多元回归分析matlab剖析
Matlab 多元线性回归
/输出结果如图所示:/
因 此 我 们 可 得 bˆ0 = −16.0730, , bˆ1 = 0.7194.
bˆ0 的置信区间 ( − 33.7071, 1.5612) ,
bˆ1 的置信区间 (0.6047, 0.834). r2 = 0.9282, F = 180.9531, p = 0.0000.
多元线性回归模型的一般形式为:
Yi =β0 +β1X1i +β2X2i + +βk Xki +μi , i=1,2, ,n
(1)
其中 k 为解释变量的数目, β j ( j = 1,2, ,k) 称为回归系数(regression coefficient)。上
式也被称为总体回归函数的随机表达式。它的非随机表达式为:
Matlab 多元线性回归
1、 多元线性回归
在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象 常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一 个自变量进行预测或估计更有效,更符合实际。
在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受 家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种 因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模 型。(multivariable linear regression model )
在 Matlab 图示所示:
/输出结果如图所示:/
bˆ0 = 62.4054, bˆ0 的置信区间 ( − 99.1786, 223.9893) , bˆ1 = 1.5511, bˆ1 的置信区间 (−0.1663, 3.2685) , 因此我们可得 bˆ2 = 0.5102, , bˆ2 的置信区间 (−1.1589, 2.1792) , bˆ3 = 0.1019, bˆ3 的置信区间 (−1.6385, 1.8423) , bˆ4 = −1441. bˆ4 的置信区间 (−1.7791, 1.4910). r2 = 0.9824, F = 111.4792, p = 0.0000. p < 0.05,回归模型 y = −62.4054 +1.5511x1 + 0.5102x2 +0.1019x3 -0.1441x4成立.
基于MATLAB的多元回归分析模型选取的研究
基于MATLAB的多元回归分析模型选取的研究本文旨在探讨基于MATLAB的多元回归分析模型的选取方法。
多元回归分析是一种常用的方法,用于研究多个自变量对一个或多个因变量的影响。
1. 研究背景在许多研究领域,我们经常需要了解多个自变量如何同时影响一个因变量。
通过多元回归分析,我们可以建立一个数学模型,从而更好地理解这些关系。
2. 回归模型的选取方法为了选择最合适的多元回归模型,我们可以使用以下方法:2.1. 变量筛选在开始建立回归模型之前,我们需要进行变量筛选。
变量筛选的目的是识别对因变量影响较大的自变量,并排除对模型没有贡献的自变量。
常用的变量筛选方法包括逐步回归,AIC准则和BIC准则等。
2.2. 含变量和交互项的模型在选择模型时,我们还需要考虑是否要包含自变量之间的交互项。
交互项表示不同自变量之间的相互作用,可能对因变量的影响有所改变。
在MATLAB中,我们可以通过添加交互项构建更复杂的回归模型。
2.3. 模型评价和选择在建立多元回归模型之后,我们需要对模型进行评价和选择。
常用的模型评价指标包括决定系数R<sup>2</sup>、调整决定系数R<sup>2</sup><sub>adj</sub>、F统计量和残差分析等。
这些指标可以帮助我们评估模型的拟合程度和预测能力。
3. 基于MATLAB的多元回归分析模型选取实例为了说明以上方法的应用,我们提供一个基于MATLAB的多元回归分析模型选取的实例。
在这个实例中,我们使用了一个包含多个自变量和因变量的数据集。
通过逐步回归和模型评价,我们选择了最佳的多元回归模型,并验证了其预测能力。
4. 结论通过本研究,我们深入探讨了基于MATLAB的多元回归分析模型选取方法。
变量筛选、交互项和模型评价是选择合适模型的关键步骤。
在实际应用中,研究人员应根据研究目的和数据特点灵活运用这些方法,以获得准确且可靠的研究结果。
多元回归分析报告matlab
回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立.⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*xplot(x,Y,'k+',x,z,'r')二、多项式回归(一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];[p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图:Y=polyconf(p,t,S)plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 10075 80 70 50 65 90 100 110 60收入 1000 600 1200500 300 400 1300 1100 1300 300 价格 5 7 6 6 8 7 5 4 3 9解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.00011.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值.(2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,StepwiseHistory.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。
多元回归分析matlab剖析
回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ;alpha 缺省时为0.5.例 1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model’, alpha )说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jj m m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 7580 70 50 65 90100 110 60 收入 1000 600 1200 500 300 400 13001100 1300 300解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. 在画面左下方的下拉式菜单中选”all”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中. 在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x ,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY ,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY ,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise Plot 窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F 值、与F 对应的概率P.例1. 水泥凝固时放出的热量y 与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.序号x1 7 1 11 11 7 11 3 1 2 21 1 11 10 x2 26 29 56 31 52 55 71 31 54 47 40 66 68 x3 6 15 8 8 6 9 17 22 18 4 23 9 8 x4 60 52 20 47 33 22 6 44 22 26 34 12 12 y 78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4 解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587 format short gX11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.311 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。
MATLAB回归分析
MATLAB回归分析回归分析是统计学中常用的一种方法,用于建立一个依赖于自变量(独立变量)的因变量(依赖变量)的关系模型。
