化工原理填料塔课程设计说明书
化工原理课程设计苯氯苯填料塔设计说明书
一、设计题目苯—氯苯填料精馏塔设计二、设计数据及条件原料:苯和氯苯混合溶液,年处理能力为(7)万吨(开工率8000 小时/年),原料中苯的质量分数(0.34学号后两位);进料热状态:自选。
分离要求:馏出液中苯的质量分率不低于95%釜残液中苯的质量分率不大于0.3%(1-10号)操作压力:常压建厂地址:家乡地区单板压降:≤0.7kpa。
全塔效率:E T≥58%。
三、设计要求(一)编制一份设计说明书,主要内容包括:1.前言;2.流程与方案的选择说明与论证(附流程简图)3.精馏塔主要工艺结构尺寸设计计算(包括塔径、填料层高度、塔高的计算等)4.附属设备的选型和计算(包括冷凝器、再沸器、塔内构件:接管管径、除沫器、液体分布器、液体再分布器、支撑板、手孔、裙座等)5.填料塔流体力学计算(压力降、泛点率、气体动能因子等)6.设计结果列表7.设计评价8.主要符号和单位表9.参考文献10.致谢(二)绘制带控制点的工艺流程图(3号图纸,CAD绘图)绘制精馏塔的工艺条件图(2号图前言 (3)符号说明 (3)1概述与设计方案简介 (5)1.1操作条件的确定 (5)1.1.1操作压力 (5)1.1.2进料状态 (5)1.1.3加热方式 (5)1.1.4冷却剂与出口温度 (5)1.1.5热能的利用 (6)1.2确定设计方案的原则 (6)1.2.1满足工艺和操作的要求 (6)1.2.2满足经济上的要求 (6)1.2.3保证安全生产 (7)1.3流程的确定和说明 (7)2.1物料衡算 (8)2.1.1原料液及塔顶、塔底产品的摩尔分率 (8)2.1.2全塔物料衡算 (8)2.2理论塔板数估算 (8)2.2.2气液平衡线 (10)2.2.3进料热状况参数 (11)2.2.4求最小回流比Rmin (11)2.2.5最佳回流比 (12)2.2.6精馏段提馏段操作线 (14)2.2.7图解法求理论板数 (15)2.3各种操作条件及相关的物性估算 (16)2.3.1操作温度估算 (16)2.3.2平均摩尔质量估算 (17)2.3.3液相平均粘度估算 (18)2.3.4相对挥发度估算 (20)2.3.5操作压力估算 (20)2.3.6平均密度估算 (21)2.4气液相负荷估算 (23)2.4.1精馏段气液相负荷 (23)2.4.2提馏段气液相负荷 (24)3设备设计 (24)3.1填料的选择 (24)3.2塔径的设计 (25)3.2.1精馏段塔径 (25)3.2.2提馏段塔径 (26)3.3填料层高度计算 (27)前言 (3)符号说明 (3)1概述与设计方案简介 (5)1.1操作条件的确定 (5)1.1.1操作压力 (5)1.1.2进料状态 (5)1.1.3加热方式 (5)1.1.4冷却剂与出口温度 (5)1.1.5热能的利用 (6)1.2确定设计方案的原则 (6)1.2.1满足工艺和操作的要求 (6)1.2.2满足经济上的要求 (6)1.2.3保证安全生产 (7)1.3流程的确定和说明 (7)2.1物料衡算 (8)2.1.1原料液及塔顶、塔底产品的摩尔分率 (8)2.1.2全塔物料衡算 (8)2.2理论塔板数估算 (8)2.2.2气液平衡线 (10)2.2.3进料热状况参数 (11)2.2.4求最小回流比Rmin (11)2.2.5最佳回流比 (12)2.2.6精馏段提馏段操作线 (14)2.2.7图解法求理论板数 (15)2.3各种操作条件及相关的物性估算 (16)2.3.1操作温度估算 (16)2.3.2平均摩尔质量估算 (17)2.3.3液相平均粘度估算 (18)2.3.4相对挥发度估算 (20)2.3.5操作压力估算 (20)2.3.6平均密度估算 (21)2.4气液相负荷估算 (23)2.4.1精馏段气液相负荷 (23)2.4.2提馏段气液相负荷 (24)3设备设计 (24)3.1填料的选择 (24)3.2塔径的设计 (25)3.2.1精馏段塔径 (25)3.2.2提馏段塔径 (26)3.3填料层高度计算 (27)目录前言 (8)符号说明 (8)1 概述与设计方案简介 (10)1.1 操作条件的确定 (10)1.1.1 操作压力 (10)1.1.2 进料状态 (10)1.1.3 加热方式 (10)1.1.4 冷却剂与出口温度 (10)1.1.5 热能的利用 (11)1.2 确定设计方案的原则 (11)1.2.1 满足工艺和操作的要求 (11)1.2.2 满足经济上的要求 (12)1.2.3 保证安全生产 (12)1.3 流程的确定和说明 (13)2.1 物料衡算 (13)2.1.1 原料液及塔顶、塔底产品的摩尔分率 (13)2.1.2 全塔物料衡算 (13)2.2 理论塔板数估算 (14)2.2.2 气液平衡线 (16)2.2.3 进料热状况参数 (17)2.2.4 求最小回流比Rmin (17)2.2.5 最佳回流比 (18)2.2.6 精馏段提馏段操作线 (20)2.2.7 图解法求理论板数 (21)2.3 各种操作条件及相关的物性估算 (22)2.3.1 操作温度估算 (22)2.3.2 平均摩尔质量估算 (23)2.3.3 液相平均粘度估算 (24)2.3.4 相对挥发度估算 (26)2.3.5 操作压力估算 (26)2.3.6 平均密度估算 (27)2.4 气液相负荷估算 (29)2.4.1 精馏段气液相负荷 (29)2.4.2 提馏段气液相负荷 (30)3 设备设计 (30)3.1 填料的选择 (30)3.2 塔径的设计 (31)3.2.1 精馏段塔径 (31)3.2.2 提馏段塔径 (32)3.3 填料层高度计算 (33)3.3.1 精馏段的填料层高度 (33)3.3.2 提馏段的填料层高度 (33)3.3.3 精馏塔的填料层总高度 (33)3.4 填料层压降的计算 (34)4 辅助设备的计算及选型 (35)4.1 接管设计 (35)4.1.1 进料管 (35)4.1.2 回流管 (36)4.1.3 塔底出料管 (36)4.1.4 塔顶蒸汽出料管 (36)4.1.5 塔底进气管 (37)4.2 法兰 (37)4.3 筒体与封头 (38)4.3.1 筒体 (38)4.3.2 封头 (38)4.4 其他塔附件 (38)4.4.1 裙座 (38)4.4.2 吊柱 (38)4.4.3 人孔手孔 (38)4.5 塔总体高度设计 (39)4.5.1 塔的顶部空间 (39)4.5.2 塔的底部空间 (39)4.5.3 塔的立体高度 (39)4.6 附属设备 (39)4.6.1 塔顶冷凝器 (39)4.6.2 原料预热器 (41)4.6.3 再沸器 (41)4.6.4 进料泵 (42)4.6.5 回流泵 (43)5 设计结果明细表 (43)5.1 物料衡算计算结果 (43)5.2 精馏塔工艺条件及有关物性数据计算结果 (44)5.3 精馏塔工艺设计结果 (44)5.4 接管尺寸计算结果 (44)设计评述 (45)参考文献 (45)前言在化工生产中,精馏是最常用的单元操作,,是分离均相液体混合物的最有效方法之一,在炼油、化工、石油化工等工业中得到广泛应用。
化工原理课程设计-填料吸收塔的设计
化工原理课程设计-填料吸收塔的设计课程设计题目:填料吸收塔的设计教学院:化学与材料工程学院专业:化学工程与工艺(精细化工方向)学号:学生姓名:指导教师:2012 年 5 月31 日《化工原理课程设计》任务书2011~2012 学年第2学期学生姓名:专业班级:化学工程与工艺(2009) 指导教师:工作部门:化工教研室一、课程设计题目:填料吸收塔的设计二、课程设计内容(含技术指标)1. 工艺条件与数据煤气中含苯2%(摩尔分数),煤气分子量为19;吸收塔底溶液含苯≥0.15%(质量分数);吸收塔气-液平衡y*=0.125x;解吸塔气-液平衡为y*=3.16x;吸收回收率≥95%;吸收剂为洗油,分子量260,相对密度0.8;生产能力为每小时处理含苯煤气2000m³;冷却水进口温度<25℃,出口温度≤50℃。
2. 操作条件吸收操作条件为:1atm、27℃,解吸操作条件为:1atm、120℃;连续操作;解吸气流为过热水蒸气;经解吸后的液体直接用作吸收剂,正常操作下不再补充新鲜吸收剂;过程中热效应忽略不计。
3. 设计内容①吸收塔、解吸塔填料层的高度计算和设计;②塔径的计算;③其他工艺尺寸的计算。
三、进度安排1.5月14日:分配任务;2.5月14日-5月20日:查询资料、初步设计;3.5月21日-5月27日:设计计算,完成报告。
四、基本要求1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。
设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。
应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。
设计说明书应附有带控制点的工艺流程图。
设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。
化工原理课程设计说明书(水吸收氨气填料塔)
华北水利水电大学North China University of Water Resources and Electric Power 课程设计题目水吸收氨过程的填料吸收塔设计学院专业姓名学号指导教师完成时间教务处制化工原理课程设计任务书目录中文摘要...。
.。
.....。
..。
..。
.。
.....。
..。
.....。
(1)英文摘要..。
...。
..。
.。
.。
.。
.。
..。
..。
...。
.。
2第1章设计方案简介.。
.。
.。
...。
.。
.。
.....。
.。
..4 第2章工艺计算及主体设备选型.。
.。
..。
.。
(4)2。
1 基础物性数据.。
..。
.。
.。
..。
.。
.。
..。
.。
.。
.。
.。
.。
.42.1.1液相物性数据。
....。
...。
.。
.。
.。
..。
.。
....。
..4 2。
1。
2气相物性数据。
...。
..。
.。
..。
..。
..。
.。
.。
..4 2.1。
3气液相平衡数据。
.。
..。
.。
....。
....。
..。
52.1.4物料衡算...。
..。
.。
..。
..。
...。
..。
....。
.。
52.2填料塔工艺尺寸的计算.。
.。
..。
...。
..。
.。
.。
.。
.。
62.2.1塔径的计算。
.。
..。
.。
.。
.。
.。
..。
..。
.。
.。
62。
2.2填料层高度的计算。
.。
.......。
..。
.。
....。
(8)2.2。
3填料层压降的计算...。
..。
..。
.。
....。
..。
...。
10第3章辅助设备的计算及选型。
.。
...。
.。
....。
.。
113。
1液体分布器.。
..。
..。
....。
.。
...。
..。
.。
..。
.。
113。
1.1液体分布器选型。
.....。
.。
...。
.....。
.....。
113。
1.2布液计算。
.。
.。
..。
..。
.。
...。
.。
.....。
. (11)3.2填料支撑装置。
.。
.。
...。
