《流体力学》Ⅰ主要公式及方程式讲解
流体力学公式总结
工程流体力学公式总结第二章流体得主要物理性质❖流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。
1.密度ρ= m/V2.重度γ= G /V3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m5.流体得相对密度:d = γ流/γ水= ρ流/ρ水6.热膨胀性7.压缩性、体积压缩率κ8.体积模量9.流体层接触面上得内摩擦力10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律)11.、动力粘度μ:12.运动粘度ν:ν=μ/ρ13.恩氏粘度°E:°E = t 1 /t 2第三章流体静力学❖重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。
1.常见得质量力:重力ΔW = Δmg、直线运动惯性力ΔFI =Δm·a离心惯性力ΔFR =Δm·rω2、2.质量力为F。
:F= m·am= m(fxi+f yj+fzk)am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。
即:p=p(x,y,z),由此得静压强得全微分为:4.欧拉平衡微分方程式单位质量流体得力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力得势函数7.重力场中平衡流体得质量力势函数积分得:U =-gz + c*注:旋势判断:有旋无势流函数就是否满足拉普拉斯方程:8.等压面微分方程式、fx dx+fy d y + fz d z =09.流体静力学基本方程对于不可压缩流体,ρ=常数。
流体力学的基本方程式
流体力学的基本方程式流体力学是研究流体力学原理和现象的一门学科。
它主要研究流体的运动和变形规律,包括速度、压力、密度和温度等参数的分布及其相互关系。
流体力学的基本方程式包括连续性方程、动量方程和能量方程。
这些方程式用来描述流体的性质和运动,对于解决流体力学问题至关重要。
下面将逐一介绍这些方程式及其应用。
1. 连续性方程连续性方程描述了流体的质量守恒规律。
它基于质量守恒原理,即在流体中任意一点的质量净流入/流出率等于该点区域内质量的减少率。
连续性方程的数学表达式是:∂ρ/∂t + ∇•(ρV) = 0。
其中,ρ是流体的密度,t是时间,V是流体的流速矢量,∇•表示散度运算符。
连续性方程的应用范围广泛,例如用于描述气象学中的气流动力学、河流的水量和水质传输等。
2. 动量方程动量方程描述了流体的运动规律。
它基于牛顿第二定律,即流体的运动是由外力和内力共同作用的结果。
动量方程的数学表达式是:ρ(∂V/∂t + V•∇V) = -∇P + ∇•τ + ρg。
其中,P是压力,τ是应力张量,g是重力加速度。
动量方程是解决流体流动问题的关键方程,可以用于模拟气象学中的风场、水力学中的水流、航空航天中的气体流动等。
3. 能量方程能量方程描述了流体的能量转换和传递规律。
它基于能量守恒原理,即在流体中任意一点的能量净流入/流出率等于该点区域内能量的减少率。
能量方程的数学表达式是:ρCv(∂T/∂t + V•∇T) = ∇•(k∇T) + Q - P(∇•V) + ρg•V。
其中,Cv是比热容,T是温度,k是热传导系数,Q是体积热源项。
能量方程可用于模拟热传导、对流和辐射现象,例如地下水温场、燃烧室的工作原理等。
流体力学的基本方程式是解决各种流体流动问题的基础,通过对这些方程式的应用,可以揭示流体的行为和性质,为实际工程和科学研究提供指导。
在实际应用中,还可以结合数值模拟和试验数据,进一步分析和预测流体力学问题的解,为工程决策和科学研究提供依据。
流体力学公式
流体力学公式
流体力学公式是描述流体运动的基本物理定律的数学表达式。
以下是一些常见的流体力学公式:
1. 麦克斯韦方程组:这是电磁学和热力学的基本方程,也适用于流体力学。
它包括电场、磁场、电荷密度和电流密度的关系。
2. 质量守恒方程:描述了质量流动的守恒定律,也称为连续方程。
它表明流入流体的质量等于流出的质量加上在流体内部产生的质量。
3. 动量守恒方程:也称为牛顿第二定律,描述了流体中动量的守恒定律。
它表明对于流体的每个体积元,在单位时间内力的总和等于体积产生的动量变化率。
4. 荷尔莫斯定理:描述了流体中应力的传递。
它表明剪切
应力在流体中的传播速度等于流体的速度。
5. 纳维-斯托克斯方程:在雷诺数较低的情况下,描述了流体运动的流体力学方程。
它是动量守恒方程和连续方程的
组合。
6. 伯努利方程:描述了当流体沿着一条流线流动时,对流
体的压力、速度和高度之间的关系。
这个方程可以用来解
释流体在管道中的行为。
以上只是一些常见的流体力学公式,还有很多其他的公式,可根据具体的流体力学问题来使用。
流体力学三大基本方程公式
流体力学三大基本方程公式流体力学是研究流体(液体和气体)行为的一门学科,而其中的三大基本方程就像是流体世界里的三位“大神”,每一个都有自己的风格和特点。
今天我们就来轻松聊聊这三大基本方程,看看它们是如何影响我们日常生活的。
1. 连续方程1.1 理论基础连续方程说的就是流体在流动时质量是守恒的,也就是说流体不会凭空消失或者出现。
这就好比你在喝饮料,吸管里的液体不管你怎么吸,它的总量始终不变。
你想,假如你吸得太快,吸管里液体都没了,那饮料可就喝不到了,真是要命!1.2 实际应用在现实生活中,这个方程的应用可广泛了。
