福州一中2017年高中招生(面向福州以外地区)数学试卷(含答案)

合集下载

2017福建中考数学试卷解析完整版

2017福建中考数学试卷解析完整版

A.-3
B. 1
C. 1
D.3
3
3
【分析】直 接 根 据 相 反 数 的 定 义 进 行 解 答 即 可 .
【答案】D. 解 : -3 的 相 反 数 是 : 3 ,故 选 D.
【关键词】相 反 数 .
2.(2017 福建,题号 2,分值 4)如图,由四个正方体组成的几何题的左视图是
(A)
(B)
B.1.36 105
C.136 103
D.1.36 106
【分析】科学记数法的表示形式为 a 10n 的形式,其中1 a 10 , n 为整数.确定 n 的 值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数绝对值>1 时, n 是正数;当原数的绝对值<1 时, n 是负数. 【答案】B. 解:136000 1.36 105 ,故选:B.
6.(2017
福建,题号
6,分值
4)不等式组:
x x

2 3

0 0
的解集是
A. 3 x 2
B. 3 x 2
C. x 2
D. x 3
【分析】根据解不等式组的方法可以求得原不等式组的解集.
【答案】A 解 x 2 0 x 3 0
解不等式①,得: x 2 , 解不等式②,得 x 3 , 由①②可得, 3 x 2 , 故原不等式组的解集是 3 x 2 ,故选 A.
2017 福建中考解析--福建数学团队出品
2017 年福建省中考数学试卷
满分:150 分 版本:人教(北师,华师大)
由宁德屏南张小锋,福安郑惠,福鼎雷少华,方光德,金良快共五位老师解析.

福建省2017年中考数学真题试题(含解析)

福建省2017年中考数学真题试题(含解析)

福建省2017年中考数学真题试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .-3 B .13- C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A. 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B. 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 【答案】B【解析】13600=1.36³105,故选B. 4.化简2(2)x 的结果是( )A .4xB .22xC . 24x D .4x 【答案】C【解析】(2x )2=4x 2;故选C.5.下列关于图形对称性的命题,正确的是( ) A .圆既是轴对称性图形,又是中心对称图形 B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形 【答案】A点睛:本题主要考查中心对称图形与轴对称图形的知识,能正确地区分是解题的关键.6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x ≤2,由②得x>-3,所以解集为:-3<x ≤2,故选A.7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15 【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D. 8.如图,AB 是O e 的直径,,C D 是O e 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠ 【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ) A .3 B .4 C .5 D .6 【答案】C10.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区 【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分.11.计算023--= . 【答案】1【解析】原式=2-1=1.12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 【答案】红球(或红色的)14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .【答案】7【解析】∵AB=2,BC=2AB ,∴BC=4,3+4=7,故点C 表示的数是7.15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC【答案】1a+1 . 【解析】试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可. 试题解析:原式=()()11111a a a a a a -=+-+ ,当时,原式2.18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证: A D ∠=∠.【答案】证明见解析. 【解析】19.如图,ABC ∆中,90,BAC AD BC ∠=⊥o ,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】试题分析:按作图方法作出角平分线BQ ,然后通过利用互为余角以及等角的余角相等得到∠APQ=∠ AQP,从而证得AP=AQ.试题解析:作图如下,BQ 就是所求作的∠ABC 的平分线,P 、Q 就是所求作的点.证明如下:∵AD ⊥BC ,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD ,∴∠BPD=∠AQP ,∵∠BPD=∠APQ ,∴∠APQ=∠ AQP,∴AP=AQ.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解. 【答案】鸡有23只,兔有12只. 【解析】21.如图,四边形ABCD 内接于O e ,AB 是O e 的直径,点P 在CA 的延长线上,45CAD ∠=o.(Ⅰ)若4AB =,求弧CD 的长;(Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O e 的切线. 【答案】(Ⅰ)CD 的长 =π;(Ⅱ)证明见解析. 【解析】试题分析:(Ⅰ)连接OC ,OD ,由圆周角定理可得∠COD=90°,然后利用弧长公式即可得;(Ⅱ)由BC =AD ,可得∠BOC=∠AOD ,从而可得∠AOD=45°,再由三角形内角和从而可得∠ODA=67.5°,由AD=AP 可得∠ADP=∠APD ,由∠CAD=∠ADP+∠APD ,∠CAD=45°可得∠ADP=22.5°,继而可得∠ODP=90°,从而得 PD 是⊙O 的切线.试题解析:(Ⅰ)连接OC ,OD ,∵∠COD=2∠CAD ,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12AB=2,∴CD 的长=902180π⨯⨯ =π;22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=o o , 2222sin 22sin 680.370.93 1.0018+≈+=o o , 2222sin 29sin 610.480.870.9873+≈+=o o , 2222sin 37sin 530.600.80 1.0000+≈+=o o ,2222sin 45sin 451+≈+=o o . 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=o .(Ⅰ)当30α=o时,验证22sin sin (90)1αα+-=o是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例. 【答案】(Ⅰ)成立,证明见解析;(Ⅱ)成立,证明见解析. 【解析】试题分析:(Ⅰ)成立,当30α=o时,将30°与60°的正弦值代入计算即可得证;(Ⅱ)成立,如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,正确地表示这两个角的正弦并利用勾股定理即可得证.试题解析:(Ⅰ)当30α=o 时, 22sin sin (90)αα+-o=sin 230°+sin 260°=2212⎛⎫+ ⎪⎝⎭⎝⎭=1344+ =1,所以22sin sin (90)1αα+-=o 成立; (Ⅱ)小明的猜想成立.证明如下:如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,sin 2α+sin 2(90°-α)=2222222BC AC BC AC AB AB AB AB AB +⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭=123.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A 品牌共享单车的意愿,得到如下数据:(Ⅰ)写出,a b 的值;(Ⅱ)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利? 说明理由. 【答案】(Ⅰ)a=1.2,b=1.4;(Ⅱ)不能获利,理由见解析; 【解析】试题分析:(Ⅰ)根据调整后的收费歀:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费通过计算即可得a=1.2,b=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费 为:1100³(0³5+0.5³15+0.9³10+1.2³30+1.4³25+1.1³15)=1.1(元), 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000³1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF=4【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由,从而可得试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC ,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ²DC=12AC ²DQ ,∴DQ=245AD DC AC = ,185= ,∴PC=2CQ =365 ,∴AP=AC-PC=145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,点睛:本题主要考查矩形的性质、等腰三角形的判定与性质,相似三角形的判定与性质等,能正确地分情况进行讨论是判定△PCD 要等腰三角形的关键.25.已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <.(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N . (ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值. 【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析;(Ⅲ)(i )MN ≤(ii )△QMN 面积的最小值为274+【解析】 试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+ 12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a ). (Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根, 从而可和S ≥2742+,继而得到面积的最小值. 试题解析:(Ⅰ)因为抛物线过点M (1,0),所以a+a+b=0,即b=-2a ,所以y=ax 2+ax+b=ax 2+ax-2a=a(x+12)2-94a ,所以抛物线顶点Q 的坐标为(-12,-94a ). (Ⅱ)因为直线y=2x+m 经过点M (1,0),所以0=2³1+m ,解得m=-2.把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0,(*),所以△=(a-2)2-4a(-2a+2)=9a 2-12a+4由(Ⅰ)知b=-2a ,又a<b ,所以a<0,b>0,所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a -6),且由(Ⅱ)知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭ =2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4³27³24≥0,即(8S-54)2≥()2, 又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0,所以8S-54≥S ≥2742+ ,当S=2742+*)可得a=-3满足题意.故当a=-3,b =3时,△QMN 面积的最小值为2742+.点睛:本题考查的二次函数的综合问题,能正确地应用待定系数法、一元二次方程根的判别式、二次函数的性质等是解决本题的关键.。

2017年福建省中考数学试卷及答案

2017年福建省中考数学试卷及答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前福建省2017年初中毕业和高中阶段学校招生考试数学 ...................................................... 1 福建2017年初中毕业和高中阶段学校招生考试数学答案解析. (4)福建省2017年初中毕业和高中阶段学校招生考试数学(本试卷满分150分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3的相反数是( )A .3-B .13-C .13D .3 2.如图,由四个正方体组成的几何体的左视图是( )AB C D 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯ D .613610⨯ 4.化简2(2)x 的结果是( )A .4xB .22xC .24x D .4x 5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形6.不等式组20,30x x -⎧⎨+⎩≤>的解集是( )A .32x -<≤B .32x -≤<C .2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,158.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C .BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区第Ⅱ卷(非选择题 共110分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.计算0|2|3--= .12.如图,ABC △中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 . 15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度. 16.已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)先化简,再求值:21(1)1aa a --,其中21a =-.18.(本小题满分8分)如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CE ===.求证:A D =∠∠.19.(本小题满分8分)如图,ABC △中,90BAC =︒∠,AD BC ⊥,垂足为D .求作ABC ∠的平分线,分别交AD ,AC 于,P Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.(本小题满分8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只.”试用列方程(组)解应用题的方法求出问题的解.21.(本小题满分8分)如图,四边形ABCD 内接于O ,AB 是O 的直径,点P 在CA 的延长线上,45CAD =︒∠.(1)若4AB =,求CD 的长;(2)若,BC AD AD AP ==,求证:PD 是O 的切线.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)22.(本小题满分10分)小明在某次作业中得到如下结果:2222sin 7sin 830.12+0.99=0.9945︒+︒≈, 2222sin 22sin 680.37+0.93=1.0018︒+︒≈, 2222sin 29sin 610.48+0.87=0.9873︒+︒≈, 2222sin 37sin 530.60+0.80=1.0000︒+︒≈, 2222sin 45sin 45(+(=122︒+︒≈. 据此,小明猜想:对于任意锐角α:均有22sin sin (90)1αα+︒-=.(1)当30α=︒时,验证22sin sin (90)1αα+︒-=是否成立;(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(本小题满分10分)自2016年国庆后,许多高校均投放了使用手机就可随取随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6同时,愿,(1)写出,a b 的值;(2)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5 800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利?说明理由.24.(本小题满分12分)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段,AC BC 上的点,且四边形PEFD 为矩形.(1)若PCD △是等腰三角形,求AP 的长; (2)若AP ,求CF 的长.25.(本小题满分14分)已知直线2y x m =+与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (1)求抛物线顶点Q 的坐标(用含a 的代数式表示); (2)说明直线与抛物线有两个交点; (3)直线与抛物线的另一个交点记为N . (ⅰ)若112a -≤≤-,求线段MN 长度的取值范围; (ⅱ)求QMN △面积的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

福州一中2017年高中招生(面向市区以外)

福州一中2017年高中招生(面向市区以外)

福州一中年高中招生(面向市区以外)综合素质测试数学参考答案一、选择题(本大题共小题,每小题分,共分)二、填空题(本大题共小题,每小题分,共分)......三、解答题(本大题共小题,满分分). 本小题主要考查三角形全等、相似的判定方法;特殊四边形的性质及判定等基础知识,考查识图、辩图、逻辑推理能力,考查几何直观等形象思维.满分分.(Ⅰ)法一:证明:过作于,于,……………………分∵四边形是正方形,∴,∴四边形是矩形,又∵是的角平分线,∴……………………………………分∴四边形是正方形,∴,∵,∴,∴∴……………………………………分在和中,,∴≌(),……………………………………分∴……………………………………分 法二:连,由,两点都在以为直径的圆上,分∴分∵ 四边形是正方形, ∴,∴,∴分∴……………………………………分(Ⅱ)法一:∵ 四边形是矩形,∴, 又∵,∴∥,∴∽,∴,……………………………………分同理,,∴,∴,……………………………………分∵,,∴∽……………………………………分 ∴……………………………………分∴为定值.…………………………………分法二:连,由,两点都在以为直径的圆上,分,分∵分∴分(或证明). 本小题主要考查勾股定理、解直角三角形等基础知识,考查应用意识、运算求解能力,考查化归与转化思想等.满分分.解:在中作于点.…………………分在中,……………………………………分………………………………分依题意,以点为圆心,海里为半径的圆形区域为暗礁区域………………分∵所以,如果渔船不改变航线继续航行,有触礁危险.……………………………分在上取点使得,连接,.在中,,所以,……………………………分在中,……………………………分所以,在中,……………………………分因为该渔船到达点的时间小时.所以巡逻船速度海里小时. ………………………分所以,巡逻船要以北偏东的航向和至少每小时海里的速度前往拦截. ………………………分(注:没有取“”扣分). 本题考查一次函数和二次函数的图像与性质,综合了等腰直角三角形、圆、矩形的性质及垂直平分线的判定,解题过程中利用了图象平移的性质,蕴含了方程思想、化归及数形结合等数学思想.满分分.解:(Ⅰ)法一:当时即,则有两个不同的实根,(注:说明因二次函数开口向上,与轴交于、两点则亦可)……分由已知可得,,则解得或(舍),分分法二:过作轴于当时即,则有两个不同的实根,分解得,则由已知可得,,设直线与轴交于点,∵,为等腰直角三角形即解得,分分(Ⅱ)设交轴于.由题意可得,,,∵点和点关于轴对称,为等腰直角三角形且由平移的性质可知且分设,则,分解得或,则或分(Ⅲ)连接,∵,为等腰直角三角形,分由(Ⅱ)可知,∵四边形为矩形在的垂直平分线上分过作于,由垂线段最短可知即为线段的最小长度..... 分当点在处时,在的中点处,当点在处时,在上的点处由上可知.则,,,∵四边形为矩形得,∵即线段的最小长度为分。