.。
.。
.。
...。
...。
113。
3填料塔紧装置。
.....。
..。
.。
...。
填料塔化工原理课程设计
摘要在化工生产中,气体吸收过程是利用气体混合物中,各组分在液体中溶解度或化学反应活性的差异,在气液两相接触是发生传质,实现气液混合物的分离。
在化学工业中,经常需将气体混合物中的各个组分加以分离,其目的是:①回收或捕获气体混合物中的有用物质,以制取产品;②除去工艺气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物,以免污染大气。
实际过程往往同时兼有净化和回收双重目的。
吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
在化工生产中主要用于原料气的净化,有用组分的回收等。
气液两相的分离是通过它们密切的接触进行的,在正常操作下,气相为连续相而液相为分散相,气相组成呈连续变化,气相中的成分逐渐被分离出来。
填料塔是气液呈连续性接触的气液传质设备,属微分接触逆流操作过程。
塔的底部有支撑板用来支撑填料,并允许气液通过。
支撑板上的填料有整砌和乱堆两种方式。
填料层的上方有液体分布装置,从而使液体均匀喷洒于填料层上。
填料层的空隙率超过90%,一般液泛点较高,单位塔截面积上填料塔的生产能力较高,研究表明,在压力小于0.3MPa时,填料塔的分离效率明显优于板式塔。
这次课程设计的任务是用水吸收空气中的二氧化硫,然后再进行解吸处理得到二氧化硫。
要求设计包括塔径、填料塔高度、塔管的尺寸等,需要通过物料衡算得到所需要的基础数据,然后进行所需尺寸的计算得到各种设计参数,为图的绘制打基础,提供数据参考。
目录摘要...............................................................目录...............................................................第一章设计方案的内容...........................................1.1流程方案......................................................1.2设备方案......................................................第二章设计方案的确定............................................2.1吸收流程选择..................................................2.1.1吸收工艺流程的确定 ......................................2.1.2流程装置的确定 ..........................................2.2吸收剂的选择..................................................2.3吸收剂再生方法的选择..........................................2.4操作温度和压力的确定..........................................2.4.1操作温度的确定 ..........................................2.4.2操作压力的确定 ..........................................第三章吸收塔设备及填料类型与选择................................3.1吸收塔设备的选择..............................................3.2填料类型的选择................................................3.3填料规格的选择................................................3.4填料材质的选择................................................ 第四章吸收塔工艺条件的计算.......................................4.1基础物性数据..................................................4.1.1液相物性数据 ............................................4.1.2气相物性数据 ............................................4.2确定气液平衡的关系............................................4.3吸收剂及操作线的确定..........................................4.3.1吸收剂用量的确定 ........................................4.3.2操作线方程的确定 ........................................4.4塔径计算......................................................4.4.1采用Eckert通用关联图法计算泛点速率 .....................4.4.2操作气速: ..............................................4.4.3塔径计算: ..............................................4.4.4单位高度填料层压降的校核 ................................4.5填料层高度计算................................................4.5.1传质系数的计算 ..........................................4.5.2 填料层高度..............................................4.6填料塔附属高度的计算.......................................... 第五章填料吸收塔附属装置的选型...................................5.1液体分布器的简要设计..........................................5.1.1液体分布器的选型 ........................................5.1.2分布点密度及布液孔数的计算 ..............................5.2.塔底液体保持管高度的计算.....................................5.3其它附属塔内件的选择..........................................5.3.1 填料支撑板..............................................5.3.2 填料压紧装置与床层限制板................................ 第六章辅助设备的选型...........................................6.1管径的选择....................................................6.1.1进液管管径 ..............................................6.1.2出液管管径 ..............................................6.1.3进气管管径 ..............................................6.1.4出气管管径 ..............................................6.2泵的选取:....................................................6.3风机的选型:.................................................. 第七章关于填料塔设计的选材...................................... 参考文献........................................................... 附录............................................................... 致谢...............................................................第一章设计方案的内容1.1流程方案指完成设计任务书所达的任务采用怎样的工艺路线,包括需要哪些装置设备,物料在个设备间的走向,哪些地方需要有观测仪表、调节装置,那些取样点以及是否需要有备用设备等,按上述内容绘制流程图。
化工原理课程设计 填料塔的设计说明书
化工原理课程设计—填料塔的设计说明书化学与化工学院制目录一、绪论 (3)二、设计任务及操作条件 (3)三、设计方案的确定 (4)1、装置流程的确定 (4)2、吸收剂选择 (5)3、操作温度与压力的确定 (5)4、填料的类型与选择 (6)四、基础物性参数的确定 (8)1、液相物性参数 (8)2、气相物性参数 (8)3、气液相平衡参数 (9)4、物料衡算 (9)5、填料物性参数 (10)五、填料塔工艺尺寸的确定 (11)1、塔径的计算 (11)2、填料层高度计算 (14)六、填料层压降计算 (16)七、填料塔内件的类型与设计 (17)八、总结 (18)九、参考文献 (19)十、后记......................................................................................................... 错误!未定义书签。
十一、符号说明.. (19)一、绪论塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的形式,可以分为填料塔和板式塔。
板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。
工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。
塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。
板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。
填料塔由填料、塔内件及筒体构成。
填料分规整填料和散装填料两大类。
塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。
与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。
填料塔的类型很多,其设计的原则大体相同,一般来说,填料塔的步骤如下:根据设计任务和工艺要求,确定设计方案;根据设计任务和工艺要求,合理地选择填料;确定塔径、填料层高度等工艺尺寸;计算填料层的压降;进行填料塔塔内件的设计和选型。
化工原理课程设计SO2填料吸收塔课程设计说明书
化工原理课程设计任务书专业班级:姓名:学号:指导老师:目录一·目的和要求二·设计任务三·设计方案1.吸收剂的选择2.塔内气液流向的选择3.吸收系统工艺流程(工艺流程图及说明)4.填料的选择四·工艺计算1.物料衡算,吸收剂用量,塔底吸收液浓度2.塔径计算3.填料层高度计算4.填料层压降计算5.填料吸收塔的主要附属构件简要设计6.动力消耗的计算与运输机械的选择(对吸收剂)五·设备零部件管口的设计计算及选型六·填料塔工艺数据表填料塔结构数据表物性数据表七·对本设计的讨论八·主要符号说明九·参考文献一·目的和要求1.进行查阅专业资料、筛选整理数据及化工设计的基本训练;2.进行过程计算及主要设备的工艺设计计算,独立完成吸收单元的设计;用简洁的文字和图表清晰地表达自己的设计思想和计算结果;3.建立和培养工程技术观点;4.初步具备从事化工工程设计的能力,掌握化工设计的基本程序和方法。
5.独立完成课程设计任务。
二·设计任务1.题目:SO2填料吸收塔2 生产能力:SO2炉气的处理能力为1500 m³/h(1atm,30℃时的体积)3 炉气组成:原料气中含SO2为9%(v),其余为空气4 操作条件:P=1atm(绝压)t=30 ℃5 操作方式:连续操作6 炉气中SO2的回收率为95%三·设计方案1.吸收剂的选择用水做吸收剂。
水对SO2有较大的溶解度,有较好的化学稳定性,有较低的粘度,廉价、易得、无毒、不易燃烧2.塔内气液流向的选择在填料塔中,SO2从填料塔塔底进入,清水从塔顶由液体喷淋装置均匀淋下。
3.吸收系统工艺流程(工艺流程图及说明)二氧化硫炉气经由风机从塔底鼓入填料塔中,与由离心泵送至塔顶的清水逆流接触,在填料的作用下进行吸收。
经吸收后的尾气由塔顶排除,吸收了SO2的废水由填料塔的下端流出。
化工原理课程设计(规整填料塔)
填料精馏塔设计任务书一、设计题目:填料塔设计二、设计任务:苯-甲苯精馏塔设计三、设计条件:1、年处理含苯41%(质量分数,下同)的苯-甲苯混合液3万吨;2、产品苯含量不低于96%;3、残液中苯含量不高于1%;4、操作条件:填料塔的塔顶压力:4kPa(表压)进料状态:自选回流比:自选加热蒸汽压力:101.33kPa(表压)5、设备型式:规整填料塔6、设备工作日:300天/年,24h连续运行四、设计内容和要求目录第1章流程的确定和说明 (3)1.1加料方式 (3)1.2进料状态 (3)1.3冷凝方式 (3)1.4回流方式 (3)1.5加热方式 (3)1.6加热器 (4)第2章精馏塔设计计算 (5)2.1操作条件和基础数据 (5)2.1.1操作压力 (5)2.1.2基础数据 (5)2.2精馏塔工艺计算 (7)2.2.1物料衡算 (7)2.2.2热量衡算 (9)2.2.3理论塔板数计算 (11)2.3精馏塔的主要尺寸 (12)2.3.1精馏塔设计的主要依据 (12)2.3.2塔径设计计算 (15)2.3.3填料层高度的计算 (16)第3章附属设备及主要附件的选型计算 (17)3.1冷凝器 (17)3.1.1计算冷却水流量 (18)3.1.2冷凝器的计算与选型 (18)3.2再沸器 (18)3.2.1间接加热蒸汽 (18)3.2.2再沸器加热面积 (18)3.3塔内其他结构 (19)3.3.1接管的计算与选择 (19)3.3.2液体分布器 (20)3.3.3除沫器 (21)3.3.4液体再分布器 (22)3.3.5填料支撑板的选择 (22)3.3.6塔底设计 (23)3.3.7塔的顶部空间高度 (23)第4章结束语 (24)参考文献 (25)第1章流程的确定和说明1.1加料方式加料分两种方式:泵加料和高位槽加料。
高位槽加料通过控制液位高度,可以得到稳定流量,但要求搭建塔台,增加基础建设费用:泵加料属于强制进料方式,泵加料易受温度影响,流量不太稳定,流速也忽大忽小,影响传质效率。
化工原理课程设计SO2填料吸收塔课程设计说明书
化工原理课程设计任务书专业班级:姓名:学号:指导老师:目录一·目的和要求二·设计任务三·设计方案1.吸收剂的选择2.塔内气液流向的选择3.吸收系统工艺流程(工艺流程图及说明)4.填料的选择四·工艺计算1.物料衡算,吸收剂用量,塔底吸收液浓度2.塔径计算3.填料层高度计算4.填料层压降计算5.填料吸收塔的主要附属构件简要设计6.动力消耗的计算与运输机械的选择(对吸收剂)五·设备零部件管口的设计计算及选型六·填料塔工艺数据表填料塔结构数据表物性数据表七·对本设计的讨论八·主要符号说明九·参考文献一·目的和要求1.进行查阅专业资料、筛选整理数据及化工设计的基本训练;2.进行过程计算及主要设备的工艺设计计算,独立完成吸收单元的设计;用简洁的文字和图表清晰地表达自己的设计思想和计算结果;3.建立和培养工程技术观点;4.初步具备从事化工工程设计的能力,掌握化工设计的基本程序和方法。
5.独立完成课程设计任务。
二·设计任务1.题目:SO2填料吸收塔2 生产能力:SO2炉气的处理能力为1500 m³/h(1atm,30℃时的体积)3 炉气组成:原料气中含SO2为9%(v),其余为空气4 操作条件:P=1atm(绝压)t=30 ℃5 操作方式:连续操作6 炉气中SO2的回收率为95%三·设计方案1.吸收剂的选择用水做吸收剂。
水对SO2有较大的溶解度,有较好的化学稳定性,有较低的粘度,廉价、易得、无毒、不易燃烧2.塔内气液流向的选择在填料塔中,SO2从填料塔塔底进入,清水从塔顶由液体喷淋装置均匀淋下。
3.吸收系统工艺流程(工艺流程图及说明)二氧化硫炉气经由风机从塔底鼓入填料塔中,与由离心泵送至塔顶的清水逆流接触,在填料的作用下进行吸收。
经吸收后的尾气由塔顶排除,吸收了SO2的废水由填料塔的下端流出。
化工原理课程设计填料塔的设计
06 结论与展望
课程设计的总结与收获
01
02
03
04
设计流程掌握
通过填料塔的设计,掌握了从 需求分析、方案设计、详细设 计到最终实现的完整流程。
理论知识应用
将所学的化工原理知识应用于 实际设计中,加深了对理论知
识的理解和应用能力。
团队协作能力
在小组合作中,提高了团队协 作和沟通能力,学会了如何在
热力学第一定律
能量守恒定律,表示系统 能量的转化和守恒。
热力学第二定律
熵增加原理,表示自发反 应总是向着熵增加的方向 进行。
理想气体定律
描述气体状态变化的基本 规律。
填料塔的热量平衡与效率
热量平衡
填料塔在操作过程中,需要保持 热量平衡,即进料和出料的热量 与热源和冷源的热量交换达到平 衡状态。
效率计算
填料的作用
填料在填料塔中起到关键作用,它能够提供足够大的表面 积以促进气液间的接触,从而实现高效的传质和传热。
填料塔的工作原理
在填料塔中,液体从顶部淋下,通过填料层时与气体充分 接触,实现传质和传热。气体在填料的缝隙中流动,与液 体进行逆流接触,完成传质和传热过程。
02 填料塔的工艺设计
工艺流程
提高解决问题能力
面对实际工程问题,学生需要 独立思考、分析和解决问题, 提高解决实际问题的能力。
培养团队协作精神
课程设计通常以小组形式进行 ,学生需要分工合作、相互配
合,培养团队协作精神。
填料塔的基本概念和原理
填料塔的定义
填料塔是一种常用的化工设备,主要用于气液传质和传热 过程。它由塔体、填料、液体分布器、气体分布器和再分 布器等组成。
填料塔的流体力学性能
流体阻力
化工原理课程设计指导书(填料塔)
第二部分填料塔设计一、化工原理课程设计的目的与要求 (31)二、化工原理课程设计的内容 (31)三、安排与要求 (32)四、设计步骤 (33)1、收集基础数据 (33)2、工艺流程的选择 (33)3、做全塔的物料平衡 (33)4、确定操作条件 (34)5、确定回流比 (36)6、理论板数 (37)7、填料 (37)8、填料塔直径的计算 (39)9、填料层的压降 (42)10、蒸馏过程填料层高度计算 (43)11、填料塔的附属结构及设备 (49)12、关于填料精馏塔总图的绘制 (51)13、关于设计说明书的编写 (52)参考文献 (53)设计任务书 (54)第二部分填料塔设计一、化工原理课程设计的目的与要求通过理论课的学习和生产实习,学生已经掌握了不少理论知识和生产实际知识,对于一个未来的工程技术人员来说,如何运用所学知识去分析和解决实际问题是至关重要的,本课程设计的目的也是如此。
化工原理课程设计是化工专业的学生在校期间第一次进行的设计,要求每个同学独立完成一个实际装置(本次设计为精馏装置)的设计。
设计中应对精馏原理、操作、流程及设备的结构、制造、安装、检修进行全面考虑,最终以简洁的文字、表格及图纸正确地把设计表达出来。
本次设计是在教师指导下,由学生独立进行的设计。
因此,对学生的独立工作能力和实际工作能力是一次很好的锻炼机会,是培养化工技术人员的一个重要环节。
通过设计,学生应培养和掌握:1、正确的设计思想和认真负责的设计态度。
设计应结合实际进行,力求经济、实用、可靠和先进。
设计应对生产负责。
设计中的每一数据,每一笔一划都要准确可靠,负责到底。
2、独立的工作能力及灵活运用所学知识分析问题和解决问题的能力。
设计由学生独立完成,教师只起指导作用,学生在设计中碰到的问题可和教师进行讨论。
教师只做提示和启发,由学生自己去解决问题,指导教师原则上不负责检查计算结果的准确性,学生应自己负责计算结果的准确性,可靠性。
化工原理课程设计说明书(附流程图和设计图)
徐州工程学院化工原理课程设计说明书设计题目水吸收氨过程填料吸收塔设计学生姓名指导老师学院专业班级学号完成时间目录第一节前言 (3)1.1 填料塔的设计任务及步骤 (3)1。
2 填料塔设计条件及操作条件 (3)第二节填料塔主体设计方案的确定 (3)2。
1 装置流程的确定 (3)2.2 吸收剂的选择 (3)2.3填料的类型与选择 (3)2.3.1 填料种类的选择 (4)2.3.2 填料规格的选择 (4)2。
3。
3 填料材质的选择 (4)2.4 基础物性数据 (4)2。
4。
1 液相物性数据 (4)2.4.2 气相物性数据 (5)2。
4。
3 物料横算 (5)第三节填料塔工艺尺寸的计算 (6)3.1 塔径的计算 (7)3.2 填料层高度的计算及分段 (7)3.2。
1 传质单元数的计算 (7)3。
2。
2 填料层的分段 (8)3.3 填料层压降的计算 (9)第四节填料塔内件的类型及设计 (10)4。
1 塔内件类型 (10)4。
2 塔内件的设计 (10)注:1填料塔设计结果一览表 (10)2 填料塔设计数据一览 (11)3 参考文献 (12)附件一:塔设备流程图 (12)附件二:塔设备设计图 (13)第一节前言1.1填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。