在MATLAB环境下,回归分析可以实现简单线性回归、多元线性回归以及非线性回归等。
简单线性回归是一种最简单的回归分析方法,它假设自变量和因变量之间存在线性关系。
在MATLAB中,可以通过`polyfit`函数进行简单线性回归分析。
该函数可以拟合一元数据点集和一维多项式,返回回归系数和截距。
例如:```matlabx=[1,2,3,4,5];y=[2,3,4,5,6];p = polyfit(x, y, 1);slope = p(1);intercept = p(2);```上述代码中,`x`是自变量的数据点,`y`是因变量的数据点。
函数`polyfit`的第三个参数指定了回归的阶数,这里是1,即一次线性回归。
返回的`p(1)`和`p(2)`分别是回归系数和截距。
返回的`p`可以通过`polyval`函数进行预测。
例如:```matlabx_new = 6;y_pred = polyval(p, x_new);```多元线性回归是在有多个自变量的情况下进行的回归分析。
在MATLAB中,可以使用`fitlm`函数进行多元线性回归分析。
例如:```matlabx1=[1,2,3,4,5];x2=[2,4,6,8,10];y=[2,5,7,8,10];X=[x1',x2'];model = fitlm(X, y);coefficients = model.Coefficients.Estimate;```上述代码中,`x1`和`x2`是两个自变量的数据点,`y`是因变量的数据点。
通过将两个自变量放在`X`矩阵中,可以利用`fitlm`函数进行多元线性回归分析。
返回值`model`是回归模型对象,可以通过`model.Coefficients.Estimate`获得回归系数。
多元回归分析报告matlab
回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y, X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X (1)............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05)3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 .9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点. (4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y (1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA ;alpha 缺省时为0.5.例1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2ˆct bt a s++=)解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48];T=[ones(14,1) t' (t.^2)']; [b,bint,r,rint,stats]=regress(s',T);b,stats 得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model ’, alpha)说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++=Λ110purequadratic(纯二次):∑=++++=nj j jjm m x x x y 12110ββββΛinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββΛquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββΛ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 75 80 70 50 65 90 100 110 60 收入10006001200500300400130011001300300价格5766875439解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y ”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791.在画面左下方的下拉式菜单中选”all ”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中.在Matlab 工作区中输入命令:beta, rmse 得结果:beta = 110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse = 4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)']; [b,bint,r,rint,stats]=regress(y,X); b,stats 结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归 1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model ’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model ’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model ’, x,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y ±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下: function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76];beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY,delta]=nlpredci('volum',x',beta,r ,J);plot(x,y,'k+',x,YY,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)n⨯阶矩阵;y表示因变量数据,1⨯n阶矩阵;inmodel表示矩说明:x表示自变量数据,m阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha表示显著性水平(缺省时为0.5).2、运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F值、与F对应的概率P.例1. 水泥凝固时放出的热量y与水泥中4种化学成分x1、x2、x3、x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]'; x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 5 X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.27.06063];X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1 1.1239];X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 57.76687];format short gY=y'X11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)]) legend('一次线性回归','二次线性回归') xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.31X11 =1 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.1 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767 B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-1.8488 1.8488 1.6394e-0096.22 6.227.2643e-12.22 12.22 2.6077e-19.72 19.72 -2.0489e-1.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3 + 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388 120.25*X2*X2+ .25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.41*X4*X4。