2017年福建省中考数学试题(解析版)

2017年福建省中考数学试题(解析版)

2017年福建省中考数学试题(解析版)2017年福建省中考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)3的相反数是()A.﹣3 B.﹣C.D.32.(4分)如图,由四个正方体组成的几何体的左视图是()A. B.C. D.3.(4分)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.(4分)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.(4分)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.(4分)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣37.(4分)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,158.(4分)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD9.(4分)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.610.(4分)如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区二、填空题:本题共6小题,每小题4分,共24分.11.(4分)计算|﹣2|﹣30= .12.(4分)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于.13.(4分)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是.14.(4分)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是.15.(4分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.16.(4分)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)先化简,再求值:(1﹣)•,其中a=﹣1.18.(8分)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.(8分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)20.(8分)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.(8分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.22.(10分)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.23.(10分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(12分)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.25.(14分)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.2017年福建省中考数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•长春)3的相反数是()A.﹣3 B.﹣C.D.3【分析】根据相反数的定义即可求出3的相反数.【解答】解:3的相反数是﹣3故选A.【点评】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.2.(4分)(2017•福建)如图,由四个正方体组成的几何体的左视图是()A. B.C. D.【分析】直接利用三视图的画法,从左边观察,即可得出选项.【解答】解:图形的左视图为:,故选B.【点评】此题主要考查了三视图的画法,正确掌握三视图观察的角度是解题关键.3.(4分)(2017•福建)用科学记数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:用科学记数法表示136 000,其结果是1.36×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2017•福建)化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x【分析】利用积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.【解答】解:(2x)2=4x2,故选:C.【点评】此题主要考查了积的乘方,关键是掌握计算法则.5.(4分)(2017•福建)下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、圆既是轴对称图形,又是中心对称图形,故A符合题意;B、正三角形既是轴对称图形,不是中心对称图形,故B不符合题意;C、线段是轴对称图形,是中心对称图形,故C不符合题意;D、菱形是中心对称图形,是轴对称图形,故D符合题意;故选:A.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(4分)(2017•福建)不等式组:的解集是()A.﹣3<x≤2 B.﹣3≤x<2 C.x≥2 D.x<﹣3【分析】求出每个不等式的解集,再求出不等式组的解集,【解答】解:解不等式①得:x≤2,解不等式②得:x>﹣3,∴不等式组的解集为:﹣3<x≤2,故选A.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.7.(4分)(2017•福建)某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.(4分)(2017•福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【分析】由圆周角定理得出∠ACB=∠ACD+∠BCD=90°,∠BCD=∠BAD,得出∠ACD+∠BAD=90°,即可得出答案.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.【点评】本题考查了圆周角定理;熟记圆周角定理是解决问题的关键.9.(4分)(2017•福建)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的值可以是()A.3 B.4 C.5 D.6【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣4<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣4,∵0<k<2,∴0<n﹣4<2,∴4<n<6,故选C.【点评】考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.10.(4分)(2017•福建)如图,网格纸上正方形小格的边长为1.图中线段AB 和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是()A.1区B.2区C.3区D.4区【分析】根据旋转的性质连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,从而得出线段AB和点P是绕着同一个该点逆时针旋转90°,据此可得答案.【解答】解:如图,连接AA′、BB′,分别作AA′、BB′的中垂线,两直线的交点即为旋转中心,由图可知,线段AB和点P绕着同一个该点逆时针旋转90°,∴点P逆时针旋转90°后所得对应点P′落在4区,故选:D.【点评】本题主要考查旋转,熟练掌握旋转的性质得出图形的旋转中心及旋转方向是解题的关键.二、填空题:本题共6小题,每小题4分,共24分.11.(4分)(2017•福建)计算|﹣2|﹣30= 1 .【分析】首先利用零指数幂的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=2﹣1=1.故答案为:1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(4分)(2017•福建)如图,△ABC中,D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于 6 .【分析】直接根据三角形的中位线定理即可得出结论.【解答】解:∵△ABC中,D,E分别是AB,AC的中点,∴DE是△ABC的中位线.∵DE=3,∴BC=2DE=6.故答案为:6.【点评】本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.13.(4分)(2017•福建)一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是,那么添加的球是红球.【分析】根据已知条件即可得到结论.【解答】解:∵这三种颜色的球被抽到的概率都是,∴这三种颜色的球的个数相等,∴添加的球是红球,故答案为:红球.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.14.(4分)(2017•福建)已知A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如图所示.若BC=2AB,则点C表示的数是7 .【分析】先利用点A、B表示的数计算出AB,再计算出BC,然后计算点C到原点的距离即可得到C点表示的数.【解答】解:∵点A,B表示的数分别是1,3,∴AB=3﹣1=2,∵BC=2AB=4,∴OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.【点评】本题考查了数轴:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)15.(4分)(2017•福建)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于108 度.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.16.(4分)(2017•福建)已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD的面积为.【分析】先根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A (2,),再根据B(,2),D(﹣,﹣2),运用两点间距离公式求得AB和AD的长,即可得到矩形ABCD的面积.【解答】解:如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A(2,),根据矩形和双曲线的对称性可得,B(,2),D(﹣,﹣2),由两点间距离公式可得,AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,依据两点间距离公式求得矩形的边长.三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(8分)(2017•福建)先化简,再求值:(1﹣)•,其中a=﹣1.【分析】根据分式的运算法则即可求出答案.【解答】解:当a=﹣1时原式=•==【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.(8分)(2017•福建)如图,点B、E、C、F在一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】证明BC=EF,然后根据SSS即可证明△ABC≌△DEF,然后根据全等三角形的对应角相等即可证得.【解答】证明:如图,∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS).∴∠A=∠D.【点评】本题考查了全等三角形的判定与性质,证明线段相等常用的方法是证明所在的三角形全等.19.(8分)(2017•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)【分析】根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠ADB=90°,故∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,据此可得出结论.【解答】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.20.(8分)(2017•福建)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【分析】设鸡有x只,兔有y只,根据等量关系:上有三十五头,下有九十四足,可分别得出方程,联立求解即可得出答案.【解答】解:设鸡有x只,兔有y只,鸡有一个头,两只脚,兔有1个头,四只脚,结合上有三十五头,下有九十四足可得:,解得:.答:鸡有23只,兔有12只.【点评】此题考查了二元一次方程的知识,解答本题的关键是仔细审题,根据等量关系得出方程组,难度一般.21.(8分)(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.(Ⅰ)若AB=4,求的长;(Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.【分析】(Ⅰ)连接OC,OD,由圆周角定理得到∠COD=2∠CAD,∠CAD=45°,于是得到∠COD=90°,根据弧长公式即可得到结论;(Ⅱ)由已知条件得到∠BOC=∠AOD,由圆周角定理得到∠AOD=45°,根据等腰三角形的性质得到∠ODA=∠OAD,求得∠ADP=CAD=22.5°,得到∠ODP=∠ODA+∠ADP=90°,于是得到结论.【解答】解:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=AB=2,∴的长=×π×2=π;(Ⅱ)∵=,∴∠BOC=∠AOD,∵∠COD=90°,∴∠AOD=45°,∵OA=OD,∴∠ODA=∠OAD,∵∠AOD+∠ODA=∠OAD=180°,∴∠ODA=67.5°,∵AD=AP,∴∠ADP=∠APD,∵∠CAD=∠ADP+∠APD,∠CAD=45°,∴∠ADP=CAD=22.5°,∴∠ODP=∠ODA+∠ADP=90°,∴PD是⊙O的切线.【点评】本题考查了切线的判定,圆内接四边形的性质,弧长的计算,正确的作出辅助线是解题的关键.22.(10分)(2017•福建)小明在某次作业中得到如下结果:sin27°+sin283°≈0.122+0.992=0.9945,sin222°+sin268°≈0.372+0.932=1.0018,sin229°+sin261°≈0.482+0.872=0.9873,sin237°+sin253°≈0.602+0.802=1.0000,sin245°+sin245°≈()2+()2=1.据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.【分析】(1)将α=30°代入,根据三角函数值计算可得;(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.【解答】解1:(1)当α=30°时,sin2α+sin2(90°﹣α)=sin230°+sin260°=()2+()2=+=1;(2)小明的猜想成立,证明如下:如图,在△ABC中,∠C=90°,设∠A=α,则∠B=90°﹣α,∴sin2α+sin2(90°﹣α)=()2+()2===1.【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.23.(10分)(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数012345(含5次以上)累计车费00.50.9a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数012345人数51510302515(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.【分析】(Ⅰ)根据收费调整情况列出算式计算即可求解;(Ⅱ)先根据平均数的计算公式求出抽取的100名师生每人每天使用A品牌共享单车的平均车费,再根据用样本估计总体求出5000名师生一天使用共享单车的费用,再与5800比较大小即可求解.【解答】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.【点评】考查了样本平均数,用样本估计总体,(Ⅱ)中求得抽取的100名师生每人每天使用A品牌共享单车的平均车费是解题的关键.24.(12分)(2017•福建)如图,矩形ABCD中,AB=6,AD=8,P,E分别是线段AC、BC上的点,且四边形PEFD为矩形.(Ⅰ)若△PCD是等腰三角形时,求AP的长;(Ⅱ)若AP=,求CF的长.【分析】(Ⅰ)先求出AC,再分三种情况讨论计算即可得出结论;(Ⅱ)方法1、先判断出OC=ED,OC=PF,进而得出OC=OP=OF,即可得出∠OCF=∠OFC,∠OCP=∠OPC,最后判断出△ADP∽△CDF,得出比例式即可得出结论.方法2、先判断出∠CEF=∠FDC,得出点E,C,F,D四点共圆,再判断出点P也在此圆上,即可得出∠DAP=∠DCF,此后同方法1即可得出结论.【解答】解:(Ⅰ)在矩形ABCD中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,∴AC==10,要使△PCD是等腰三角形,①当CP=CD时,AP=AC﹣CP=10﹣6=4,②当PD=PC时,∠PDC=∠PCD,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA,∴PD=PA,∴PA=PC,∴AP=AC=5,③当DP=DC时,如图1,过点D作DQ⊥AC于Q,则PQ=CQ,∵S△ADC=AD•DC=AC•DQ,∴DQ==,∴CQ==,∴PC=2CQ=,∴AP=AC﹣PC=10﹣=;所以,若△PCD是等腰三角形时,AP=4或5或;(Ⅱ)方法1、如图2,连接PF,DE,记PF与DE的交点为O,连接OC,∵四边形ABCD和PEFD是矩形,∴∠ADC=∠PDF=90°,∴∠ADP+∠PDC=∠PDC+∠CDF,∴∠ADP=∠CDF,∵∠BCD=90°,OE=OD,∴OC=ED,在矩形PEFD中,PF=DE,∴OC=PF,∵OP=OF=PF,∴OC=OP=OF,∴∠OCF=∠OFC,∠OCP=∠OPC,∵∠OPC+∠OFC+∠PCF=180°,∴2∠OCP+2∠OCF=180°,∴∠PCF=90°,∴∠PCD+∠FCD=90°,在Rt△ADC中,∠PCD+∠PAD=90°,∴∠PAD=∠FCD,∴△ADP∽△CDF,∴,∵AP=,∴CF=.方法2、如图,∵四边形ABCD和DPEF是矩形,∴∠ADC=∠PDF=90°,∴∠ADP=∠CDF,∵∠DGF+∠CDF=90°,∴∠EGC+∠CDF=90°,∵∠CEF+∠CGE=90°,∴∠CDF=∠FEC,∴点E,C,F,D四点共圆,∵四边形DPEF是矩形,∴点P也在此圆上,∵PE=DF,∴,∴∠ACB=∠DCF,∵AD∥BC,∴∠ACB=∠DAP,∴∠DAP=∠DCF,∵∠ADP=∠CDF,∴△ADP∽△CDF,∴,∵AP=,∴CF=.【点评】此题是四边形综合题,主要考查了矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,解(Ⅰ)的关键是分三种情况讨论计算,解(Ⅱ)的关键是判断出△ADP∽△CDF,是一道中考常考题.25.(14分)(2017•福建)已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N.(ⅰ)若﹣1≤a≤﹣,求线段MN长度的取值范围;(ⅱ)求△QMN面积的最小值.【分析】(Ⅰ)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点坐标;(Ⅱ)由直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,再判断其判别式大于0即可;(Ⅲ)(i)由(Ⅱ)的方程,可求得N点坐标,利用勾股定理可求得MN2,利用二次函数性质可求得MN长度的取值范围;(ii)设抛物线对称轴交直线与点E,则可求得E点坐标,利用S△QMN =S△QEN+S△QEM可用a表示出△QMN的面积,再整理成关于a的一元二次方程,利用判别式可得其面积的取值范围,可求得答案.【解答】解:(Ⅰ)∵抛物线y=ax2+ax+b过点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点Q的坐标为(﹣,﹣);(Ⅱ)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0(*)∴△=(a﹣2)2﹣4a(﹣2a+2)=9a2﹣12a+4,由(Ⅰ)知b=﹣2a,且a<b,∴a<0,b>0,∴△>0,∴方程(*)有两个不相等的实数根,∴直线与抛物线有两个交点;(Ⅲ)联立直线与抛物线解析式,消去y可得ax2+(a﹣2)x﹣2a+2=0,即x2+(1﹣)x﹣2+=0,∴(x﹣1)[x﹣(﹣2)]=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),(i)由勾股定理可得MN2=[(﹣2)﹣1]2+(﹣6)2=﹣+45=20(﹣)2,∵﹣1≤a≤﹣,∴﹣2≤≤﹣1,∴MN2随的增大而减小,∴当=﹣2时,MN2有最大值245,则MN有最大值7,当=﹣1时,MN2有最小值125,则MN有最小值5,∴线段MN长度的取值范围为5≤MN≤7;(ii)如图,设抛物线对称轴交直线与点E,∵抛物线对称轴为x=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),且a<0,设△QMN的面积为S,∴S=S△QEN +S△QEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=﹣﹣,∴27a2+(8S﹣54)a+24=0(*),∵关于a的方程(*)有实数根,∴△=(8S﹣54)2﹣4×27×24≥0,即(8S﹣54)2≥(36)2,∵a<0,∴S=﹣﹣>,∴8S﹣54>0,∴8S﹣54≥36,即S≥+,当S=+时,由方程(*)可得a=﹣满足题意,∴当a=﹣,b=时,△QMN面积的最小值为+.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、勾股定理、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得N点的坐标是解题的关键,在最后一小题中用a表示出△QMN的面积是解题的关键.本题考查知识点较多,综合性较强,难度较大.。