设计步骤:(1)根据设计任务和工艺要求,确定设计方案;(2)针对物系及分离要求,选择适宜填料;(3)确定塔径、填料层高度等工艺尺寸(考虑喷淋密度);(4)计算塔高、及填料层的压降;(5)塔内件设计。
1.2填料塔设计条件及操作条件1. 气体混合物成分:空气和氨2。
空气中氨的含量: 5。
0%(体积分数),要求塔顶排放气体中含氨低于0.02%;)3. 混合气体流量6000m3/h4. 操作温度293K5. 混合气体压力101。
3KPa6。
采用清水为吸收剂,吸收剂的用量为最小用量的1。
5倍。
7。
填料类型:采用聚丙烯鲍尔环填料第二节精馏塔主体设计方案的确定2.1装置流程的确定本次设计采用逆流操作:气相自塔低进入由塔顶排出,液相自塔顶进入由塔底排出,即逆流操作。
填料塔—化工原理课程设计
一、设计方案的确定1.1填料塔的结构填料塔的主要构件为包括:填料、液体分布器、填料支承板、液体再分布器、气体和液体进出口管等。
其塔体为一圆形筒体,筒体内分层装有一定高度的填料。
液体由塔顶自上而下沿填料的表面成膜状流下。
如填料层较高,一般设有液体再分布器,以减弱壁流现象带来的不良影响。
气液两相在塔内进行接触传质。
其填料塔的结构见图如下:1.2吸收剂的选择对于SO2的吸收,常用的吸收剂有浓碳酸、亚硫酸盐水溶液、柠檬水溶液,水,鉴于水对SO2具有一定程度的溶解度,蒸气压不高、粘度适中、不易发泡,具有良好的化学稳定性和热稳定性,不易燃、不易爆,安全可靠。
而且水平常易得,经济成本较低,吸收后的溶液相对较易处理,再生和循环性较好,易于实现无害化处理。
因而选择清水作为吸收SO2的吸收剂。
1.3吸收操作条件的确定吸收条件也即吸收塔的操作温度和操作压力。
在本设计中,清水的温度为20℃,气体的进口温度为25℃,吸收温度为20℃,为等温吸收。
操作压力为常压操作,也即101.325kPa。
1.4吸收操作流程气、液两相在塔内的流动有逆流和并流两种方式。
在逆流操作条件下,两相传质平均推动力最大,可以减少设备的尺寸,提高吸收率和吸收剂的使用效率,因而逆流操作优于并流操作。
但是,如果处理的气体溶解度大,并流和逆流的操作推动力相差不大,采用并流操作可以不受泛液的限制,提高操作气速,增大生产能力。
对于SO 2而言,当水温为20℃时,查《化工原理》(化学工业出版社)P187图5-2,可得20℃时SO 2在水中的溶解度大约为8)](1000/[)(22O H g SO g ,也即SO 2在水中的溶解度不大,此时应该选择逆流操作。
吸收流程如附图所示。
二、 填料塔吸收工艺计算2.1 物料衡算2.1.1 吸收剂(水)的流量计算 该设计中,矿石焙烧炉送出的气体流量为1800+95⨯10=2750 m 3/h 惰性气体流量为G=4.222750×2515.27315.273+×(1-0.005)=106.85kmol/hy 1=0.005,Y 1=y 1/(1-y 1)0526.0005.01005.0=- 吸收效率 η=1-Y 2/Y 1=0.96,Y 2=(1-0.96)Y 1=2.10×10-3 x 2=0,X 2=0 查表(《化工原理》P189表5-1)得SO 2水溶液在20℃时的亨利系数为 E=3550kPam=E/p=325.1013550=35.04其汽液相平衡近似服从亨利定律,则Y 1=mX 1*,X 1*=Y 1/m=50.104.330526.0=×10-3 最小液气比为(G L )min =33111050.11010.20526.02*2--⨯⨯-=--X X Y Y =33.67 取G L =1.3(GL)min =1.3×33.67=43.77 L=43.77G=4676.82kmol/hG L =2121X X Y Y -- ⇒ X 1=GL Y Y /21-=1.15×10-3 操作线方程为Y=32221010.244.43])([-⨯+=-++X X GLY Y X G L 2.2 塔径的计算吸收塔的吸收为等温吸收,其温度为20℃。
化工原理课程设计说明书---填料吸收塔设计
化工原理课程设计目录摘要-----------------------------------------------------------3 前言-----------------------------------------------------------4 一填料吸收塔工艺尺寸的设计计算-------------------------------5 1.1 工艺流程及设计指标--------------------------------------5 1.1.1 工艺流程------------------------------------------51.1.2 设计参数,指标------------------------------------51.2 物性参数的计算-----------------------------------------5 1.2.1 原料气物性参数------------------------------------51.2.2 吸收液物性参数------------------------------------61.2.3 填料物性参数--------------------------------------71.3 吸收塔的物料衡算---------------------------------------7 1.4 塔体的计算---------------------------------------------8 1.4.1 塔径的计算----------------------------------------8(1)液泛气速----------------------------------------8(2)塔径--------------------------------------------9 1.4.2 填料层高度的计算----------------------------------9(1)传质单元数--------------------------------------9(2)传质单元高度-----------------------------------10 二吸收塔优化设计--------------------------------------------13 2.1 系统的年总费用----------------------------------------13 2.2 吸收塔塔体和平台扶梯年折旧及维修费用------------------13 2.3 填料年折旧费用----------------------------------------13 2.4 离心泵年折旧和维修费用及操作费用----------------------13 2.5 风机年折旧和维修费及操作费用--------------------------15 2.6 吸收剂费用--------------------------------------------15 三内部结构设计----------------------------------------------16 3.1 液体分布装置------------------------------------------16 3.2 填料支撑装置------------------------------------------16 3.3 液体分布装置------------------------------------------16 3.4 除沫器------------------------------------------------16 四设计校核--------------------------------------------------17 4.1 主要工艺参数校核--------------------------------------17 4.1.1 塔直径与塔中填料直径之比--------------------------174.1.2 液体喷淋密度--------------------------------------174.1.3 实际气速与液泛气速比------------------------------174.2 强度校核---------------------------------------------174.2.1 筒体材料的选用与计算-----------------------------174.2.2 封头厚度的计算-----------------------------------184.2.3 塔体的强度与稳定计算-----------------------------184.2.4 质量载荷计算-------------------------------------184.2.5 塔体的风载荷和风力矩-----------------------------19(1)、风力矩的计算公式-------------------------------19(2)、总弯矩的计算-----------------------------------19(3)、塔的自振周期计算-------------------------------20(4)、地震载荷计算-----------------------------------20 4.2.6 塔体的强度与稳定校核-----------------------------21(1)、塔体危险截面(1-1)的轴向应力计算----------------21(2)、塔体危险截面(1-1)抗压强度及轴向稳定性计算------214.2.7 裙座的强和稳定计算、校核-------------------------224.2.8 水压试验时塔的强度和稳定性验算-------------------22(1)、水压试验时塔体(1-1)截面的强度校核--------------22(2)、水压试验时裙座底部(0-0)截面强度和轴向稳定要求--234.2.9 基础环板的设计-----------------------------------23(1)、基础环板内外径的确定---------------------------23(2)、基础环板厚度的设计-----------------------------234.2.10 地脚螺栓的设计----------------------------------244.2.11 混凝土的强度校核--------------------------------24五主要符号说明---------------------------------------------25六优化程序及其运行结果-------------------------------------296.1 传质单元数的计算程序及运算结果-----------------------296.2 液气比优化程序及运算结果-----------------------------31小结---------------------------------------------------------35参考文献-----------------------------------------------------36摘要[中文摘要]PC作为工业化脱二氧化碳的吸收剂,有着很大的优势。
