太阳能光伏并网逆变器设计原文及翻译

合集下载

光伏并网逆变器毕业论文外文翻译

光伏并网逆变器毕业论文外文翻译

外文资料翻译译文:光伏并网逆变器比来,人们越来越关注的替代能源,因为化石燃料和核电厂的环境影响及其稳定性(长尾和原田,1997年;Myrzlk,2001年)。

在各种替代能源中,太阳能发电尤为重视,除了因为它是一种清洁的,无限的能源,此外相当多的研究已经在这一范畴取得了突出的成绩。

太阳能发电系统由太阳电池组件,充电电池,和一个逆变器。

现在只有逆变电流模式进入主流,原因是光伏逆变是正弦电流进入电网。

具体体现在单相并网光伏逆变器中,它具有遍及的拓扑结构,这是标准的全桥电压源逆变器(电平逆变器),它可以创建一个正弦电网电流(Kjaeret al.,2005;Kojabadi et al.,2006)。

这种拓扑结构有两个遍及的问题如下。

(1)电池是太阳能发电厂必弗成少的储存电能设备。

但电池充电是一个短期和有污染的过程,并且有负面经济的效率。

然而,逆变器可以不使用电池可以解决这些问题。

在这个过程中,接口电路为逆变环节的直流电(DC)输出的太阳能电池阵列的交流电源系统。

如果输出电压的电流源逆变低于电力系统电压和在发生短路负荷或逆变器故障,它没有电流短路(Myrzlk,2001年)。

(2)在一般的微处理器作为控制器,以实现良好的特点时,太阳能发电系统与电流源逆变器的设计。

是在控制器以较少的价值,有高质量电感和电波的输出电流的高开关频率变频器所需要的,但是,受限制的是开关损耗和处理器的采样频率。

图.1显示的结构电流源逆变器用作接口电路连接太阳能电池的实用线(Mohan et al,1995年)。

它由五个开关,一个电感器,LC滤波器,输出端口。

逆变器工作在这两个开关模式。

质量包管开关只执行斩波行动,而第一季度,第四季度交换机确定标的目的的输出电压按照极性的电力系统。

因此,与一般全桥PWM逆变器执行完整的一块,该系统减少了开关损耗。

图.2显示波形的传统电流源逆变器。

它代表了波形的输出电压和电流,该电流通过电感,输入信号,每个开关。

SG330KTL光伏并网逆变器中文使用手册(说明书)

SG330KTL光伏并网逆变器中文使用手册(说明书)
7.2.1 安全说明 ................................................................................................ 35 7.2.2 机械尺寸 ................................................................................................ 35 7.2.3 环境需求 ................................................................................................ 35 7.3 电气连接 ............................................................................................................ 37 7.3.1 输入输出要求 ........................................................................................ 37 7.3.2 线缆要求 ................................................................................................ 38 7.3.3 打开前门 ................................................................................................ 39 7.3.4 直流侧接线 ............................................................................................ 40 7.3.5 交流侧接线 ............................................................................................ 41 7.3.6 接地连线 ................................................................................................ 42 7.3.7 通讯连线 ................................................................................................ 43 7.4 启动与关闭 ........................................................................................................ 44 8 技术数据 ............................................................................................................. 45 8.1 电气部分 ............................................................................................................ 45 8.2 机械部分 ............................................................................................................ 46 8.3 特色数据 ............................................................................................................ 46 8.4 故障对照表 ........................................................................................................ 47 9. 附录 ..................................................................................................................... 48 9.1 质量保证 ........................................................................................................... 48 9.2 联系我们 ......................................................................................................... 49

本科毕业设计_太阳能光伏发电并网三相逆变器的设计

本科毕业设计_太阳能光伏发电并网三相逆变器的设计

目录1 绪论 (1)1.1 课题背景 (1)1.2 国内外研究现状 (2)1.2.1 国外的研究现状 (2)1.2.2 国内的研究现状 (2)1.3 光伏并网逆变器的发展趋势 (3)1.4主要研究内容 (3)2 光伏逆变器主电路的设计与工作原理 (4)2.1 光伏逆变器的基本结构 (4)2.2 逆变器的拓扑分类 (4)2.3 系统工作原理 (5)2.3.1 前级Boost升压电路的工作原理 (5)2.3.2 后级单相全桥逆变器的工作原理 (7)2.4 本章小结 (7)3 光伏阵列的最大功率点跟踪 (8)3.1 光伏阵列的输出特性 (8)3.1.1 光伏电池简介 (8)3.1.2 光伏电池的工作原理 (8)3.1.3 光伏电池的物理模型 (11)3.1.4 光伏电池的输出功率 (12)3.1.5 光伏阵列的温度特性和光电特性 (13)3.2 最大功率点跟踪法的比较与分析 (14)3.2.1 电导增量法 (15)3.2.2 干扰观测法 (17)3.2.3 固定电压跟踪法 (18)3.2.4 其他MPPT方法 (21)3.3 本章小结 (22)4 三相并网逆变器的控制策略 (22)4.1 并网逆变器的控制目标 (22)4.2 并网逆变器的原理 (23)4.3 并网逆变器控制策略的比较 (23)4.4 电流跟踪控制方式的比较 (24)4.4.1 电流滞环瞬时比较方式 (24)4.4.2 三角波比较方式的电流跟踪方式 (24)4.4.3 SVPWM电流控制方式 (25)4.5 SVPWM控制原理 (25)4.5.1 SVPWM的特点 (25)4.5.2 SVPWM的原理 (26)4.6 SVPWM的实现 (27)4.6.1 参考电压所在扇区的判断 (27)4.6.2 各个扇区开关持续时间的计算 (29)4.7 SVPWM控制的实现 (29)4.8 本章小结 (30)5 光伏并网逆变器的仿真 (30)5.1 恒定电压法MPPT跟踪的仿真实现 (31)5.1.1 固定电压法MPPT跟踪的仿真方法 (31)5.1.2 固定电压法MPPT仿真 (31)5.1.3 固定电压法MPPT仿真结果分析 (32)5.2 SVPWM控制的仿真 (33)5.2.1 SVPWM控制仿真方法 (33)5.2.2 SVPWM控制仿真电路 (34)5.2.3 SVPWM控制仿真结构分析 (35)5.3 本章小结 (36)6 结论 (36)参考文献 (37)致谢 (38)1 绪论1.1 课题背景随着煤炭、石油等现有化石能源的频频告急和大量使用化石能源对生态环境造成严重的破坏,人类不得不尽快寻找新的清洁能源和可再生资源。