福建省2017年中考数学真题试题(含扫描答案)

福建省2017年中考数学真题试题(含扫描答案)

24.如图,矩形 ABCD 中, AB 6, AD 8 , P, E 分别是线段 AC、BC 上的点,且四边形 PEFD 为矩形.
(Ⅰ)若 PCD 是等腰三角形时,求 AP 的长;
(Ⅱ)若 AP 2 ,求 CF 的长.
25.已知直线 y 2x m 与抛物线Y ax2 ax b 有一个公共点 M (1, 0) ,且 a b .
x 2 0
6. 不等式组:
的解集是( )
x 3 0
D.
D.136 106
A. 3 x 2
B. 3 x 2
C. x 2
D. x 3
7.某校举行“汉字听写比赛”,5 个班级代表队的正确答题数如图.这 5 个正确答题数所组成的一组数据的
中位数和众数分别是( )
A.10,15
B.13,15
A.3
B.4
C.5
D.6
10.如图,网格纸上正方形小格的边长为 1.图中线段 AB 和点 P 绕着同一个点做相同的旋转,分别得到线
段 AB 和点 P ,则点 P 所在的单位正方形区域是( )
A.1 区
B.2 区
C.3 区
D.4 区
第Ⅱ卷(共 90 分)
二、填空题:本题共6小题,每小题4分,共24分.
sin2 37o sin2 53o 0.602 0.802 1.0000 ,
sin2 45o sin2 45o ( 2 )2 ( 2 )2 1.
2
2
据此,小明猜想:对于任意锐角 ,均有 sin2 sin2 (90o ) 1.
(Ⅰ)当 30o 时,验证 sin2 sin2 (90o ) 1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例.

福建省2017年中考数学真题试题(精品解析)

福建省2017年中考数学真题试题(精品解析)

福建省2017年中考数学真题试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .-3 B .13- C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A. 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B. 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 【答案】B【解析】13600=1.36×105,故选B. 4.化简2(2)x 的结果是( )A .4xB .22xC . 24x D .4x 【答案】C【解析】(2x )2=4x 2;故选C.5.下列关于图形对称性的命题,正确的是( ) A .圆既是轴对称性图形,又是中心对称图形 B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形 【答案】A点睛:本题主要考查中心对称图形与轴对称图形的知识,能正确地区分是解题的关键. 6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x ≤2,由②得x>-3,所以解集为:-3<x ≤2,故选A.7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15 【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D. 8.如图,AB 是O e 的直径,,C D 是O e 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠ 【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ) A .3 B .4 C .5 D .6 【答案】C10.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区 【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分.11.计算023--= . 【答案】1【解析】原式=2-1=1.12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 【答案】红球(或红色的)14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .【答案】7【解析】∵AB=2,BC=2AB ,∴BC=4,3+4=7,故点C 表示的数是7.15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,DC【答案】1a+1 . 【解析】试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可. 试题解析:原式=()()11111a a a a a a -=+-+ ,当时,原式.18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证: A D ∠=∠.【答案】证明见解析. 【解析】19.如图,ABC ∆中,90,BAC AD BC ∠=⊥o ,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】试题分析:按作图方法作出角平分线BQ ,然后通过利用互为余角以及等角的余角相等得到∠APQ=∠ AQP,从而证得AP=AQ.试题解析:作图如下,BQ 就是所求作的∠ABC 的平分线,P 、Q 就是所求作的点.证明如下:∵AD ⊥BC ,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD ,∴∠BPD=∠AQP ,∵∠BPD=∠APQ ,∴∠APQ=∠ AQP,∴AP=AQ.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解. 【答案】鸡有23只,兔有12只. 【解析】21.如图,四边形ABCD 内接于O e ,AB 是O e 的直径,点P 在CA 的延长线上,45CAD ∠=o.(Ⅰ)若4AB =,求弧CD 的长;(Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O e 的切线. 【答案】(Ⅰ)CD 的长 =π;(Ⅱ)证明见解析. 【解析】试题分析:(Ⅰ)连接OC ,OD ,由圆周角定理可得∠COD=90°,然后利用弧长公式即可得;(Ⅱ)由BC =AD ,可得∠BOC=∠AOD ,从而可得∠AOD=45°,再由三角形内角和从而可得∠ODA=67.5°,由AD=AP 可得∠ADP=∠APD ,由∠CAD=∠ADP+∠APD ,∠CAD=45°可得∠ADP=22.5°,继而可得∠ODP=90°,从而得 PD 是⊙O 的切线.试题解析:(Ⅰ)连接OC ,OD ,∵∠COD=2∠CAD ,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12AB=2,∴CD 的长=902180π⨯⨯ =π;22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=o o , 2222sin 22sin 680.370.93 1.0018+≈+=o o , 2222sin 29sin 610.480.870.9873+≈+=o o , 2222sin 37sin 530.600.80 1.0000+≈+=o o ,2222sin 45sin 451+≈+=o o . 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=o .(Ⅰ)当30α=o时,验证22sin sin (90)1αα+-=o是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例. 【答案】(Ⅰ)成立,证明见解析;(Ⅱ)成立,证明见解析. 【解析】试题分析:(Ⅰ)成立,当30α=o时,将30°与60°的正弦值代入计算即可得证;(Ⅱ)成立,如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,正确地表示这两个角的正弦并利用勾股定理即可得证.试题解析:(Ⅰ)当30α=o时, 22sin sin (90)αα+-o =sin 230°+sin 260°=2212⎛⎫+⎪⎝⎭⎝⎭=1344+ =1,所以22sin sin (90)1αα+-=o 成立; (Ⅱ)小明的猜想成立.证明如下:如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,sin 2α+sin 2(90°-α)=2222222BC AC BC AC AB AB AB AB AB +⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭=123.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A 品牌共享单车的意愿,得到如下数据:(Ⅰ)写出,a b 的值;(Ⅱ)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利? 说明理由. 【答案】(Ⅰ)a=1.2,b=1.4;(Ⅱ)不能获利,理由见解析; 【解析】试题分析:(Ⅰ)根据调整后的收费歀:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费通过计算即可得a=1.2,b=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费 为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.1×15)=1.1(元), 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000×1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF=4【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由,从而可得CF=4.试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6,;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD =∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD ·DC=12AC ·DQ ,∴DQ=245AD DC AC = ,185= ,∴PC=2CQ =365 ,∴AP=AC-PC=145.综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,点睛:本题主要考查矩形的性质、等腰三角形的判定与性质,相似三角形的判定与性质等,能正确地分情况进行讨论是判定△PCD 要等腰三角形的关键.25.已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <.(Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点; (Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值. 【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析;(Ⅲ)(i )MN ≤(ii )△QMN 面积的最小值为274+【解析】试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a).(Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根, 从而可和S ≥2742+,继而得到面积的最小值. 试题解析:(Ⅰ)因为抛物线过点M (1,0),所以a+a+b=0,即b=-2a ,所以y=ax 2+ax+b=ax 2+ax-2a=a(x+12)2-94a,所以抛物线顶点Q 的坐标为(-12,-94a). (Ⅱ)因为直线y=2x+m 经过点M (1,0),所以0=2×1+m ,解得m=-2.把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0,(*),所以△=(a-2)2-4a(-2a+2)=9a 2-12a+4由(Ⅰ)知b=-2a ,又a<b ,所以a<0,b>0,所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a-6),且由(Ⅱ)知a<0,所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭=2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0,即(8S-54)2≥()2,又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0,所以8S-54≥S ≥2742+,当S=274*)可得满足题意.故当a=-3,b =3时,△QMN 面积的最小值为2742+.点睛:本题考查的二次函数的综合问题,能正确地应用待定系数法、一元二次方程根的判别式、二次函数的性质等是解决本题的关键.。

福州一中2017年高中招生面向福州以外地区

福州一中2017年高中招生面向福州以外地区

福州一中2017年高中招生(面向福州以外地区)综合素质测试理科综合试卷(考试时间:50分钟 满分:50分)学校 姓名 准考证号一、选择题(共12小题,每小题2分,共24分,每小题仅有一个选项是正确的,请将正确答案用.......2B ..铅笔填涂在答题卡上.........)1. 关于染色体、DNA 、基因三者关系的叙述中,正确的是( )A .染色体存在于DNA 分子中B .染色体数目和基因数目一样多C .一个DNA 分子中含有一个基因D .DNA 主要存在于染色体上2.下列有关人体消化系统的叙述中,正确的是( )A .消化腺是由胃腺、肠腺和胰腺共同组成的B .胃是消化食物和吸收营养物质的最主要部位C .所有的消化腺都能分泌消化液D .所有的消化液中都含有消化酶3. 右图是植物新陈代谢示意图,甲、乙、丙分别表示不同的生理活动,①②③代表相关的物质, 以下描述正确的是( )A. 播种前要松土,与乙所代表的生理活动有关B. 图中甲表示光合作用,①代表二氧化碳C. 根吸收的②绝大部分经甲过程蒸发到空气中D. 丙所代表的生理活动,能为植物体各项生命活动提供能量4.以下各项中,能正确表示一条食物链的是( )A .阳光→草→兔→狼B .昆虫→蜘蛛→青蛙→蛇C .草→兔→狼→细菌D .草→兔→狐5.常温下,下列溶液中,pH 最小的是 ( )A .pH 等于7的溶液B .使无色酚酞溶液变红的溶液C .使紫色石蕊溶液变红的溶液D .使红色石蕊试纸变蓝的溶液6.右图表示的是纯净物、单质、化合物、含氧化合物、氧化物之间的包含与不包含关系,若整个大圆代表纯净物,则①③所属的类别是( )A .① 单质、③ 氧化物B .① 单质、③ 含氧化合物C .① 氧化物、③化合物D .①化合物、③ 含氧化合物7.下列说法正确的是( )A .灼烧并闻气味一定能鉴别纯棉线和羊毛线B .能与盐酸反应生成二氧化碳的钠盐一定是碳酸钠C .酸碱中和反应生成盐和水,则生成盐和水的反应一定是中和反应D .带火星的细木条伸入集气瓶中,木条不复燃,则集气瓶中一定不含氧气 ①② ③ ④8.某白色粉末可能含有CaCl2、Na2SO4、Ba(NO3)2、K2CO3中的一种或几种。

福州一中2017年高中招生(面向福州以外地区)

福州一中2017年高中招生(面向福州以外地区)

