【典型题】高一数学上期末试题(含答案)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型题】高一数学上期末试题(含答案)(1)
一、选择题
1.已知函数()f x 是定义在R 上的偶函数,且在[)0,∞+上是增函数,若对任意
[)x 1,∞∈+,都有()()f x a f 2x 1+≤-恒成立,则实数a 的取值范围是( )
A .[
]
2,0- B .(],8∞-- C .[)2,∞+ D .(],0∞- 2.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫
⎪⎝⎭
B .1
0,
10,
10
C .1,1010⎛⎫
⎪⎝⎭
D .()()0,110,⋃+∞
3.已知函数1
()log ()(011
a f x a a x =>≠+且)的定义域和值域都是[0,1],则a=( ) A .
12
B
C .
2
D .2
4.设23a log
=,b =2
3c e
=,则a b c ,,的大小关系是( ) A .a b c <<
B .b a c <<
C .b c a <<
D . a c b <<
5.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1
B .3
C .5
D .7
6.设f(x)=()2,0
1
,0
x a x x a x x ⎧-≤⎪
⎨++>⎪⎩
若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]
D .[0,2]
7.若x 0=cosx 0,则( ) A .x 0∈(
3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6
π) 8.用二分法求方程的近似解,求得3
()29f x x x =+-的部分函数值数据如下表所示:
则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6
B .1.7
C .1.8
D .1.9
9.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M
N
最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073
D .1093
10.已知全集为R ,函数()()ln 62y x x =--的定义域为集合
{},|44A B x a x a =-≤≤+,且R
A B ⊆
,则a 的取值范围是( )
A .210a -≤≤
B .210a -<<
C .2a ≤-或10a ≥
D .2a <-或10a >
11.设函数()f x 是定义为R 的偶函数,且()f x 对任意的x ∈R ,都有
()()22f x f x -=+且当[]2,0x ∈-时, ()112x
f x ⎛⎫
=- ⎪⎝⎭
,若在区间(]2,6-内关于x
的方程()()log 20(1a f x x a -+=>恰好有3个不同的实数根,则a 的取值范围是 ( )
A .()1,2
B .()2,+∞
C .(
D .
)
2
12.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。若实数a 满足
(
)(1
2a f f ->,则a 的取值范围是 ( )
A .1,2⎛⎫-∞ ⎪⎝
⎭
B .13,,22⎛⎫⎛⎫
-∞+∞ ⎪ ⎪⎝⎭⎝⎭
C .3,2⎛⎫
+∞
⎪⎝⎭
D .13,22⎛⎫
⎪⎝⎭
二、填空题
13.通过研究函数()42
21021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数
()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个
14.已知函数()1
352=++f x ax bx (a ,b 为常数),若()35f -=,则()3f 的值为______
15.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.
16.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.