比如,水管里流动的水,流量是一定的。
如果管道变窄,水速就会变快,简直就像是高速公路上的汽车,车道窄了,车速得加快才能不堵车。
你可以想象一下,如果这条“水路”被堵了,后果可就不堪设想,真是“水深火热”啊。
2. 纳维斯托克斯方程2.1 理论基础说到纳维斯托克斯方程,这可是流体力学里的“超级英雄”。
它描述了流体的运动,考虑了粘性、压力、速度等多个因素,就像一位全能运动员,无论是短跑、游泳,还是足球,样样精通!这个方程让我们能够预测流体的流动,简直就像是给流体穿上了“预测未来”的眼镜。
2.2 实际应用说到实际应用,纳维斯托克斯方程可是在天气预报、飞机设计等领域大显身手。
在气象学中,气象学家利用这个方程来模拟风暴、降雨等自然现象,真的是“未雨绸缪”,让我们提前做好准备。
想象一下,若是没有它,我们可能在大雨来临时还在悠哉悠哉地喝着茶,结果被“浇”了个透心凉。
3. 伯努利方程3.1 理论基础最后我们得提提伯努利方程,它可是流体动力学的明星。
简单来说,伯努利方程告诉我们,流体的压力和速度之间有着“爱恨交织”的关系。
流速快的地方,压力就低;流速慢的地方,压力就高。
这就像是你在一个热闹的派对上,越往外挤,周围的人越少,反而显得格外“安静”。
3.2 实际应用伯努利方程的应用那可是多得数不胜数,尤其是在飞行器设计上。
流体力学计算公式
流体力学计算公式1、单位质量力:mF f B B = 2、流体的运动粘度:ρμ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dpd dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dTd dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+=7、静水总压力:)h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghAA p p c ρ==8、元流伯努利方程;'2221112w h gp z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,gp ρ为测压管高度或压强水头,gu ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C gp p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h gv g p z g v g p z +++=++222221221111αραρ(α为修正系数通常取1)10、文丘里流量计测管道流量:)21)(41()()(42122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:gv d l h f 22λ=(l 为管长,d 为管径,v 为断面平均流速,g为重力加速度,λ为沿程阻力系数)12、局部水头损失一般表达式:对应的断面平均流速)为为局部水头损失系数,v gv h j (22= 13、圆管流雷诺数:为圆管直径)为运动粘度,为流速,d v (u vud R e = 14、非圆管道流雷诺数:χA R R v uR R e ==水力半径为水力半径,(A 为过流断面面积,x 为过流断面上流体与固体接触的周界,矩形断面明渠流的水力半径:h b bh R 2+=,b 为明渠宽度,h 为明渠水深)15、均匀流动方程式:gRJ lh gR gR l gA l h f f ρρ?ρ?ρχ?====000或(R 为水力半径,J 为水力坡度,l h J f=)16、流束的均匀流动方程:''J gR ρτ=(τ为所取流束表面的剪应力,'R 为所取流束的水力半径,'J 为所取流束的水力坡度,与总水流坡度相等)17、过流断面上的流速分布的解析式:)(4220r r gJ u -=μρ 18、平均流速:20208r gJ r Q A Q v μρπ===,断面平均流速与最大流速的关系:max 21u v = 19、沿程水头损失:为沿程摩阻系数其中λλ,22Re 6422gv d l g v d l h f ==,沿程摩阻系数:Re64=λ 20、谢才公式:RJ C RJ g v ==λ8(v 为断面平均流速,R 为水力半径,J 为水力坡度,C 为谢才系数) 21、曼宁公式:)(15.061s m R nC =(n 为综合反映壁面对水流阻滞作用的系数,称为粗糙系数,R 为水力半径)22、局部水头损失:22122211)1(,)1(-=-=A A A A ξξ,21,A A 分别为扩大前断面1-1和正常状态断面2-2的面积,21,ξξ分别为突然扩大前、后两个断面的平均流速对应的两个局部水头损失系数。
流体力学公式及分析
流体力学1. 密度ρ: 单位体积流体所具有的质量。
SI 单位:kg/m3a) 液体密度:主要影响因素为温度和压力。
i.压力的影响较小,通常可忽略。
ii.温度升高,密度减小。
b) 气体密度:在工程中,低压、高温下的真实气体可近视为理想气体。
i. 气体密度随温度、压力的变化有明显的改变。
ii.压力升高,密度增大;温度升高,密度减小。
2. 压强p :流体垂直作用在单位面积上的力。
SI 单位:Pa 或N/m 2a) 1atm =101.3kPa =760mmHg =10.33mH 2O =1.033at = 1.033kgf/cm 21bar =105Pab) 表压=绝压-大气压 真空度=大气压-绝压★当压力用表压或真空度表示时,需注明。
