2016届高三一轮复习数学第一次月考.doc
3.导数(原卷版)
![3.导数(原卷版)](https://img.taocdn.com/s3/m/b8c0032c3968011ca200910a.png)
第三章 导数一.基础题组1.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】曲线3cos 02y x x π⎛⎫=≤≤ ⎪⎝⎭与x 轴所围图形的面积为( )A .4B .2C .52D .3 2.【湖南省师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考数学(理)试题】已知⎰=211xdx S ,⎰=212dx e S x ,⎰=2123dx x S ,则1S ,2S ,3S 的大小关系为( )A .321S S S <<B .231S S S <<C .123S S S <<D .132S S S << 3.【江西省南昌市第二中学2016届高三上学期第四次考试数学(理)试题】曲线)230(cos π≤≤=x x y 与坐标轴所围成图形的面积为( )A. 2B. 3C. 2.5D. 44.【江西省南昌市第二中学2016届高三上学期第四次考试数学(理)试题】设)(x f 是定义在R 上的函数,其导函数为)(x f ',若)(x f +1()f x '<,()02015f =,则不等式201(4)x xe ef x ->(其中e 为自然对数的底数)的解集为( )A .()2014,2015B .()()02015, -∞+∞ ,C .()0+∞,D .()0∞-, 5.【山西省康杰中学、临汾一中、忻州一中、长治二中2016届上学期第二次联考数学(理)试题】定积分⎰=6.【河北省武邑中学2016届高三上学期期末考试数学(理)试题】若函数x a x x f ln )(+=不是单调函数,则实数a 的取值范围是_______.7.【河北省衡水中学2016届高三上学期七调考试数学(理)试题】设20sin 12cos 2x a x dx π⎛⎫=-+ ⎪⎝⎭⎰,则()622x⎛⋅+ ⎝的展开式中常数项是 .二.能力题组1.【湖南省长沙市雅礼中学2016届高三月考试卷(三)数学(理)试题】若定义在R 上的函数()f x 满足()01f =-,其导函数()'f x 满足()'1f x k >>,则下列结论中一定错误的是( )A . 11f k k ⎛⎫<⎪⎝⎭ B .111f k k ⎛⎫>- ⎪⎝⎭ C .1111f k k ⎛⎫<⎪--⎝⎭D .111k f k k ⎛⎫> ⎪--⎝⎭2.【河北省衡水中学2016届高三上学期四调考数学(理)试题】设过曲线()xf x e x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ^,则实数a 的取值范围为( )A .[]1,2-B .()1,2-C .[]2,1-D .()2,1-3.【河北省衡水中学2016届高三上学期四调考数学(理)试题】设函数()f x 满足()()22xex f x xf x x¢+=,()228e f =,则0x >时()f x ( )A .有极大值,无极小值B .有极小值,无极大值C .既有极大值又有极小值D .既无极大值也无极小值4.【湖南省师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考数学(理)试题】已知函数()ln f x x x x =+,若Z k ∈,且)()2(x f x k <-对任意的2>x 恒成立,则k 的最大值为( )A .3B .4C .5D .65.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】设()f x 是定义在R 上的函数,其导函数为()'f x ,若()()'1f x f x +>,()02015f =,则不等式()2014xxe f x e >+(其中e 为自然对数的底数)的解集为( )A .()(),00,-∞+∞B .()0,+∞C .()2014,+∞D .()(),02014,-∞+∞6.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】设函数()xf x mπ=,若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A .()(),22,-∞-+∞B .()(),44,-∞-+∞C .()(),66,-∞-+∞D .()(),11,-∞-+∞7.【湖南省衡阳市第八中学2016届高三上学期第三次月考数学(理)】由直线3π-=x ,3π=x ,0=y 与曲线x y cos =所围成的封闭图形的面积为8.