化工原理课程设计
化工原理课程设计任务书目录一前言 (3)二设计任务 (4)三设计条件 (4)四设计方案 (5)1.吸收剂的选择 (5)2.流程图及流程说明 (5)3.塔填料的选择 (7)五工艺计算 (11)1.物料衡算,确定塔顶、塔底的气液流量和组成 (11)2.塔径的计算 (12)3. 填料层高度计算 (14)4. 填料层压降计算 (16)5. 液体分布装置 (17)6. 液体再分布装置 (19)7. 填料支撑装置 (20)8. 流体进出口装置 (21)9. 水泵及风机的选型 (22)六设计一览表 (23)七对本设计的评述 (23)八参考文献 (24)九主要符号说明 (24)十致谢 (25)一前言在石油化工、食品医药及环境保护等领域,塔设备属于使用量大应用面广的重要单元设备;塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中;所以塔设备的研究一直是国内外学者普遍关注的重要课题;在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气;吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的;塔设备按其结构形式基本上可分为两类:板式塔和填料塔;以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔;近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点;因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔;如今,直径几米甚至几十米的大型填料塔在工业上已非罕见;随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中;氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染, 氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构;氨的溶解度极高,所以主要对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,从而产生刺激和炎症;可麻痹呼吸道纤毛和损害粘膜上皮组织,使病原微生物易于侵入,减弱人体对疾病的抵抗力;氨通常以气体形式吸入人体,氨被吸入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能;进入肺泡内的氨,少部分为二氧化碳所中和,余下被吸收至血液,少量的氨可随汗液、尿液或呼吸排出体外; 短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等;若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命;因此,吸收空气中的氨,防止氨超标具有重要意义;本次课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的空气;设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力;二 设计任务完成填料塔的工艺设计与计算,有关附属设备的设计和选型,绘制吸收系统的工艺流程图和填料塔装置图,编写设计说明书;三 设计条件查表知,25C 下水的饱和蒸气压为,干空气的密度为m 3,20C 下氨气的密度为m 3; 水蒸气的饱和分压为:KPa P P S V 2183.27.0169.3=⨯=⨯=ϕ 湿空气的湿度:绝干气水汽kg /01393.02183.23.1012183.2622.0622.0kg P P P H VV =-⨯=-= 湿空气的比体积:绝干气湿空气kg m t H v H /8621.012732984.221801393.02913.1013.1012732734.22182913=⨯⨯⨯⎪⎭⎫ ⎝⎛+=⨯+⨯⨯⎪⎭⎫ ⎝⎛+= 标准状态下,湿空气干空气339359.02982730216.11m m =⨯=氨气的体积分数=%68.19%1009359.07601.014.0=⨯⨯ 回收率=%64.99%1001968.00007.01968.0=⨯- 综上所述,本课程设计中填料塔的主要设计参数如下:1、气体混合物成分:空气和氨气;2、氨的含量: %体积;3、混合气体流量: 5000m 3/h ;4、操作温度:303K ;5、混合气体压力:;6、回收率: %;四 设计方案吸收剂的选择吸收过程是依靠气体溶质在吸收剂中的溶解来实现的,因此,吸收剂性能的优劣,是决定吸收操作效果的关键之一,选择吸收剂时应着重考虑以下几方面;1溶解度吸收剂对溶质组分的溶解度要大,以提高吸收速率并减少吸收剂的用量; 2选择性吸收剂对溶质组分要有良好的吸收能力,而对混合气体中其他组分不吸收或吸收甚微,否则不能直接实现有效分离;3挥发度要低操作温度下吸收剂的蒸气压要低,以减少吸收和再生过程中吸收剂的挥发损失;4黏度吸收剂在操作温度下的黏度越低,其在塔内的流动性越好,有助于传质速率和传热速率的提高;5其他所选用的吸收剂应尽可能满足无毒性、无腐蚀性,不易燃易爆、不发泡、冰点低、价廉易得以及化学性质稳定等要求;吸收剂对溶质的组分要有良好地吸收能力,而对混合气体中的其他组分不吸收,且挥发度要低;所以本课程设计选择用清水作吸收剂,氨气为吸收质;水廉价易得,物理化学性能稳定,选择性好,符合吸收过程对吸收剂的基本要求;且氨气不作为产品,故采用纯溶剂;流程选择及流程说明吸收装置的流程主要有以下几种:1逆流操作气相自塔底进入由塔顶排出,液相自塔顶进入由塔底排出,此即逆流操作;逆流操作的特点是传质平均推动力大,传质速率快,分离效率高,吸收剂利用率高;工业生产中多用逆流操作;2并流操作气、液两相均从塔顶流向,此即并流操作;并流操作的特点是,系统不受液流限制,可提高操作气速,以提高生产能力;并流操作通常用于以下情况:当吸收过程的平衡曲线较平坦时,流向对推动力影响不大;易溶气体的吸收或处理的气体不需吸收很完全;吸收剂用量特别大,逆流操作易引起液泛;3吸收剂部分再循环操作在逆流操作系统中,用泵将吸收塔排除液体的一部分冷却后与补充的新鲜吸收剂一同送回塔内,即为部分再循环操作;通常用于以下操作:当吸收剂用量较小,为提高塔的液体喷淋密度;对于非等温吸收过程,为控制塔内的温升,需取出一部分热量;该流程特别适宜于相平衡常数m值很小的情况,通过吸收液的部分再循环,提高吸收剂的使用效率;应当指出,吸收剂部分再循环操作较逆流操作的平均推动力要低,且需设置循环泵,操作费用增加;4多塔串联操作若设计的填料层高度过大,或由于所处理物料等原因需经常清理填料,为便于维修,可把填料层分装在几个串联的塔内,每个吸收塔通过的吸收剂和气体量都相等,即为多塔串联操作;此种操作因塔内需留较大空间,输液、喷淋、支撑板等辅助装置增加,使设备投资加大;5串联-并联混合操作若吸收过程处理的液量很大,如果用通常的流程,则液体在塔内的喷淋密度过大,操作气速势必很小否则易引起塔的液泛,塔的生产能力很低;实际生产中可采用气相作串联、液相作并联的混合流程;若吸收过程处理的液量不大而气相流量很大时,可采用液相作串联、气相作并联的混合流程;列出几种常见的吸收过程如图1;(a)并流 b逆流图1 吸收流程属高溶解度的吸收过程,为提高传质效率和分离效率,所以本设计选用用水吸收NH3逆流吸收流程;该填料塔中,氨气和空气混合气体,经由填料塔的下侧进入填料塔中,与从填料塔顶流下的水逆流接触,在填料的作用下进行吸收;经吸收后的混合气体由塔顶排除,吸收了氨气的水由填料塔的下端流出;塔填料选择塔填料简称为填料是填料塔的核心构件,它提供了气、液两相相接触传质与传热的表面,其性能优劣是决定填料塔操作性能的主要因素;填料的比表面积越大,气液分布也就越均匀,传质效率也越高,它与塔内件一起决定了填料塔的性质;因此,填料的选择是填料塔设计的重要环节;塔填料的选择包括确定填料的种类、规格及材料;填料的种类主要从传质效率、通量、填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d;填料种类的选择要考虑分离工艺的要求,通常考虑一下几个方面:1传质效率传质效率即分离效率,它有两种表的方法:一是以理论级进行计算的表示方法,以每个理论级当量的填料层高度表示,即HETP值;另一方面是以传质速率进行计算的表示方法,以每个传质单元相当高度表示,即HTU值;在满足工艺要求的前提下,应选用传质效率高,即HEYP或HTU值低的填料;对于常用的工业填料,其HEYP或HTU值可由有关手册或文献中查到,也可以通过一些经验公式来估算;2通量在相同的液体负荷下,填料的泛点气速愈高或气相动能因子愈大,则通量愈大,塔的处理能力亦越大;因此在选择填料种类时,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料;对于大多数常用填料其泛点气速或气相动能因子可由有关手册或文献中查到,也可以通过一些经验公式来估算;3填料层的压降填料层的压降是填料的主要应用性能,填料层的压降越低,动力消耗越低,操作费用越小;选择低压降的填料对热敏性物系的分离尤为重要;比较填料的压降有两种方法,一是比较填料层单位高度的压降△P/Z;另一是比较填料层单位传质效率的比压降△P/NT;填料层的压降可用经验公式计算,亦可从有关图表中查出;4填料的操作性能填料的操作性能主要指操作弹性、抗污堵性及抗热敏性等;所选填料应具有较大的操作弹性,以保证塔内气、液负荷发生波动时维持操作稳定;同时,还应具有一定的抗污堵、抗热敏能力,以适应物料的变化及塔内温度变化;此外,所选的填料要便于安装、拆卸和检修;填料种类很多,根据填料方式不同,可分为散装填料和规整填料两大类;1、散装填料散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料;散装填料根据结构特点不同,可分为环形填料、鞍形填料、环鞍形填料及球形填料等;现介绍几种典型的散装填料;1拉西环填料其结构为外径与高度相等的圆环,可用陶瓷、塑料、金属等材质制造;拉西环填料的气液分布较差,传质速率低,阻力大,通量小,目前工业上已很少用了;2鲍尔环填料鲍尔环是在拉西环的基础上改进而得;其结构为在拉西环的侧壁上开出两排长方形的窗孔,被切开的环壁的一侧仍与壁面相连,另一侧向环内弯曲,形成内伸的舌叶,诸舌叶的侧边在环中心相搭,可用陶瓷、塑料、金属等材质制造;鲍尔环由于环壁开孔,大大提高了环内空间及环内表面的利用率,气体阻力小,液体分布均匀;与拉西环相比,其通量可增加50%左右;鲍尔环是目前应用较广的填料之一;3阶梯环填料阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯环高度减少了一半,并在一端增加了一个锥形翻边;由于高径比减少,使得气体绕填料外壁的平均路径大为缩短,减少了气体通过填料层的阻力;锥形翻边不仅增加了填料的机械强度,而且使填料之间由线接触为主变成以点接触为主,这样不但增加了填料间的间隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液膜的表面更新,有利于传质效率的提高;阶梯环的综合性能优于鲍尔环,成为目前使用的环形填料中最为优良的一种;4弧鞍填料弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般采用瓷质材料制成;弧鞍填料的特点是表面全部敞开,不分内外,液体在表面来那个侧均匀的流动,表面利用率高,流道呈弧形,流动阻力小;其缺点是易发生套叠,致使一部分填料表面被重合,使传质效率降低;弧鞍填料强度较差,容易破碎,工业生产应用不多;5矩鞍填料将弧鞍填料两端的弧形面改成矩形面,且两面大小不等,即成为矩鞍填料;矩鞍填料堆积时不会套叠,液体分布较均匀;矩鞍填料一般采用瓷质材料制成,其性能优于拉西环;目前国内绝大多数应用瓷拉西环的场合,均已被矩鞍填料所取代;6环矩鞍填料环矩鞍填料是兼顾环形和鞍形结构特点而设计出的一种新型填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料;环矩鞍填料将环形填料和鞍形填料两者的优点集于一体,其综合性能优于鲍尔环和阶梯环,是工业应用最为普遍的一种金属散装填料;下图为几种实体填料:拉西环鲍尔环阶梯环弧鞍形填料矩鞍形填料图2 