例如:20kPa (表压)3. 流体静力学基本方程式:a) 等压面概念:在静止、连续的同一种流体内部,处在同一水平面上的各点的压力均相等。
(即静压强仅与垂直高度有关,而与水平位置无关。
)Vm=ρRTpM V m ==ρAFp =ghP P ρ+=0b) 传递定律:同一种流体内部,如果一点的压力发生变化,则其他各点的压力将发生同样大小和方向的变化。
c)可以改写成 即液柱高度可以用来表示静压强大小,但须注明是何种液体。
在静止、连续的同一种流体内部,任一截面的压力仅与其所处的深度有关,而与底面积无关 。
d) 方程是以不可压缩流体推导出来的,对于可压缩性的气体,只适用于压强变化不大的情况。
(±20%)4. 流量:单位时间内流过管道任一截面的流体量。
a) 体积流量:流量用体积来计量,一般用Q 表示;SI 单位:m 3/s b) 质量流量:流量用质量来计量,用W S 表示; SI 单位:kg/sc)5. 流速:单位时间内流体在流动方向上流过的距离,称为平均流速。
以u 表示,SI 单位:m/s 。
质量流速:单位时间内流体流过管道单位面积的质量流量,SI 单位:kg/(m 2.S)。
工程流体力学公式
工程流体力学公式1.流体静力学公式:(1) 压强公式:P = ρgh,其中P为压强,ρ为流体密度,g为重力加速度,h为液面高度。
(2)压力公式:P=F/A,其中P为压力,F为作用力,A为受力面积。
2.流体力学基本方程:(1)质量守恒方程:∂(ρ)/∂t+∇·(ρv)=0,其中ρ为密度,t为时间,v为速度矢量。
(2) 动量守恒方程:∂(ρv)/∂t + ∇·(ρvv) = -∇P + ∇·τ +ρg,其中P为压力,τ为应力张量,g为重力加速度。
(3) 能量守恒方程:∂(ρe)/∂t + ∇·(ρev) = -P∇·v +∇·(k∇T) + ρg·v,其中e为单位质量的总能量,T为温度,k为热传导系数。
3.流体动力学方程:(1)欧拉方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g,其中v为速度矢量,P为压力,ρ为密度,g为重力加速度。
(2)再循环方程:∂v/∂t+(v·∇)v=-∇(P/ρ)+g+F/M,其中F为体积力,M为质量。
4.流体阻力公式:(1) 粘性流体的阻力公式:F = 6πμrv,其中F为阻力,μ为粘度,r为流体直径,v为速度。
(2)粘性流体在管道中的流量公式:Q=(π/8)ΔP(R^4)/(Lμ),其中Q为流量,ΔP为压差,R为半径,L为管道长度,μ为粘度。
5.流体力学定律:(1) Pascal定律:在封闭的液体容器中,施加在液体上的外力将均匀传递到液体的每一个点。
(2) Bernoulli定律:沿着流体流动方向,速度增大则压力减小,速度减小则压力增大。
除了上述公式之外,还有许多与特定问题相关的公式,如雷诺数、流体阻力系数、泵和液力传动公式等。
这些公式是工程流体力学研究和设计的基础,可以帮助工程师分析和解决与流体运动和相互作用有关的问题。
流体主要计算公式
流体主要计算公式流体是液体和气体的统称,具有流动性和变形性。
流体力学是研究流体静力学和动力学的学科,其中主要涉及到流体的力学性质、运动规律和力学方程等内容。
在流体力学的研究中,有一些重要的计算公式被广泛应用。
下面将介绍一些常见的流体力学计算公式。
1.流体静力学公式:(1)压力计算公式:P=F/A-P表示压力-F表示作用力-A表示受力面积(2)液体静力学公式:P=hρg-P表示液体压力-h表示液体高度-ρ表示液体密度-g表示重力加速度2.流体动力学公式:(1)流体流速公式:v=Q/A-v表示流速-Q表示流体流量-A表示流体截面积(2)流体流量公式:Q=Av-Q表示流体流量-A表示流体截面积-v表示流速(3)连续方程:A1v1=A2v2-A1和A2表示流体截面积-v1和v2表示流速(4) 流体动能公式:E = (1/2)mv^2-E表示流体动能-m表示流体质量-v表示流速(5)流体的浮力公式:Fb=ρVg-Fb表示浮力-ρ表示液体密度-V表示浸泡液体的体积-g表示重力加速度3.流体阻力公式:(1)层流阻力公式:F=μAv/L-F表示阻力-μ表示粘度系数-A表示流体截面积-v表示流速-L表示流动长度(2)湍流阻力公式:F=0.5ρACdV^2-F表示阻力-ρ表示流体密度-A表示物体的受力面积-Cd表示阻力系数-V表示物体相对于流体的速度4.比力计算公式:(1)应力计算公式:τ=F/A-τ表示应力-F表示力-A表示受力面积(2)压力梯度计算公式:ΔP/Δx=ρg-ΔP/Δx表示压力梯度-ρ表示流体密度-g表示重力加速度(3) 万斯压力计算公式:P = P0 + ρgh-P表示压力-P0表示参考压力-ρ表示流体密度-g表示重力加速度-h表示液体的高度以上是一些流体力学中常见的计算公式,涉及到压力、流速、阻力、浮力以及比力等方面的运算。
这些公式在解决流体力学问题时非常有用,可以帮助我们理解和分析流体的运动和力学性质。
流体力学中三大基本方程
( d t) d x d y d zd x d y d z d td x d y d z
t
t
单位时间内,微元体质量增量:
dtdxd/dyt dzdxdydz
t
t
(微团密度在单位时间内的变率及微团体积的乘积)
⑶根据连续性条件:
t x ( x ) y ( y) z ( z) 0
ax
dx
dt
x
t
x
x
x
y
x
y
z
x