本科毕业设计_太阳能光伏发电并网三相逆变器的设计

本科毕业设计_太阳能光伏发电并网三相逆变器的设计

目录1 绪论 (1)1.1 课题背景 (1)1.2 国内外研究现状 (2)1.2.1 国外的研究现状 (2)1.2.2 国内的研究现状 (2)1.3 光伏并网逆变器的发展趋势 (3)1.4主要研究内容 (3)2 光伏逆变器主电路的设计与工作原理 (4)2.1 光伏逆变器的基本结构 (4)2.2 逆变器的拓扑分类 (4)2.3 系统工作原理 (5)2.3.1 前级Boost升压电路的工作原理 (5)2.3.2 后级单相全桥逆变器的工作原理 (7)2.4 本章小结 (7)3 光伏阵列的最大功率点跟踪 (8)3.1 光伏阵列的输出特性 (8)3.1.1 光伏电池简介 (8)3.1.2 光伏电池的工作原理 (8)3.1.3 光伏电池的物理模型 (11)3.1.4 光伏电池的输出功率 (12)3.1.5 光伏阵列的温度特性和光电特性 (13)3.2 最大功率点跟踪法的比较与分析 (14)3.2.1 电导增量法 (15)3.2.2 干扰观测法 (17)3.2.3 固定电压跟踪法 (18)3.2.4 其他MPPT方法 (21)3.3 本章小结 (22)4 三相并网逆变器的控制策略 (22)4.1 并网逆变器的控制目标 (22)4.2 并网逆变器的原理 (23)4.3 并网逆变器控制策略的比较 (23)4.4 电流跟踪控制方式的比较 (24)4.4.1 电流滞环瞬时比较方式 (24)4.4.2 三角波比较方式的电流跟踪方式 (24)4.4.3 SVPWM电流控制方式 (25)4.5 SVPWM控制原理 (25)4.5.1 SVPWM的特点 (25)4.5.2 SVPWM的原理 (26)4.6 SVPWM的实现 (27)4.6.1 参考电压所在扇区的判断 (27)4.6.2 各个扇区开关持续时间的计算 (29)4.7 SVPWM控制的实现 (29)4.8 本章小结 (30)5 光伏并网逆变器的仿真 (30)5.1 恒定电压法MPPT跟踪的仿真实现 (31)5.1.1 固定电压法MPPT跟踪的仿真方法 (31)5.1.2 固定电压法MPPT仿真 (31)5.1.3 固定电压法MPPT仿真结果分析 (32)5.2 SVPWM控制的仿真 (33)5.2.1 SVPWM控制仿真方法 (33)5.2.2 SVPWM控制仿真电路 (34)5.2.3 SVPWM控制仿真结构分析 (35)5.3 本章小结 (36)6 结论 (36)参考文献 (37)致谢 (38)1 绪论1.1 课题背景随着煤炭、石油等现有化石能源的频频告急和大量使用化石能源对生态环境造成严重的破坏,人类不得不尽快寻找新的清洁能源和可再生资源。

光伏逆变器中英文对照外文翻译文献

光伏逆变器中英文对照外文翻译文献

外文翻译文献(文档含英文原文和中文翻译) 中英文对照外文翻译光伏逆变器的发展及优势结构与工作原理逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。

一般由升压回路和逆变桥式回路构成。

升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。

逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。

当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。

一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。

然后让脉冲波通过简单的滤波器形成正弦波。

逆变器不仅具有直交流变换功能,还具有最大限度地发挥太阳电池性能的功能和系统故障保护功能。

归纳起来有自动运行和停机功能、最大功率跟踪控制功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)。

这里简单介绍自动运行和停机功能及最大功率跟踪控制功能。

1、自动运行和停机功能早晨日出后,太阳辐射强度逐渐增强,太阳电池的输出也随之增大,当达到逆变器工作所需的输出功率后,逆变器即自动开始运行。

进入运行后,逆变器便时时刻刻监视太阳电池组件的输出,只要太阳电池组件的输出功率大于逆变器工作所需的输出功率,逆变器就持续运行;直到日落停机,即使阴雨天逆变器也能运行。

当太阳电池组件输出变小,逆变器输出接近0时,逆变器便形成待机状态。

2、最大功率跟踪控制功能太阳电池组件的输出是随太阳辐射强度和太阳电池组件自身温度(芯片温度)而变化的。

另外由于太阳电池组件具有电压随电流增大而下降的特性,因此存在能获取最大功率的最佳工作点。

太阳辐射强度是变化着的,显然最佳工作点也是在变化的。

毕业设计论文 外文文献翻译 光伏电力系统 中英文对照

毕业设计论文 外文文献翻译 光伏电力系统 中英文对照

翻译原文 (4)Photovoltaic (PV) Electric Systems (4)The Advantages of Mitsubishi Solar Panels (5)1光伏电力系统光伏电力系统利用太阳能电池吸收太阳光线,并将这种能量转化成电能。

这个系统让广大家庭通过一种清洁,可靠,平静的方式来产生电能,这样就可以补偿将来的部分电能支出,也减少了对输电网的依赖。

太阳能电池一般是由经改进的硅,或者其他能够吸收阳光并将之转化成电能的半导体材料制成。

太阳能电池是相当耐用的(1954年在美国安装的第一个光伏电力系统至今仍在运营)。

绝大多数的生厂商都担保自己的产品的电源输出至少维持20年。

但大多数的有关太阳能研究的专家认为一个光伏电力系统至少能维持25到30年。

1.1 太阳能电池的类型目前有单晶硅,多晶硅和薄膜三种基本形式的光伏组件。

这些类型的电池工作效率都很好但单晶硅电池效率最好。

薄膜技术的电池以成本低为特色,而且伴随着太阳能电池板的发展它的效率也在不断地提高。

越来越多的生厂商以及各种各样的电池型号在当今市场上出现。

一个太阳能技术的支持者可以帮你分析各个系统的利弊,如此你就可以得到为你所用数十年的最佳的系统设计方案。

1.2光伏电力系统如何运作光电板通常安装在建筑物顶部,通过逆变器来引到建筑物中。

逆变器将通过太阳能板产生的直流电转化成交流电,而在当今美国交流电是向建筑提供电动力的主要形式。

朝南方向的太阳能板能使能量的收集效果最大化,大部分都是与建筑物顶部成60度的位置安放太阳能电池。

有关太阳能电池发电的更多的信息,可以查询Cooler Planet’s的《太阳能电池如何工作》。

朝南方向的太阳能板能使能量的收集效果最大化,大部分都是与建筑物顶部成60度的位置安放太阳能电池。

1.3 太阳能电池板与光伏建筑一体化太阳能电池板是用于捕获太阳光的平面板,他们以阵列的形式安装在建筑物顶部或者柱子上。

他们是传统的用于获得太阳能的阵列形式。

500W光伏并网逆变器设计

500W光伏并网逆变器设计

500W光伏并网逆变器设计摘要:光伏并网发电系统是光伏系统发展的趋势。

根据光伏并网发电系统的特点,设计了一套额定功率为500W的光伏并网逆变器,该并网逆变器能实现最大功率跟踪和反孤岛效应控制功能,控制部分采用基于TMS320F240型DSP的电流跟踪控制策略,实现了与网压同步的正弦电流输出。

关键词:太阳能;光伏系统;最大功率点跟踪;孤岛效应;并网逆变器1 引言太阳能的大规模应用将是21世纪人类社会进步的重要标志,而光伏并网发电系统是光伏系统的发展趋势。

光伏并网发电系统的最大优点是不用蓄电池储能,因而节省了投资,系统简化且易于维护。

这类光伏并网发电系统主要用于调峰光伏电站和屋顶光伏系统。

目前,美、日、欧盟等发达国家都推出了相应的屋顶光伏计划,日本提出到2010年要累计安装总容量达50 000MW的家用光伏发电站。

作为屋顶光伏系统的核心,并网逆变器的开发越来越受到产业界的关注[1]。

2 光伏并网系统设计2.1 系统结构光伏并网逆变器的结构如图1所示。

光伏并网逆变器主要由二部分组成:前级DC-DC变换器和后级DC-AC逆变器。

这2部分通过DClink相连接,DCli nk的电压为400V。

在本系统中,太阳能电池板输出的额定直流电压为100V~170V。

DC—DC变换器采用boost结构,DC—AC部分采用全桥逆变器,控制电路的核心是TMS320F240型DSP。

其中DC-DC变换器完成最大功率跟踪控制(MPPT)功能,DC-AC逆变器维持DClink中间电压稳定并将电能转换成220V/50Hz的正弦交流电。

系统保证并网逆变器输出的正弦电流与电网的相电压同频和同相。

2.2 控制电路设计2.2.1 TMS320F240控制板TMS320F240控制板如图2所示,以TI公司的TMS320F240型DSP为核心,外围辅以模拟信号调理电路、CPLD、数码管及DA显示、通信及串行E2PROM,完成电压和电流信号的采样、PWM脉冲的产生、与上位机的通信和故障保护等功能。

光伏并网逆变器控制的设计

光伏并网逆变器控制的设计

光伏并网逆变器控制的设计
1 引言
21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。

在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。

因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。

太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。

文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。

2 系统工作原理及其控制方案
2.1 光伏并网逆变器电路原理
太阳能光伏并网逆变器的主电路原理图如图1所示。

在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。

系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。

图1 电路原理框图
2.2 系统控制方案
图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC变换器和后级的DC/AC 逆变器组成。

DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。

考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。

DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。

图2 主电路拓扑图。

太阳能光伏并网逆变器的设计原理框图

太阳能光伏并网逆变器的设计原理框图

太阳能光伏并网逆变器的设计原理框图————————————————————————————————作者:————————————————————————————————日期:太阳能光伏并网逆变器的设计原理框图随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,太阳能必须完成从补充能源向替代能源的过渡。

光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。

在光伏并网系统中,并网逆变器是核心部分.目前并网型系统的研究主要集中于DC—DC和DC-AC两级能量变换的结构。

DC—DC 变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC—AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。

其中DC—AC是系统的关键设计.太阳能光伏并网系统结构图如图1所示.本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器.前级用于最大功率追踪,后级实现对并网电流的控制。

控制都是由DSP芯片TMS320F2812协调完成。

图1 光伏并网系统结构图逆变器的设计太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将太阳能电池板发出的直流电逆变成单相交流电,并送入电网。

同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。

并且具有完善的并网保护功能,保证系统能够安全可靠地运行。

图2是并网逆变器的原理图。

图2 逆变器原理框图控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。

实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。

控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路.其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。

太阳能光伏逆变器设计毕业论文设计

太阳能光伏逆变器设计毕业论文设计

职业技术学院毕业论文光伏电源逆变器专业:电气自动化技术班级:电气125班:骆文兵指导教师:云飞光伏电源逆变器的设计摘要随着传统的三大化石能源日渐枯竭,绿色能源的开发和利用将会得到空前的开展,太阳能作为世界上最清洁的绿色能源之一,起并网发电备受世界各国普遍关注。

而光伏并网发电系统的核心部件,如何可靠的高质量地向电网输送功率尤为重要,因此在可再生能源并网发电系统中起点能变换作用的逆变器成为了研究的一个热点。

为此本文仍然采用“全桥逆变+LC滤波+工频升压〞的逆变电源设计方案。

整个系统设计分为SPWM波形产生电路、H桥驱动与逆变电路、欠压过流保护电路。

在SPWM波形产生环节,本文采用脉宽调制芯片SG3525的为核心。

由文氏桥振荡电路产生50Hz的正弦波基准信号。

然后经过精细整流、放大等处理输入到SG3525的补偿信号端,从而输出SPWM波。

最后进展死区延时,输入到驱动电路中。

在驱动电路设计环节中,本文采用两片IR2110半桥驱动芯片构成全桥驱动电路。

输出侧逆变电路中开关管选用耐压值高的MOSFET。

然后经过工频变压器进展升压到市电,供家用电器使用。

对输入、输出进展采样,实时监控是否欠压、过流,进展保护动作。

最后,给出额定功率为500W〔输入电压12V输出交流220V〕的单相逆变器样机的试验波形。

关键词:光伏电源,逆变器,SPWM,SG3525,IR2110word目录前言1第1章系统设计概述3光伏电源逆变器的根本结构和设计要求3系统的根本结构3系统的根本设计要求3系统电源设计4逆变电路4逆变电路的根本工作原理4电压型逆变电路5§1.4 SPWM调制技术5理论根底5单极SPWM调制方式6双极性SPWM调制方式8第2章SPWM调制电路9§2.1 SG3525芯片介绍9功能结构9§2.1.2 SG3525特性10单极性SPWM调制电路11§2.2.1 SPWM调制电路结构11正弦波发生器12精细整流电路14误差放大与加法电路15§2.2.5 SPWM调制16时序控制电路17第3章逆变电路20§3.1 IR2110芯片介绍203.1.1功能结构20word §3.1.2 IR2110特性21§3.2驱动电路设计22§3.3输出滤波器设计24§3.4保护电路设计25第4章系统调试288信号板电路的调试28信号板与H桥联调30保护电路调试31结论32参考文献33附录34前言逆变器〔INVERTER〕就是一种直流电转化为交流电的装置,一般是把直流电逆变成220V交流电。