福州一中2017年高中招生(面向福州以外地区)综合素质测试理科综合试卷(考试时间:50分钟 满分:50分)学校 姓名 准考证号一、选择题(共12小题,每小题2分,共24分,每小题仅有一个选项是正确的,请将正确答案用.......2B ..铅笔填涂在答题卡上.........)1. 关于染色体、DNA 、基因三者关系的叙述中,正确的是( )A .染色体存在于DNA 分子中B .染色体数目和基因数目一样多C .一个DNA 分子中含有一个基因D .DNA 主要存在于染色体上2.下列有关人体消化系统的叙述中,正确的是( )A .消化腺是由胃腺、肠腺和胰腺共同组成的B .胃是消化食物和吸收营养物质的最主要部位C .所有的消化腺都能分泌消化液D .所有的消化液中都含有消化酶3. 右图是植物新陈代谢示意图,甲、乙、丙分别表示不同的生理活动,①②③代表相关的物质, 以下描述正确的是( )A. 播种前要松土,与乙所代表的生理活动有关B. 图中甲表示光合作用,①代表二氧化碳C. 根吸收的②绝大部分经甲过程蒸发到空气中D. 丙所代表的生理活动,能为植物体各项生命活动提供能量4.以下各项中,能正确表示一条食物链的是( )A .阳光→草→兔→狼B .昆虫→蜘蛛→青蛙→蛇C .草→兔→狼→细菌D .草→兔→狐5.常温下,下列溶液中,pH 最小的是 ( )A .pH 等于7的溶液B .使无色酚酞溶液变红的溶液C .使紫色石蕊溶液变红的溶液D .使红色石蕊试纸变蓝的溶液6.右图表示的是纯净物、单质、化合物、含氧化合物、氧化物之间的包含与不包含关系,若整个大圆代表纯净物,则①③所属的类别是( )A .① 单质、③ 氧化物B .① 单质、③ 含氧化合物C .① 氧化物、③化合物D .①化合物、③ 含氧化合物7.下列说法正确的是( )A .灼烧并闻气味一定能鉴别纯棉线和羊毛线B .能与盐酸反应生成二氧化碳的钠盐一定是碳酸钠C .酸碱中和反应生成盐和水,则生成盐和水的反应一定是中和反应D .带火星的细木条伸入集气瓶中,木条不复燃,则集气瓶中一定不含氧气①② ③ ④8.某白色粉末可能含有CaCl2、Na2SO4、Ba(NO3)2、K2CO3中的一种或几种。

2017年福州市中考数学试题与答案

2017年福州市中考数学试题与答案

2017年福州市中考数学试题与答案2017年福州市中考数学试题及答案本次试卷共分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟。

第Ⅰ卷(共40分)一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.求3的相反数。

A。

-3B。

-11/3C。

3D。

332.如图,由四个正方体组成的几何体的左视图是(图略)。

A。

B。

C。

D。

3.用科学计数法表示,其结果是A。

0.136×10^3B。

1.36×10^3C。

136×10^3D。

1.36×10^54.化简(2x)的结果是A。

xB。

2xC。

4D。

4x5.下列关于图形对称性的命题,正确的是A。

圆既是轴对称性图形,又是中心对称图形B。

正三角形既是轴对称图形,又是中心对称图形C。

线段是轴对称图形,但不是中心对称图形D。

菱形是中心对称图形,但不是轴对称图形6.不等式组:{x-2≤4/22.x+3>5/36}的解集是A。

-3<x≤2B。

-3≤x<2C。

x≥2D。

x< -37.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图。

这5个正确答题数所组成的一组数据的中位数和众数分别是A。

10,15B。

13,15C。

13,20D。

15,158.如图,AB是O的直径,C、D是O上位于AB异侧的两点。

下列四个角中,一定与∠ACD互余的角是A。

∠ADCB。

∠ABDC。

∠BACD。

∠BAD9.若直线y=kx+k+1经过点(m,n+3)和(m+1,2n-1),且k的取值范围为(0,2),则n的值可以是A。

3B。

4C。

5D。

610.如图,网格纸上正方形小格的边长为1.图中线段AB和点P绕着同一个点做相同的旋转,分别得到线段A'B'和点P',则点P'所在的单位正方形区域是A。

1区B。

2区C。

3区D。

4区二、填空题:本题共6小题,每小题4分,共24分。

2017福州一中追梦计划招生数学答案

2017福州一中追梦计划招生数学答案

2017年福州一中面向福州七县、平潭综合实验区乡镇和农村地区(“追梦计划”)招生考试数学与逻辑参考答案一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共5小题,每小题4分,共20分)11.5210258+=⎧⎨+=⎩x yx y12.5<x13.333333212345621+++++=14.4+15.13<≤n三、解答题(本大题共7小题,满分90分)16. 本小题主要考查实数的运算、代数式的化简等基础知识,考查代数运算能力、化简能力,分类与整合思想等.满分12分.解:(Ⅰ)原式=116-+……………………5分=8……………………………………6分(Ⅱ)原式222241--=÷--x x xxx x……………………………………8分()()222122--=⋅-+-x x xx xx x…………………………9分1=.2-+x……………………………………11分当12=-x时,原式23=-.……………………………12分17. 本小题主要考查圆的几何性质、等腰三角形的判定及性质等基础知识,考查分析问题、解决问题的能力,考查演绎论证及度量计算的逻辑思想等.满分12分.证明:(Ⅰ)∵ 四边形ABED 为⊙O 的圆内接四边形∴ 180∠+∠=oB ADE ……………………………………2分 又 ∵ 180∠+∠=oCDE ADE∴ ∠=∠B CDE ……………………………………3分 ∵ =AB AC∴ ∠=∠B C ……………………………………4分 ∴ ∠=∠C CDE ……………………………………5分 ∴ ∆CDE 为等腰三角形……………………………………6分 (Ⅱ)法一:连接AE ,∵ ⊙O 的直径为AB∴ο90=∠AEB ∴BC AE ⊥...............................7分∵AC AB =∴421==BC CE .........................................8分 由(Ⅰ)知EDC C B ∠=∠=∠,C C ∠=∠ ∴ABC ∆∽EDC ∆ ∴ECAC DC BC =...........................................10分 ∴332=⋅=DC CE BC AC .................................11分∵AC AB =∴⊙O 的半径为16.3……………………………………12分 法二:连接AE ,过点E 作⊥EF CD ,垂足为F 由(Ⅰ)知∆CDE 是以CD 为底边的等腰三角形 ∴ 1322==CF CD ………………7分 ∵ ⊙O 的直径为AB90∴∠=oAEB ……………………8分 ∵ =AB AC4∴==BE CE …………………9分 ∵ ,∠=∠∠=∠B C AEB EFC∴ ∆EFC ∽∆AEB ,……………………………10分 ∴=FC CE BE AB……………………………………11分∴ 4432332⋅⨯===CE BE AB FC∴⊙O 的半径为16.3……………………………………12分 18.本题考察反比例函数图像及性质、一次函数解析式求解问题,及求平面四边形面积问题,涉及对称与割补思想方法.满分12分. 解:(Ⅰ)过点C 分别作CE AO ⊥于点E , 设点(,)C m n , ∵tan 2∠=COA 2,n m ∴=..................................1分 ∵//CB OA ,B y n ∴= ∵D 为AE 的中点,,2D ny ∴=..............................................2分 又,C D 在反比例函数图象上,,D D mn x y k ∴=⋅=2,D x m ∴= ..............................................4分∵2,=B x 1,m ∴= 2,n ∴=.............................................5分 2.k mn ∴==所以,反比例函数的解析式为2.=y x...........................................6分 (Ⅱ)由(Ⅰ)得(1,2),(2,1)C D ,法一:AOC ACD OCDA S S S ∆∆=+四边形......................9分 1152211222=⨯⨯+⨯⨯=..............12分法二:BCDOCDA OABC S S S ∆=-四边形四边形矩形∆∆=+-COE BCD ABCE S S S ...............9分115121211222=⨯⨯+⨯-⨯⨯=...........12分 19. 本小题主要考查三角形全等、相似的判定方法;特殊四边形的性质及判定等基础知识,考查识图、辩图、逻辑推理能力,考查几何直观等形象思维.满分12分.(Ⅰ)法一:证明:过P 作⊥PM AB 于M ,⊥PN BC 于N ,……………………1分 ∵ 四边形ABCD 是正方形, ∴ 90∠=oABC , ∴ 四边形BMPN 是矩形,又 ∵ BD 是∠ABC 的角平分线,∴ =PM PN ……………………………………2分 ∴ 四边形BMPN 是正方形, ∴ 90∠=oMPN , ∵ ⊥AP PE , ∴ 90∠=o APE ,∴ ∠-∠=∠-∠APE MPE MPN MPE∴ ∠=∠APM EPN ……………………………………4分 在∆APM 和∆EPN 中,∠=∠⎧⎪=⎨⎪∠=∠⎩AMP ENP PM PNAPM EPN , ∴ ∆APM ≌∆EPN (ASA ),……………………………………5分 ∴ .=AP PE ……………………………………6分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,.....................2分∴ ∠=∠ABP AEP .....................3分 ∵ 四边形ABCD 是正方形,∴45ABP ︒∠=,∴ 45∠=oAEP ,∴45EAP ︒∠=∴∠=∠EAP AEP ......................5分∴ .=AP PE ……………………………………6分 (Ⅱ)法一:∵ 四边形ABCD 是矩形, ∴ 90∠=oBAD , 又∵90∠=o PBM , ∴ PM ∥AD , ∴ ∆BPM ∽∆BDA , ∴=PM BPAD BD ,……………………………………7分 同理,PN BPCD BD=,∴PM PNAD CD=, ∴ 63==42=PM AD PN CD ,……………………………………9分∵ 90∠=∠=oAMP ENP ,∠=∠MPA EPN , ∴ ∆APM ∽.∆EPN ……………………………………10分 ∴=AP PMPE PN……………………………………11分 ∴ :3:2.=AP PE 为定值.…………………………………12分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,..................8分 ∴ABP AEP ∠=∠,......................9分tan tan ∴∠=∠ABP AEP∵ tan tan ,∠=∠=AP ADAEP ABP AE AB....................11分 ∴3.2==AP AD AE AB .....................12分 (或证明AEP ABD ∆∆∽)20. 本小题主要考查勾股定理、解直角三角形等基础知识,考查应用意识、运算求解能力,考查化归与转化思想等.满分14分.解:在ΔABD 中作DA B C ⊥于点C .…………………2分 在ABC Rt ∆中, 1645AB BAC ︒=∠=,,28==∴AC BC ……………………………………3分2628214=-=-=∴AC AD CD ………………………………4分依题意,以点D 为圆心,12海里为半径的圆形区域为暗礁区域………………5分 ∵ 6212<所以,如果渔船不改变航线继续航行,有触礁危险.……………………………6分 在BC 上取点E 使得12=ED ,连接AE ,ED . 在CED Rt ∆中,12=ED ,26=CD所以,222CD ED CE -=26=∴CE ……………………………8分在A C E Rt ∆中,222AC CE AE +=210=∴AE ……………………………9分所以,在A C E Rt ∆中,53sin ==∠AE CE EAC '3652EAC ︒∴∠= ……………………………11分因为该渔船到达点E 的时间224224===BE t 小时. 所以巡逻船速度2022210==≥t AE v 海里/小时. ………………………13分 所以,巡逻船要以北偏东''9036525308︒︒︒-=的航向和至少每小时20海里的速度前往拦截. ………………………14分 (注:没有取“=”扣1分)21.本题考察学生的阅读理解能力,解一元二次方程及求解二次函数最值的能力,蕴含了数形结合的思想. 满分14分.解:(I )由题意知,{}3,22max --=-,......................................2分 所以方程变为 2228x x -=-+,化简为 2410x x --=...................3分解得 12x =或 22x =所以方程{}23,228max x x --=-+的解为2 或2.................5分 (II )(1)当2236x x x x +-≥-即32x ≥时, {}22236,36,y max x x x x x x =+--=+-...................................7分 ∵ 236=+-y x x 的对称轴为3,2x =-而32x ≥在对称轴32x =-的右侧, y ∴随着x 的增大而增大,32x ∴=时,y 取最小值,且最小值为2333()36224y =+⨯-=.................9分 (2)当2236x x x x +-<-即32x <时,{}22236,,y max x x x x x x =+--=-.....................................11分∵ 2=-y x x 的对称轴为1,2x =而1322<, 12x ∴=时,y 取最小值,且最小值为2111()224y =-=-..................13分由(I )(II )得 函数{}2236,y max x x x x =+--的最小值为14-..........14分(注:若用数形结合作答的酌情给分.)22. 本题考查用待定系数法求函数解析式及一次函数和二次函数的性质,综合了等腰直角三角形、圆、矩形的性质及垂直平分线的判定,解题过程中利用了图象平移的性质,蕴含了化归及数形结合的数学思想.满分14分.解:(I )由已知设)0(2)1(:21≠--=a x a y C 过)0,3(B ,........................1分则024=-a ,21=a ..........................2分 23212)1(21:221--=--=∴x x x y C ..........................3分抛物线1C 的对称轴方程为1=x ,由对称性可得)0,1(-A ....................4分(II )法一:设直线)0(≠+=k b kx y l :由已知得⎩⎨⎧=+-=+032b k b k ,解得3,1-==b k 3:-=∴x y l ................5分 设直线l 交y 轴于)3,0(-D ∵ =OB OD ,ο45=∠∴ODB 由平移的性质可知BC PQ = ∵=PF BC ,22==∴PF PQ ∵⊥PF l ,PQF ∆∴为等腰直角三角形.ODB FQP ∠==∠∴ο45,4=QFy FQ //∴轴 ....................7分设)3,(-t t Q ,则)2321,(2--t t t F ,4|)3(2321|2=----=t t t FQ 解得1-=t 或5,则)0,1(-F 或)6,5( ....................9分 法二:连接FQ 并延长交x 轴于H ,连接AF ∵ 22==BC AC ,4=AB∴ABC ∆为等腰直角三角形...............5分ο90=∠ACB ,ο45=∠=∠BAC ABC∵ l FP ⊥ ∴ο90=∠FPQ ∴PF AC // ∵ BC PF =∴AC PF =∴四边形ACPF 为矩形 ∴AF PC // ∴ο45=∠FAH由平移的性质可知BC PQ =∴PFQ ∆为等腰直角三角形,ο45=∠FQP∴ο45=∠AFH ∴AFH ∆为等腰直角三角形..........................7分设)2321,(2--m m m F ,则FH AH =即2321)1(2--=--m m m 解得1-=m 或5,即)0,1(-F 或)6,5( ..............................9分 (Ⅲ)连接QR AR MQ NQ ,,,由(II )可知ο90=∠=∠FPQ ACB ,)2,5(QPF AC //∴∵=AC PF∴四边形ACPF 为矩形ο90=∠∴MANRQ MN AR ==∴21R ∴在AQ 的垂直平分线上,即R 的路径是线段....11分当点M 在C 处时,R 在AQ 的中点1R 处,当点M 在A 处时,R 在AN 上的点2R 处∵122190,∠=∠=∠oAR R AQC R AR∵121sin ∠==R R AC NAQ CQ AR ∵22,42,210===AC CQ AQ21021=∴R R 即R 的路径长度为210......................................14分。