z
ay
dy
dt
y
t
x
y
x
y
y
y
z
y
z
az
dz
dt
z
t
x
z
x
y
z
y
z
z
z
⑷代入牛顿第二定律求得运动方程:
得x方向上的运动微分方程:
d d txd x d y d z p xd x d y d z fx d x d y d z
单位体积流体的运动微分方程:
dx
dt
同理可得在单位时间内沿y,z方向流出 及 流入控制体的质
量差为
vy
d
x
d
yd和z
vz
dxdydz
y
z
故单位时间内流出及流入微元体流体质量总变化为:
x ( x) y ( y) z( z) dxdydz
⑵控制体内质量变化:
因控制体是固定的,质量变化是因密度变化引起的,dt时间内:
pxfx
单位质量流体的运动微分方程:
dx
dt
1
p x
fx
同理可得y,z方向上的:
流体力学三大方程公式及符号含义
流体力学是研究流体运动和力学的学科,涉及流体的运动规律、压力、密度等物理性质。
在流体力学的研究中,三大方程公式是非常重要的理论基础,它们分别是连续方程、动量方程和能量方程。
本文将对这三大方程公式及其符号含义进行详细介绍。
一、连续方程连续方程是描述流体连续性的重要方程,它表达了流体在运动过程中质点的连续性。
连续方程的数学表达式为:\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \]其中,符号和含义说明如下:1.1 ∂ρ/∂t:表示密度随时间的变化率,ρ为流体密度。
1.2 ∇·(ρv):表示流体质量流动率的散度,∇为Nabla算子,ρv为流体的质量流速矢量。
这一方程表明了在运动的流体中,质量是守恒的,即单位体积内的质量永远不会减少,这也是连续方程的基本原理。
二、动量方程动量方程描述了流体运动过程中动量的变化和传递,是流体力学中的核心方程之一。
其数学表达式为:\[ \frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{\tau} + \mathbf{f} \]其中,符号和含义说明如下:2.1 ∂(ρv)/∂t:表示动量随时间的变化率。
2.2 ∇·(ρv⃗v):表示动量流动率的散度。
2.3 -∇p⃗:表示流体受到的压力梯度力。
2.4 ∇·τ⃗:表示应力张量的散度,τ为流体的粘性应力张量。
2.5 f⃗:表示单位体积内流体受到的外力。
动量方程描述了流体内部和外部力之间的平衡关系,它是研究流体运动规律和动力学行为的重要方程。
三、能量方程能量方程描述了流体在运动过程中的能量变化规律,包括内能、压力能和动能等能量形式。
《流体力学》Ⅰ主要公式及方程式
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:pp V V d d 1d d 1p ρρβ=-= 流体的体积弹性系数计算式:ρρd d d d pV p VE =-= 流体的体积膨胀系数计算式:TT V V d d 1d d 1T ρρβ-==2.等压条件下气体密度与温度的关系式:tβρρ+=10t , 其中2731=β。
3.牛顿内摩擦定律公式:yuAT d d μ±= 或 y u A T d d μτ±==恩氏粘度与运动粘度的转换式:410)0631.00731.0(-⨯-=EE ν 4.欧拉平衡微分方程式: ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-010101z p f y p f x pf z y x ρρρ 和 ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-010101z pf r p f r p f z r ρθρρθ欧拉平衡微分方程的全微分式: )d d d (d z f y f x f p z y x ++=ρ )d d d (d z f r f r f p z r ++=θρθ 5.等压面微分方程式: 0d d d =++z f y f x f z y x0d d d =++z f r f r f z r θθ 6.流体静力学基本方程式:C z p=+γ或2211z p z p +=+γγ或 2211z g p z g p ρρ+=+相对于大气时: C z g p a m =-+)(ρρ 或 2211)()(z g p z g p a m a m ρρρρ-+=-+ 7.水静力学基本方程式:h p p γ+=0,其中0p 为自由液面上的压力。
8.水平等加速运动液体静压力分布式:)(0gz ax p p +-=ρ;等压面方程式:C z g ax =+;自由液面方程式:0=+z g ax 。
注意:p 0为自由液面上的压力。
9.等角速度旋转液体静压力分布式:)2(220z gr p p -+=ωγ;等压面方程式:C z g r =-222ω;自由液面方程式:0222=-z g r ω。
第1章流体力学基础部分
∵ 液体在静止状态下不呈现粘性
∴ 内部不存在切向剪应力而只有法向应力 (2)各向压力相等
∵ 有一向压力不等,液体就会流动
∴ 各向压力必须相等
1.2.2 静止液体中的压力分布
1、液体静力学基本方程式
质量力(重力、惯性力)作用于液体的所有质点 作用于液体上的力
表面力(法向力、切向力、或其它物体或其它容器对液体、一部
赛氏秒SUS:
雷氏秒R:
美国用
英国用
巴氏度0B:
法国用
恩氏粘度与运动粘度之间的换算关系: ν=(7.310E – 6.31/0E)×10-6
m2/s