太阳能光伏并网逆变器设计原文及翻译资料

太阳能光伏并网逆变器设计原文及翻译资料

Grid-Connected Solar Micro inverter Reference DesignAbstract-In traditional grid-connected PV system, it’s hard to remove failure of individual PV panels. This paper presents a Solar PV Grid-Connected Micro-inverter which can be embedded in a single stand-alone photovoltaic panel to solve the problem of single point of failure. For a single photovoltaic panel, rated power of the Micro-inverter is 220W, using the topology of interleaved flyback converter.Keywords-Micro-inverter; interleaved flyback converter; grid-connected; PV panelI. INTRODUCTIONWith the draining of fossil fuel and increasingly serious pollution caused by traditional power generation methods across the world, renewable and pollution-free energy has gained much attention in economic and political fields. Renewable energy includes photovoltaic (PV) and wind power generation systems. Wide application of renewable energy is now impeded by cost and extensive researches shall be conducted in order to improve cost effectiveness. PV system, also known as solar converter, has gained popularity in recent years as a convenient renewable energy with good prospects. High production cost and low conversion efficiency of silicon solar panel are major defects of PV energy. Cost effectiveness of PV projects will become more reasonable with the application of new PV panel production technology and theimprovement of converter efficiency.ІІ. EVOLUTION OF PV SYSTEMA. Traditional Grid-connected SystemTraditional grid-connected PV system is comprised of:Urban Home System – multiple solar panels are connected in serial to supply 200-400V DC and output medium power (2-10KW) AC electricity. If certain PV panel in the series loop is damaged (i.e. single point of failure), the entire system will be crashed, i.e. the system is unstableSingle Inverter With Multiple DC/DC Converters –multiple PV panels are connected in parallel after DC/DC conversion to input total DC bus bar voltage to inverter and increase output power. Such circuit structure also has problem of single point of failure meanwhile fusion of DC power supply is very complex.Urban Home System With String Inverters – PV panel providing 200-400V input DC voltage is connected to multiple parallel inverters to generate medium power (2-10KW) 120/240V AC power supply. Multiple parallel inverters can boost output power and improve system reliability.B. PV Grid-connected Micro-inverterBased on the above advantages and disadvantages of PV system, the present paper proposes the design of PV grid-connected micro-inverter to enable all PV panels in PV system to be embedded in grid-connectedmicro-inverter, see figure 1 for system structure.Micro-inverter with such structure has following advantages:•replace central inverter with distributed inverter to optimize energy utilization;•Integrated PV panel reduces installation cost;•Power of micro-inverter is low (hundreds W), resulting n low internal temperature and longer system service life, meanwhile fan is not required.III. DESIGN OF PV GRID-CONNECTED INVERTERThe present paper designs a single stage PV grid-connected micro-inverter. A simple interleaved flyback converter is applied to output sine half-wave commutating voltage and current, pass through bridge inverter to output full wave sine voltage and current and make the current have the same frequency and phase of the power grid voltage. This PV grid-connected micro-inverter matches with any PV components with 220W power rating, 25-45V output voltage and up to 55V open-circuit voltage.A. System ChartPV grid-connected micro-inverter applies parallel interleaved flyback converter, see figure 2.Ipri1 is current of flyback1 converter MOSFET and Isec1 is currentof flyback1 output diode. Current of secondary diode (Isec1) generates sinusoidal output voltage after being filtered by output filter capacitor. The inverter makes output current synchronous with grid voltage with digital phase-locked loop (PLL) technology. The maximum power tracks and controls the output current. V oltage output by PV panel is converted into sine half-wave commutating voltage/current by interleaved flyback converter, inputs full-bridge inverter circuit where it is inverted into current with the same phase of grid voltage, and is connected to power grid after EMC/EMI filtration. Duty ratio flyback converter switch shall be controlled to make the output current have the same phase and frequency with grid voltage. Interleaved flyback converter improves service life of capacitor by reducing the effective value of input large electrolytic capacitor ripple current. Interlaced output reduces output current ripple so as to decrease total harmonic distortion of current.B. Circuit AnalysisPV panel DC voltage inputs interleaved flyback converter and drives flyback MOSFET to generate sine output voltage/current with HF sine PWN modulating signal. Phase difference between two interleaved flyback converter driving signals is 180 degree. Interleaved flyback topology structure works under two switch modes.•Mode 1: when flyback MOSFET is opened, HF flyback transformer primary magnetic inductor accumulates energy, diode is phase reversalblocked and the secondary transformer winding voltage is reverse biased. During that period, primary inductor of HF flyback transformer is like a power inductor, primary current (Ipri1/Ipri2) ascends linearly and load current is from output capacitor.Mode 2: when flyback MOSFET is closed, voltage of primary winding is in phase reversal and output diode is forward biased. Energy stored at primary winding is transferred to secondary winding and provide current to output capacitor and load. During that period, output voltage is from the secondary transformer winding directly and then linearity of diode current decreases.Sine PWM modulating signal drives MOSFET to generate primary current and then generate current at the secondary diode. Half-wave sine average current of secondary rectifier diode generates standard half-wave sine voltage /current through output capacitor filtration. Controllable silicon full bridge rectifier circuit is used to produce sine-based output half-wave sine voltage/current. Thereby, the controllable silicon switches frequency into power grid frequency.Input voltage/current waveform of input voltage and solar micro-inverter in front of SCR bridge circuit and output voltage/current waveform of solar micro-inverter are shown in figure 3.C. Control CircuitPV grid-connected micro-inverter control system consist offollowing control circuits: digital phase-locked loop (PLL), current control circuit, maximum power tracking circuit and load balance control circuit. PLL and current control circuit related to grid-connected control are discussed in the present paper only.1) Digital phase-locked loop (PLL)PLL control system is a crucial component of control system to enable electric energy output by the system to be connected to power grid in unit power factor. PLL makes inverter output current have the frequency and phase angle synchronous with grid voltage.ADC channel of the software samples grid voltage and inverter output current signal and saves polarity of grid-connected voltage in register hence polarity of grid voltage is clear during each sampling period. Zero-voltage detection mark is set by the software when polarity of grid voltage varies. When grid voltage passes zero crossing point, the input timer interrupts and waits for the next zero crossing point, and count of the timer during the interruption between two zero crossing points is half of the period value of grid voltage. Period value can be used to express grid frequency and decides phase angle increment in citing of sine table reference values. Frequency and phase of grid voltage and inverter output current can be acquired with the above sampling parameters, and relevant SPWM carrier frequency and initial phase are regulated according the calculation results to enable PV inverter systemoutput current to track frequency and phase of grid voltage. The sine table covers 512 reference elements of sine 0 through 90 degree.2) Current control circuitCurrent control circuit applies PI controller and is the core of control system. Output control signal of current control circuit controls duty ratio of flyback MOSFET (D) to ensure that input current IAC follows reference current IACref.Equivalent non-isolated circuit of flyback converter acts as a buck-boost converter; therefore buck/boost converter can be used to establish model and calculate control circuit parameters. Like buck/boost converter is a highly nonlinear system like boost converter. Output voltage and current have nonlinear relation with the duty ratio when the system operates under continuous conduction mode. The current challenge is how to control the duty ration of flyback MOSFET D and generate a sinusoidal current. Circuit of buck/boost converter is shown in figure 4.Magnetic inductor of flyback is replaced by a buck-boost inductor. Giving duty ratio D to switch is to generate sinusoidal current passing load. The buck/boost topology structure generates reverse voltage. Therefore, average current through diode and load should be like a modified sine wave upside down. As the current of inductor does notchange instantly, load current can be calculated with the following formula.I LOAD represents the current of flyback inverter system; I AC, I L represents the current passing flyback current magnetic converter; I L* represents I ACref reference current; D represents duty ratio of flyback MOSFET; G is coefficient of control circuit compensation circuit K p and K i.Fundamental formula of inductor can be expressed by formula 2.It’s unlike to obtain current parameters directly in stead current error proportional to voltage is used to control current as shown in formula 3.According to basic power electronics theory, V x=V in*D -(1-D) * V oOutput voltage of flyback circuit V o is half-wave rectified sinusoidal voltage and is connected to power grid through thyristor full bridge inverter. Duty ratio D is calculated by formula 4 with input voltage V in and output voltage V o measured.Formula 5 is the relation expression between input voltage and output voltage of buck/boost converter.Desired duty ratio can be calculated with formulae 4 and 5 as shown in formula 6, where I load* is modified sine wave.The first item is the calculation result of PI compensator of which bandwidth is given by G/L. The second item is the result of open loop control with the purpose of enabling current to output in sine wavewithout control.IV. SYSTEM SIMULATIONA.A. Simulink Simulation ModelBased on the above analysis, the present paper establishes Simulink digital simulation model of PV grid-connected micro-inverter with the general flow chart shown in figure 5, where,Vin_ref-secondary1 is PV panel output voltage; Subsystem2 outputs reference current and grid voltage; Subsystem3 is model of flyback converter with internal flow chart as shown in figure 6; and controller1 is flow chart of control circuit and includes PLL control and average current tracking control as shown in figure 6.B. Simulation Result and AnalysisBased on the above simulation mode, when PV input voltage is set to Vin to 25V, reference input is set to 1A/50HZ sine current and grid voltage V grid is set to 220V, waveform of output current in front of SCR full bridge inverter acquired is as shown in figure 7, and output current with the same magnitude with reference current and the same phase with grid voltage is obtained after the said current passes through full bridge inverter.The upper part of the figure is the waveform of reference current and the lower part is the waveform of output current. According to simulation result, output current of the system has the same phase with referencecurrent signal; correctness of the control method is validated.V. CONCLUSIONThis paper presents an innovative PV grid-connected micro-inverter with 220W power rating and can be used by combining with individual PV panels into module so as to shoot trouble of single point of failure of individual PV panels in PV grid-connected power generation system and improves generating efficiency. This inverter applies interleaved flyback transformer topology falling into single-phase inverter structure which is simple and efficient. The paper also studies grid-connected control method and current control method in response to the inverter topology structure and establishes simulation model to validate the correctness of the design.太阳能光伏并网逆变器设计一、引言与排水的化石燃料,由传统的发电方式,在世界各地造成了日益严重的污染,可再生、无污染的能源在经济和政治领域备受关注。

光伏并网逆变器的设计

光伏并网逆变器的设计

半导体器件应用网/news/201535.html 光伏并网逆变器的设计【大比特导读】基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。

该设计模式具有电路简单、性能稳定、转换效率高等优点。

基于光伏并网逆变器的基本原理和控制策略,设计了并网型逆变器的结构,其采用了内置高频变压器的前后两级结构,即前级DC/DC高频升压,后级DC/AC工频逆变。

该设计模式具有电路简单、性能稳定、转换效率高等优点。

在能源日益紧张的今天,光伏发电技术越来越受到重视。

太阳能电池和风力发电机产生的直流电需要经过逆变器逆变并达到规定要求才能并网,因此逆变器的设计关乎到光伏系统是否合理、高效、经济的运行。

1光伏逆变器的原理结构光伏并网逆变器的结构如图1所示,主要由前级DC/DC变换器和后级DC/AC逆变器构成。

其基本原理是通过高频变换技术将低压直流电变成高压直流电,然后通过工频逆变电路得到220V交流电。

这种结构具有电路简单、逆变电源空载损耗很小、输出功率大、逆变效率高、稳定性好、失真度小等优点。

图1光伏逆变器结构图逆变器主电路如图2所示。

DC/DC模块的控制使用SG3525芯片。

SG3525是双端输出式SPWM脉宽调制芯片,产生占空比可变的PWM波形用于驱动晶闸管的门极来控制晶闸管通断,从而达到控制输出波形的目的。

作为并网逆变器的关键模块,DC/AC模块具有更高的控制要求,本设计采用TI公司的TMS320F240作为主控芯片,用于采集电网同步信号、交流输入电压信号、调节IGBT门极驱动电路脉冲频率,通过基于DSP芯片的软件锁相环控制技术,完成对并网电流的频率、相位控制,使输出电压满足与电网电压的同频、同相关系。