几种实体填料2、规整填料规整填料是按一定的几何图形排列,整齐堆砌的填料;规整填料种类很多,根据几何结构可分为格栅填料、波纹填料、脉冲填料等;工业上应用的规整填料绝大部分为波纹填料;波纹填料按结构分为网波纹填料和板波纹填料两大类,可用陶瓷、塑料、金属等材质制造;金属丝网波纹填料是网波纹填料的主要形式,是由金属丝网制成的;其特点是压降低、分离效率高,特别适用于精密精馏及真空精馏装置,为难分离物系、热敏性物系的精馏提供了有效的手段;尽管其造价高,但因性能优良仍得到广泛使用;金属板波纹填料是板波纹填料的主要形式;该填料的波纹板片上冲压有许多φ的小孔,可起到粗分配板片上的液体,加强横向混和作用;波纹板片上轧成4φmm6~mm细小沟纹,可起到细分配板片上的液体、增强表面润湿性能的作用;金属孔板波纹填料强度高,耐腐蚀性强,特别适用于大气直径塔及气、液负荷较大的场合;波纹填料的优点是结构紧凑,阻力小,传质效率高,处理能力大,比表面积大;其缺点是不适用于处理黏度大、易聚合或有悬浮物的材料,且装卸、清理困难,造价高;综上所述,经分析各填料特点、性能,本课程设计选择散装阶梯环填料;工业上,填料的材质分为陶瓷、金属和塑料三大类;1陶瓷填料陶瓷填料具有良好的耐腐蚀性及耐热性,一般能耐除氢氟酸以外的常见的各种无机酸、有机酸的腐蚀,对强碱介质,可以选用耐碱配方制造的耐碱陶瓷填料;陶瓷填料因其质脆、易碎,不易在高冲击强度下使用;陶瓷填料价格便宜,具有很好的表面润湿性,工业上,主要用于气体吸收、气体洗涤、液体萃取等过程;2金属填料金属填料可用多种材质制成,金属材料的选择主要根据物系的腐蚀性和金属材质的耐腐蚀性来综合考虑;碳钢填料造价低,且具有良好的表面湿润性能,对于无腐蚀或低腐蚀性物系应优先考虑使用;不锈钢填料耐腐蚀性强,一般能耐cl 以外常见物系的腐蚀,但其造价较高;钛材、特种合金钢等材质制成的填料造价级高,一般只在某些腐蚀性极强的物系下使用;,与同种类型、同种规格的陶瓷、塑料填料相比,它的通量金属填料可制成薄壁结构~大、气体阻力小,且具有很高的抗冲击性能,能在高温、高压、高冲击强度下使用,工业应用主要以金属填料为主;3塑料填料塑料填料的材质主要包括聚丙烯、聚乙烯及聚氯乙烯等,国内一般多采用聚丙烯材质;塑料填料的耐腐蚀性能较好,可耐一般的无机酸、碱和有机溶剂的腐蚀;其耐温性良好,可长期在100℃以下使用;聚丙烯填料在低温低于0℃时具有冷脆性,在低于0℃的条件下使用要谨慎,可选用耐低温性能好的聚氯乙烯填料;塑料填料具有轻质、廉价、耐冲击、不易破碎等优点,多用于吸收、解吸、萃取、除尘等装置中;塑料填料的缺点是表面润湿性能较差,在某些特殊应用场合,需要对其表面进行处理,以提高表面润湿性能;所以本次课程设计选用聚丙烯填料;通常,散装填料与规整填料的规格标示方法不同,选择地方法亦不尽相同;①散装填料规格的选择散装填料的规格通常是指填料的公称直径;工业塔常用的散装填料主要有DN16、DN25、DN38、DN50、DN76等几种规格;同类填料,尺寸越小,分离效率越高,但阻力增加,通量减小,填料费用也增加很多;而大尺寸的填料应用于小塔径中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低;本课程设计处理量不大,所用的塔直径不会太大,故选用38mm;②规整填料规格的选择 工业上常用规整填料的型号和规格的表示方法很多,国内习惯用比表面积表示,主要有125、150、250、350、500、700等几种规格;同种类型的规整填料,其比表面积越大,传质效率越高,但阻力增加,通量减小,填料费用也明显增加;选用时应从分类要求、通量要求、场地要求、物料性质及设备投资、操作费用等方面综合考虑,使所选填料既能满足工艺要求,又具有经济合理性;应当指出,一座填料塔可以选用同种类型、同一规格的填料,也可以使用同种类型、不同规格的填料;可以选用同种类型的填料,也可以选用不同类型的填料;有的塔段可选用规整填料,而有的塔段可选用散装填料;综上所述选用38mm 聚丙烯阶梯环塔填料,其主要性能参数查表1得:比表面积a :32/m m空隙率ε:干填料因子Φ:16.175-m表1 国内阶梯环特性数据五 工艺计算查表知,30C 下空气和水的物理性质常数如下:空气:)/(067.01086.1/165.153h m kg s Pa m kg ⋅=⋅⨯==-μρ粘度:密度:水:253kg/h 940896dyn/cm 72.61007.80/7.995==⋅⨯==-L L L sPa m kg σμρ表面张力:粘度:密度:物料衡算,确定塔顶、塔底的气液流量和组成查表知,30C 下氨在水中的溶解度系数)/(4146.03kpa m kmol H ⋅= 亨利系数SLHM E ρ=相平衡常数3156.13.10102.184146.07.995=⨯⨯===P HM PE m S Lρ;进塔气相摩尔比为:2450.01968.011968.01=-=Y出塔气相摩尔比为:0008821.01968.01)9964.01(1968.02=--⨯=Y对于纯溶剂吸收过程,进塔液相组成为:02=X 清水 混合气体的平均摩尔质量为:混合气体的密度为:333/037.1313314.81064.26103.101m kg RT M P v =⨯⨯⨯⨯==-ρ 混合气体流量:)/(688.1944.2213132735000h kmol =⨯⨯惰性气体流量:)/(373.156)1968.01(688.194h kmol V =-⨯=最小液气比:3109.103156.12450.00008821.02450.0)(21212121min =--=--=--=*X m Y Y Y X X Y Y V L 取实际液气比为最小液气比的倍,则可得吸收剂用量为:液气比 069.1037.1500002.18484.307=⨯⨯=V L ωω经计算该吸收过程为低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据;混合气体的黏度可近似取为空气的黏度;塔径计算采用贝恩Bain-霍根Hougen 泛点关联式计算泛点速度: 气体质量流量:液相质量流量可近似按纯水的流量计算,即: 填料总比表面积:32/5.132m m a t = 水的黏度:s mPa L ⋅=8007.0μA 、K 取值可由表2查得;取泛点率为,即s m u u F /781.2973.37.07.0=⨯== 则 m uV D S7976.0781.214.33600/500044=⨯⨯==π圆整后取 D=常用的标准塔径为400、500、600、700、800、1000、1200、1400、1600、2000、2200 泛点率校核:s m u /765.28.0785.03600/50002=⨯=6959.0973.3/765.2/==F u u 对于散装填料,其泛点率的经验值为85.0~5.0/=F u u填料规格校核:805.2138800>==d D 液体喷淋密度校核:取最小润湿速率为:)/(08.0)(3min h m m L W ⋅= 所以 )/(6.105.13208.0)(23min min h m m a L U t W ⋅=⨯=⋅=经以上校核可知,填料塔直径选用m D 8.0=合理;填料层高度计算查表知, 0C , kpa 下,3NH 在空气中的扩散系数s cm D /17.02=o由23))((oo o T TP P D D G =,则303k ,kpa 下,3NH 在空气中的扩散系数为: 液相扩散系数s m D L /10105.229-⨯=液体质量通量为)/(785.110288.0785.002.18484.30722h m kg U L ⋅=⨯⨯= 气体质量通量为)/(462.103208.0785.0037.1500022h m kg U V ⋅=⨯⨯= 脱吸因数为6691.05.13109.13156.1=⨯==L mV S气相总传质单元数为:气相总传质单元高度采用修正的恩田关联式计算: 不同材质的бc 值见表3;表3 不同材质的бc 值查表知,2/427680/33h kg cm dyn c ==σ所以,3560.0})5.1329408967.995785.11028()1027.17.9955.132785.11028()883.25.132785.11028()940896427680(45.1exp{12.0205.08221.075.0=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯--=-t w a a气膜吸收系数由下式计算:)/(1206.0)303314.81036001988.05.132()3600101988.0037.1067.0()067.05.132462.10320(237.0)()()(237.0243147.0317.0kpa h m kmol RTDa D a U V t V V V v t V G ⋅⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅⋅=--ρμμκ液膜吸收系数由下式计算:6524.0)7.9951027.1883.2()360010105.27.995883.2()883.25.1323560.0785.11028(0095.0)()()(0095.031821932312132=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⋅⋅⋅⋅⋅⋅=---LL L L L L w L L gD a U ρμρμμκ表4 各类填料的形状系数查表4得:45.1=ψ 则ha a kpa h m kmol a a w L L w G G 