三、液体的可压缩性
可压缩性: 液体受压力作用而发生体积缩小性质 1、液体的体积压缩系数(液体的压缩率) 定义:体积为V的液体,当压力增大△p时,体积减小△V, 则液体在单位压力变化下体积的相对变化量 公式:
工作介质: 传递运动和动力 液压油的任务 润滑剂: 润滑运动部件 冷却、去污、防锈
1、 对液压油的要求
(1)合适的粘度和良好的粘温特性;
(2)良好的润滑性;
(3)纯净度好,杂质少; (4)对系统所用金属及密封件材料有良好的相容性。 (5)对热、氧化水解都有良好稳定性,使用寿命长; (6)抗泡沫性、抗乳化性和防锈性好,腐蚀性小; (7)比热和传热系数大,体积膨胀系数小,闪点和燃点高,流 动点和凝固点低。(凝点:油液完全失去其流动性的最高温度) (8)对人体无害,对环境污染小,成本低,价格便宜
υ=q/A
1.3.2 连续性方程--质量守恒定律在流体力学中的应用
1、连续性原理--理想液体在管道中恒定流动时,根据质 量守恒定律,液体在管道内既不能增多,也不能减少,因此 在单位时间内流入液体的质量应恒等于流出液体的质量。 2、连续性方程 ρ 1υ1A1=ρ 2υ2A2 若忽略液体可压缩性 ρ 1=ρ 则 υ1A1=υ2A2 或q=υA=常数
1.2 流体静力学基本方程式
C p = 1 . 01 kJ ⋅ kg − 1 ⋅ K − 1 ,管内流速取 8 ~ 15 m ⋅ s −1
水
ρ = 1000 kg ⋅ m−3 ,µ = 1cp = 1×10−3 SI 单位(Pa.s), 单位(Pa.s) (Pa.s),
图2-3 U管压差计
② 倾斜式压差计
p
A1 h1 = A2 L ⇒ h1 = h2 = L sin α
A2 L A1
A2
L
h2 h
A1
α
图2-4 倾斜式压差计
p = ρ g h = ρ g (h1 + h2 )
h1
A = ρ gL 2 + sin α A 1 = KL K = f ( ρ ,α ) = 0 . 2 , . 4 , . 6 , . 8 L 0 0 0
p a = ρ 液 gh = p b = ρ 指 gR h =
图2-7 远距离测量液位
ρ指 R ρ液
3.确定液封高度
h=
p1
pa − p ρ液 g
ቤተ መጻሕፍቲ ባይዱ
p
pa
图2-6 测量液位的连通器 图2-8 冷凝器
4.倾析器 4.倾析器 互不相溶且密度不同的液体混合物, 互不相溶且密度不同的液体混合物, 可在倾析器中进行分层, 可在倾析器中进行分层,使两种液体互 相分离。如图2 按静力学方程, 相分离 。 如图 2 - 9 , 按静力学方程 , 考 点和B点有: 虑A点和B点有:
P1 P2 + z1 = + z2 ρg ρg
流体力学公式总结
工程流体力学公式总结第二章 流体的主要物理性质流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。
1.密度 ρ = m /V2.重度 γ = G /V3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水6.热膨胀性7.压缩性. 体积压缩率κ8.体积模量9.流体层接触面上的内摩擦力10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律)11..动力粘度μ:12.运动粘度ν :ν = μ/ρ13.恩氏粘度°E :°E = t 1 / t 2第三章 流体静力学重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。
1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a离心惯性力ΔFR = Δm·r ω2 .T VV ∆∆=1αp VV ∆∆-=1κV P V K ∆∆-=κ1n A F d d υμ=dnd v μτ±=n v d /d τμ=2.质量力为F 。
:F = m ·am = m (f xi+f yj+f zk)am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为fx = 0 , fy = 0 , fz = -mg /m = -g式中负号表示重力加速度g 与坐标轴z 方向相反3流体静压强不是矢量,而是标量,仅是坐标的连续函数。
即:p = p (x ,y ,z ),由此得静压强的全微分为:4.欧拉平衡微分方程式单位质量流体的力平衡方程为:5.压强差公式(欧拉平衡微分方程式综合形式)6.质量力的势函数7.重力场中平衡流体的质量力势函数z z p y y p x x p p d d d d ∂∂∂∂∂∂++=d d d d d d 0x p f x y z x y z x∂∂-=ρd d d d d d 0y p f x y z x y z y ∂∂-=ρd d d d d d 0z p f x y z x y z z∂∂-=ρ01=∂∂-x p f x ρ10y p f y ∂∂-=ρ01=∂∂-z p f z ρz z p y y p x x p z f y f x f z y x d d d )d d d (∂∂+∂∂+∂∂=++ρ)d d d (d z f y f x f p z y x ++=ρd (d d d )x y z p f x f y f z dU ρ=++=ρd d d d x y z U U U U x y z =f dx f dy f dz x y z gdz ∂∂∂∂∂∂=++++=-积分得:U = -gz + c*注:旋势判断:有旋无势流函数是否满足拉普拉斯方程:22220x y ψψ∂∂+=∂∂8.等压面微分方程式 .fx d x + fy d y + fz d z = 09.流体静力学基本方程对于不可压缩流体,ρ = 常数。
