,最高可达(20~24)×10-5/K。热导率较高。

☆电学性能

因聚乙烯无极性,所以具有介电损耗低、介电强度大的电性能优异,即可以做调频绝缘材料、耐电晕性塑料,又可以做高压绝缘材料。

1.1.3用途

高压聚乙烯:一半以上用于薄膜制品、其次是管材、注射成型制品、电线包裹层等。

中低压聚乙烯:以注射成型制品、中空制品为主。

超高压聚乙烯:由于超高分子聚乙烯优异的综合性能,可作为工程塑料使用。

1.2 PE的合成原理

生产聚乙烯的反应属于加聚类型的反应,其反应大致分为下列三个阶段:链引发,链增长,链终止。

①链引发反应:

链引发反应是形成单体自由基活性种的反应。由下列两步反应:

第一步:引发剂I分解,形成初级自由基。

反应特征:吸热反应,活化能高,约105~150kJ/mol,反应速率小。

第二步:初级自由基与单体加成,形成单体自由基。(对于聚乙烯X表示H)

反应特征:放热反应,活化能低,约20~34kJ/mol,反应速率大。

②链增长反应:在链引发阶段形成的单体自由基不断地和单体分子结合生成链自由基的过程,实际上是加成反应。

反应特征:放热反应,烯类单体聚合热约55~95kJ/mol;增长活化能低,约20~34kJ/m ol,增长速率极高,增长速率常数约102~104,在0.01~几秒钟内,就可以使聚合度达到数千,甚至上万。在链增长反应过程中,不仅研究反应速率,还需考察增长反应对大分子微结构的影响。

③链终止反应:在一定条件下,增长链自由基失去活性形成稳定聚合物分子的反应。终止反应有偶合终止和歧化终止两种方式。

偶合终止:两链自由基的独电子相互作用结合成共价键的终止反应。

偶合终止所得大分子的特征:

大分子的聚合度为链自由基重复单元数的两倍;

若有引发剂引发聚合,大分子两端均为引发剂残基。

歧化终止:某链自由基夺取另一链自由基相邻碳原子上的氢原子或其它原子的终止反应。

歧化终止所得大分子的特征:

大分子的聚合度与链自由基中单元数相同;

每个大分子只有一端为引发剂残基,其中,一个大分子的另一端为饱和,而另一个大分子的另一端为不饱和。

链终止反应特征:活化能很低,只有8~21kJ/mol,甚至为零;终止速率常数极高,约104~106;链双基终止受扩散控制。链终止类型与单体种类和聚合条件有关,低温有利于偶合终止,升温有利于岐化终止。

注:链增长和链终止是一对竞争反应,主要受反应速率常数和反应物质浓度的大小影响。

任何自由基聚合都含有链引发、链增长、链终止三步基元反应,由于引发速率最小,是控制整个聚合速率的关键

1.3中压溶液法合成PE工艺

溶液法

聚合在溶剂中进行,但乙烯和聚乙烯均溶于溶剂中,反应体系为均相溶液。反应温度(≥140℃)、压力(4~5MPa)较高。

特点:①采用环己烷作溶剂, 乙烯与α烯烃主要是1一丁烯和1一辛烯进行均相聚合,操作平稳,容易控制。但溶液循环系统流程较长。

②催化剂配制简单, 使用也不复杂, 并且在较高的反应温度下很稳定, 使用一种催化剂体系便可以生产所有牌号的聚乙烯产品。

③聚合反应在200一300℃和10一13MPa条件下进行, 反应产物呈熔融状态, 不存在气相聚合工艺的“爆聚”或“结块”等问题。

④聚合反应速率高, 乙烯单程转化率一般可控制在95%左右未反应的乙烯和共聚单体可进行回收。

相关文档
最新文档