滤波采用二阶带通滤波器,是有源滤波器的一种,用于传输有用频段的信号,抑制或衰减无用频段的信号。

其可以有效地滤除逆变后产生的高频干扰波形,使逆变后的电压波形达到并网的要求。

光伏并网逆变器《EN50549-1:2019》解析

光伏并网逆变器《EN50549-1:2019》解析

1.概述1.1标准适用范围--适用于将任何能源转换为交流且并网的设备;--适用于2016/631EU规定的Type A和Type B的低压并网设备;--与交流低压配电网连接且并联运行;注:连接到中压配电网的发电设备属于EN50549-2范畴。

注:电力储能系统(EESS)满足上述范围。

注:如果发电站由多种类型的并网设备组成,除非电网公司和责任方另有规定,连接到最大视在功率高达150kVA的中压配电网的发电厂可以符合本欧洲标准,以此来替代EN50549-2的要求;1.2发电设备功能优先级如果发电设备的不同要求相互干扰,应从高到低的顺序执行:(1)发电机组的保护,包括对原动机的保护;(2)并网保护(见4.9)和发电厂内部故障保护;(3)电压故障和阶跃时的电压支撑(见4.7.4);(4)配电网安全相关的有功限制,远程控制命令(见4.11)和过频降载曲线(见4.6.1);(5)如果适用,欠频加载曲线(见4.6.2);(6)无功功率(见4.7.2)和有功功率(P(U)见4.7.2)控制;(7)基于市场、经济原因、自耗优化等原因,对有功功率设定点的其他控制命令。

1.3并网接口开关并网接口开关应为继电器、接触器或机械断路器,其分断和接通能力应与发电厂的额定电流相对应,并与发电厂的短路贡献相对应。

对于光伏并网逆变器需要满足EN62109-1和EN62109-2的要求。

并网接口开关的功能可以结合主开关或发电机保护开关,集成在一个开关装置中。

集成的开关装置应同时满足并网接口开关的要求,以及主开关或发电机保护开关的要求。

因此,在任何发电机和并网连接点之间至少要有两个开关串联。

如下图所示:1.4电网条件本标准规定的额定电压是230V/400V,额定频率是50Hz。

2.电能质量2.1谐波谐波电流应该符合BS EN61000-3-2(适用于In<16A)或BS EN61000-3-12(适用于In>16A)的要求。

间谐波电流(50Hz~2KHz)和高频谐波电流(2kHz~9kHz)应分别符合DIN EN61000-4-7(VDE0817-4-7),附录A和B的要求。

光伏发电并网逆变器毕业论文设计

光伏发电并网逆变器毕业论文设计

目录第一章绪论............................................................................................................................................................. - 1 -1.1太阳能及其光伏产业.................................................................................................. - 1 -1.2太阳能光伏发电的发展史.......................................................................................... - 1 -1.3光伏发电并网逆变器研究的目的.............................................................................. - 2 -1.4光伏发电并网逆变器研究的意义.............................................................................. - 2 - 第二章光伏发电并网逆变控制器系统的理论分析........................................................................................... - 3 -2.2逆变器的电路原理...................................................................................................... - 4 -2.2.1 逆变器的电路原理.......................................................................................... - 4 -2.2.2 逆变器的逆变传统技术................................................................................ - 5 -2.2.3 逆变器的SPWM控制技术 ............................................................................ - 7 -2.3 并网逆变..................................................................................................................... - 7 -2.3.1电路结构........................................................................................................... - 7 -2.3.2 系统的总体方案.............................................................................................. - 7 -2.3.3 前级电路的工作原理...................................................................................... - 8 -2.3.4主电路中参数的选取....................................................................................... - 9 -2.3.5光伏系统最大功率跟踪的方法..................................................................... - 10 -2.3.6 逆变器驱动电路.............................................................................................- 11 - 第三章硬件电路的设计..................................................................................................................................... - 12 -3.1直流侧欠电压检测电路............................................................................................ - 12 -3.2直流侧过电压检测电路............................................................................................ - 12 -3.2直流侧过电压检测电路............................................................................................ - 13 - 第四章系统软件设计........................................................................................................................................... - 14 -4.1 软件设计的目的....................................................................................................... - 14 -4.2 基于AT89C51的系统软件设计 ............................................................................. - 14 -4.3 系统的主程序流程图............................................................................................... - 14 -4.4 市电检测和光伏发电系统投切程序设计............................................................... - 15 -4.5 逆变电路控制程序设计........................................................................................... - 16 -4.6 中断与键盘子程序的设计....................................................................................... - 17 - 结论 ........................................................................................................................................................................ - 19 - 参考文献 ................................................................................................................................................................ - 20 - 致谢 ........................................................................................................................................................................ - 21 - 附录 ...................................................................................................................................................................... - 22 -光伏并网发电逆变控制器的设计摘要恶化的环境和世界传统能源的枯竭,促进了新能源的研究和发展。

光伏单相逆变器并网控制技术研究论文(含中英文翻译)

光伏单相逆变器并网控制技术研究论文(含中英文翻译)

本科毕业设计(论文)单相逆变器并网技术研究本科毕业设计(论文)单相逆变器并网技术研究摘要随着“绿色环保”概念的提出,以解决电力紧张,环境污染等问题为目的的新能源利用方案得到了迅速的推广,这使得研究可再生能源回馈电网技术具有了十分重要的现实意义。

如何可靠地、高质量地向电网输送功率是一个重要的问题,因此在可再生能源并网发电系统中起电能变换作用的逆变器成为了研究的一个热点。

本文以全桥逆变器为对象,详细论述了基于双电流环控制的逆变器并网系统的工作原理,推导了控制方程。

内环通过控制LCL滤波中的电容电流,外环控制滤波后的网侧电流。

大功率并网逆变器的开关频率相对较低,相对于传统的L 型或LC 型滤波器,并网逆变器采用LCL 型输出滤波器具有输出电流谐波小,滤波器体积小的优点,在此基础上本系统设计了LCL滤波器。

本文分析比较了单相逆变器并网采用单闭环和双闭环两种控制策略下的并网电流,并对突加扰动情况下系统动态变化进行了分析。

在完成并网控制系统理论分析的基础上,本文设计并制作了基于TMS320LF2407DSP的数字化控制硬件实验系统,包括DSP 外围电路、模拟量采样及调理电路、隔离驱动电路、保护电路和辅助电源等,最后通过MATLAB仿真软件进行验证理论的可行性,实现功率因数为1的并网要求。