【河北省衡水中学2016届高三上学期七调考试数学(理)试题】()f x 是定义在R 上的函数,其导函数为()'f x ,若()()()'1,02016f x f x f -<=,则不等式()20151xf x e >⋅+(其中e 为自然对数的底数)的解集为 .9.【江西省南昌市第二中学2016届高三上学期第四次考试数学(理)试题】(本小题满分12分) 已知函数2()ln (,)f x ax bx x a b R =+-∈.(Ⅰ)设a b -=2,求)(x f 的零点的个数;(Ⅱ)设0a >,且对于任意0x >,()(1)f x f ≥,试比较ln a 与2b -的大小.10.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】已知函数()1xf x e ax =+-(e 为自然对数的底数).(1)当1a =时,求过点()()1,1f 处的切线与坐标轴围成的三角形的面积; (2)若()2f x x ≥在(0,1)上恒成立,求实数a 的取值范围.11.【湖南省长沙市雅礼中学2016届高三月考试卷(三)数学(理)试题】(本小题满分12分) 已知函数()()2ln x a f x x-=(其中a 为常数).(1)当a =0时,求函数的单调区间;(2)当0<a <1时,设函数()f x 的3个极值点为123,,x x x ,且123x x x <<.证明:13x x +>12.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】已知函数()f x 满足()()22f x f x =+,且当()0,2x ∈时,()1ln 2f x x ax a ⎛⎫=+<- ⎪⎝⎭,当()4,2x ∈--时,()f x 的最大值为-4. (1)求实数a 的值;(2)设0b ≠,函数()()31,1,23g x bx bx x =-∈.若对任意()11,2x ∈,总存在()21,2x ∈,使()()12f x g x =,求实数b 的取值范围.13.【湖南省师大附中、长沙一中、长郡中学、雅礼中学2016届高三四校联考数学(理)试题】(本小题满分12分)已知函数e e bx ax x f x()12()(2-++=为自然对数的底数). (1)若21=a ,求函数)(x f 的单调区间; (2)若1)1(=f ,且方程1)(=x f 在)1,0(内有解,求实数a 的取值范围.14.【山西省康杰中学、临汾一中、忻州一中、长治二中2016届上学期第二次联考数学(理)试题】(本小题满分12分)已知函数12()ln .x xe f x e x x-=+(1)求曲线()y f x =在1x =处的切线方程; (2)证明:()1f x >.15.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】已知函数()()323257,ln 22f x x x ax bg x x x x b =+++=+++,(,a b 为常数). (1)若()g x 在1x =处的切线过点(0,-5),求b 的值;(2)设函数()f x 的导函数为()'f x ,若关于x 的方程()()'f x x xf x -=有唯一解,求实数b 的取值范围; (3)令()()()F x f x g x =-,若函数()F x 存在极值,且所有极值之和大于5ln 2+,求实数a 的取值范围.三.拔高题组1.【河北省衡水中学2016届高三上学期一调考试数学(理)试题】已知函数()ln 1x f x x+=. (1)求函数()f x 的单调区间和极值;(2)若对任意的1x >,恒有()ln 11x k kx -++≤成立,求k 的取值范围;(3)证明:()()2222ln 2ln 3ln 21,24123++n n n n N n n n+--+⋅⋅⋅<∈≥+.2.【湖南省衡阳市第八中学2016届高三上学期第三次月考数学(理)】已知函数x x x x f +-=2ln )(. (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若关于x 的不等式112)(2-+⎪⎭⎫⎝⎛-≤ax x a x f 恒成立,求整数a 的最小值; (Ⅲ)若正实数21,x x 满足+)(1x f 0)(2)(2122212=+++x x x x x f ,证明21521-≥+x x . 3.【河北省冀州市中学2016届高三上学期一轮复习检测一数学(理)试题】(本题满分12分) 已知函数()mf x mx x=-,()2ln g x x =。
(全国通用)高考数学一轮复习 第二章 函数、导数及其应用 第四节 指数函数习题 理-人教版高三全册数
![(全国通用)高考数学一轮复习 第二章 函数、导数及其应用 第四节 指数函数习题 理-人教版高三全册数](https://img.taocdn.com/s3/m/74d7d5252bf90242a8956bec0975f46527d3a7b3.png)