matlab多元非线性回归及显着性分析(实例)
matlab多元非线性回归及显著性分析给各位高手:小弟有一些数据需要回归分析(非线性)及显著性检验(回归模型,次要项,误差及失拟项纯误差,F值和P值),求大侠帮助,给出程序,不胜感激。
模型:DA TA=... %DA TA前三列是影响因子,第四列为响应值[2 130 75 48.61;2 110 75 56.43;2 130 45 61.32;2 110 45 65.28;1 110 45 55.80;1 130 75 45.65;1 110 75 50.91;1 130 45 67.94;1.5 120 60 74.15;1.5 120 60 71.28;1.5 120 60 77.95;1.5 120 60 74.16;1.5 120 60 75.20;1.5 120 85 35.65;1.5 140 60 48.66;1.5 120 30 74.10;1.5 100 60 62.30;0.5 120 60 66.00;2.5 120 60 75.10];回归分析过程:(1)MATLAB编程步骤1:首先为非线性回归函数编程,程序存盘为user_function.m function y=user_function(beta,x)b0 = beta(1);b1 = beta(2);b2 = beta(3);b3 = beta(4);x0 = x(:,1);x1 = x(:,2);x2 = x(:,3);x3 = x(:,4);y=b0*x0+b1*x1.^2+b2*x2.^2+b3*x3.^2;(2)MATLAB编程步骤2:编写非线性回归主程序,程序运行时调用函数user_functionx=[1 2 130 75 48.61;1 2 110 75 56.43;1 2 130 45 61.32;1 2 110 45 65.28;1 1 110 45 55.80;1 1 130 75 45.65;1 1 110 75 50.91;1 1 130 45 67.94;1 1.5 120 60 74.15;1 1.5 120 60 71.28;1 1.5 120 60 77.95;1 1.5 120 60 74.16;1 1.5 120 60 75.20;1 1.5 120 85 35.65;1 1.5 140 60 48.66;1 1.5 120 30 74.10;1 1.5 100 60 62.30;1 0.5 120 60 66.00;1 2.5 120 60 75.10]; %%第1列全是1,第6列是指标变量,其余列是自变量xx=x(:,1:5);yy=x(:,5); %%指定响应变量yy和自变量xxbeta0=[0.5 0.4 0.7 0.5]; %%设置初始回归系数(如何确定初值?)[beta_fit,residual] = nlinfit(xx,yy,@user_function,beta0) %%非线性回归结果beta_fit =91.37571.2712-0.0009-0.0049residual =-4.2935-1.0248-9.2044-9.7957-15.4620-3.4398-2.73111.229311.18898.318914.988911.198912.2389-9.5678-9.3704-2.0767-4.83315.58147.0540即y=.3757+1.2712*x1.^2-0.0009*x2.^2-0.0049*x3.^2;matlab中nlinfit函数非线性拟合的使用方法如下:例1。
基于Matlab的数据多元回归分析的研究
基于Matlab的数据多元回归分析的研究摘要多元线性回归是利用MATLAB软件研究一个变量与多个变量的定量关系,MATLAB(矩阵实验室,是MATrix LABoratory的缩写)是一套高性能的数值运算和可视化软件,它集矩阵运算、数值分析、信号处理和图形显示于一体,构成了一个界面友好、使用方便的用户环境,是实现数据分析与处理的有效工具,其中MATLAB统计工具箱更为人们提供了一个强有力的数据统计分析工具。
利用MATLAB统计工具箱来进行数据的多元回归分析使得分析的样本容量扩大,增加了统计推断的正确性,也促进了包含大量计算的多元统计分析的发展和运用。
本课题研究了在MATLAB软件平台上实现数据的多元统计分析,具体包括一元线性回归分析,非线性回归分析,多元线性回归分析,通过对基础数据分析函数polyfit(一元回归);regress(多元回归);及nlinfit(非线性回归)的学习。
根据已得的实验结果以及以往的经验来建立统计模型,并研究变量之间的相关关系,建立起变量之间关系的近似表达式,并由此对相应的变量进行预测和控制。
根据所收集的数据,通过本文的研究方法进行一一分析,掌握它们的相关关系,可以找出数据中我们最需要的信息,从而进一步对总体的特性进行进一步的判断,把握规律,并将研究结果广泛运用于各种实际应用的预测和判断之中。
关键词:polyfit,regress,置信区间,最小二乘估计目录绪论....................................................................................................... - 3 -1.1研究的背景............................................................................................ - 3 -1.2研究的主要内容................................. - 4 -1.3应解决的关键问题.............................................................................. - 4 -2 MATLAB数据分析.......................................................................... - 4 -2.1 MATLAB重点基础预备....................................................................... - 4 -2.1.1 MATLAB界面掌握 ............................................................................... - 4 -2.1.2矩阵及其运算 ....................................................................................... - 5 -2.2数据分析 ...................................... - 6 -2.2.1样本数据的基本统计量.................................................................. - 6 -3 一元回归分析 ............................................................................... - 7 -3.1一元回归模型 ....................................................................................... - 7 -3.1.1一元线性回归 ....................................................................................... - 7 -3.1.2一元多项式回归.................................................................................. - 8 -3.2一元非线性回归................................................................................... - 9 -3.2.1非线性曲线选择.................................................................................. - 9 -3.2.2非线性回归命令的调用格式 ....................................................... - 9 -3.3一元回归建模实例............................................................................ - 11 -4 多元线性回归模型..................................................................... - 13 -4.1多元线性回归初级分析................................................................... - 13 -4.1.1多元回归基本概念........................................................................... - 13 -4.1.2建立多元线性回归建模的基本步骤 ..................................... - 14 -4.2 MATLAB的回归分析命令 ................................................................ - 15 -4.2.1 多元回归建模命令 ......................................................................... - 15 -4.2.2 多元回归辅助图形命令............................................................... - 15 -4.3 一元回归建模实例........................................................................... - 16 -5 GUI界面的设计.......................................................................... - 23 -5.1 GUI界面的介绍................................................................................. - 23 -5.2 GUI的设计流程 .............................................................................. - 23 -5.2 实例的GUI设计............................................................................... - 25 -结论................................................................................................. - 28 -参考文献 ............................................................................................. - 28 -附录................................................................................................ - 29 -绪论1.1研究的背景MATLAB是一套集高性能的数值计算和可视化整理、计算、绘制图表等于一身的数学工具。
多元回归模型matlab
多元回归模型matlab
多元回归模型是一种用来探究多个因变量和一个或多个自变量(或协变量)之间关系的统计分析方法。
在 matlab 中,可以使用多个函数来建立和分析多元回归模型。
下面是一个简单的示例:假设我们有一个数据集,其中有两个自变量 x1 和 x2,以及一个因变量 y。
我们想建立一个多元回归模型来探究它们之间的关系。
首先,我们需要导入数据集。
假设数据集保存在一个名为 data.csv 的文件中,我们可以使用以下命令将其导入 matlab:
data = readtable('data.csv');
接下来,我们可以使用 fitlm 函数来建立多元回归模型。
例如,以下命令可以建立一个包含两个自变量 x1 和 x2 的模型:model = fitlm(data, 'y ~ x1 + x2');
接着,我们可以使用 summary 函数来查看模型的统计信息:
summary(model);
此外,我们还可以使用 predict 函数来进行预测。
例如,以下命令可以使用模型来预测 x1=1.5,x2=2.0 时的因变量值:y_pred = predict(model, [1.5, 2.0]);
总之,matlab 提供了丰富的函数和工具箱来建立和分析多元回归模型,这对于统计分析和数据科学研究具有重要意义。
matlab 逻辑回归多元
matlab 逻辑回归多元Matlab逻辑回归多元逻辑回归是一种常用的分类算法,在许多实际应用中得到广泛应用。
而多元逻辑回归则是逻辑回归的一种扩展,用于处理多个自变量的分类问题。
本文将以Matlab为工具,详细介绍多元逻辑回归的原理和实现步骤。
一、多元逻辑回归原理多元逻辑回归是逻辑回归的扩展,适用于有多个自变量的分类问题。
逻辑回归通过对输入特征的线性组合,然后经过一个非线性的sigmoid函数,将输出值转化为概率,进而进行分类。
多元逻辑回归的目标是找到最优的参数权重,使得分类结果最准确。
在多元逻辑回归中,我们需要先定义一个假设函数h(x),它将特征向量x 映射到预测的概率值。
假设函数的形式为:h_θ(x) = g(θ^Tx)其中,g(z)表示sigmoid函数,其形式为:g(z) = \frac{1}{1+e^{-z}}通过这个假设函数,我们可以得到样本x属于正例(1)的概率和负例(0)的概率分别为:P(y=1 x,θ) = h_θ(x)P(y=0 x,θ) = 1 - h_θ(x)多元逻辑回归的目标是最大化对数似然函数,即最大化所有样本的预测概率(或最小化其负对数)。
我们可以通过梯度下降或其他优化算法来求解最优的参数权重θ。
二、使用Matlab实现多元逻辑回归在Matlab中,可以使用统计和机器学习工具箱提供的函数来实现多元逻辑回归。
下面将一步一步介绍如何在Matlab中使用多元逻辑回归算法来解决分类问题。
# 1.数据准备首先,我们需要准备用于训练和测试的数据。
假设我们有一个包含多个特征的数据集,其中每个样本都有相应的标签(正例或负例)。
我们可以选择将数据拆分为训练集和测试集,通常采用70的数据用于训练,30的数据用于测试。
# 2.参数初始化接下来,我们需要初始化参数权重θ。
在多元逻辑回归中,θ是一个向量,长度为特征数量加1。
我们可以将所有θ初始化为0,或者随机初始化。
# 3.梯度下降求解在多元逻辑回归中,可以使用梯度下降算法来最小化损失函数。
Matlab实现多元回归实例
Matlab 实现多元回归实例(一)一般多元回归一般在生产实践和科学研究中, 人们获得了参数 xx 1 , , x n 和因变量 y 的数据,需要求出关系式yfx ,这时就能够用到回归剖析的方法。
假如只考虑f 是线性函数的情况,当自变量只有一个时,即, xx 1 , , x n 中 n 1 时,称为一元线性回归,当自变量有多个时,即,x x 1 , , x n 中 n 2 时,称为多元线性回归。
进行线性回归时,有 4 个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差知足方差奇性; ④ 残差知足正态散布。
在 Matlab 软件包中有一个做一般多元回归剖析的命令 regeress ,调用格式如 下:[b, bint, r, rint, stats] = regress(y,X,alpha) 或许[b, bint, r, rint, stats] = regress(y,X) 此时,默认 alpha = 0.05.这里, y 是一个 n 1 的列向量, X 是一个 nm 1 的矩阵, 此中第一列是全 1向量(这一点对于回回来说很重要, 这一个全 1 列向量对应回归方程的常数项) ,一般状况下,需要人工造一个全 1 列向量。
回归方程拥有以下形式:y1x1 mxm此中, 是残差。
在返回项 [b,bint,r,rint,stats]中, ① b0 1m 是回归方程的系数;② b int 是一个 m 2 矩阵,它的第 i 行表示 i 的 (1-alpha)置信区间;③ r 是 n 1的残差列向量;④ r int 是 n 2 矩阵,它的第 i 行表示第 i 个残差 r i 的(1-alpha)置信区间;说明:残差与残差区间杠杆图, 最幸亏 0 点线邻近比较平均的散布, 而不体现必定的规律性,假如是这样,就说明回归剖析做得比较理想。
⑤ 一般的, stast 返回 4 个值: R 2 值、 F_查验值、阈值f ,与明显性概率有关的 p 值(假如这个 p 值不存在,则,只输出前 3 项)。
matlab多元非线性回归及显着性分析(实例)
matlab多元非线性回归及显著性分析给各位高手:小弟有一些数据需要回归分析(非线性)及显著性检验(回归模型,次要项,误差及失拟项纯误差,F值和P值),求大侠帮助,给出程序,不胜感激。