关键词并网逆变器;LCL滤波器;双电流环控制;DSP本科生毕业设计(论文)AbstractWith the concept of”Green and Environmental Protection”was proposed.All kinds of new energy exploitation program are in the rapid promotion,which is in order to solve the power shortage,pollution and other issues.It makes exploring renewable energy feedback the grid technology has a very important practical significance.How to deliver power into the grid reliably and quality is an important problem,the inverter mat Can transform the electrical energy in the system of the renewable resource to be fed into the grid is becoming one of the hot points in intemational research.Based on the bridge inverter the analysis of the working principle and the deduction of the control equation have been presented. The strategy integrates an outer loop grid current regulator with capacitor current regulation to stabilize the system. The current regulation is used for the outer grid current control loop. The frequency of switching is slower in the high power grid-connected inverter. Compared with tradition type L or type LC, output filter and output current‟s THD of type LCL are all smaller.So on this basis, the system uses the LCL filter. This paper compares the net current of the single-phase inverter and net single loop and double loop under two control strategies, and the case of sudden disturbance of the dynamic change of the system.In complete control system on the basis of theoretical analysis, design and production of this article is based on TMS320LF2407DSP‟s digital control hardware test system, including the DSP external circuit, analog sampling and conditioning circuit, isolation, driver circuit, protection circuit and auxiliary power, etc., via MATLAB software to validate the feasibility of the theory. Achieve power factor is 1 and network requirements.Keywords Grid-connected inverter;LCL filter; Double current loop control;DSP目录摘要......................................................... III Abstract ...................................................... II 第1章绪论. (1)1.1国内外可再生能源开发的现状及前景 (1)1.1.1 可再生能源开发的现状及前景 (1)1.1.2可再生能源并网发电系统 (3)1.2并网逆变器的研究现状及趋势 (4)1.3本文的结构及主要内容 (6)第2章单相并网逆变器总体设计 (8)2.1并网逆变器组成原理及主体电路硬件设计 (8)2.1.1 系统逆变主体电路拓扑结构及原理 (8)2.1.2 系统主体电路参数设计 (9)2.2逆变器的SPWM调制方式分析 (10)2.3LCL滤波器的设计 (14)2.3.1 利用隔离变压器漏感确定LCL滤波 (14)2.3.2 LCL滤波器数学模型及波特图分析 (15)2.3.3 LCL滤波器的参数设计 (16)2.4并网控制策略的提出 (18)2.4.1 电流型并网模型分析 (18)2.4.2 几种控制方法分析 (20)2.4.3 使用双电流闭环控制策略 (23)2.5本章小结 (25)第3章系统仿真及结果分析 (26)3.1单相逆变器开环仿真 (26)3.2单相逆变器并网单闭环仿真分析 (27)3.3基于双电流环的单相逆变器并网仿真分析 (28)3.4突加扰动时系统动态分析 (29)3.5本章小结 (31)第4章数字化并网控制系统硬件设计 (32)4.1基于DSP的并网控制系统整体设计 (32)4.2系统电路设计 (33)4.2.1 DSP外围电路设计 (33)4.2.2 模拟信号采样电路 (34)4.2.3 隔离、驱动电路 (36)4.2.4 多功能控制电源设计 (37)4.2.5 保护电路设计 (38)4.3本章小结 (38)结论 (39)参考文献 (40)致谢 (42)附录1 (43)附录2 (52)附录3 (59)第1章绪论第1章绪论1.1 国内外可再生能源开发的现状及前景1.1.1可再生能源开发的现状及前景自20世纪50年代以来,随着经济活动的增加,世界能源消耗急剧上升,世界能源消耗增长了20倍。

中英文翻译--光伏系统设计-精品

中英文翻译--光伏系统设计-精品

Photovoltaic System Design1 IntroductionAfter PV workers unremitting efforts, solar cell production technology constantly improve, and increasingly widely used in various fields. Posts and telecommunications in particular, the telecommunications industry in recent years because of the rapid development of communication power requirements have become more sophisticated, so stable and reliable power Solar energy is widely used in communications. And how the various regions of solar radiation conditions, to the design of both economic and reliable photovoltaic power system, which is one of the many experts and scholars study the long-standing issue, but there are many excellent research results, for the development of China's photovoltaic laid a solid foundation. The author of the study at the design methodology of experts found that the design has only considered the self-maintenance of battery time (that is, the longest consecutive rainy days), without taking into account the loss of electric batteries as soon as possible after the recovery time (ie, two sets of the longest continuous rain days, the shortest interval between the days). This problem particularly in the southern China region should pay great attention to the southern region because of our rainy day is long too, and for the convenience of independent photovoltaic power system, because there is no other emergency backup power protection, so this problem should be included in the design considered together.In this paper, an integrated design method of the previous advantages, combined with the author over the years actually engaged in the design of photovoltaic power systems experience, the introduction of two sets of the longest consecutive rainy days, the shortest interval between the number of days as the basis for the design of one, and comprehensive consideration of the the impact of solar radiation conditions of the factors that made solar cells, the formula for calculating battery capacity, and related design methods.2 Many factors affect the designSun solar cells on the ground square on the radiation of light spectrum, light intensity by the thickness of the atmosphere (ie air quality), geographic location, the location of the climate and weather, terrain and surface features such as the impact of its energy in one day, January and a year of great change, or even years between the total annual amount of radiation There were also large differences.Square solar photoelectric conversion efficiency, by the battery itself,temperature, sunlight intensity and battery voltage fluctuations, which is three in one day will change, so square photovoltaic solar cell conversion efficiency is also variable.Battery is charging in the float state, with the square of its voltage output and load power consumption changes. Batteries to provide energy is also affected by environmental temperature.Solar energy battery charge and discharge controller made by the electronic components manufacturer, it is also necessary energy, while the use of components of performance, quality, etc. is also related to the size of energy consumption, thus affecting the efficiency of charge.Load of electricity, but also as determined by uses, such as communications relay stations, unmanned weather stations and so on, have a fixed power equipment. Some equipment such as a lighthouse, beacon lights, civilian power consumption such as lighting and equipment power consumption are often changing.Therefore, the solar power system design, the need to consider many factors and complex. Characteristics are: the data used in most previous statistical data, the statistical data measurement and data selection are important.Designers of the mission are: In the solar cell matrix under the conditions of the environment (that is, the scene of the geographical location, solar radiation, climate, weather, terrain and surface features, etc.), the design of solar cell and battery power system matrix is We should pay attention to economic efficiency, but also to ensure system reliability.Location of a particular energy of solar radiation data to meteorological information provided the basis for the design of solar cells used phalanx. These meteorological data required to check the accumulation of several years or even decades on average.Various regions on the Earth by sunlight and radiation changes in the cycle for the day, 24h. In a square area of solar cells also have the power output 24h of the cyclical changes in its laws and sun radiation in the region, the changes of the same. However, changes in weather will affect the square of the generating capacity. If you have a few days consecutive rain days, almost square on the power generation should not rely on batteries to power, and battery depth of discharge and then need to be added as soon as possible good. Most designers in order to weather the sun to provide a daily total of radiation energy or the annual average sunshine hours as the design ofthe main data. Each year because of a regional data is not the same as for the sake of reliability should be taken within the last decade of the minimum data. Under the load of electricity consumption, in sunshine and no sunshine when battery power is required. Weather provided by solar power or the total amount of radiation the total sunshine hours on the battery capacity of the size of the decision is indispensable data.Phalanx of the solar cell, the load should include all power system devices (except for use but also have a battery and electrical circuits, controllers, etc.) consumption. Matrix components of the output power and the number of series-parallel, and series are required in order to obtain the operating voltage, in parallel are necessary in order to obtain the current work, an appropriate number of components through which the composition of series-parallel connection of solar cells required phalanx.3 Designed capacity of batteriesSolar cell power supply system is the battery energy storage devices. And solar cell batteries are usually square matching job at Floating state, with the square of its voltage output and load power consumption changes. Its load capacity than the power required is much greater. Batteries to provide energy is also affected by environmental temperature. And solar cells in order to match the job requirements of long life battery and easy maintenance.(1)Battery SelectionAnd be able to support the use of solar cells, many different types of batteries, widely used at present have lead-acid maintenance-free batteries, ordinary lead-acid batteries and alkaline nickel-cadmium batteries of three. Domestic use are mainly maintenance-free lead-acid batteries, because of its inherent "free"maintenance of properties and less polluting to the environment characteristics, it is suitable for the performance of reliable power systems solar power, especially in unattended workstations. Ordinary lead-acid batteries require regular maintenance because of its larger environmental pollution, so the main suitable for the maintenance of the ability or have the use of low-grade occasions. Although alkaline nickel-cadmium batteries have better low-temperature, over-charge, take-off performance, but because of their higher prices, only applies to more special occasions.(2)Calculation of battery capacityBattery capacity to ensure continuous power supply is very important. At one year,the month of matrix generation has very different. Phalanx at the generating capacity can not meet the electricity needs of the month, to rely on battery power give supplement; electricity required in more than month, are relying on batteries to store excess energy.Phalanx so inadequate generating capacity and surplus value, is to determine the basis for one of the battery capacity. Similarly, the continuous overcast and rainy days during the load of electricity must also be obtained from the battery. Therefore, the power consumption during this period to determine the battery capacity is also one of the factors.光伏系统设计1引言经过光伏工作者们坚持不懈的努力,太阳能电池的生产技术不断得到提高,并且日益广泛地应用于各个领域。