170.3545.15.1323560.06524.0)/(561.845.15.1323560.01206.04.04.031.11.1=⨯⨯⨯=⋅⋅=⋅⋅=⨯⨯⨯=⋅⋅=ψκκψκκ由a u ua a u ua L FLG FGκκκκ⋅-⋅+='⋅-⋅+='])5.0(6.21[])5.0(5.91[2.24.1 得,则)/(173.826.384146.0186.16111113kpa h m kmol a H a a L GG ⋅⋅=⨯+='⋅+'=κκκ由m P a V a K V H G Y OG 3759.08.0785.03.101173.8373.1562=⨯⨯⨯=Ω⋅⋅=Ω⋅=κ由 m N H Z OG OG 142.568.133759.0=⨯=⋅= 设计取填料层高度为:m Z 7= 对于阶梯环填料,m h Dh615~8max ≤=, 将填料层分为2段设置,每段,两段间设置一个液体再分布器; 取12=Dh,则填料塔总高度为:m D h 6.98.01212=⨯== 填料层压降计算采用Eckert 通用关联图计算填料层压降: 横坐标为:03449.0)7.995037.1(037.1500002.18484.307)(5.05.0=⨯⨯⨯=L V V L ρρωω 查表知:1116-=Φm P纵坐标为:09006.08007.07.995037.181.91116765.22.022.02=⨯⨯⨯⨯=⋅⋅ΦL L V P g u μρρψ查图3得,m pa ZP/8.735=∆ 填料层压降为:kpa pa P 151.578.735=⨯=∆图3 通用压降关联图液体分布装置液体分布器的作用:液体分布装置设于填料层顶部,用于将塔顶液体均匀分布在填料表面上,液体的分布装置性能对填料塔效率影响很大,特别是大直径、低填料层的填料塔,尤其需要性能良好的液体分布装置;由于液体在填料塔内分布均匀,可以增大填料的润湿表面积,以提高分离效果;因此,液体在塔顶的初始均匀喷淋,是保证填料塔达到预期分离效果的重要条件;从喷淋密度考虑,应保证每602m 的塔截面上约有一个喷淋点,这样,可以防止塔内壁流和沟流现象; 常用的液体分布装置有莲蓬式、盘式、齿槽式及多孔管式分布器等;莲蓬式喷淋器:液体经半球形喷头的小孔喷出;小孔直径为3~10m,做同心圆排列,喷洒角不超过︒80;这种喷淋器结构简单,但只适用于直径小于600mm 的塔中,且小孔易堵塞;盘式分布器:盘低开有筛孔的称为塞孔式,盘底装有垂直短管的称为溢流管式;液体加至分布盘上,经筛孔或溢流短管流下;筛孔式的液体分布效果好,而溢流管式自由截面积较大,且不易堵塞;盘式分布器常用于直径较大的塔中,基本可保证液体分布均匀,但其制造较麻烦;齿槽式分布器:液体先经过主干齿槽向其下个条形做第一级分布,然后再向填料层上面分布;这种分布自由截面积大,不易堵塞,多用于直径较大的填料塔;多孔环管式分布器:由多孔圆形盘管、联接管及中央进料管组成;这种分布器气体阻力小,特别使用于液量小而气量大的填料吸收塔;液体分布装置的安装位置,须高于填料层表面200mm,以提供足够的自由空间,让上升气流不受约束地穿过分布器;根据氨气易溶解的性质,可选用目前应用较为广泛的多孔型布液装置中的排管式喷淋器;多孔型布液装置能提供足够均匀的液体分布和空出足够大的气体通道自由截面一般在70%以上,也便于制成分段可拆结构;液体引入排管喷淋器的方式采用液体由水平主管一侧引入,通过支管上的小孔向填料层喷淋;排管式喷淋器采用塑料制造; 分布点密度计算:为了使液体初始分布均匀,原则上应增加单位面积上的喷淋点数;但是,由于结构的限制,不可能将喷淋点设计得很多;根据Eckert 建议,当mm D 750≈时,每260cm 塔截面设一个喷淋点;则总布液孔数为: 布液计算: 由 H g n d L o S ∆Φ=242π取60.0=Φ,mm H 160=∆则 mmm Hg n L d So 70.4004696.016.081.926.08414.3001546.0424==⨯⨯⨯⨯⨯⨯=∆⋅Φ=π液体再分布装置实践表明,当喷淋液体沿填料层向下流动时,不能保持喷淋装置所提供的原始均匀分。
化工原理碳酸丙烯酯脱碳填料塔设计
广西科技大学化工原理课程设计说明书课题名称:碳酸丙烯酯脱碳填料塔设计指导教师:班级:姓名:学号:201200601041成绩评定:指导教师:(签字)2015年01月09日化工原理课程设计任务书(填料吸收装置设计)一、设计名称:碳酸丙烯酯脱碳填料塔设计二、设计条件1.合成氨原料气量(30000+200X)m3/h〖注:X代表学号最后两位数〗。
2.原料气组成进塔气体组分CO2CO H2N2体积分数/%28.0 2.5 47.2 22.33.要求出塔净化气含CO20.5%(Vol%)4. 吸收剂采用碳酸丙烯酯(PC),可根据解吸操作情况决定其CO2含量或视为不含CO25. 气体进塔温度30℃,碳酸丙烯酯进塔温度30℃6. 操作压强1.6Mpa 。
三、设计任务1. 总体论证:确定设计方案与流程,工艺流程简图并说明。
2. 填料吸收塔的塔径、填料层高度或塔高及填料层压降计算。
3. 填料塔附属结构的选型与设计4. 带控制点的吸收塔工艺流程图(3#图纸)5. 填料吸收塔与流体分布器工艺条件图(3#图纸)。
四、设计基础数据1. 碳酸丙烯酯(1)分子式 CH3CHOCO2CH2(2)结构CH3CHCH2OOC O(3)物理性质常压沸点/℃蒸气压×133.32-1Pa 黏度/mPa·s 分子量30℃38℃20℃50℃242 0.1 0.24 2.76 1.62 102.09(4)密度与温度关系温度t/℃0 15 25 40 55密度/kg/m31224 1207 1198 1184 1169(5)比热计算式CP=1.39+0.00181(t-10)KJ/Kg·℃式中:t—液相温度,℃2.CO2在碳酸丙烯酯中的溶解度温度t/℃25 26.7 37.8 40 50亨利系数E×101.3-1kPa81.1381.7 101.7 103.5 120.83.CO2在碳酸丙烯酯中的溶解热可近似按下式计算(以△HCO2表示):△HCO2=(4.59Bi×4.187kJ/kmol) Bi=676目录1.设计方案简介 (1)1.1 填料塔吸收方案设计的确定 (1)1.1.1 装置流程的确定 (1)1.1.2 操作温度和压力的确定 (1)1.1.3 吸收剂的选择 (1)1.2 填料的类型与选择 (2)1.2.1 填料的类型 (2)1.2.1 .1 散装填料 (2)1.2.1 .2 规整填料 (3)1.2.2 填料的选择 (3)1.2.2.1 填料种类的选择 (3)1.2.2.2 填料规格的选择 (3)1.2.2.3 填料材质的选择 (4)2.工艺流程草图及说明................ 错误!未定义书签。
化工原理课程设计
填料吸收塔课程设计说明书专 业 化 学 制 药班 级 制药111姓 名 石亮亮班 级 学 号 1132104123指 导 老 师 刘 郁日 期 2013-04-10成 绩化工单元操作课程设计任务书Xuzhou College of Industrial Technology班级:制药111 姓名:石亮亮学号::1132104123 常压下,在填料吸收塔中用清水吸收炉气中的二氧化硫一、设计条件1.操作方式:连续操作;2.生产能力:处理炉气量:2500+学号3/m h;3.操作温度:25℃;4.操作压力:常压101.3kPa;5.进塔混合气含量;二氧化硫的体积分数为(5.0+学号×0.01)%;其余为空气;6.进塔吸收剂:清水;7.二氧化硫回收率:95%;二、设计要求1.流程布置与说明;2.工艺过程计算;3.填料的选择;4.填料塔工艺尺寸的确定;5.输送机械功率的选型;三、设计成果1.设计任务书一份(A4打印);2.设计图纸:填料工艺条件图(CAD:A3幅面)四、设计时间(化学制药111班)2013年3月25日-------2013年4月5日化学制药教研室2013年3月目录摘要: (4)第一章前言 (4)1.1填料塔简介: (4)1.2吸收技术概况: (5)1.3吸收设备的发展 (5)1.4吸收在工业生产中的应用 (5)第二章设计方案的确定 (6)2.1流程方案 (6)2.4吸收剂的选择 (6)2.5填料的类型与选择 (6)第三章吸收工艺流程的确定 (7)3.1任务及操作条件 (7)3.2工艺流程的确定 (7)第四章吸收塔的工艺计算 (8)4.1基础物性数据 (8)4.1.1液相物性数据 (8)4.1.2气象物性数据 (9)4.1.3气液两相平衡时的数据 (9)4.2物料衡算 (9)4.2.1 进塔混合气中各组分的量 (10)4.2.2.混合气进出塔的摩尔组成 (10)4.2.3混合气进出塔摩尔比组成 (10)4.2.4出塔混合气量 (11)4.2.5.吸收剂的用量 (11)4.2.6 塔底吸收液组成X1 (11)4.2.7 操作线方程 (12)4.3 填料塔的工艺尺寸的计算 (12)4.3.1 塔径的计算 (12)4.3.2 操作气速 (14)4.3.3 塔径 (15)4.3.4 泛点率校核: (15)4.3.5 液体喷淋密度校核: (15)4.4填料高度的计算 (15)4.4.1 传质单元数N OG (15)4.4.2传质单元高度的计算 (16)4.4.3填料层高度的计算 (18)4.4.4 填料层压降计算 (19)4.5辅助设备的计算及选型 (20)4.5.1.除雾沫器 (20)4.5.2.液体分布器简要设计 (20)4.5.3布液计算 (21)4.6.填料支承装置 (22)4.7.填料限定装置 (24)4.7.1塔附属高的确定 (24)4.7.2 人孔 (24)设计结果汇总 (25)主要符号说明 (27)设计过程的评述及有关问题的讨论 (29)参考文献 (30)课程设计总结: (31)附主题设备条件图 (31)摘要:气体吸收过程是利用混合气体中,根据各组分在液体中溶解度或化学反应活性的差异,使其在各个组分加以分离,其目的是:1.回收或捕获气体混合物中的有用物质,以制取有利有价值的产品;2.除去混合气体中的有害成分,使气体净化,以便进一步加工处理;或除去工业放空尾气中的有害物质,以免污染大气。
化工原理课程设计填料塔的设计
化工原理课程设计报告的撰写
⑴ 标题页(封面); ⑵ 目录; ⑶ 设计任务书; ⑷ 设计方案制定(简介); ⑸ 工艺流程图及说明; ⑹ 工艺计算及主体设备设计; ⑺ 辅助设备的计算及选型; ⑻ 设计结果概要或设计一览表; ⑼ 对本设计的评述; (10)工艺流程图、主体设备工艺条件图; (11)参考文献
(3) 熟练、快速进行过程计算及主要设备的工艺设计的计算能力。 (4) 用简洁的文字、清晰的图表来表达自己的设计思想和计算结果的表达能力。
01
04
02
03
课程设计总的要求:
综合运用所学知识,独立思考,按时完成设计任务。
了解工程设计的基本内容,掌握主要程序和方法,培养分析和解决工程实际问题的能力。
主体设备工艺条件图
技术条件表:用文字说明在图中不能
表示出来的内容。如制造、装配、验收及运输
等方面的特殊要求。 管口方位表:注明各管口的符号、用途、公称尺寸等内容。 、 设备组成一览表(明细表)
图幅
(二.)绘图注意事项