1流体力学基本知识
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商
第一章主要公式
P-轴功率,KW;
3 ) 泵的安装高度
最大吸上真空高度,
H s max
=
pa − pv ρg
(1-37)
pv-被输送液体在输送温度下的饱和蒸汽压,Pa; 允许吸上真空高度 Hsp。
允许安装高度Zsp,
H sp < H s max
∑ Z sp
=
H sp
−
u
2 s
2g
−
h f (m)
(1-38) (1-39)
τ
=
k
⎜⎜⎝⎛
du dy
⎟⎟⎠⎞
n
,n>1
式中 k——稠度指数, n——流变指数。
k 和 n 的数值均由实验来确定。
1.1.15 气体输送原理与设备 1) 离心风机全压表达式,
HT
= (p2
−
p1
)
+
u
2 2
2
ρ
(1-43) (1-44)
(1-45)
式中, ( p2 − p1 )-静风压,Pa;
ρu
通常在泵的样本中查得的Hsp是根据大气压pa=10mH2O,水温为 20℃时得出的数值。若 操作条件和上述不符,则Hsp必须按下式进行校正。
H
' sp
=
H sp
− 10 + H a
+
pv − pv' ρg
(Байду номын сангаас-40)
式中 Ha——泵工作点的大气压,mH2O; pv——20℃下水的饱和蒸汽压,Pa; p'v——输送温度下水的饱和蒸汽压,Pa。
ρ—流体的密度,kg/m3; w—单位质量的流体所具有的功,J/kg; q—单位质量的流体所具有的热量,J/kg; h—单位质量的流体所具有的焓,J/kg。 式中以下标 1 表示的项为体系进口截面上流体的能量,下标 2 表示的项为体系出口截面 上流体的能量。 1.1.3 不可压缩理想流体的稳定流动与柏努利(Bernoulli)方程
流体力学公式大全
流体力学公式大全流体力学是研究流体静力学和动力学的科学,它在物理学、工程学、地质学、生物学等领域都有着广泛的应用。
在流体力学中,有许多重要的公式,它们帮助我们理解流体的运动规律、压力分布、速度场等重要参数。
本文将为您介绍一些流体力学中常用的公式,希望能够帮助您更好地理解和应用流体力学知识。
1. 流体静力学公式。
在静态流体中,流体的压力是均匀分布的,根据流体静力学的基本原理,我们可以得到以下公式:\[ P = \rho g h \]其中,P表示流体的压力,ρ表示流体的密度,g表示重力加速度,h表示流体的高度。
这个公式告诉我们,流体的压力与流体的密度和高度成正比,与重力加速度成正比。
2. 流体动力学公式。
在动态流体中,流体的速度和压力是不均匀分布的,根据流体动力学的基本原理,我们可以得到以下公式:\[ \frac{Dv}{Dt} = -\frac{1}{\rho} \frac{dp}{dx} + g \]这个公式描述了流体中速度的变化率与压力梯度和重力加速度的关系。
它告诉我们,流体中速度的变化受到压力梯度和重力加速度的影响。
3. 流体连续性方程。
流体的质量是守恒的,根据流体连续性方程,我们可以得到以下公式:\[ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 \]这个公式描述了流体的密度变化率与流体速度的散度的关系。
它告诉我们,流体的密度变化受到流体速度的影响。
4. 纳维-斯托克斯方程。
纳维-斯托克斯方程描述了流体的运动规律,它是流体力学中最重要的方程之一:\[ \rho \left( \frac{\partial v}{\partial t} + v \cdot \nabla v \right) = -\nabla p + \nabla \cdot \tau + \rho g \]这个方程描述了流体的加速度与压力梯度、应力张量和重力加速度的关系。
《流体力学》Ⅰ主要公式及方程式
《流体力学》Ⅰ主要公式及方程式流体力学是研究流动的力学学科,它使用了一系列的公式和方程式来描述和解释流体的运动和性质。
以下是流体力学中的一些主要公式和方程式:1.连续性方程式:连续性方程式描述了质量守恒定律,即在一个封闭的流体系统中,质量的流入量等于流出量。
连续性方程式的公式如下:∇·(ρV)=0其中,∇表示向量的散度操作符,ρ表示流体的密度,V表示流体的速度矢量。
2.动量方程式:动量方程式描述了物体所受到的力和加速度之间的关系。
对于流体力学,动量方程式可以分为欧拉方程和纳维尔-斯托克斯方程两种形式。
欧拉方程描述了无粘性流体的动量方程,其公式如下:∂V/∂t+(V·∇)V=-(1/ρ)∇p+F其中,∂V/∂t表示速度V对时间t的偏导数,·表示向量点乘,p表示压力,F表示外力。
纳维尔-斯托克斯方程描述了粘性流体的动量方程,其公式如下:∂V/∂t+(V·∇)V=-(1/ρ)∇p+μ∇²V+F其中,μ表示流体的动力黏度,∇²表示向量的拉普拉斯算子。
3.质量守恒方程:质量守恒方程描述了流体的质量守恒定律,其公式如下:∂ρ/∂t+∇·(ρV)=0其中,ρ表示流体的密度,V表示流体的速度矢量。
4.能量守恒方程:能量守恒方程描述了流体的能量守恒定律,其公式如下:∂(ρe)/∂t+∇·(ρeV)=∇·(k∇T)+Q其中,e表示流体的单位质量内部能量,T表示流体的温度,k表示热传导系数,Q表示热源。