模型:DATA=...%DATA前三列是影响因子,第四列为响应值[21307548.61;21107556.43;21304561.32;21104565.28;11104555.80;11307545.65;11107550.91;11304567.94;1.51206074.15;1.51206071.28;1.51206077.95;1.51206074.16;1.51206075.20;1.51208535.65;1.51406048.66;1.51203074.10;1.51006062.30;0.51206066.00;2.51206075.10];回归分析过程:(1)MATLAB编程步骤1:首先为非线性回归函数编程,程序存盘为user_function.m function y=user_function(beta,x)b0=beta(1);b1=beta(2);b2=beta(3);b3=beta(4);x0=x(:,1);x1=x(:,2);x2=x(:,3);x3=x(:,4);y=b0*x0+b1*x1.^2+b2*x2.^2+b3*x3.^2;(2)MATLAB编程步骤2:编写非线性回归主程序,程序运行时调用函数user_functionx=[121307548.61;121107556.43;121304561.32;121104565.28;111104555.80;111307545.65;111107550.91;111304567.94;11.51206074.15;11.51206071.28;11.51206077.95;11.51206074.16;11.51206075.20;11.51208535.65;11.51406048.66;11.51203074.10;11.51006062.30;10.51206066.00;12.51206075.10];%%第1列全是1,第6列是指标变量,其余列是自变量xx=x(:,1:5);yy=x(:,5);%%指定响应变量yy和自变量xxbeta0=[0.50.40.70.5];%%设置初始回归系数(如何确定初值?)[beta_fit,residual]=nlinfit(xx,yy,@user_function,beta0)%%非线性回归结果beta_fit=91.37571.2712-0.0009-0.0049residual=-4.2935-1.0248-9.2044-9.7957-15.4620-3.4398-2.73111.229311.18898.318914.988911.198912.2389-9.5678-9.3704-2.0767-4.83315.58147.0540即y=.3757+1.2712*x1.^2-0.0009*x2.^2-0.0049*x3.^2;matlab中nlinfit函数非线性拟合的使用方法如下:例1。
Matlab中的回归分析与多元统计分析
Matlab中的回归分析与多元统计分析Matlab是一种功能强大的数值计算和科学编程软件,广泛应用于各个领域中数据处理和分析的任务。
在统计学中,回归分析和多元统计分析是常见的方法,它们能够帮助我们揭示数据之间的隐藏关系和趋势。
本文将探讨在Matlab环境下如何进行回归分析和多元统计分析。
一、回归分析回归分析是一种用于研究变量之间关系的统计方法。
它可以分析自变量(或称预测变量)与因变量之间的相关性,并通过建立数学模型来预测未知的观测值。
在Matlab中,我们可以使用regress函数进行简单回归分析。
假设我们有两个变量X和Y,我们想要探索它们之间是否存在线性关系。
首先,我们需要导入数据,并绘制散点图以观察数据分布的趋势:```matlabdata = [X, Y]; % 导入数据scatter(X, Y); % 绘制散点图```接下来,我们可以使用regress函数进行回归分析:```matlabmdl = regress(Y, [ones(size(X)), X]); % 进行简单线性回归```regress函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl(1:end-1); % 提取回归系数residuals = mdl(end); % 提取残差```此外,我们还可以使用mdl对象进行预测:```matlaby_pred = [ones(size(X)), X] * coef; % 根据模型预测Y的值```二、多元统计分析多元统计分析是指研究多个变量之间关系的统计方法。
与简单回归分析不同,多元统计分析考虑了多个自变量对因变量的影响。
在Matlab中,我们可以使用fitlm函数进行多元线性回归分析。
假设我们有三个自变量X1、X2和X3,一个因变量Y,我们想要研究它们之间的关系。
首先,我们同样需要导入数据,并绘制散点图以观察数据分布:```matlabdata = [X1, X2, X3, Y]; % 导入数据scatter3(X1, X2, X3, Y); % 绘制散点图```接下来,我们可以使用fitlm函数进行多元线性回归分析:```matlabmdl = fitlm([X1, X2, X3], Y); % 进行多元线性回归```fitlm函数将返回一个线性模型对象mdl,我们可以使用该对象提取回归系数、残差等信息:```matlabcoef = mdl.Coefficients.Estimate; % 提取回归系数residuals = mdl.Residuals.Raw; % 提取残差```同样,我们可以使用mdl对象进行预测:```matlaby_pred = predict(mdl, [X1, X2, X3]); % 根据模型预测Y的值```除了多元线性回归,Matlab还提供了其他多元统计分析的方法,如主成分分析(PCA)和因子分析。
MATLAB 回归分析regress,nlinfit,stepwise函数
MATLAB 回归分析regress,nlinfit,stepwise函数matlab回归分析regress,nlinfit,stepwise函数回归分析1.多元线性重回在matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl=regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性重回,挑k=1即可。
alpha为显著性水平(缺省时预设为0.05),输入向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats就是用作检验重回模型的统计数据量,存有三个数值,第一个就是r2,其中r就是相关系数,第二个就是f统计数据量值,第三个就是与统计数据量f对应的概率p,当p拒绝h0,回归模型成立。
图画出来残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中cod浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。
(1)输出数据x1=[1.376,1.375,1.387,1.401,1.412,1.428,1.445,1.477]x2=[0.450,0.475,0.485,0.50 0,0.535,0.545,0.550,0.575]x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262]x4=[0.8922,1.1610,0.5346,0.9589,1.0239,1.0499,1.1065,1.1387]y=[5.19,5.30,5.60,5.82,6.00,6.06,6.45,6.95](2)留存数据(以数据文件.mat形式留存,易于以后调用)savedatax1x2x3x4yloaddata(抽出数据)(3)继续执行重回命令x=[ones(8,1),];[b,bint,r,rint,stats]=regress得结果:b=(-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats=(0.9908,80.9530,0.0022)即为=-16.5283+15.7206xl+2.0327x2-0.2106x3+0.1991x4r2=0.9908,f=80.9530,p=0.00222.非线性重回非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j]=nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是jacobian矩阵,它们是估计预测误差需要的数据。
MATLAB 回归分析regress,nlinfit,stepwise函数
回归分析1.多元线性回归在Matlab统计工具箱中使用命令regress()实现多元线性回归,调用格式为b=regress(y,x)或[b,bint,r,rint,statsl = regess(y,x,alpha)其中因变量数据向量y和自变量数据矩阵x按以下排列方式输入对一元线性回归,取k=1即可。