图例是将物料流程图中画出的有关管线、阀门、设备附件、计量控制仪表等图形用文字予以说明。 图签是图名、设计单位、设计人员签名(职责)的一份表格,其位置在流程图右下角。边框线及不同内容分隔线均为粗实线,其余为细实线。
项目: 化工原理课程设计
1
时间: 12月19日至12月30日
2
地点: 教1-211
3
时间安排:
4
查阅文献,熟悉填料塔的设计内容及设计程序 12月19日
5
工艺计算 12月20日-23日
6
绘图及撰写设计说明书 12月26日-30日
二、课程设计的内容
一.设计方案简介:任务书及相关资料查阅
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
皖西学院化学与生命科学系化工原理课程设计说明书题目:设计一台填料塔用于吸收小合成氨厂精炼在生气中的氨专业:应用化工技术班级:0702班学生姓名:章文杰学号:指导教师:徐国梅设计成绩:完成日期: 2009年6月19日目录一、文献综述 (4)(一)、引言 (4)(二)、填料塔技术 (5)(三)、填料塔的流体力学性能 (8)(四)、填料的选择 (9)(五)、填料塔的内件 (10)(六)、工艺流程的现状和发展趋势 (11)二、设计方案简介 (12)三、工艺计算 (13)(一)、基础物性数据 (13)1、液相物性的数据 (13)2、气相物性数据 (13)3、气液相平衡数据 (13)4、物料衡算 (14)(二)、填料塔的工艺尺寸的计算 (15)1、塔径的计算 (15)2、填料层高度计算 (16)3、填料层压降计算 (18)4、液体分布器简要设计 (20)四、辅助设备的计算及选型 (21)五、设计一览表 (24)六、心得体会 (26)七、参考文献…………………………………………………………八、主要符号说明……………………………………………………九、附图(带控制点的工艺流程简图、主体设备设计条件图)文献综述关键词:填料塔;聚丙烯;吸收摘要: 填料塔洗涤吸收净化工艺不单应用在化工领域 ,在低浓度工业废气净化方面也能很好地发挥作用。
工程实践表明 ,合理的系统工艺和塔体设计 ,是保证净化效果的前提。
本文简述聚丙烯阶梯填料应用于水吸收氨过程的工艺设计以及工程问题。
(一)引言填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。
而塔填料塔内件及工艺流程又是填料塔技术发展的关键。
从塔填料、塔内件以及工艺流程,特别是塔填料三方面对填料塔技术的现状与发展趋势作了介绍,说明了塔填料及塔内件在填料塔技术中的重要性。
与板式塔相比,新型的填料塔性能具有如下特点:(1)生产能力大;(2)分离效率高;(3)压降小;(4)操作弹性大;(5)持液量小。
聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能差。
研究表明,聚丙烯填料的有效润湿面积仅为同类规格陶瓷填料的 40 % ,由于聚丙烯填料表面润湿性能差,故传质效率较低,使应用受到一定的限制.为此,对聚丙烯填料表面进行处理,以提高其润湿及传质性能的研究日益受到人们的重视. 近年来,国内外一些学者做了该方面的研究工作,研究结果表明,聚丙烯填料经表面处理后,润湿及传质性能得到了较大的提高。
聚丙烯阶梯环填料为外径是高度的两倍的圆环 ,在侧壁上开出两排长方形的窗孔 , 并在一端增加了一个锥形翻边,被切开的环壁的一侧仍与壁面相连 ,另一侧向环内弯曲 ,形成内伸的舌叶 ,各舌叶的侧边在环中心相搭。
鲍尔环由于环壁开孔 ,大大提高了环内空间及环内表面的利用率 ,气流阻力小 ,液体分布均匀。
阶梯环与鲍尔环相比 ,其高度减少了一半 ,并在一端增加了一个锥形翻边。
(二)填料塔技术填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
填料的上方安装填料压板,以防被上升气流吹动。
液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。
填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。
当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。
壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。
因此,当填料层较高时,需要进行分段,中间设置再分布装置。
液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。
填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。
填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等1填料的类型填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。
(1)散装填料散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。
散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。
现介绍几种较为典型的散装填料。
其中有拉西环、鲍尔环、阶梯环、弧鞍环、矩鞍环、金属环矩鞍环、球形填料等。
(2)规整填料规整填料是按一定的几何构形排列,整齐堆砌的填料。
规整填料种类很多,根据其几何结构可分为格栅填料、波纹填料、脉冲填料等。
在散装填料发展的同时出现了规整填料。
60年代以后,生产规模大型化要求具有大通量,能改善液体均匀分布,以提高分离效率及克服放大效应,降低填料层阻力及持液量,以起到节能效果。
规整填料在这方面有独特的优点,因此各种规整填料运应而生。
规整填料在整个塔截面上,集合形状规则、对称、均匀。
它规定了气液流量,改善了沟流和壁流现象,压降可以很小。
在相同的能量和压降下,与散装填料相比,可以安排更大的表面积,因此效率高。
由于起结构的规整性,合理的设计可以做到几乎无放大效应。
经过短短的二十几年已经形成了比较完整的规整填料系列。
2 填料的几何特性填料的几何特性数据主要包括比表面积、空隙率、填料因子等,是评价填料性能的基本参数。
(1)比表面积单位体积填料的填料表面积称为比表面积,以a表示,其单位为m2/m3。
填料的比表面积愈大,所提供的气液传质面积愈大。
因此,比表面积是评价填料性能优劣的一个重要指标。
(2)空隙率单位体积填料中的空隙体积称为空隙率,以e 表示,其单位为m3/m3,或以%表示。
填料的空隙率越大,气体通过的能力越大且压降低。
因此,空隙率是评价填料性能优劣的又一重要指标。
(3)填料因子填料的比表面积与空隙率三次方的比值,即a/e3,称为填料因子,以f表示,其单位为1/m。
填料因子分为干填料因子与湿填料因子,填料未被液体润湿时的a/e3称为干填料因子,它反映填料的几何特性;填料被液体润湿后,填料表面覆盖了一层液膜,a和e 均发生相应的变化,此时的a/e3称为湿填料因子,它表示填料的流体力学性能,f值越小,表明流动阻力越小。
3 填料的性能评价填料性能的优劣通常根据效率、通量及压降三要素衡量。
在相同的操作条件下,填料的比表面积越大,气液分布越均匀,表面的润湿性能越好,则传质效率越高;填料的空隙率越大,结构越开敞,则通量越大,压降亦越低。
采用模糊数学方法对九种常用填料的性能进行了评价,得出如表3-1所示的结论。
可看出,丝网波纹填料综合性能最好,拉西环最差。
(三)填料塔的流体力学性能填料塔的流体力学性能主要包括填料层的持液量、填料层的压降、液泛、填料表面的润湿及返混等。
1.填料层的持液量填料层的持液量是指在一定操作条件下,在单位体积填料层内所积存的液体体积,以(m3液体)/(m3填料)表示。
总持液量为静持液量和动持液量之和,即。
填料层的持液量可由实验测出,也可由经验公式计算。
一般来说,适当的持液量对填料塔操作的稳定性和传质是有益的,但持液量过大,将减少填料层的空隙和气相流通截面,使压降增大,处理能力下降。
2.填料层的压降在逆流操作的填料塔中,从塔顶喷淋下来的液体,依靠重力在填料表面成膜状向下流动,上升气体与下降液膜的摩擦阻力形成了填料层的压降。
填料层压降与液体喷淋量及气速有关,在一定的气速下,液体喷淋量越大,压降越大;在一定的液体喷淋量下,气速越大,压降也越大。
将不同液体喷淋量下的单位填料层的压降DP/Z与空塔气速u的关系标绘在对数坐标纸。
3.液泛在泛点气速下,持液量的增多使液相由分散相变为连续相,而气相则由连续相变为分散相,此时气体呈气泡形式通过液层,气流出现脉动,液体被大量带出塔顶,塔的操作极不稳定,甚至会被破坏,此种情况称为淹塔或液泛。
影响液泛的因素很多,如填料的特性、流体的物性及操作的液气比等。
4.液体喷淋密度和填料表面的润湿填料塔中气液两相间的传质主要是在填料表面流动的液膜上进行的。
要形成液膜,填料表面必须被液体充分润湿,而填料表面的润湿状况取决于塔内的液体喷淋密度及填料材质的表面润湿性能。
5.返混在填料塔内,气液两相的逆流并不呈理想的活塞流状态,而是存在着不同程度的返混。
造成返混现象的原因很多,如:填料层内的气液分布不均;气体和液体在填料层内的沟流;液体喷淋密度过大时所造成的气体局部向下运动;塔内气液的湍流脉动使气液微团停留时间不一致等。
(四)填料的选择填料的选择包括填料种类的选择、填料规格的选择(散装填料规格的选择、规整填料规格的选择)、填料材质的选择等,所选填料既要满足生产工艺的要求,又要使设备投资和操作费用最低。
(五)填料塔的内件填料塔的内件主要有填料支承装置、填料压紧装置、液体分布装置、液体收集再分布装置等。
合理地选择和设计塔内件,对保证填料塔的正常操作及优良的传质性能十分重要。
1.填料支承装置填料支承装置的作用是支承塔内的填料,常用的填料支承装置有如图片3-14所示的栅板型、孔管型、驼峰型等。
支承装置的选择,主要的依据是塔径、填料种类及型号、塔体及填料的材质、气液流率等。
2.填料压紧装置填料上方安装压紧装置可防止在气流的作用下填料床层发生松动和跳动。
填料压紧装置分为填料压板和床层限制板两大类。
3.液体分布装置液体分布装置的种类多样,有喷头式、盘式、管式、槽式及槽盘式等。
4.液体收集及再分布装置液体沿填料层向下流动时,有偏向塔壁流动的现象,这种现象称为壁流。
壁流将导致填料层内气液分布不均,使传质效率下降。
为减小壁流现象,可间隔一定高度在填料层内设置液体再分布装置。
最简单的液体再分布装置为截锥式再分布器。
截锥式再分布器结构简单,安装方便,但它只起到将壁流向中心汇集的作用,无液体再分布的功能,一般用于直径小于的塔中。
在通常情况下,一般将液体收集器及液体分布器同时使用,构成液体收集及再分布装置。
液体收集器的作用是将上层填料流下的液体收集,然后送至液体分布器进行液体再分布。
常用的液体收集器为斜板式液体收集器。
前已述及,槽盘式液体分布器兼有集液和分液的功能,故槽盘式液体分布器是优良的液体收集及再分布装置。
(六) 工艺流程的现状和发展趋势填料塔技术用于各类工业物系的分离,虽然设计的重点在塔体及塔内件等核心部分,但与之相配套的外部工艺和换热系统应视具体的工程特殊性作相应的改进。