5.状态方程:状态方程描述了流体的状态,在流体力学中常用的状态方程有理想气体状态方程和液体状态方程。
理想气体状态方程公式如下:p=ρRT其中,p表示压力,ρ表示密度,R表示气体常数,T表示温度。
以上是流体力学中的一些主要公式和方程式。
这些方程式通过数学描述和解析,可以帮助我们理解和预测流体的运动和行为,对于各种工程和科学应用都具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。
3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。
8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。
注意:p0为自由液面上的压力。
1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。
注意:p0为自由液面上的压力。
10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。
压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。
当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。
12∂ux∂ux∂ux∂ux⎫+ux+uy+uz∂τ∂x∂y∂z⎪⎪∂uy∂uy∂uy∂uy⎪+ux+uy+uz直角坐标系:ay=⎬ ∂τ∂x∂y∂z⎪∂u∂uz∂uz∂uz⎪az=z+ux+uy+uz∂τ∂x∂y∂z⎪⎭ax=∂ur∂ur∂ur∂uruθ2ar=+ur+uθ+uz-∂τ∂rr∂θ∂zr∂u∂u∂u∂uuu圆柱坐标系:aθ=θ+urθ+uθθ+uzθ+rθ∂τ∂rr∂θ∂zr∂u∂uz∂uz∂uzaz=z+ur+uθ+uz∂τ∂rr∂θ∂z⎫⎪⎪⎪⎬⎪⎪⎪⎭流体质点的压力、密度等流动参量对时间的变化率计算式:dp∂p∂p∂p∂p=+ux+uy+uzdτ∂τ∂x∂y∂zdρ∂ρ∂ρ∂ρ∂ρ=+ux+uy+uz∂τ∂x∂y∂z dτ13drrdθdzdxdydz==== 及uxuyuzuruθuz2∂ρ∂(ρux)∂(ρuy)∂(ρuz)14.三维连续性方程式的一般式:+++=0 ∂τ∂x∂y∂z∂ρρur∂(ρur)∂(ρuθ)∂(ρuz)++++=0 ∂τr∂rr∂θ∂z∂ux∂uy∂uz15.不可压缩流体的三维连续性方程式:++=0 ∂x∂y∂zur∂ur∂uθ∂uz+++=0∂rr∂θ∂z r16M=ρ11A1=ρ22A2对于不可压缩流体: Q=1A1=2A2∂u∂u∂u⎫1∂p∂ux=+uxx+uyx+uzx⎪ρ∂x∂τ∂x∂y∂z⎪∂uy∂uy∂uy⎪1∂p∂uy=+ux+uy+uz17f y-⎬ρ∂y∂τ∂x∂y∂z⎪1∂p∂uz∂u∂u∂ufz-=+uxz+uyz+uzz⎪ρ∂z∂τ∂x∂y∂z⎪⎭fx-1∂p∂ur∂ur∂ur∂uruθ2fr-=+ur+uθ+uz-ρ∂r∂τ∂rr∂θ∂zr∂u∂u∂uuu1∂p∂uθ=+urθ+uθθ+uzθ+rθ fθ-ρr∂θ∂τ∂rr∂θ∂zr1∂p∂uz∂u∂uz∂ufz-=+urz+uθ+uzzρ∂z∂τ∂rr∂θ∂z⎫⎪⎪⎪⎬⎪⎪⎪⎭∂z∂u∂u1∂p⎫+g++u=0⎪ρ∂s∂s∂τ∂s⎪18.沿流线的欧拉运动微分方程式:⎬2∂zu1∂p⎪+g=⎪ρ∂r∂rr⎭对于稳定流动: dpρ+gdz+udu=01ρu2=C 219p+ρgz+或p1+ρgz1+112ρu12=p2+ρgz2+ρu2 22112相对于大气时:pm1+(ρ-ρa)gz1+ρu12=pm2+(ρ-ρa)gz2+ρu2 22∑Fx=ρ2A2un2ux2-ρ1A1un1ux1⎫⎪20∑Fy=ρ2A2un2uy2-ρ1A1un1uy1⎬⎪∑Fz=ρ2A2un2uz2-ρ1A1un1uz1⎭∑Fx=ρQ(ux2-ux1)⎫⎪或∑Fy=ρQ(uy2-uy1)⎬∑Fz=ρQ(uz2-uz1)⎪⎭21.稳定流的动量矩方程式:M=∑F⨯r=ρQ(u2⨯r2-u1⨯r1)或M=∑Fτr=ρQ(u2τr2-u1τr1)⎫1∂uz∂uθ1∂uz∂uy⎫ω=(-)ωx=(-)⎪r⎪2r∂θ∂z2∂y∂z⎪⎪∂u⎪1∂u1∂u∂u⎪22ωy=(x-z)⎬及ωθ=(r-z)⎬ 2∂z∂r2∂z∂x⎪⎪1uθ∂uθ∂ur⎪1∂uy∂ux⎪ωz=(+-)⎪ωz=(-)⎪2r∂rr∂θ⎭2∂x∂y⎭⎫∂uz∂uy⎫∂uz∂uθ-ξ=-⎪r⎪∂y∂z⎪r∂θ∂z⎪∂u∂u⎪∂u∂u⎪流体微团的涡量计算式:ξy=x-z⎬及ξθ=r-z⎬ ∂z∂r∂z∂x⎪⎪uθ∂uθ∂ur⎪∂uy∂ux⎪ξz=+-ξz=-⎪⎪r∂rr∂θ⎭∂x∂y⎭ξx=23εx=∂uy∂ux∂u,εy=,εz=z ∂x∂y∂z∂ux∂uy∂uz流体微团的体积变形率计算式:ε=εx+εy+εz= ++∂x∂y∂z1∂uz∂uy⎫θx=(+)⎪2∂y∂z⎪1∂u∂u⎪24θy=(x+z)⎬ 2∂z∂x⎪1∂u∂u⎪θz=(y+x)⎪2∂x∂y⎭25 dxωx=dyωy=dzωz26.涡管的旋涡强度定义式:I=⎰sA rotu⋅dA=⎰ξ⋅dA=⎰ξxdAx+ξydAy+ξzdAz AA 27.