alpha为显著性水平(缺省时设定为0.05),输出向量b,bint为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回归模型的统计量,有三个数值,第一个是R2,其中R是相关系数,第二个是F统计量值,第三个是与统计量F对应的概率P,当P<α时拒绝H0,回归模型成立。
画出残差及其置信区间,用命令rcoplot(r,rint)实例1:已知某湖八年来湖水中COD浓度实测值(y)与影响因素湖区工业产值(x1)、总人口数(x2)、捕鱼量(x3)、降水量(x4)资料,建立污染物y的水质分析模型。
(1)输入数据x1=[1.376, 1.375, 1.387, 1.401, 1.412, 1.428, 1.445, 1.477]x2=[0.450, 0.475, 0.485, 0.500, 0.535, 0.545, 0.550, 0.575]x3=[2.170 ,2.554, 2.676, 2.713, 2.823, 3.088, 3.122, 3.262]x4=[0.8922, 1.1610 ,0.5346, 0.9589, 1.0239, 1.0499, 1.1065, 1.1387]y=[5.19, 5.30, 5.60,5.82,6.00, 6.06,6.45,6.95](2)保存数据(以数据文件.mat形式保存,便于以后调用)save data x1 x2 x3 x4 yload data (取出数据)(3)执行回归命令x =[ones(8,1),];[b,bint,r,rint,stats] = regress得结果:b = (-16.5283,15.7206,2.0327,-0.2106,-0.1991)’stats = (0.9908,80.9530,0.0022)即= -16.5283 + 15.7206xl + 2.0327x2 - 0.2106x3 + 0.1991x4R2 = 0.9908,F = 80.9530,P = 0.00222.非线性回归非线性回归可由命令nlinfit来实现,调用格式为[beta,r,j] = nlinfit(x,y,'model’,beta0)其中,输人数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x 为n维列向量model是事先用m-文件定义的非线性函数,beta0是回归系数的初值,beta是估计出的回归系数,r是残差,j是Jacobian矩阵,它们是估计预测误差需要的数据。
matlab多元逻辑回归
matlab多元逻辑回归摘要:I.引言- 介绍Matlab多元逻辑回归- 说明多元逻辑回归在实际应用中的重要性II.Matlab多元逻辑回归基础- 多元逻辑回归的定义- 多元逻辑回归的假设条件- 多元逻辑回归的计算方法III.Matlab多元逻辑回归应用- 金融领域应用- 医疗领域应用- 市场营销领域应用IV.Matlab多元逻辑回归的优缺点- 优点- 强大的数据处理能力- 易于使用和操作- 高效率的计算能力- 缺点- 对数据质量要求较高- 需要专业的编程知识V.结论- 总结Matlab多元逻辑回归的重要性- 提出未来发展趋势和展望正文:Matlab多元逻辑回归是一种强大的回归分析工具,广泛应用于各个领域。
本文将介绍Matlab多元逻辑回归的基础知识、应用领域、优缺点以及未来发展趋势。
一、Matlab多元逻辑回归基础多元逻辑回归是一种基于逻辑回归的多元回归分析方法。
逻辑回归是一种用于分析二分类数据的回归方法,它通过建立逻辑函数来描述因变量与自变量之间的关系。
多元逻辑回归在逻辑回归的基础上,进一步扩展了自变量的数量,从而可以更好地解释因变量。
多元逻辑回归的假设条件包括:1.线性假设:自变量与因变量之间存在线性关系。
2.独立性假设:自变量之间相互独立。
3.多元正态分布假设:自变量和因变量都服从多元正态分布。
4.方差齐性假设:自变量的方差相同。
多元逻辑回归的计算方法主要采用最小二乘法(Least Squares Method),通过最小化残差平方和来求解回归系数。
二、Matlab多元逻辑回归应用Matlab多元逻辑回归在金融、医疗、市场营销等领域具有广泛的应用。
1.金融领域:多元逻辑回归可以用于信用风险评估、股票价格预测等金融问题。
2.医疗领域:多元逻辑回归可以用于疾病预测、药物疗效评估等医疗问题。
3.市场营销:多元逻辑回归可以用于市场细分、客户满意度调查等市场营销问题。
三、Matlab多元逻辑回归的优缺点Matlab多元逻辑回归具有以下优点:1.强大的数据处理能力:Matlab可以方便地处理大量数据,支持多种数据格式。
Matlab软件包与多元回归
Matlab 软件包与多元回归(一)一般多元回归一般在生产实践和科学研究中,人们得到了参数(),,n x x x =⋅⋅⋅1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。
如果只考虑f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =⋅⋅⋅1中n =1时,称为一元线性回归,当自变量有多个时,即,(),,n x x x =⋅⋅⋅1中n ≥2时,称为多元线性回归。
进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差满足方差奇性; ④ 残差满足正态分布。
在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下:[b, bint, r, rint, stats] = regress(y,X,alpha) 或者[b, bint, r, rint, stats] = regress(y,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ⨯的列向量,X 是一个()1n m ⨯+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。
回归方程具有如下形式:011m m y x x λλλε=++⋅⋅⋅++其中,ε是残差。
在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=⋅⋅⋅是回归方程的系数;②int b 是一个2m ⨯矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ⨯的残差列向量;④int r 是2n ⨯矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。
⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。
matlab回归(拟合)总结(一元、多元)
matlab 回归(拟合)总结前言1、学三条命令polyfit(x,y,n)---拟合成一元幂函数(一元多次) regress(y,x)----可以多元,nlinfit(x,y,’fun ’,beta0) (可用于任何类型的函数,任意多元函数,应用范围最主,最万能的)2、同一个问题,这三条命令都可以使用,但结果肯定是不同的,因为拟合的近似结果,没有唯一的标准的答案。
相当于咨询多个专家。
3、回归的操作步骤:根据图形(实际点),选配一条恰当的函数形式(类型)---需要数学理论与基础和经验。
(并写出该函数表达式的一般形式,含待定系数)------选用某条回归命令求出所有的待定系数。
所以可以说,回归就是求待定系数的过程(需确定函数的形式)一、回归命令一元多次拟合polyfit(x,y,n);一元回归polyfit;多元回归regress---nlinfit(非线性)二、多元回归分析对于多元线性回归模型(其实可以是非线性,它通用性极高): e x x y pp ++++=βββ 110设变量12,,,p x x x y 的n 组观测值为12(,,,)1,2,,i i ip i x x x y i n =记 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=np n n p p x x x x x x x x x x 212222111211111,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n y y y y 21,则⎪⎪⎪⎪⎪⎭⎫⎝⎛=p ββββ 10 的估计值为排列方式与线性代数中的线性方程组相同(),拟合成多元函数---regress使用格式:左边用b=[b, bint, r, rint, stats]右边用=regress(y, x)或regress(y, x, alpha) ---命令中是先y 后x,---须构造好矩阵x(x 中的每列与目标函数的一项对应) ---并且x 要在最前面额外添加全1列/对应于常数项---y 必须是列向量---结果是从常数项开始---与polyfit 的不同。
matlab多元二项式回归
matlab多元二项式回归摘要:一、引言二、多元二项式回归的概述三、多元二项式回归的MATLAB实现四、MATLAB中的多元二项式回归函数五、总结正文:一、引言多元二项式回归是一种常见的回归分析方法,用于研究两个或更多自变量与因变量之间的关系。
