雷达环境与电波传播

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

雷达环境与电波传播

姓名

学号:

完成时间:2012年9月28日

摘要:本文在引言部分简要阐述了雷达环境对雷达系统的关系,即随着雷达系统的灵敏度的提高提高会加重对雷达环境的重视,而且雷达电波的传播也受到了雷达环境的影响,为了使其更好地传播有必要研究二者关系。

在第二部分先是介绍了电波环境,电波环境分别包括地面、对流层、平流层(含中层)、电离层和磁层,并简介了各层的特征。此外第二部分还简述了不同的雷达环境对传播特性的影响,包括折射效应,衰减效应,色散效应,闪烁效应,杂波,多径效应,去极化效应,干扰与外噪声。

在第三部分介绍了一种方法叫做折射误差修正,该种方法可以减少折射现象对传播特性的影响。

关键词:电波环境;雷达电波;传播特性;折射误差

一、引言

因为电波环境不是武器系统的一个具体部件所以长期被人们忽略。对环境的掌握可以使信息系统处于领先地位的重要性,是知道20世纪80年代才被人们逐渐认识的。

雷达系统是在一定环境下运转的。电波环境是环境的重要组成部分。电波环境与雷达系统的关系是一种相互依存关系,对雷达系统性能既有抑制作用,又有相辅作用。电波环境虽然不是具体的装备系统的一个具体部件,但他它在系统设计和运转中起着重要作用。由于器件设计技术和信号处理技术的飞速发展,雷达系统整体水平有了很大提高。随着系统灵敏度和精度的提高,系统受自然环境条件的影响也就越大,对电波环境信息依赖性的精度也就越大。

雷达系统发射的雷达电波在空间会以各种频率传播,而每种频率的雷达电波的传播特性都会受到雷达环境的影响,为了减少传播电波环境对传播特性的影响必须首先研究环境对特性的具体影响。

二、雷达环境对雷达性能的影响

雷达工作环境根据大气电波特性可以划分为若干层区,下面给出各层区的特征,并简要介绍各层区对雷达性能的影响。

(一)雷达环境各区域特征

我们把地面直到1000km以上的整个近地空间作为雷达环境,按照海拔的从底到高依次为地面、对流层、平流层(含中层)、电离层和磁层。各区域环境特征如下。

1地面

地面、海面以及地海交界环境特征是地球表面不均匀性、电气特性不均匀性和复杂的地形地貌,它们都严重影响雷达无线电波传播。

2对流层

对流层是最贴近地面的一层大气,由于地面吸收太阳能量,将光能转化为热能,再从地面向大气低层传输就发生了强烈的对流。这是该层大气的主要特征。对流层顶板在极区为9km,赤道可达17km。这区域大气折射率严重影响雷达无线电传播。

3平流层

对流层顶部到平流层顶的空间为平流层,这里大气中水蒸汽含量很少,尘埃也很少,十分透明,大气垂直对流不强,多为平流运动,而且这种运动尺度很大。该层的风场结构对以平流层为平台的雷达系统定点稳定性影响较大。但一般地说,这一段空间的大气对雷达无线传播影响不大。

4中层

中层大气边界在由平流层顶到85km左右处。此层的大气物质进行着强光化反应,以中性分子为主。一般地说,中层对无线电波传播影响不大,但它是甚低频波导传播的上边界。此外,该层的风场结构较复杂。

5电离层

电离层是指60~1000km以上的高层大气,在太阳辐射的影响下,大气物质发生电离。这区域的电离状态显著影响雷达无线电波传播。电离层区域大致划分为D、E、F区,他们均有明显的日、季、年和太阳活动周期的规则变化和由太阳辐射突发引起的随机不规则变化。

6磁层

磁层是指在背景太阳风和基本地球磁场相互作用下,形成的一个太阳风被排斥而地球磁场被太阳风压迫变成类似彗星头尾一样的空穴,在此空穴内地球磁场起着主要控制作用的层区。磁层内充满着稀薄的等离子体,主要是质子、电子,以及少量的氦和中性氢粒子。磁压比气压大得多。等离子体运动完全受磁场支配。正常的磁层对雷达无线电波传播影响不大,但是太阳风暴爆发时,在扰动的太阳风暴作用下,磁层内磁场放生爆发形成磁暴,并作用于电离层引发电离层暴,对雷达无线电波传播会产生很大影响。

(二)不同雷达环境对雷达电波传播的影响

几乎所有频段雷达的电波传播都受到各种雷达环境不同程度的影响。雷达环境对雷达电波传播的影响是多方面的。

1折射效应

电波折射效应是由于对流层和电离层大气折射指数的空间变化使雷达信号在大气层中传播速度异于在真空中传播速度而产生传播射线的弯曲,使测得的目标仰角、距离和多普勒频移等目标视在参数不同于目标真实参数的一种效应。

折射效应包括:

①大气折射指数不均匀所引起的折射效应,包含附加传播时延、目标视在位置误差、射线偏轴,大气波导的折射效应;

②电离层电子浓度不均匀所引起的电离层折射效应,包含群时延、到达角误差。

折射效应对雷达性能的影响有两个。一是雷达探测和跟踪目标的垂直面内作用范围与自由空间时有所不同,一般在垂直面内向下倾斜;而是使得目标位置参数及其变化率产生误差,降低了检测目标的信噪比。

2衰减效应

电波衰减效应是指无线电波在自由空间或介质传播过程中能量的减弱效应。衰减效应包括:

①地、海面反射引起的多径衰减,地形地物引起的遮蔽衰减和绕射衰减,地面电导率、介电常数引起的衰减与相差;

②大气氧气和水汽等气体分子、水汽凝结物对电波吸收、散射所产生的衰减和去极化,大气折射指数不均匀所引起的损耗和波束散焦损耗,大气波导的衰减效应;

③电离层电子碰撞对电波的吸收。

衰减效应对雷达性能的影响主要是缩短了雷达探测和跟踪目标和作用距离,以及降低了雷达探测和跟踪目标的性噪比。

3色散效应

色散效应是由于大气为非理想介质,介质中折射率与频率有关,穿越介质的电波信号传播时延是频率的函数,特别是宽带信号就会散开,引发严重时延散步效应。比如,电离层就是色散物质。

色散效应造成雷达成像分辨率大大下降,跟踪测距、测角及测速误差大大增加,色散是影响空间监控雷达、导弹预警雷达和星载合成孔径雷达的最总要环境效应。

4闪烁效应

对流层湍流和电离层不均匀体运动的变化,无线电波穿过大气层、电离层时产生幅度、相位、极化和到达角的变化,表现为目标信号电平的快速起伏。信号的峰峰起伏可达1~30dB,起伏可持续几分钟,有时甚至几小时。

这种现象由:①目标尺度与传播路径Fresnel区尺度相近的湍流、电子密度引起;②强的电子密度梯度,尤其是垂直于传播路径方向的电子密度梯度引起。闪烁效应已在10MHz~12GHz的频率上观测到。

闪烁影响雷达的作用距离和成像精度,严重的电离层闪烁可引起雷达信号中断,电离层闪烁在我国东南的低纬度地区较为严重,在太阳活动高年尤为严重,L波段的闪烁高达数十分贝。

5 杂波

相关文档
最新文档