《太阳能光伏并网发电系统设计与应用》第五章 光伏并网发电电气系统设计

《太阳能光伏并网发电系统设计与应用》第五章  光伏并网发电电气系统设计

2020/12/15
12
第三节 并网控制与保护系统设计
2. 电压及无功调节
(1)调节的方式包括调节光伏发 电站逆变器输出的无功功率、无功补 偿设备的投入量和变压器的电压比。
(4)接入500kV及以上电压等级公用电网的 光伏发电站,其配置的感性无功容量能够补偿 光伏发电站送出线路的全部充电无功功率。
2020/12/15
5
第一节 并网方式设计
四、单/双级并网系统
双级并网系统
2020/12/15
单级并网系统
6
第一节 并网方式设计
五、接入电网点
以专线接入 公用电网
2020/12/15
T接方式接 入公用电网
接入用户 内部电网
7
第二节 并网逆变方式设计
一、集中式逆变器
2020/12/15
8
第二节 并网逆变方式设计
无功补偿装置的进相及滞相运行时的无功功率。 逆变器、变压器和无功补
升压变压器高压侧的有功功率和无功功率。 偿设备的断路器位置信号。
双向传输功率的线路、变压器的双向功率。 站用总有功电能量。 光伏发电站的频率。
事故总信号。 出线主要保护动作信号。
光伏发电站的光照强度、温度等。
光伏发电站的储能容量状态。
(5)并网点三相电压不平衡度应 符合GB/T 15543《电能质量 三相电压 不平衡》的规定。
(3)公共连接点的电压应符合 GB/T 12325《电能质量 供电电压偏差》 的规定。
(6)向电网馈送的直流电流分量 不应超过其交流额定值的0.5%。
2020/12/15
14
第三节 并网控制与保护系统设计
2020/12/15
光伏发电站电能计量装置采集的信息 应接入电网调度机构的电能信息采集系 统。

光伏并网逆变器设计

光伏并网逆变器设计

学生姓名:周亚星学号: 200724170119班级: 052410701专业:电气工程及其自动化指导教师:粟时平2011 年 6 月光伏电源并网逆变器设计学生姓名:周亚星学号: 200724170119班级: 052410701所在院(系): 电气与信息工程学院指导教师:粟时平完成日期: 2011年6月毕业设计(论文)任务书电气与信息工程学院(系)电力工程及其自动化专业2007241705班题目光伏电源并网逆变器设计任务起止日期; 2011 年 3 月21日~2011年6 月25 日学生姓名周亚星学号200724170119指导教师粟时平教研室主任年月日审查院长(系主任)年月日批准一、毕业设计(论文)任务2. 此任务书最迟必须在毕业设计(论文)开始前一周下达给学生。

3. 此任务书可从教务处网页表格下载区下载二、毕业设计(论文)工作进度计划表注:1. 此表由指导教师填写;2. 此表每个学生人手一份,作为毕业设计(论文)检查工作进度之依据;3. 进度安排请用“一”在相应位置画出。

三、学生完成毕业设计(论文)阶段任务情况检查表注:1. 此表应由指导教师认真填写。

阶段分布由各学院自行决定。

2. “组织纪律”一档应按《长沙理工大学学生学籍管理实施办法》精神,根据学生具体执行情况,如实填写。

3. “完成任务情况”一档应按学生是否按进度保质保量完成任务的情况填写。

包括优点,存在的问题与建议4. 对违纪和不能按时完成任务者,指导教师可根据情节轻重对该生提出忠告并督促其完成。

四、学生毕业设计(论文)装袋要求:1. 毕业设计(论文)按以下排列顺序印刷与装订成一本(撰写规范见教务处网页)。

(1) 封面(2) 扉页(3) 毕业设计(论文)任务书(4) 中文摘要(5) 英文摘要(6) 目录(7) 正文(8) 参考文献(9) 致谢(10) 附录(公式的推演、图表、程序等)(11) 附件1:开题报告(文献综述)(12) 附件2:译文及原文影印件2. 需单独装订的图纸(设计类)按顺序装订成一本。

光伏发电毕业论文---光伏发电并网逆变控制器系统的设计

光伏发电毕业论文---光伏发电并网逆变控制器系统的设计

本科毕业论文光伏发电并网逆变控器制系统的设计THE RESERCH ON PHOTO VOLTAIC GRII-CONNECTED INVERTER题目光伏发电并网逆变控制器系统的设计学生姓名学号 200814240119系别物电系专业电气工程及其自动化届别 2011指导教师职称讲师摘要 (3)第一章绪论 (4)1.1光伏发电并网逆变器的研究背景及现状 (4)1.2光伏发电并网逆变器研究的目的 (5)第二章光伏发电并网逆变控制系统的理论分析 (7)2.1太阳能发电并网系统总拓扑图 (7)2.2逆变器的电路原理 (8)2.2.1 逆变器的电路原理 (8)2.2.2 逆变器的逆变传统技术 (8) (10)2.3 并网逆变 (11)2.3.1 电路结构 (11)2.3.2 系统的总体方案 (11)2.3.3 前级boost电路的工作原理 (11)2.3.4主电路参数的选取 (13)光伏系统最大功率跟踪的方法 (15)逆变器驱动电路 (17)第三章硬件电路 (19)第四章系统软件设计 (21)4.1 基于AT89C51的系统软件设计 (21)4.2 系统的主程序流程图 (24)4.3逆变控制程序设计 (24)4.4中断和键盘子程序设计 (27)参考文献 (31)摘要世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。