福建省2017年中考数学试题(含答案)

福建省2017年中考数学试题(含答案)

数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.3的相反数是( ) A .-3 B .13-C .13D .3 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .3.用科学计数法表示136 000,其结果是( )A .60.13610⨯ B .51.3610⨯ C .313610⨯ D .613610⨯ 4.化简2(2)x 的结果是( )A .4x B .22x C . 24x D .4x 5.下列关于图形对称性的命题,正确的是( ) A .圆既是轴对称性图形,又是中心对称图形 B .正三角形既是轴对称图形,又是中心对称图形 C .线段是轴对称图形,但不是中心对称图形 D .菱形是中心对称图形,但不是轴对称图形 6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <-7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,158.如图,AB 是O e 的直径,,C D 是O e 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( ) A .3 B .4 C .5 D .610.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分.11.计算023--= .12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 . 14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .15.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.16. 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 .三、解答题 :本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17. 先化简,再求值:1)11(2-⋅-a a a ,其中12-=a . 18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证: A D ∠=∠.19.如图,ABC ∆中,90,BAC AD BC ∠=⊥o ,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.21.如图,四边形ABCD 内接于O e ,AB 是O e 的直径,点P 在CA 的延长线上,45CAD ∠=o.(Ⅰ)若4AB =,求弧CD 的长;(Ⅱ)若弧BC =弧AD ,AD AP =,求证:PD 是O e 的切线. 22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=o o , 2222sin 22sin 680.370.93 1.0018+≈+=o o , 2222sin 29sin 610.480.870.9873+≈+=o o , 2222sin 37sin 530.600.80 1.0000+≈+=o o ,2222sin 45sin 45((122+≈+=o o .据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=o . (Ⅰ)当30α=o时,验证22sin sin (90)1αα+-=o 是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例.23.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A 品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:(Ⅱ)已知该校有5000名师生,且A 品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A 品牌共享单车能否获利? 说明理由.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若AP =,求CF 的长.25.已知直线m x y +=2与抛物线2Y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示); (Ⅱ)说明直线与抛物线有两个交点; (Ⅲ)直线与抛物线的另一个交点记为N .(ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.。

2017年福建省中考数学试卷及答案解析

2017年福建省中考数学试卷及答案解析

应用图形的对称性解决问题是关键.
三、解答题 :本题共 9 小题,共 86 分.解答应写出文字说明、证明过程或演算步骤.
17. 先化简,再求值: (1 1 ) a ,其中 a 2 1. a a2 1
12
【答案】 , .
a+1 2
【解析】
试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可.
因为 5500<5800,故收费调整后,此运营商在该校投放 A 品牌共享单车不能获利.
24.如图,矩形 ABCD 中, AB 6, AD 8 , P, E 分别是线段 AC、BC 上的点,且四边形
C
D
16. 已知矩形 ABCD 的四个顶点均在反比例函数 y 1 的图象上,且点 A 的横坐标是 2,则 x
矩形 ABCD 的面积为

【答案】7.5
5
y B
C
O
A x
D
点睛:本题主要考查双曲线、矩形的对称性,双曲线关于原点对称,关于直线 y=±x 对称,矩
形既是轴对称图形又是中心对称图形,能根据本题的题意确定矩形的对称中心是原点,并能
[中国教@^育*出版网#%]
sin2 29o sin2 61o 0.482 0.872 0.9873 , sin2 37o sin2 53o 0.602 0.802 1.0000 ,
sin2 45o sin2 45o ( 2 )2 ( 2 )2 1.
[中@#国教育出~&版*网]
4.化简 (2x)2 的结果是( )
A. x4
B. 2x2
C. 4x2
【答案】C 【解析】(2x)2=4x2。故选 C.
D. 4x
1
D.136 106

2017年福州市答案

2017年福州市答案

二○一一年福州市初中毕业会考、高级中等学校招生考试数学试卷参考答案一、选择题(每小题4分,共40分)1.A2.C3.A4.B5.D6.D7.A8.B9.C 10.C 二、填空题(每小题4分,共20分)11.(5)(5)x x -+ 12.3 13.270 14.m 15.42a -≤≤-三、解答题(满分90分)16.(每小题7分,共14分) (1)解:原式414=+- 1=(2)解:原式22692a a a a =+++-89a =+ 17.(每小题8分,共16分)(1)证明:∵AB BD ⊥,ED BD ⊥∴90ABC D ∠=∠= 在ABC ∆和EDC ∆中 ABC D BC DCACB ECD∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴ABC ∆≌EDC ∆ ∴AB ED =(2)解:设励东中学植树x 棵.依题意,得(23)834x x +-=解得279x =∴2322793555x -=⨯-=答:励东中学植树279棵,海石中学植树555棵. 18.(满分10分) (1)36; (2)60;14(3)解:依题意,得45%6027⨯=答:唐老师应安排27课时复习“数与代数”内容. 19.(满分12分)(1)设直线AB 的函数解析式为y kx b =+ 依题意,得(10)A ,,(02)B ,∴{020k b b=+=+AB CDE解得{22k b =-=∴直线AB 的函数解析式为22y x =-+当02y ≤≤时,自变量x 的取值范围是01x ≤≤.(2)线段BC 即为所求增大20.(满分12分) 解:(1)连接OE∵AB 、AC 分别切O 于D 、E 两点∴90ADO AEO ∠=∠= 又∵90A ∠=o∴四边形ADOE 是矩形 ∵OD OE =∴四边形ADOE 是正方形 ∴OD ∥AC ,3OD AD == ∴BOD C ∠=∠∴在Rt BOD ∆中,2tan 3BD BOD OD ∠==∴2tan 3C =(2)如图,设O 与BC 交于M 、N 两点.由(1)得,四边形ADOE 是正方形 ∴90DOE ∠=∴90COE BOD ∠+∠=∵在Rt EOC ∆中,2tan C =,3OE = ∴92EC = ∴29113444O DOM EON DOE S S S S +===π⨯=π 扇形扇形扇形∴()39944BOD COE DOM EON S S S S S ∆∆=+-+=-π阴影扇形扇形∴图中两部分阴影面积的和为39944-π21.(满分12分)(1)证明:①∵四边形ABCD 是矩形∴AD ∥BC∴CAD ACB ∠=∠,AEF CFE ∠=∠ ∵EF 垂直平分AC ,垂足为O ∴OA OC =∴AOE ∆≌COF ∆∴OE OF =∴四边形AFCE 为平行四边形A B CDEO B又∵EF AC ⊥∴四边形AFCE 为菱形②设菱形的边长AF CF xcm ==,则(8)BF x cm =- 在Rt ABF ∆中,4AB cm =由勾股定理得2224(8)x x +-=,解得5x = ∴5AF cm =(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形 ∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA =∵点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为∴5PC t =,124QA t =-∴5124t t =-,解得43t =∴以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.②由题意得,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,点P、Q 在互相平行的对应边上. 分三种情况:i)如图1,当P 点在AF 上、Q 点在CE上时,AP CQ =,即12a b =-,得12a b += ii)如图2,当P 点在BF 上、Q 点在DE 上时,AQ CP =, 即12b a -=,得12a b += iii)如图3,当P 点在AB 上、Q 点在CD 上时,AP CQ =,即12a b -=,得12a b += 综上所述,a 与b 满足的数量关系式是12a b +=(0)ab ≠22.(满分14分)解:(1)依题意,得2230ax ax a +-=(0)a ≠解得13x =-,21x = ∵B 点在A 点右侧∴A 点坐标为(30)-,,B 点坐标为(10), ∵直线l :y当3x =-时,(3)0y -=∴点A 在直线l 上(2)∵点H 、B 关于过A 点的直线l :y ∴4AH AB ==图1 图2 图3过顶点H 作HC AB ⊥交AB 于C 点则122AC AB ==,HC =∴顶点(H - 代入二次函数解析式,解得a =∴二次函数解析式为2y=-(3)直线AH的解析式为y + 直线BK的解析式为y =由y y ⎧⎪=+⎨⎪=-⎩解得{x y ==即K ,则4BK = ∵点H 、B 关于直线AK 对称∴HN MN +的最小值是MB ,KD KE ==过点K 作直线AH 的对称点Q,连接QK ,交直线AH 于E则QM MK =,QE EK ==AE QK ⊥∴BM M K +的最小值是BQ ,即BQ 的长是HN NM MK ++的最小值 ∵BK ∥AH ∴90BKQ HEQ ∠=∠=︒ 由勾股定理得8QB = ∴HN NM MK++的最小值为8 (不同解法参照给分)。