第四节指数函数[基础达标]一、选择题(每小题5分,共35分)1.(2015·威海测试)若点(a,9)在函数y=()x的图象上,则+1的值为()A.4B.C.D.01.C【解析】点(a,9)在函数y=()x的图象上,所以9=()a,解得a=4,所以+1+1=2+(24=2+2-1=.2.下列函数中值域为正实数的是()A.y=-5xB.y=C.y=D.y=(-3)|x|2.B【解析】∵1-x∈R,y=的值域是正实数,∴y=的值域是正实数.3.(2016·某某某某一中月考)方程2-x+x2=3的实数解的个数为()A.2B.3C.1D.43.A【解析】方程2-x+x2=3的解的个数即为方程=3-x2的解的个数,易知两图象y1=,y2=3-x2有两个交点,因此方程的实数解的个数为2.4.(2015·某某质检)曲线y=e x与直线y=5-x交点的纵坐标在区间(m,m+1)(m∈Z)内,则实数m 的值为()A.1B.2C.3D.44.C【解析】因为函数y1=e x的图象单调递增,y2=5-x的图象单调递减,当x=1时,y1=e,y2=4,∴y1<y2,当x=2时,y1=e2,y2=3,∴y1>y2,∴交点的横坐标x0满足1<x0<2,对应的纵坐标y0满足3<y0<4,故m=3.5.(2016·某某某某中学开学测试)若函数f(x)=2(x-a)(a∈R)满足f(1+x)=f(1-x),且f(x)在[m,+∞)上单调递增,则实数m的取值X围()A.(-∞,1]B.(-∞,0]C.[1,+∞)D.[2,+∞)5.C【解析】由f(1+x)=f(1-x)可知函数图象关于直线x=1对称,所以a=1,所以f(x)=2|x-a|=2|x-1|,易知其在(-∞,1]上单调递减,在[1,+∞)上单调递增,故要使f(x)在[m,+∞)上单调递增,则m的取值X围是[1,+∞).6.(2016·某某三校联考)定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0)(x1≠x2),都有<0.则下列结论正确的是()A.f(0.32)<f(20.3)<f(log25)B.f(log25)<f(20.3)<f(0.32)C.f(log25)<f(0.32)<f(20.3)D.f(0.32)<f(log25)<f(20.3)6.A【解析】对任意的x1,x2∈(-∞,0)(x1≠x2),都有<0可知函数在(-∞,0)上单调递减,又由于f(x)为偶函数,因此在(0,+∞)上函数f(x)单调递增,而0<0.32<1,1<20.3<2,log25>2,所以f(0.32)<f(20.3)<f(log25).7.(2016·某某一中调研)如图给出了函数y=a x,y=log a x,y=log(a+1)x,y=(a-1)x2的图象,则与函数y=a x,y=log a x,y=log(a+1)x,y=(a-1)x2依次对应的图象是()A.①②③④B.①③②④C.②③①④D.①④③②7.B【解析】由题可知a>0,a≠1,由图可知①对应函数y=a x,且0<a<1,所以a+1>1,a-1<0,因此③对应于函数y=log a x,④对应于函数y=(a-1)x2,②对应于函数y=log(a+1)x.二、填空题(每小题5分,共15分)8.函数y=a x-2016+2016(a>0,且a≠1)的图象恒过定点.8.(2016,2017)【解析】令x-2016=0,得x=2016,此时y=a0+2016=2017,故函数y=a x-2016+2016的图象恒过定点(2016,2017).9.已知函数f(x)=+sin x,则f(-2)+f(-1)+f(0)+f(1)+f(2)=.9.5【解析】由f(x)=+sin x,得f(x)+f(-x)=2,所以f(-2)+f(-1)+f(0)+f(1)+f(2)=2×2+f(0)=4++sin 0=5.10.(2015·某某师大附中模拟)已知函数f(x)=log2x(x>0)的反函数为f-1(x),且f-1(a)·f-1(b)=8,若a>0且b>0,且的最小值为.10.3【解析】由题可知函数f(x)=log2x(x>0)的反函数为y=2x,即f-1(x)=2x,所以f-1(a)·f-1(b)=2a·2b=2a+b,因此2a+b=8,即a+b=3,所以(a+b)·×(5+2)=3.[高考冲关]1.(5分)(2015·某某质检)已知函数f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),下列结论必成立的是()A.a<0,b<0,c<0B.a<0,b≥0,c>0C.2-a<2cD.2a+2c<21.D【解析】因为f(x)=|2x-1|=其图象如图所示,要使a<b<c,且f(a)>f(c)>f(b)成立,则有a<0,b<0,c>0且1-2a>2c-1,即2a+2c<2,观察选项知D项正确.2.