与线性回归不同,多元二项式回归允许自变量和因变量之间存在非线性关系。
MATLAB是一种广泛使用的数学软件,可以用于多元二项式回归的建模、预测和分析。
二、多元二项式回归的概述多元二项式回归是一种广义的线性模型,可以用于研究多个自变量与因变量之间的关系。
在这种模型中,每个自变量都可以具有一个或多个项,这些项可以是线性、二次、三次等。
多元二项式回归的目的是找到这些项的最佳组合,以解释因变量的变化。
三、多元二项式回归的MATLAB实现MATLAB提供了多个用于多元二项式回归的函数和工具箱。
其中,最常用的函数是polyfit()和polyval()。
polyfit()函数用于拟合多元多项式模型,而polyval()函数用于计算模型的预测值。
四、MATLAB中的多元二项式回归函数1.polyfit()函数polyfit()函数用于拟合一个多元多项式模型。
该函数的语法如下:```matlabp = polyfit(x, y, degree)```其中,x是自变量的向量,y是因变量的向量,degree是多项式的阶数。
p是拟合后的多项式系数向量。
2.polyval()函数polyval()函数用于计算多元多项式模型的预测值。
该函数的语法如下:```matlaby_pred = polyval(p, x)```其中,p是拟合后的多项式系数向量,x是自变量的向量,y_pred是预测的因变量值。
五、总结MATLAB提供了丰富的函数和工具箱,可以用于多元二项式回归的建模、预测和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归分析MATLAB 工具箱一、多元线性回归多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p b βββˆ...ˆˆ10②Y 表示⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n Y Y Y Y (2)1③X 表示⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X ...1............ (1) (12)12222111211 2、求回归系数的点估计和区间估计、并检验回归模型:命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差.③rint 表示置信区间.④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p.说明:相关系数2r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据.x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x];Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验.[b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats得结果:b = bint =-16.0730 -33.7071 1.5612 0.7194 0.6047 0.8340 stats =0.9282 180.9531 0.0000即7194.0ˆ,073.16ˆ10=-=ββ;0ˆβ的置信区间为[-33.7017,1.5612], 1ˆβ的置信区间为[0.6047,0.834]; r 2=0.9282, F=180.9531, p=0.0000,我们知道p<0.05就符合条件, 可知回归模型 y=-16.073+0.7194x 成立. (3)残差分析,作残差图. rcoplot(r,rint)从残差图可以看出,除第二个数据外,其余数据的残差离零点均较近,且残差的置信区间均包含零点,这说明回归模型 y=-16.073+0.7194x 能较好的符合原始数据,而第二个数据可视为异常点.(4)预测及作图.z=b(1)+b(2)*x plot(x,Y,'k+',x,z,'r')二、多项式回归 (一)一元多项式回归.1、一元多项式回归:1121...+-++++=m m m m a x a x a x a y(1)确定多项式系数的命令:[p,S]=polyfit(x,y,m)说明:x=(x 1,x 2,…,x n ),y=(y 1,y 2,…,y n );p=(a 1,a 2,…,a m+1)是多项式y=a 1x m +a 2x m-1+…+a m x+a m+1的系数;S 是一个矩阵,用来估计预测误差. (2)一元多项式回归命令:polytool(x,y,m) 2、预测和预测误差估计.(1)Y=polyval(p,x)求polyfit 所得的回归多项式在x 处的预测值Y ;(2)[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit 所得的回归多项式在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA ;alpha 缺省时为0.5.例 1. 观测物体降落的距离s 与时间t 的关系,得到数据如下表,求s. (关于t 的回归方程2解法一:直接作二次多项式回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; [p,S]=polyfit(t,s,2) 得回归模型为:1329.98896.652946.489ˆ2++=t t s解法二:化为多元线性回归. t=1/30:1/30:14/30;s=[11.86 15.67 20.60 26.69 33.71 41.93 51.13 61.49 72.90 85.44 99.08 113.77 129.54 146.48]; T=[ones(14,1) t' (t.^2)'];[b,bint,r,rint,stats]=regress(s',T); b,stats得回归模型为:22946.4898896.651329.9ˆt t s++= 预测及作图: Y=polyconf(p,t,S) plot(t,s,'k+',t,Y,'r')(二)多元二项式回归多元二项式回归命令:rstool(x,y,’model’, alpha )说明:x 表示n ⨯m 矩阵;Y 表示n 维列向量;alpha :显著性水平(缺省时为0.05);model 表示由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):linear(线性):m m x x y βββ+++= 110purequadratic(纯二次):∑=++++=nj j jj m m x x x y 12110ββββinteraction(交叉):∑≤≠≤++++=mk j k j jkm m x x x x y 1110ββββquadratic(完全二次):∑≤≤++++=mk j k j jkm m x x x x y ,1110ββββ例1. 设某商品的需求量与消费者的平均收入、商品价格的统计数据如下,建立回归模型,预测平均收入为1000、价格为6时的商品需求量. 需求量 100 7580 70 50 65 90100 110 60 收入 1000 600 1200 500 300 400 13001100 1300 300解法一:选择纯二次模型,即2222211122110x x x x y βββββ++++=.直接用多元二项式回归:x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9];y=[100 75 80 70 50 65 90 100 110 60]'; x=[x1' x2'];rstool(x,y,'purequadratic')在左边图形下方的方框中输入1000,右边图形下方的方框中输入6,则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. 在画面左下方的下拉式菜单中选”all”, 则beta 、rmse 和residuals 都传送到Matlab 工作区中. 在Matlab 工作区中输入命令:beta, rmse 得结果:beta =110.5313 0.1464 -26.5709 -0.0001 1.8475 rmse =4.5362故回归模型为:2221218475.10001.05709.261464.05313.110x x x x y +--+=剩余标准差为4.5362, 说明此回归模型的显著性较好.解法二:将2222211122110x x x x y βββββ++++=化为多元线性回归:X=[ones(10,1) x1' x2' (x1.^2)' (x2.