福建省福州一中2017年高中招生(面向福州以外地区)综合素质测试数学试卷

福建省福州一中2017年高中招生(面向福州以外地区)综合素质测试数学试卷

福州一中2017年高中招生(面向福州以外地区)综合素质测试数学试卷(满分100分,考试时间60分钟)学 校: 姓 名: 准考证号: 注意:请将选择题、填空题、解答题的答案填写在答题卡上.......的相应位置. 一、选择题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一个选项是正确的.)1.下列运算正确的是( )A .22423+=a a aB .2242-=a a aC .22422⋅=a a aD .2222÷=a a a2.下列命题错误..的个数是( ) ① 经过三个点一定可以作一个圆;② 三角形的外心到三角形各顶点的距离相等; ③ 对角线相等的四边形是矩形;④ 一组对边平行且另一组对边相等的四边形是平行四边形. A . B .2C .3D .4 3. 在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①2甲s >2乙s ;②2甲s <2乙s ;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是( ) A .①③ B .①④ C .②④ D .②③4. 2017年5月14日,福州一中将喜迎建校两百周年华诞,当天正好是星期日,以当天作为第1天开始算起,则第366天是( )A .星期一B .星期二C .星期六D .星期日5.对于两个实数,a b ,规定{},max a b 表示,a b 中的较大值,当a b ≥时,{},max a b a =,当a b <时,{},max a b b =,例如:{}1,33max =.则函数{}2236,y max x x x x =+--的最小值是( )A .34B .14-C .154D .334- 6. 如下表,把一列互不相等的正整数按照从小到大的顺序填入下列表格,已知前两个格子填入的数分别为1和2.任取四个彼此相邻格子中的数,从小到大依次记为a 、b 、c 、d ,且满足2)1)(1(=++cbd a ,则第5个格子中的数m 为( ) 12m...A.5 B .6 C .7 D .8 二、填空题(本大题共6小题,每小题5分,共30分.)7. 《九章算术》是我国传统数学最重要的著作,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就. 《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两. 问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两. 问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 . 8.如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为 度.9. 若函数=-y kx b 的图象如图所示,则关于x 的不等式(3)0k x b -->的解集为 .10.观察下列等式:332123+=,33321236++=,333321+2+3+410=,…,根据上述规律,第五个等式为________________.ONPMB11. 如图,AB 是⊙O 的直径,8=AB ,点M 在⊙O 上, 45∠=MAB ,N 是劣弧MB 的三等分点(靠近点B ),P 是 直径AB 上的一动点,则∆PMN 周长的最小值为__________.12.定义二次函数的图象与直线x y =交点的横坐标为二次函数的不动点.已知二次函数()21324=+-+-y x mn x mn 有唯一的不动点,若3-≤m 且0<mn ,则n 的取值范围是 .三、解答题(本大题共3小题,满分40分.)13. (本小题满分13分)已知四边形ABCD ,点E 在边BC 上,P 为对角线BD 上的动点,满足⊥AP PE . (Ⅰ)当四边形ABCD 为正方形时(如图1),求证:=PA PE ;(Ⅱ)当四边形ABCD 为矩形,且6=AD ,4=CD 时(如图2),试探究:AP PE 是否为定值,若是,求出该定值;若不是,请说明理由.14.(本小题满分13分)如图,海中有一小岛D ,它周围12海里内有暗礁.一艘巡逻船在D 岛海域例行巡逻,某时刻航行至A 处时,测得其东北方向与它相距16海里的B 处有一渔船,且D 岛位于巡逻船正东214海里处.观测中发现,此渔船正以每小时4海里的速度沿正南方向航行.如果渔船不改变航线继续前行,有没有触礁危险?请通过计算加以说明.如果有危险,巡逻船的速度至少为多少时,才能将该渔船拦截在暗礁区域之外,并确定此时巡逻船的航向.(参考数据:sin 3652'0.6︒≈,sin 5308'0.8︒≈)15.(本小题满分14分)已知抛物线h x y C +-=21)1(21:的顶点为C ,并与x 轴交于A 、B 两点,点A 在点B 的左侧,直线b x y l +=:经过B 、C . (Ⅰ)求抛物线1C 的解析式和直线的表达式;(Ⅱ)点D 是点C 关于x 轴的对称点,连接CD 、BD .平移BCD ∆,得到PQF ∆(B 、C 、D 的对应点分别为P 、Q 、F ),满足PQ 在直线上,点F 在抛物线1C 上,求此时点F 的坐标;(Ⅲ)在(Ⅱ)的条件下,取位于x 轴上方的点F ,连接AF 、AC .设M 、N 分别为射线CA 和射线AF 上的动点,连接MN ,以MN 为直径的⊙R 经过点Q ,点M 从C 开始沿射线CA 运动的过程中,试求线段FR 的最小长度.福州一中2017年高中招生(面向市区以外)综合素质测试数学参考答案一、选择题(本大题共6小题,每小题5分,共30分)二、填空题(本大题共6小题,每小题5分,共30分) 7. 5210258+=⎧⎨+=⎩x y x y 8. 288 9. 5<x10.333333212345621+++++=11.4+12.103<≤n 三、解答题(本大题共3小题,满分40分)13. 本小题主要考查三角形全等、相似的判定方法;特殊四边形的性质及判定等基础知识,考查识图、辩图、逻辑推理能力,考查几何直观等形象思维.满分13分.(Ⅰ)法一:证明:过P 作⊥PM AB 于M ,⊥PN BC 于N ,……………………1分 ∵ 四边形ABCD 是正方形, ∴ 90∠=ABC , ∴ 四边形BMPN 是矩形, 又 ∵ BD 是∠ABC 的角平分线,∴ =PM PN ……………………………………2分 ∴ 四边形BMPN 是正方形, ∴ 90∠=MPN , ∵ ⊥AP PE , ∴ 90∠=APE ,∴ ∠-∠=∠-∠APE MPE MPN MPE∴ ∠=∠APM EPN ……………………………………4分在∆APM 和∆EPN 中,∠=∠⎧⎪=⎨⎪∠=∠⎩AMP ENP PM PNAPM EPN , ∴ ∆APM ≌∆EPN (ASA ),……………………………………5分 ∴ .=AP PE ……………………………………6分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,.....................2分 ∴ ∠=∠ABP AEP .....................3分∵ 四边形ABCD 是正方形,∴45ABP ︒∠=,∴ 45∠=AEP ,∴45EAP ︒∠=∴∠=∠EAP AEP ......................5分 ∴ .=AP PE ……………………………………6分(Ⅱ)法一:∵ 四边形ABCD 是矩形, ∴ 90∠=BAD , 又∵90∠=PBM , ∴ PM ∥AD , ∴ ∆BPM ∽∆BDA , ∴=PM BPAD BD,……………………………………7分 同理,PN BPCD BD =, ∴PM PNAD CD=, ∴63==42=PM AD PNCD ,……………………………………9分 ∵ 90∠=∠=AMP ENP ,∠=∠MPA EPN , ∴ ∆APM ∽.∆EPN ……………………………………10分 ∴=AP PMPE PN……………………………………11分 ∴ :3:2.=AP PE 为定值.…………………………………12分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,..................8分 ∴ABP AEP ∠=∠,......................9分tan tan ∴∠=∠ABP AEP∵ tan tan ,∠=∠=AP ADAEP ABP AE AB....................11分 ∴3.2==AP AD AE AB .....................12分 (或证明AEP ABD ∆∆∽)14. 本小题主要考查勾股定理、解直角三角形等基础知识,考查应用意识、运算求解能力,考查化归与转化思想等.满分14分.解:在ΔABD 中作DA B C ⊥于点C .…………………2分 在ABC Rt ∆中,1645AB BAC ︒=∠=,28==∴AC BC ……………………………………3分2628214=-=-=∴AC AD CD ………………………………4分依题意,以点D 为圆心,12海里为半径的圆形区域为暗礁区域………………5分 ∵ 6212<所以,如果渔船不改变航线继续航行,有触礁危险.……………………………6分在BC 上取点E 使得12=ED ,连接AE ,ED . 在CED Rt ∆中,12=ED ,26=CD所以,222CD ED CE -=26=∴CE ……………………………8分在A C E Rt ∆中,222AC CE AE +=210=∴AE ……………………………9分所以,在A C E Rt ∆中,53sin ==∠AE CE EAC '3652EAC ︒∴∠= ……………………………11分因为该渔船到达点E 的时间224224===BE t 小时. 所以巡逻船速度2022210==≥t AE v 海里/小时. ………………………13分所以,巡逻船要以北偏东9036525308︒︒︒''-=的航向和至少每小时20海里的速度前往拦截. ………………………14分 (注:没有取“=”扣1分)15. 本题考查一次函数和二次函数的图像与性质,综合了等腰直角三角形、圆、矩形的性质及垂直平分线的判定,解题过程中利用了图象平移的性质,蕴含了方程思想、化归及数形结合等数学思想.满分14分.解:(Ⅰ)法一: 当0=y 时即0)1(212=+-h x ,则 h x -=-2)1(21有两个不同的实根,0<∴h (注:说明因二次函数开口向上,与x 轴交于A 、B 两点则0<h 亦可) ……1分由已知可得)0,(b B -,),1(h C ,则⎪⎩⎪⎨⎧+==+--1)1(212b h h b解得2-=h 或0(舍),3-=b .......................................3分23212)1(21:221--=--=∴x x x y C 3:-=x y l ............4分 法二:过C 作x CH ⊥轴于H当0=y 时即0)1(212=+-h x ,则 h x -=-2)1(21有两个不同的实根,0<∴h ...1分解得h x 21-±=,则)0,21(h B -+由已知可得)0,(b B -,),1(h C ,设直线与y 轴交于点),0(b D , ∵ ||b OD OB ==, 90=∠BOD∴ 45=∠OBD BCH ∆∴为等腰直角三角形BH CH =∴即h h -=--+121解得2-=h∴)0,3(B ,)2,1(-C ...................................3分23212)1(21:221--=--=∴x x x y C 3:-=x y l ............4分 (Ⅱ)设DC 交x 轴于H .由题意可得)2,1(D ,)0,1(HCH BH =, 90=∠CHB , 45=∠=∠∴CBH BCH∵点D 和点C 关于x 轴对称BD BC =∴,BCD ∆为等腰直角三角形且42==CH CD 由平移的性质可知4=FQ 且CD FQ //...............6分 设)3,(-t t Q ,则)2321,(2--t t t F ,4|)3(2321|2=----=t t t FQ....................8分 解得1-=t 或5,则)0,1(-F 或)6,5( ....................9分 (Ⅲ)连接AR ,QR ∵ 22==BC AC ,4=AB∴ABC ∆为等腰直角三角形90=∠ACB , 45=∠=∠BAC ABC .......10分由(Ⅱ)可知90=∠=∠FPQ ACB ,)2,5(QPF AC //∴∵==AC BC PF ∴四边形ACPF 为矩形90=∠∴MAN RQ MN AR ==∴21R ∴在AQ 的垂直平分线m 上......................11分过F 作⊥FG m 于G ,由垂线段最短可知FG 即为线段FR 的最小长度. .... .....12分 当点M 在C 处时,R 在AQ 的中点1R 处,当点M 在A 处时,R 在AN 上的点2R 处由上可知()56,F . 则24=CQ ,10222=+=CQ AC AQ ,101=AR ,26==CP AF∵四边形ACPF 为矩形CP AF //∴ 21AR R CQA ∠=∠∴ 21cos cos AR R CQA ∠=∠∴得2252=AR ,2272=FR ∵12290︒∠==∠AR R FGR1//AR FG ∴222GFR AR R ∠=∠∴222112cos cos FR FGGFR AR AR AR R =∠==∠∴ 5107=∴FG 即线段FR 的最小长度为5107..............................14分。

2017年福建省中考数学试卷含答案

2017年福建省中考数学试卷含答案

2017年福建省中考数学试卷含答案福建省2017年初中毕业和高中阶段学校招生考试数学试卷第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数是()A. 3B. 1C.1/33D.32.如图,由四个正方体组成的几何体的左视图是()3.用科学计数法表示136 000,其结果是()A.0.136×106B.1.36×105C.136×103D.136×1064.化简(2x)2的结果是()A.x4B.2x2C.4x2D.4x5.下列关于图形对称性的命题,正确的是()A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.不等式组x2≤0。

的解集是()x3>A.3<x≤2B.3≤x<2C.x≥2D.x<-37.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,158.如图,AB是O的直径,C,D是O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADCBB.∠ABDC.∠BACD.∠BAD删除无效段落)福建省2017年初中毕业和高中阶段学校招生考试数学试卷第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.求3的相反数。

A. 3B. 1C.1/33D.32.如图,由四个正方体组成的几何体的左视图是哪个?图片无法显示,无法改写)3.用科学计数法表示136 000.A.0.136×106B.1.36×105C.136×103D.136×1064.化简(2x)2.A.x4B.2x2C.4x2D.4x5.下列关于图形对称性的命题,正确的是哪个?A.圆既是轴对称图形,又是中心对称图形B.正三角形既是轴对称图形,又是中心对称图形C.线段是轴对称图形,但不是中心对称图形D.菱形是中心对称图形,但不是轴对称图形6.求不等式组的解集。

2016-2017学年福建省福州一中高三(上)开学数学试卷(理科)(解析版)

2016-2017学年福建省福州一中高三(上)开学数学试卷(理科)(解析版)