(5分)关于x=1对称的函数f(x)满足f(x-1)=f(x+1),且在x∈[0,1]时,f(x)=1-x,则关于x的方程f(x)=在x∈[0,3]上解的个数是()A.1B.2C.3D.42.D【解析】由f(x-1)=f(x+1)知函数的周期为2,作出f(x)在[0,3]上的图象与函数y=的图象,易知它们交点个数为4,则方程f(x)=在x∈[0,3]上解的个数是4.3.(5分)(2015·某某一诊)计算:2=.3.6【解析】原式=2××1=2×=2×=6.4.(5分)(2015·某某调研)已知函数f(x)=x-4+,x∈(0,4),当x=a时,f(x)取得最小值b,则在直角坐标系下函数g(x)=的图象为()4.B【解析】由题可知f(x)=x-4+=x+1+-5≥2-5=1,当且仅当x=2时,等号成立,所以a=2,b=f(2)=1,故g(x)=,其图象可由y=向左平移1个单位得到,观察知B项正确.5.(10分)(2015·某某日照一中月考)已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上有最小值1和最大值4,设f(x)=.(1)求a,b的值;(2)若不等式f(2x)-k·2x≥0在区间[-1,1]上有解,某某数k的取值X围.5.【解析】(1)由已知可得g(x)=a(x-1)2+1+b-a,因为a>0,所以g(x)在区间[2,3]上是增函数,故解得a=1,b=0.(2)由已知可得f(x)=x+-2,所以f(2x)-k·2x≥0可化为2x+-2≥k·2x,即1+-2·≥k,令t=,由x∈[-1,1],得t∈,则k≤t2-2t+1,t∈.记h(t)=t2-2t+1,t∈,易得h(t)max=h(2)=1,所以k的取值X围是(-∞,1].。
高三第一次月考试卷数学
![高三第一次月考试卷数学](https://img.taocdn.com/s3/m/a325cf8a81eb6294dd88d0d233d4b14e85243ec0.png)
考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4$,则$f(1)$的值为()A. 1B. 2C. 3D. 42. 若$a > 0$,$b > 0$,则下列不等式中恒成立的是()A. $a^2 + b^2 \geq 2ab$B. $a^3 + b^3 \geq 2ab(a + b)$C. $\frac{a}{b} + \frac{b}{a} \geq 2$D. $a^2 + b^2 + c^2 \geq ab + bc + ca$3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 50$,$S_8 = 80$,则$a_6 + a_7$的值为()A. 15B. 20C. 25D. 304. 函数$y = \log_2(x + 1)$的图像与直线$y = x - 1$的交点个数是()A. 0B. 1C. 2D. 35. 在直角坐标系中,点$A(1, 2)$关于直线$x + y = 1$的对称点$B$的坐标是()A. $(-2, -1)$B. $(-1, -2)$C. $(2, -1)$D. $(1, -2)$6. 已知复数$z = 3 + 4i$,则$|z|$的值为()A. 5B. 7C. 9D. 127. 若等比数列$\{a_n\}$的首项为$a_1$,公比为$q$,且$a_1 + a_2 + a_3 = 21$,$a_2 \cdot a_3 = 27$,则$q$的值为()A. 3B. $\frac{3}{2}$C. $\frac{2}{3}$D. 18. 在$\triangle ABC$中,$a = 3$,$b = 4$,$c = 5$,则$\sin A$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D.$\frac{5}{4}$9. 已知函数$f(x) = x^2 - 2x + 1$,则$f(x)$的对称轴方程是()A. $x = 1$B. $x = -1$C. $y = 1$D. $y = -1$10. 若平面直角坐标系中,点$P(2, 3)$在直线$l$上,且直线$l$的方程为$y = kx + b$,则$k$的值为()A. 2B. 3C. -2D. -3二、填空题(本大题共10小题,每小题5分,共50分。
2016届高三上学期第一次月考数学(文)试题Word版含答案
![2016届高三上学期第一次月考数学(文)试题Word版含答案](https://img.taocdn.com/s3/m/f084b9cc32d4b14e852458fb770bf78a65293a7b.png)
2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。
高三数学第一轮复习知识点总结