具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。

其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。

而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。

本文根据逆变器结构以及光伏发电阵列特点,提出了基于DC-DC和DC-AC两级并网逆变器的结构。

基于DC-DC和DC-AC电路的相对独立性,分别对DC-DC和DC-AC 进行了分析,重点分析了DC-AC的工作原理。

并网逆变控制器设计是本文的重点,包括逆变器驱动电路的设计、逆变器驱动电路的软件编程以及并网过程中直流侧欠电压、直流侧过电压、交流侧电流等硬件电路的设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Grid-Connected Solar Micro inverter Reference DesignAbstract-In traditional grid-connected PV system, it’s hard to remove failure of individual PV panels. This paper presents a Solar PV Grid-Connected Micro-inverter which can be embedded in a single stand-alone photovoltaic panel to solve the problem of single point of failure. For a single photovoltaic panel, rated power of the Micro-inverter is 220W, using the topology of interleaved flyback converter.Keywords-Micro-inverter; interleaved flyback converter; grid-connected; PV panelI. INTRODUCTIONWith the draining of fossil fuel and increasingly serious pollution caused by traditional power generation methods across the world, renewable and pollution-free energy has gained much attention in economic and political fields. Renewable energy includes photovoltaic (PV) and wind power generation systems. Wide application of renewable energy is now impeded by cost and extensive researches shall be conducted in order to improve cost effectiveness. PV system, also known as solar converter, has gained popularity in recent years as a convenient renewable energy with good prospects. High production cost and low conversion efficiency of silicon solar panel are major defects of PV energy. Cost effectiveness of PV projects will become more reasonable with the application of new PV panel production technology and theimprovement of converter efficiency.ІІ. EVOLUTION OF PV SYSTEMA. Traditional Grid-connected SystemTraditional grid-connected PV system is comprised of:Urban Home System – multiple solar panels are connected in serial to supply 200-400V DC and output medium power (2-10KW) AC electricity. If certain PV panel in the series loop is damaged (i.e. single point of failure), the entire system will be crashed, i.e. the system is unstableSingle Inverter With Multiple DC/DC Converters –multiple PV panels are connected in parallel after DC/DC conversion to input total DC bus bar voltage to inverter and increase output power. Such circuit structure also has problem of single point of failure meanwhile fusion of DC power supply is very complex.Urban Home System With String Inverters – PV panel providing 200-400V input DC voltage is connected to multiple parallel inverters to generate medium power (2-10KW) 120/240V AC power supply. Multiple parallel inverters can boost output power and improve system reliability.B. PV Grid-connected Micro-inverterBased on the above advantages and disadvantages of PV system, the present paper proposes the design of PV grid-connected micro-inverter to enable all PV panels in PV system to be embedded in grid-connectedmicro-inverter, see figure 1 for system structure.Micro-inverter with such structure has following advantages:•replace central inverter with distributed inverter to optimize energy utilization;•Integrated PV panel reduces installation cost;•Power of micro-inverter is low (hundreds W), resulting n low internal temperature and longer system service life, meanwhile fan is not required.III. DESIGN OF PV GRID-CONNECTED INVERTERThe present paper designs a single stage PV grid-connected micro-inverter. A simple interleaved flyback converter is applied to output sine half-wave commutating voltage and current, pass through bridge inverter to output full wave sine voltage and current and make the current have the same frequency and phase of the power grid voltage. This PV grid-connected micro-inverter matches with any PV components with 220W power rating, 25-45V output voltage and up to 55V open-circuit voltage.A. System ChartPV grid-connected micro-inverter applies parallel interleaved flyback converter, see figure 2.Ipri1 is current of flyback1 converter MOSFET and Isec1 is currentof flyback1 output diode. Current of secondary diode (Isec1) generates sinusoidal output voltage after being filtered by output filter capacitor. The inverter makes output current synchronous with grid voltage with digital phase-locked loop (PLL) technology. The maximum power tracks and controls the output current. V oltage output by PV panel is converted into sine half-wave commutating voltage/current by interleaved flyback converter, inputs full-bridge inverter circuit where it is inverted into current with the same phase of grid voltage, and is connected to power grid after EMC/EMI filtration. Duty ratio flyback converter switch shall be controlled to make the output current have the same phase and frequency with grid voltage. Interleaved flyback converter improves service life of capacitor by reducing the effective value of input large electrolytic capacitor ripple current. Interlaced output reduces output current ripple so as to decrease total harmonic distortion of current.B. Circuit AnalysisPV panel DC voltage inputs interleaved flyback converter and drives flyback MOSFET to generate sine output voltage/current with HF sine PWN modulating signal. Phase difference between two interleaved flyback converter driving signals is 180 degree. Interleaved flyback topology structure works under two switch modes.•Mode 1: when flyback MOSFET is opened, HF flyback transformer primary magnetic inductor accumulates energy, diode is phase reversalblocked and the secondary transformer winding voltage is reverse biased. During that period, primary inductor of HF flyback transformer is like a power inductor, primary current (Ipri1/Ipri2) ascends linearly and load current is from output capacitor.Mode 2: when flyback MOSFET is closed, voltage of primary winding is in phase reversal and output diode is forward biased. Energy stored at primary winding is transferred to secondary winding and provide current to output capacitor and load. During that period, output voltage is from the secondary transformer winding directly and then linearity of diode current decreases.Sine PWM modulating signal drives MOSFET to generate primary current and then generate current at the secondary diode. Half-wave sine average current of secondary rectifier diode generates standard half-wave sine voltage /current through output capacitor filtration. Controllable silicon full bridge rectifier circuit is used to produce sine-based output half-wave sine voltage/current. Thereby, the controllable silicon switches frequency into power grid frequency.Input voltage/current waveform of input voltage and solar micro-inverter in front of SCR bridge circuit and output voltage/current waveform of solar micro-inverter are shown in figure 3.C. Control CircuitPV grid-connected micro-inverter control system consist offollowing control circuits: digital phase-locked loop (PLL), current control circuit, maximum power tracking circuit and load balance control circuit. PLL and current control circuit related to grid-connected control are discussed in the present paper only.1) Digital phase-locked loop (PLL)PLL control system is a crucial component of control system to enable electric energy output by the system to be connected to power grid in unit power factor. PLL makes inverter output current have the frequency and phase angle synchronous with grid voltage.ADC channel of the software samples grid voltage and inverter output current signal and saves polarity of grid-connected voltage in register hence polarity of grid voltage is clear during each sampling period. Zero-voltage detection mark is set by the software when polarity of grid voltage varies. When grid voltage passes zero crossing point, the input timer interrupts and waits for the next zero crossing point, and count of the timer during the interruption between two zero crossing points is half of the period value of grid voltage. Period value can be used to express grid frequency and decides phase angle increment in citing of sine table reference values. Frequency and phase of grid voltage and inverter output current can be acquired with the above sampling parameters, and relevant SPWM carrier frequency and initial phase are regulated according the calculation results to enable PV inverter systemoutput current to track frequency and phase of grid voltage. The sine table covers 512 reference elements of sine 0 through 90 degree.2) Current control circuitCurrent control circuit applies PI controller and is the core of control system. Output control signal of current control circuit controls duty ratio of flyback MOSFET (D) to ensure that input current IAC follows reference current IACref.Equivalent non-isolated circuit of flyback converter acts as a buck-boost converter; therefore buck/boost converter can be used to establish model and calculate control circuit parameters. Like buck/boost converter is a highly nonlinear system like boost converter. Output voltage and current have nonlinear relation with the duty ratio when the system operates under continuous conduction mode. The current challenge is how to control the duty ration of flyback MOSFET D and generate a sinusoidal current. Circuit of buck/boost converter is shown in figure 4.Magnetic inductor of flyback is replaced by a buck-boost inductor. Giving duty ratio D to switch is to generate sinusoidal current passing load. The buck/boost topology structure generates reverse voltage. Therefore, average current through diode and load should be like a modified sine wave upside down. As the current of inductor does notchange instantly, load current can be calculated with the following formula.I LOAD represents the current of flyback inverter system; I AC, I L represents the current passing flyback current magnetic converter; I L* represents I ACref reference current; D represents duty ratio of flyback MOSFET; G is coefficient of control circuit compensation circuit K p and K i.Fundamental formula of inductor can be expressed by formula 2.It’s unlike to obtain current parameters directly in stead current error proportional to voltage is used to control current as shown in formula 3.According to basic power electronics theory, V x=V in*D -(1-D) * V oOutput voltage of flyback circuit V o is half-wave rectified sinusoidal voltage and is connected to power grid through thyristor full bridge inverter. Duty ratio D is calculated by formula 4 with input voltage V in and output voltage V o measured.Formula 5 is the relation expression between input voltage and output voltage of buck/boost converter.Desired duty ratio can be calculated with formulae 4 and 5 as shown in formula 6, where I load* is modified sine wave.The first item is the calculation result of PI compensator of which bandwidth is given by G/L. The second item is the result of open loop control with the purpose of enabling current to output in sine wavewithout control.IV. SYSTEM SIMULATIONA.A. Simulink Simulation ModelBased on the above analysis, the present paper establishes Simulink digital simulation model of PV grid-connected micro-inverter with the general flow chart shown in figure 5, where,Vin_ref-secondary1 is PV panel output voltage; Subsystem2 outputs reference current and grid voltage; Subsystem3 is model of flyback converter with internal flow chart as shown in figure 6; and controller1 is flow chart of control circuit and includes PLL control and average current tracking control as shown in figure 6.B. Simulation Result and AnalysisBased on the above simulation mode, when PV input voltage is set to Vin to 25V, reference input is set to 1A/50HZ sine current and grid voltage V grid is set to 220V, waveform of output current in front of SCR full bridge inverter acquired is as shown in figure 7, and output current with the same magnitude with reference current and the same phase with grid voltage is obtained after the said current passes through full bridge inverter.The upper part of the figure is the waveform of reference current and the lower part is the waveform of output current. According to simulation result, output current of the system has the same phase with referencecurrent signal; correctness of the control method is validated.V. CONCLUSIONThis paper presents an innovative PV grid-connected micro-inverter with 220W power rating and can be used by combining with individual PV panels into module so as to shoot trouble of single point of failure of individual PV panels in PV grid-connected power generation system and improves generating efficiency. This inverter applies interleaved flyback transformer topology falling into single-phase inverter structure which is simple and efficient. The paper also studies grid-connected control method and current control method in response to the inverter topology structure and establishes simulation model to validate the correctness of the design.太阳能光伏并网逆变器设计一、引言与排水的化石燃料,由传统的发电方式,在世界各地造成了日益严重的污染,可再生、无污染的能源在经济和政治领域备受关注。

相关文档
最新文档