2016-2017学年福建省福州一中高三(上)开学数学试卷(理科)一、选择题(共12小题,每小题5分,共60分)1.(5分)已知集合M={x|﹣1<x<1},N={x|x2<2,x∈Z},则()A.M⊆N B.N⊆M C.M∩N={0}D.M∪N=N 2.(5分)复数z=的共轭复数是()A.1+i B.1﹣i C.+i D.﹣i3.(5分)已知cos(﹣θ)=,则sin()的值是()A.﹣B.﹣C.D.4.(5分)已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84B.0.68C.0.32D.0.165.(5分)等差数列{a n}的公差d<0且a12=a132,则数列{a n}的前n项和S n有最大值,当S n取得最大值时的项数n是()A.6B.7C.5或6D.6或76.(5分)使(x2+)n(n∈N)展开式中含有常数项的n的最小值是()A.3B.4C.5D.67.(5分)已知函数f(x)=sin(2x+φ)0<φ<)的图象的一个对称中心为(,0),则函数f(x)的单调递减区间是()A.[2kπ﹣,2kπ+](k∈Z)B.[2kπ+,2kπ+](k∈Z)C.[kπ﹣,kπ+](k∈Z)D.[kπ+,kπ+](k∈Z)8.(5分)已知球O的半径为R,A,B,C三点在球O的球面上,球心O到平面ABC的距离为R.AB=AC=2,∠BAC=120°,则球O的表面积为()A.πB.πC.πD.π9.(5分)函数y=2016x﹣sin x的图象大致是()A.B.C.D.10.(5分)如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是()A.4+6πB.8+6πC.4+12πD.8+12π11.(5分)已知点O为坐标原点,点M在双曲线C:x2﹣y2=λ(λ为正常数)上,过点M 作双曲线C的某一条渐近线的垂线,垂足为N,则|ON|•|MN|的值为()A.B.C.λD.无法确定12.(5分)已知实数a,b,c,d满足==1,其中e是自然对数的底数,则(a ﹣c)2+(b﹣d)2的最小值为()A.4B.8C.12D.18二、填空题13.(5分)曲线f(x)=+3x在点(1,f(1))处的切线方程为.14.(5分)已知平面向量与的夹角为,=(1,),|﹣2|=2.则||=.15.(5分)不等式组的解集为D,若(a,b)∈D,则z=2a﹣3b的最小值是.16.(5分)设函数f(x)定义域为R,f(﹣x)=f(x),f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x3,则函数g(x)=|cos(πx)|﹣f(x)在区间[﹣,]上的所有零点的和为.三、解答题17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知=,sin A=.(Ⅰ)求sin C的值;(II)设D为AC的中点,若△ABC的面积为8,求BD的长.18.(12分)有一批货物需要用汽车从生产商所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且通过这两条公路所用的时间互不影响.据调查统,通过这两条公路从城市甲到城市乙的200辆汽车所用时间的频数分布如表:假设汽车A只能在约定日期(某月某日)的前11天出发,汽车B只能在约定日期的前12天出发(将频率视为概率).(I)为了尽最大可能在各自允许的时间内将货物运往城市乙,估计汽车A和汽车B应如何选择各自的路径;(Ⅱ)若通过公路l、公路2的“一次性费用”分别为3.2万元、1.6万元(其他费用忽略不计),此项费用由生产商承担.如果生产商恰能在约定日期当天将货物送到,则销售商一次性支付给生产商40万元,若在约定日期前送到;每提前一天销售商将多支付给生产商2万元;若在约定日期后送到,每迟到一天,生产商将支付给销售商2万元.如果汽车A,B按(I)中所选路径运输货物,试比较哪辆汽车为生产商获得的毛利润更大.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若P A=PD=AD,且平面P AD⊥平面ABCD,求平面P AF与平面AFE所成的锐二面角的余弦值.20.(12分)已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求的取值范围.21.(12分)已知函数f(x)=x﹣ae x﹣e2x(a∈R,e是自然对数的底数).(Ⅰ)若f(x)≤0对任意x∈R恒成立,求实数a的取值范围;(Ⅱ)若方程x﹣ae x=0有两个不同的实数解x1,x2,求证:x1+x2>2.[选修4-1:几何证明选讲]22.(10分)选做题:几何证明选讲如图,ABCD是边长为a的正方形,以D为圆心,DA为半径的圆弧与以BC为直径的半圆O交于点F,延长CF交AB于E.(1)求证:E是AB的中点;(2)求线段BF的长.[选修4-4:坐标系于参数方程]23.在直角坐标系xOy中,直线l过点M(3,4),其倾斜角为45°,圆C的参数方程为.再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xoy有相同的长度单位.(1)求圆C的极坐标方程;(2)设圆C与直线l交于点A、B,求|MA|•|MB|的值.[选修4-5:不等式选讲]24.已知f(x)=|x﹣a|+|2x﹣a|,a<0.(Ⅰ)求函数f(x)的最小值;(Ⅱ)若不等式f(x)<的解集非空,求a的取值范围.2016-2017学年福建省福州一中高三(上)开学数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分)1.【解答】解:N={x|x2<2,x∈Z}={﹣1,0,1},故M∩N={0},故选:C.2.【解答】解:z===1+i,复数z=的共轭复数是1﹣i.故选:B.3.【解答】解:cos(﹣θ)=sin[﹣(﹣θ)]=sin()=,故选:C.4.【解答】解:∵P(x≤4)=0.84,∴P(x>4)=1﹣0.84=0.16∴P(x<2)=P(x>4)=0.16,∴P(2<x<4)=P(x≤4)﹣P(x<2)=0.84﹣0.16=0.68故选:B.5.【解答】解:等差数列{a n}中,公差d<0,且,∴a1=﹣a13>0,即a1+a13=0,又a1+a13=2a7=0;∴数列{a n}的前6或7项最大.故选:D.6.【解答】解:(x2+)n(n∈N)展开式的通项公式为T r+1=••x2n﹣5r,令2n﹣5r=0,求得2n=5r,可得含有常数项的n的最小值是5,故选:C.7.【解答】解:由题意可得sin(2×+φ)=0,故2×+φ=kπ,解得φ=kπ﹣,k∈Z,由0<φ<可得φ=,∴f(x)=sin(2x+),由2kπ+≤2x+≤2kπ+可得kπ+≤x≤kπ+,∴函数f(x)的单凋递减区间为[kπ+,kπ+],k∈Z.故选:D.8.【解答】解:在△ABC中,∵AB=AC=2,∠BAC=120°,∴BC==2,由正弦定理可得平面ABC截球所得圆的半径(即△ABC的外接圆半径),r==2,又∵球心到平面ABC的距离d=R,∴球O的半径R=,∴R2=故球O的表面积S=4πR2=π,故选:D.9.【解答】解:∵y=2016x﹣sin x,∴y′=2016x ln2016﹣cos x,当x≥0时,y′>0;故函数y=2016x﹣sin x在[0,+∞)上是增函数,故排除A,B;y′=2016x ln2016﹣cos x在[﹣1,0]上单调递增,且在[﹣1,0]上先负后正,故y=2016x﹣sin x在[﹣1,0]上有极小值,而在[﹣1,0]上,y=2016x﹣sin x>0恒成立;故排除D;故选:C.10.【解答】解:根据三视图知几何体是组合体,下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,圆柱的底面半径为2,母线长为3;四棱锥的高是2,底面是边长为4、3的矩形,∴该几何体的体积V==6π+8,故选:B.11.【解答】解:设M(m,n),即有m2﹣n2=λ,双曲线的渐近线为y=±x,可得|MN|=,由勾股定理可得|ON|===,可得|ON|•|MN|=•==.故选:B.12.【解答】解:∵实数a,b,c,d满足==1,∴b=a﹣2e a,d=2﹣c,∴点(a,b)在曲线y=x﹣2e x上,点(c,d)在曲线y=2﹣x上,(a﹣c)2+(b﹣d)2的几何意义就是曲线y=x﹣2e x到曲线y=2﹣x上点的距离最小值的平方.考查曲线y=x﹣2e x上和直线y=2﹣x平行的切线,∵y′=1﹣2e x,求出y=x﹣2e x上和直线y=2﹣x平行的切线方程,∴令y′=1﹣2e x=﹣1,解得x=0,∴切点为(0,﹣2),该切点到直线y=2﹣x的距离d==2就是所要求的两曲线间的最小距离,故(a﹣c)2+(b﹣d)2的最小值为d2=8.故选:B.二、填空题13.【解答】解:函数的导数f′(x)=﹣+3,则f′(1)=﹣2+3=1,即切线斜率k=1,∵f(1)=2+3=5,∴切点坐标为(1,5),则切线方程为y﹣5=x﹣1,即y=x+4,故答案为:y=x+414.【解答】解:||=2,=||||cos=||,∵|﹣2|=2,∴()2=,即4||2﹣4||+4=12,解得||=2.故答案为:2.15.【解答】解:由题意作平面区域如下,,结合图象可知,当a=﹣2,b=0,即过点A时,z=2a﹣3b有最小值为﹣4,故答案为:﹣4.16.【解答】解:∵f(x)=f(2﹣x),∴f(x)关于x=1对称,∵f(﹣x)=f(x),∴f(x)关于x=0对称,∵f(x)=f(2﹣x)=f(x﹣2),∴f(x)=f(x+2),∴f(x)是以2为周期的函数,∴f(x)在[﹣,]上共有3条对称轴,分别为x=0,x=1,x=2,又y=|cos(πx)关于x=0,x=1,x=2对称,∴x=0,x=1,x=2为g(x)的对称轴.作出y=|cos(πx)|和y=x3在[0,1]上的函数图象如图所示:由图象可知g(x)在(0,)和(,1)上各有1个零点,且x=1为g(x)的一个零点.∴g(x)在[﹣,]上共有7个零点,设这6个零点从小到大依次为x1,x2,x3, (x7)则x1,x2关于x=0对称,x3,x5关于x=1对称,x6,x7关于x=2对称,x4=1.∴x1+x2=0,x3+x5=2,x6+x7=4,∴x1+x2+x3+x4+x5+x6+x7=7.故答案为:7.三、解答题17.【解答】解:在△ABC中,∵=,∴c•b•cos A=c•a•cos B,即b•cos A=a•cos B,sin B•cos A=sin A•cos B,sin(A﹣B)=0,∴A=B,∵sin A=.∴sin C=sin(π﹣2A)=sin(2A)=2sin A cos A=2××=.(2)设AC=BC=m,∵△ABC的面积为8,∴×=,m=3,cos C=,根据余弦定理得出:BD2=m2×=m2=BD=.18.【解答】(I)频率分布表,如下:设A1,A2分别表示汽车A在约定日期(某月某日)的前11天出发选择公路1,2将货物运往城市乙;B1,B2分别表示汽车B在约定日期(某月某日)的前12天出发选择公路1,2将货物运往城市乙.∵P(A1)=0.2+0.4=0.6,P(A2)=0.1+0.4=0.5,∴汽车A选择公路1,∵P(B1)=0.2+0.4+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∴汽车A选择公路2;(II)设X表示汽车A选择公路1,销售商支付给生产商的费用,则X=42,40,38,36 X的分布列如下:∴E(X)=42×0.2+40×0.4+38×0.2+36×0.2=39.2∴汽车A选择公路1时的毛利润为39.2﹣3.2=36.0(万元)设Y为汽车B选择公路2时的毛利润,则Y=42.4,40.4,38.4,36.4分布列如下∴E(Y)=42.4×0.1+40.4×0.4+38.4×0.4+36.4×0.1=39.4∵36.0<39.4,∴汽车B为生产商获得毛利润更大.19.【解答】(本小题满分13分)证明:(Ⅰ)因为底面ABCD是菱形,所以AB∥CD.又因为AB⊄面PCD,CD⊂面PCD,所以AB∥面PCD.又因为A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,所以AB∥EF.…(5分)解:(Ⅱ)取AD中点G,连接PG,GB.因为P A=PD,所以PG⊥AD.又因为平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,所以PG⊥平面ABCD.所以PG⊥GB.在菱形ABCD中,因为AB=AD,∠DAB=60°,G是AD中点,所以AD⊥GB.如图,以G为原点,GA为x轴,GB为y轴,GP为z轴,建立空间直角坐标系G﹣xyz.设P A=PD=AD=2a,则G(0,0,0),A(a,0,0),.又因为AB∥EF,点E是棱PC中点,所以点F是棱PD中点.所以,.所以,.设平面AFE的法向量为n=(x,y,z),则有所以令x=3,则平面AFE的一个法向量为.因为BG⊥平面P AD,所以是平面P AF的一个法向量.因为,所以平面P AF与平面AFE所成的锐二面角的余弦值为.…(13分)20.【解答】解:(Ⅰ)∵点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2,l1⊥l2,线段AF的垂直平分线与l2交于点P,∴点P到点F(1,0)的距离等于它到直线l1的距离,∴点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,∴曲线C的方程为y2=4x.(Ⅱ)设P(x0,y0),点M(﹣1,m),点N(﹣1,n),直线PM的方程为:y﹣m=(x+1),化简,得(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,∵△PMN的内切圆的方程为x2+y2=1,∴圆心(0,0)到直线PM的距离为1,即=1,∴=,由题意得x0>0,∴上式化简,得(x0﹣1)m2+2y0m﹣(x0+1)=0,同理,有,∴m,n是关于t的方程(x 0﹣1)t2+2y t﹣(x0+1)=0的两根,∴m+n=,mn=,∴|MN|=|m﹣n|==,∵,|y 0|=2,∴|MN|==2,直线PF的斜率,则k=||=,∴==,∵函数y=x﹣在(1,+∞)上单调递增,∴,∴,∴0<<.∴的取值范围是(0,).21.【解答】(Ⅰ)解:若f(x)≤0对任意x∈R恒成立可化为x﹣ae x≤e2x对x∈R恒成立,故a≥对x∈R恒成立,令F(x)=,则F′(x)=;则当x<0时,F′(x)<0,x>0时,F′(x)>0;故F(x)=在x=0处有最大值F(0)=﹣1;故a≥﹣1;(Ⅱ)证明:∵若方程x﹣ae x=0有两个不同的实数解x1,x2,结合(1)可知,﹣lna﹣ae﹣lna>0,解得,0<a<;则x1=ae x1,x2=ae x2;则a=的两个不同根为x1,x2,令g(x)=,则g′(x)=,知g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减;又∵当x∈(﹣∞,0]时,g(x)≤0,故不妨设x1∈(0,1),x2∈(1,+∞);对于任意a1,a2∈(0,),设a1>a2,若g(m1)=g(m2)=a1,g(n1)=g(n2)=a2,其中0<m1<1<m2,0<n1<1<n2,∵g(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减;又∵g(m1)>g(n1),g(m2)>g(n2);∴m1>n1,m2<n2;∴<;故随着a的减小而增大,令=t,x1=ae x1,x2=ae x2,可化为x2﹣x1=lnt;t>1;则x1=,x2=;则x2+x1=,令h(t)=,则可证明h(t)在(1,+∞)上单调递增;故x2+x1随着t的增大而增大,即x2+x1随着的增大而增大,故x2+x1随着a的减小而增大,而当a=时,x2+x1=2;故x2+x1>2.