速度环量定义式:Γ=u⋅ds=uxdx+uydy+uzdz s28ux=∂ψ∂ψ ,uy=-∂y∂x dψ=-uydx+uxdy 4对于圆柱坐标系:ur=1∂ψ∂ψ,uθ=- r∂θ∂rdψ=-uθdr+urrdθ29ux=∂ϕ∂ϕ∂ϕ,uy=,uz=∂x∂y∂z dϕ=uxdx+uydy+uzdz 对于圆柱坐标系:ur=∂ϕ1∂ϕ∂ϕ,uθ=,uz= ∂rr∂θ∂z dϕ=urdr+uθrdθ+uzdz30.平行于x轴的均匀直线流的流函数和速度势函数的表达式:ψ=u0y⎫ϕ=u0x⎬⎭QQ-1y⎫θ=±tg⎪⎪2π2πx31.源流与汇流的流函数和速度势函数的表达式:⎬QQϕ=±lnr=±lnx2+y2⎪⎪2π2π⎭ψ=±ΓΓ⎫lnr=-lnx2+y2⎪⎪2π2π32.涡流(点涡)的流函数和速度势函数的表达式:⎬ΓΓ-1y⎪ϕ=θ=tg⎪2π2πx⎭ψ=-33.偶极流的流函数和速度势函数的表达式:ψ=-MsinθMy =-222πr2πx+yϕ=McoθsMx =2πr2πx2+y234Re=ρulul= μν对于圆截面管道:Re=ρdd= μν对于绕流平板:Re=ρu∞xu∞x =μν对于绕流圆柱体及球体:Re=ρu∞du∞d =μνp12u12p2u2=+z2+α2+hw 35+z1+α1γ2gγ2g1222或p1+γz1+α1γ=p2+γz2+α2γ+∆pw 2g2g1222相对于大气时:pm1+(γ-γa)z1+α1γ=pm2+(γ-γa)z2+α2γ+∆pw 2g2gl2l2l136hf=λ 或∆pf=γhf=λγ=λρ2 d2gd2gd222137.局部阻力计算公式:hf=K 或∆pj=γhj=Kγ=Kρ2 2g2g238.圆管层流切应力计算式:τ=39u=11Rmr=γJr 22∆pf4μl(R2-r2)=γJ22(R-r) 4μ40.哈根—泊肃叶公式:Q=γJγJπR4=πd4 8μ128μuumaxy=()n R14142.层流区阻力系数λ计算式:λ=64 Re0.316435 (4×10<Re<10) 0.25Re∆68粗糙管区阿尔特索里阻力系数λ计算式:λ=0.11(+)0.25 dRed阻力平方区尼古拉兹阻力系数λ计算式:λ=(1.74+2lg)-2 2∆光滑管区布拉修斯阻力系数λ计算式:λ=43=ϕ2g(H0+p0-pbγ)Q=μ2g(H0+对于敞口液体容器:=ϕgHQ=μ2gH 对于密闭气体容器:=ϕ2g(pg-pa)=ϕ2∆pp0-pbγ) γρQ=μA2g(pg-p a)γ=μA6 2∆pρ2gH(a-g)244.零压面位于炉底的炉门逸气量计算公式:Q=μBH 3γg对于斜壁炉门:Q=2gH(γa-γg)sinα2 μBH3γg8(λ45SH=ll+∑K)8ρ(λ+∑K) 或S=P2424πdgπd hw=SHQ2 或∆pw=SPQ2146hw=SH(Qz2+QzQt+Qt2) 31或 hw=SH(Q2-QQt+Qt2) 3τxy=τyx=μ(47τyz∂uyτzx∂x∂u=τzy=μ(z∂y∂u=τxz=μ(x∂z⎫∂ux)=2μθz⎪∂y⎪∂uy⎪+)=2μθx⎬ ∂z⎪∂uz+)=2μθy⎪⎪∂x⎭+⎫∂ux2-μdivu⎪∂x3⎪∂u2⎪48σyy=-p+2μy-μdiv⎬ ∂y3⎪⎪∂u2σzz=-p+2μz-μdivu⎪∂z3⎭σxx=-p+2μdux∂2ux∂2ux∂2ux⎫1∂p=fx-+ν(2++)⎪dτρ∂x∂x∂y2∂z2⎪duy∂2uy∂2uy∂2uy⎪1∂p=fy-+ν(2++)⎬ 49dτρ∂y∂x∂y2∂z2⎪duz1∂p∂2uz∂2uz∂2uz⎪=fz-+ν(2++)⎪dτρ∂z∂x∂y2∂z2⎭dδdδ∂p2ρudy-uρudy=-(δ+τw) 50x∞xdx⎰0dx⎰0∂x对于绕流平板的情况:dδρux(u∞-ux)dy=τw ⎰0dx51.平板层流附面层的解析计算结果:(1)平板层流附面层厚度δ的计算式:δ=5.0xRex -12(其中Rex=u∞xν) 72(2)平板表面上x处摩擦切应力τw的计算式:τw=0.332ρu∞Rex -12(3)平板表面上x处摩擦阻力系数Cfx的计算式:Cfx=τw12ρu∞2=0.664Rex -122(4)平板单侧面上总摩擦阻力Ff的计算式:Ff=0.664BLρu∞ReL -12(5)平板总摩擦阻力系数Cf的计算式:Cf=Ff12ρu∞BL215=1.328ReL (其中ReL=-12u∞Lν) 52.平板紊流附面层的近似计算结果: (1)平板紊流附面层厚度δ的计算式:δ=0.382xRex(2)平板表面上x处摩擦切应力τw的计算式:τw=0.0297ρuRex(3)平板表面上x处摩擦阻力系数Cfx的计算式:Cfx=2∞-15-τw12ρu∞22∞=0.0594Rex -15(4)平板单侧面上总摩擦阻力Ff的计算式:Ff=0.037BLρuReL (5)平板总摩擦阻力系数Cf的计算式:Cf=Ff12ρu∞BL2=0.074ReL (3×105≤ReL≤107) -15-15当ReL>107时,Cf=0.455(lgReL)2.58(106≤ReL≤109)0.074A-0.2ReLReL53.平板混合附面层总摩擦阻力系数CfM计算式:CfM= 0.455A-(lgReL)2.58ReL(3⨯105≤ReL≤107);CfM=(106≤ReL≤109)54.粘性流体绕流其他物体时的阻力系数CD的定义式:CD=FD2ρu∞A224 Re55.绕流球体的斯托克斯阻力计算公式:FD=3πdμu∞;阻力系数计算式:CD=56.球体自由沉降速度计算式:uf=4gdρs-ρ 3CDρ对于非球形物体:uf=8gV0ρs-ρ4gdeΩρs-ρ 或uf= 3CDρA0CDρ8。