^2)'];[b,bint,r,rint,stats]=regress(y,X); b,stats结果为: b =110.5313 0.1464 -26.5709 -0.0001 1.8475 stats =0.9702 40.6656 0.0005三、非线性回归1、非线性回归:(1)确定回归系数的命令:[beta,r,J]=nlinfit(x,y,’model’, beta0)说明:beta 表示估计出的回归系数;r 表示残差;J 表示Jacobian 矩阵;x,y 表示输入数据x 、y 分别为矩阵和n 维列向量,对一元非线性回归,x 为n 维列向量;model 表示是事先用m-文件定义的非线性函数;beta0表示回归系数的初值. (2)非线性回归命令:nlintool(x,y,’model’, beta0,alpha) 2、预测和预测误差估计:[Y,DELTA]=nlpredci(’model’, x ,beta,r,J)表示nlinfit 或nlintool 所得的回归函数在x 处的预测值Y 及预测值的显著性为1-alpha 的置信区间Y±DELTA. 例1. 如下程序.解:(1)对将要拟合的非线性模型y=a x b e /,建立m-文件volum.m 如下:function yhat=volum(beta,x) yhat=beta(1)*exp(beta(2)./x); (2)输入数据: x=2:16;y=[6.42 8.20 9.58 9.5 9.7 10 9.93 9.99 10.49 10.59 10.60 10.80 10.60 10.90 10.76]; beta0=[8 2]'; (3)求回归系数:[beta,r ,J]=nlinfit(x',y','volum',beta0); beta (4)运行结果:beta =11.6036 -1.0641 即得回归模型为:xey 10641.16036.11-=(5)预测及作图:[YY ,delta]=nlpredci('volum',x',beta,r ,J); plot(x,y,'k+',x,YY ,'r')四、逐步回归1、逐步回归的命令:stepwise(x,y,inmodel,alpha)说明:x 表示自变量数据,m n ⨯阶矩阵;y 表示因变量数据,1⨯n 阶矩阵;inmodel 表示矩阵的列数的指标,给出初始模型中包括的子集(缺省时设定为全部自变量);alpha 表示显著性水平(缺省时为0.5).2、运行stepwise 命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History. 在Stepwise Plot 窗口,显示出各项的回归系数及其置信区间.(1)Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计量剩余标准差(RMSE)、相关系数(R-square)、F 值、与F 对应的概率P.例1. 水泥凝固时放出的热量y 与水泥中4种化学成分x1、x2、x3、 x4有关,今测得一组数据如下,试用逐步回归法确定一个线性模型.序号x1 7 1 11 11 7 11 3 1 2 21 1 11 10 x2 26 29 56 31 52 55 71 31 54 47 40 66 68 x3 6 15 8 8 6 9 17 22 18 4 23 9 8 x4 60 52 20 47 33 22 6 44 22 26 34 12 12 y 78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4 解:(1)数据输入:x1=[7 1 11 11 7 11 3 1 2 21 1 11 10]';x2=[26 29 56 31 52 55 71 31 54 47 40 66 68]';x3=[6 15 8 8 6 9 17 22 18 4 23 9 8]';x4=[60 52 20 47 33 22 6 44 22 26 34 12 12]';y=[78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4]';x=[x1 x2 x3 x4];(2)逐步回归.①先在初始模型中取全部自变量:stepwise(x,y)得图Stepwise Plot 和表Stepwise Table.图Stepwise Plot中四条直线都是虚线,说明模型的显著性不好.从表Stepwise Table中看出变量x3和x4的显著性最差.②在图Stepwise Plot中点击直线3和直线4,移去变量x3和x4.移去变量x3和x4后模型具有显著性虽然剩余标准差(RMSE)没有太大的变化,但是统计量F的值明显增大,因此新的回归模型更好.(3)对变量y和x1、x2作线性回归.X=[ones(13,1) x1 x2];b=regress(y,X)得结果:b =52.57731.46830.6623故最终模型为:y=52.5773+1.4683x1+0.6623x2或这种方法4元二次线性回归clc;clear;y=[1.84099 9.67 23.00 38.12 1.848794 6.22 12.22 19.72 1.848794 5.19 10.09 15.31 ];X1=[60.36558 59.5376 58.89861 58.74706 60.59389 60.36558 59.2 58.2 60.36558 59.97068 59.41918 58. X2=[26.1636 26.35804 26.82438 26.91521 25.90346 25.9636 27.19256 27.42153 26.1636 26.07212 26.5872 X3=[0.991227 0.994944 0.981322 0.98374 1.011865 0.991227 1.074772 1.107678 0.991227 0.917904 1.06043 X4=[59.37436 58.54265 57.91729 57.69332 59.58203 59.37436 57.76722 57.42355 59.37436 59.05278 58.3587 format short gX11=[ones(1,length(y));X1;X2;X3;X4]'B1=regress(Y,X11)% 多元一次线性回归[m,n]=size(X11)X22=[];for i=2:nfor j=2:nif i<=jX22=([X22,X11(:,i).*X11(:,j)]);elsecontinueendendendX=[X11,X22];B2=regress(Y,X)% 多元二次线性回归[Y X*B2 Y-X*B2]plot(Y,X11*B1,'o',Y,X*B2,'*')hold on,line([min(y),max(y)],[min(y),max(y)]) axis([min(y) max(y) min(y) max(y)])legend('一次线性回归','二次线性回归')xlabel('实际值');ylabel('计算值')运行结果:Y =1.8419.672338.121.84886.2212.2219.721.84885.1910.0915.311 60.366 26.164 0.99123 59.3741 59.538 26.358 0.99494 58.5431 58.899 26.824 0.98132 57.9171 58.747 26.915 0.98374 57.6931 60.594 25.903 1.0119 59.5821 60.366 25.964 0.99123 59.3741 59.2 27.193 1.0748 57.7671 58.2 27.422 1.1077 57.4241 60.366 26.164 0.99123 59.3741 59.971 26.072 0.9179 59.0531 59.419 26.587 1.0604 58.3591 58.891 27.061 1.1239 57.767B1 =1488.9-4.3582-9.6345-61.514-15.359m =12n =5B2 =3120.4-7129.2-622.23-362.71-105.061388.1120.25199.25379.58170.48-796.41ans =1.841 1.8449 -0.0039029.67 9.67 1.0058e-00923 23 1.397e-00938.12 38.12 3.539e-0101.8488 1.8488 1.6394e-0096.22 6.227.2643e-01012.22 12.22 2.6077e-01019.72 19.72 -2.0489e-0101.8488 1.8449 0.0039025.19 5.19 1.4529e-00910.09 10.09 1.0803e-00915.31 15.31 4.0978e-010由图形可以看出,多元二次线性回归效果非常好,即,相当于Y=3120.4*X1 -7129.2 *X2 + 0*X3+ 0*X4 -622.23*X1*X1 -362.71*X1*X2 -105.06*X1*X3 + 1388.1*X1*X4 +120.25*X2*X2+ 199.25 *X2*X3+ 379.58*X2*X4 + 170.48*X3*X3+ 0*X3*X4 -796.4。