[选修4-1:几何证明选讲]22.【解答】(1)证明:连接DF,DO,则∠CDO=∠FDO,因为BC是的切线,且CF是圆D的弦,所以,即∠CDO=∠BCE,故Rt△CDO≌Rt△BCE,所以.…(5分)所以E是AB的中点.(2)解:连接BF,∵∠BEF=∠CEB,∠ABC=∠EFB∴△FEB∽△BEC,得,∵ABCD是边长为a的正方形,所以.…(10分)[选修4-4:坐标系于参数方程]23.【解答】解:(1)消去参数可得圆的直角坐标方程式为x2+(y﹣2)2=4,由极坐标与直角坐标互化公式得(ρcosθ)2+(ρsinθ﹣2)2=4化简得ρ=4sinθ,(2)直线l的参数方程,(t为参数).即代入圆方程得:+9=0,设A、B对应的参数分别为t 1、t2,则,t1t2=9,于是|MA|•|MB|=|t1|•|t2|=|t1t2|=9.[选修4-5:不等式选讲]24.【解答】解:(Ⅰ),函数的图象为;从图中可知,函数f(x)的最小值为.(Ⅱ)由(Ⅰ)知函数f(x)的最小值为,要使不等式的解集非空,必须﹣<,即a>﹣1.∴a的取值范围是(﹣1,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福州一中2017年高中招生(面向福州以外地区)综合素质测试数学试卷(满分100分,考试时间60分钟)学 校: 姓 名: 准考证号: 注意:请将选择题、填空题、解答题的答案填写在答题卡上.......的相应位置. 一、选择题(本大题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一个选项是正确的.)1.下列运算正确的是( )A .22423+=a a aB .2242-=a a aC .22422⋅=a a aD .2222÷=a a a2.下列命题错误..的个数是( ) ① 经过三个点一定可以作一个圆;② 三角形的外心到三角形各顶点的距离相等; ③ 对角线相等的四边形是矩形;④ 一组对边平行且另一组对边相等的四边形是平行四边形.A .1B .2C .3D .43. 在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①2甲s >2乙s ;②2甲s <2乙s ;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是( )A .①③B .①④C .②④D .②③4. 2017年5月14日,福州一中将喜迎建校两百周年华诞,当天正好是星期日,以当天作为第1天开始算起,则第366天是( )A .星期一B .星期二C .星期六D .星期日5.对于两个实数,a b ,规定{},max a b 表示,a b 中的较大值,当a b ≥时,{},max a b a =,当a b <时,{},max a b b =,例如:{}1,33max =.则函数{}2236,y max x x x x =+--的最小值是( )A .34 B .14- C .154 D .334-6. 如下表,把一列互不相等的正整数按照从小到大的顺序填入下列表格,已知前两个格子填入的数分别为1和2.任取四个彼此相邻格子中的数,从小到大依次记为a 、b 、c 、d ,且满足2)1)(1(=++ba ,则第5个格子中的数m 为( )A.5 B .6 C .7 D .8二、填空题(本大题共6小题,每小题5分,共30分.)7. 《九章算术》是我国传统数学最重要的著作,奠定了我国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就. 《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两. 问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两. 问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 .8.如图,要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为 度.9. 若函数=-y kx b 的图象如图所示,则关于x 的不等式(3)0k x b -->的解集为 .10.观察下列等式:332123+=,33321236++=,333321+2+3+410=,…,根据上述规律,第五个等式为________________.MBA11. 如图,AB 是⊙O 的直径,8=AB ,点M 在⊙O 上,45∠= MAB ,N 是劣弧MB 的三等分点(靠近点B ),P 是 直径AB 上的一动点,则∆PMN 周长的最小值为__________.12.定义二次函数的图象与直线x y =交点的横坐标为二次函数的不动点.已知二次函数()21324=+-+-y x mn x mn 有唯一的不动点,若3-≤m 且0<mn ,则n 的取值范围是 .三、解答题(本大题共3小题,满分40分.)13. (本小题满分13分)已知四边形ABCD ,点E 在边BC 上,P 为对角线BD 上的动点,满足⊥AP PE . (Ⅰ)当四边形ABCD 为正方形时(如图1),求证:=PA PE ;(Ⅱ)当四边形ABCD 为矩形,且6=AD ,4=CD 时(如图2),试探究:AP PE 是否为定值,若是,求出该定值;若不是,请说明理由.14.(本小题满分13分)如图,海中有一小岛D ,它周围12海里内有暗礁.一艘巡逻船在D 岛海域例行巡逻,某时刻航行至A 处时,测得其东北方向与它相距16海里的B 处有一渔船,且D 岛位于巡逻船正东214海里处.观测中发现,此渔船正以每小时4海里的速度沿正南方向航行.如果渔船不改变航线继续前行,有没有触礁危险?请通过计算加以说明.如果有危险,巡逻船的速度至少为多少时,才能将该渔船拦截在暗礁区域之外,并确定此时巡逻船的航向. (参考数据:sin 3652'0.6︒≈,sin 5308'0.8︒≈)15.(本小题满分14分)已知抛物线h x y C +-=21)1(21:的顶点为C ,并与x 轴交于A 、B 两点,点A 在点B 的左侧,直线b x y l +=:经过B 、C . (Ⅰ)求抛物线1C 的解析式和直线l 的表达式;(Ⅱ)点D 是点C 关于x 轴的对称点,连接CD 、BD .平移BCD ∆,得到PQF ∆(B 、C 、D 的对应点分别为P 、Q 、F ),满足PQ 在直线l 上,点F 在抛物线1C 上,求此时点F的坐标;(Ⅲ)在(Ⅱ)的条件下,取位于x 轴上方的点F ,连接AF 、AC .设M 、N 分别为射线CA 和射线AF 上的动点,连接MN ,以MN 为直径的⊙R 经过点Q ,点M 从C 开始沿射线CA 运动的过程中,试求线段FR 的最小长度.福州一中2017年高中招生(面向市区以外)综合素质测试数学参考答案一、选择题(本大题共6小题,每小题5分,共30分)二、填空题(本大题共6小题,每小题5分,共30分) 7. 5210258+=⎧⎨+=⎩x y x y 8. 288 9. 5<x10.333333212345621+++++=11.4+12.103<≤n 三、解答题(本大题共3小题,满分40分)13. 本小题主要考查三角形全等、相似的判定方法;特殊四边形的性质及判定等基础知识,考查识图、辩图、逻辑推理能力,考查几何直观等形象思维.满分13分.(Ⅰ)法一:证明:过P 作⊥PM AB 于M ,⊥PN BC 于N ,……………………1分 ∵ 四边形ABCD 是正方形, ∴ 90∠=ABC , ∴ 四边形BMPN 是矩形, 又 ∵ BD 是∠ABC 的角平分线,∴ =PM PN ……………………………………2分 ∴ 四边形BMPN 是正方形, ∴ 90∠=MPN , ∵ ⊥AP PE , ∴ 90∠= APE ,∴ ∠-∠=∠-∠APE MPE MPN MPE∴ ∠=∠APM EPN ……………………………………4分 在∆APM 和∆EPN 中,∠=∠⎧⎪=⎨⎪∠=∠⎩AMP ENP PM PNAPM EPN , ∴ ∆APM ≌∆EPN (ASA ),……………………………………5分 ∴ .=AP PE ……………………………………6分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,.....................2分∴ ∠=∠ABP AEP .....................3分 ∵ 四边形ABCD 是正方形,∴45ABP ︒∠=,∴ 45∠=AEP ,∴45EAP ︒∠=∴∠=∠EAP AEP ......................5分 ∴ .=AP PE ……………………………………6分(Ⅱ)法一:∵ 四边形ABCD 是矩形, ∴ 90∠=BAD , 又∵90∠= PBM , ∴ PM ∥AD , ∴ ∆BPM ∽∆BDA , ∴=PM BPAD BD,……………………………………7分 同理,PN BPCD BD =, ∴PM PN AD CD=, ∴63==42=PM AD PNCD ,……………………………………9分 ∵ 90∠=∠=AMP ENP ,∠=∠MPA EPN , ∴ ∆APM ∽.∆EPN ……………………………………10分 ∴=AP PMPE PN……………………………………11分 ∴ :3:2.=AP PE 为定值.…………………………………12分 法二:连AE ,由90ABC APE ︒∠=∠=,∴、B P 两点都在以AE 为直径的圆上,..................8分∴ABP AEP ∠=∠,......................9分tan tan ∴∠=∠ABP AEP∵ tan tan ,∠=∠=AP AD AEP ABP AE AB....................11分 ∴3.2==AP AD AE AB .....................12分 (或证明AEP ABD ∆∆∽)14. 本小题主要考查勾股定理、解直角三角形等基础知识,考查应用意识、运算求解能力,考查化归与转化思想等.满分14分.解:在ΔABD 中作DA B C ⊥于点C .…………………2分 在ABC Rt ∆中,1645AB BAC ︒=∠=,28==∴AC BC ……………………………………3分2628214=-=-=∴AC AD CD ………………………………4分依题意,以点D 为圆心,12海里为半径的圆形区域为暗礁区域………………5分∵ 12<所以,如果渔船不改变航线继续航行,有触礁危险.……………………………6分在BC 上取点E 使得12=ED ,连接AE ,ED . 在CED Rt ∆中,12=ED ,26=CD所以,222CD ED CE -=26=∴CE ……………………………8分在A C E Rt ∆中,222AC CE AE +=210=∴AE ……………………………9分所以,在A C E Rt ∆中,53sin ==∠AE CE EAC '3652EAC ︒∴∠= ……………………………11分因为该渔船到达点E 的时间224224===BE t 小时. 所以巡逻船速度2022210==≥t AE v 海里/小时. ………………………13分 所以,巡逻船要以北偏东9036525308︒︒︒''-=的航向和至少每小时20海里的速度前往拦截. ………………………14分 (注:没有取“=”扣1分)15. 本题考查一次函数和二次函数的图像与性质,综合了等腰直角三角形、圆、矩形的性质及垂直平分线的判定,解题过程中利用了图象平移的性质,蕴含了方程思想、化归及数形结合等数学思想.满分14分.解:(Ⅰ)法一: 当0=y 时即0)1(212=+-h x ,则 h x -=-2)1(21有两个不同的实根, 0<∴h (注:说明因二次函数开口向上,与x 轴交于A 、B 两点则0<h 亦可) ……1分由已知可得)0,(b B -,),1(h C ,则⎪⎩⎪⎨⎧+==+--1)1(212b h h b解得2-=h 或0(舍),3-=b .......................................3分23212)1(21:221--=--=∴x x x y C 3:-=x y l ............4分 法二:过C 作x CH ⊥轴于H当0=y 时即0)1(212=+-h x ,则 h x -=-2)1(21有两个不同的实根,0<∴h ...1分解得h x 21-±=,则)0,21(h B -+由已知可得)0,(b B -,),1(h C ,设直线l 与y 轴交于点),0(b D , ∵ ||b OD OB ==,90=∠BOD∴ 45=∠OBD BCH ∆∴为等腰直角三角形BH CH =∴即h h -=--+121解得2-=h∴)0,3(B ,)2,1(-C ...................................3分23212)1(21:221--=--=∴x x x y C 3:-=x y l ............4分 (Ⅱ)设DC 交x 轴于H .由题意可得)2,1(D ,)0,1(HCH BH =, 90=∠CHB , 45=∠=∠∴CBH BCH∵点D 和点C 关于x 轴对称BD BC =∴,BCD ∆为等腰直角三角形且42==CH CD 由平移的性质可知4=FQ 且CD FQ //...............6分 设)3,(-t t Q ,则)2321,(2--t t t F ,4|)3(2321|2=----=t t t FQ....................8分解得1-=t 或5,则)0,1(-F 或)6,5( ....................9分(Ⅲ)连接AR ,QR∵ 22==BC AC ,4=AB∴ABC ∆为等腰直角三角形90=∠ACB , 45=∠=∠BAC ABC .......10分由(Ⅱ)可知 90=∠=∠FPQ ACB ,)2,5(QPF AC //∴∵==AC BC PF ∴四边形ACPF 为矩形90=∠∴MAN RQ MN AR ==∴21R ∴在AQ 的垂直平分线m 上......................11分过F 作⊥FG m 于G ,由垂线段最短可知FG 即为线段FR 的最小长度. .... .....12分 当点M 在C 处时,R 在AQ 的中点1R 处,当点M 在A 处时,R 在AN 上的点2R 处 由上可知()56,F . 则24=CQ ,10222=+=CQ AC AQ ,101=AR ,26==CP AF∵四边形ACPF 为矩形CP AF //∴ 21AR R CQA ∠=∠∴ 21cos cos AR R CQA ∠=∠∴得2252=AR ,2272=FR ∵12290︒∠==∠AR R FGR1//AR FG ∴222GFR AR R ∠=∠∴222112cos cos FR FGGFR AR AR AR R =∠==∠∴ 5107=∴FG 即线段FR 的最小长度为5107..............................14分。

相关文档
最新文档