![高三数学第一轮复习知识点总结](https://img.taocdn.com/s3/m/f6917cbbdc88d0d233d4b14e852458fb770b38f8.png)
高三数学第一轮复习知识点总结高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
高三数学月考试卷分析
![高三数学月考试卷分析](https://img.taocdn.com/s3/m/fc37b11417fc700abb68a98271fe910ef12dae75.png)
高三数学月考试卷分析高三数学月考试卷分析篇一:高三第一次月考数学试卷分析高三第一次月考数学(对口)试卷分析本次考试数学考试内容是基础模块(上测):集合,不等式,函数,指数函数与对数函数,三角函数五章知识。
试题符合数学教学实际,难度设计较合理,试题起点较低。
而我就结合班级现状和学期的知识现状为这次考试进行基本的评价分析一下,学生存在的问题及以后需要改进的地方。
一、对试卷的总体评析本试卷合计120分,选择题15个小题,合计45分,填空题15个小题,合计45分,解答题7大题,合计45分,试题无偏题、怪题,注意知识点的覆盖。
由于学生底子较差,计算能力薄弱,所以时间相对来说较为紧张,不够用。
试题重视基础,大量的题目来源于教材,前几年高考试题,考查的是学生的基本数学知识和通性通法,注重数学的思想性和应用性与灵活性,强调对数学技能的考察。
二、学生存在的问题及错误原因分析1.基本概念、定理模糊不清,不能用数学语言再现概念。
2.学生自学能力差,不会找重难点,不会提出问题读书被动,无自觉性。
3.课堂缺少解题积极性,上课心不在焉,不肯动脑,缺乏主动参与意识。
4. 对教师布置的练习作业完成的质量不高,不复习,平时不预习,不能正确灵活运用定理、公式,死搬硬套三对今后教学的启示1在教学中首先要扎实学生的数学基础知识,并在此基础上,注意知识间的横纵向联系,帮助学生理清脉络,抓住知识主干,构建知识网络。
要加大力度,抓落实,夯实基础,在公式使用的准确性和计算的准确性上狠抓实效2 提高学生逻辑思维能力和想象能力。
在日常教学中切忌千篇一律地老师讲同学听,提倡多一些思维变式题目的训练,强化学生感悟能力和灵活处理问题的能力,求精务实,提高课堂效益回归课本,抓好基础落实。
3 增强学生动手实践意识。
重视探究和应用关注身边的数学问题,不断提高学生的数学应用意识,激发学生兴趣。
对学生的答题规范要提出更高要求,“会而不对,对而不全”,计算能力偏弱,计算合理性不够,这些在考试时有发生,对此平时学习过程中应该加强对计算能力的培养;学会主动寻求合理、简捷运算途径;平时训练应树立“题不在多,做精则行”的理念。
宁夏回族自治区银川一中2016届高三上学期第一次月考数学(理)试题 含解析
![宁夏回族自治区银川一中2016届高三上学期第一次月考数学(理)试题 含解析](https://img.taocdn.com/s3/m/6768990a770bf78a6429543b.png)
银川一中2016届高三年级第一次月考数 学 试 卷(理) 第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合}1{>=x x A ,}4,2,1,0{=B ,则B A CR)(=A 。
}1,0{B 。
}0{C 。
}4,2{D 。
∅ 【答案】A 【解析】试题分析:={1}()={0,1}R R C A x x C A B ≤∴,选A考点:集合的运算2。
下列命题中的假命题是 A .02,1>∈∀-x R x B 。
0)1(,2>-∈∀*x NxC .1lg ,00<∈∃x R xD.2tan ,00=∈∃x R x3。
2222π=--⎰-dx x x m ,则m 等于A .-1B .0C .1D .2【答案】B 【解析】试题分析:由定积分的几何意义可知,原题即为求函数22y x x =--与x 轴在区间[]2.m -上围成图形面积大小,而函数22y x x =--的图像是以()1,0-为圆心,以1为半径在x 轴上方的半圆,它的面积为21122ππ⋅⋅=,即为题目所求面积,而m 为函数22y x x =--与x 轴另一个交点的横坐标,由图像可得0m =考点:定积分的几何意义4。
下列函数中,既是偶函数,又在区间)2,1(内是增函数的是 A .x y 2cos = B 。
x y 2log =C.2xx e e y --=D 。
13+=xy5。
若4tan 1tan =+θθ,则=θ2sin A. 错误!B 。
错误!C.错误!D. 错误! 【答案】D 【解析】试题分析:由2221tan 1tan 111tan 442sin 2tan 1tan tan 2tan 22tan θθθθθθθθθ+++=⇒=⇒=∴==+考点:三角函数恒等变换6.若)1,0(∈x ,则下列结论正确的是 A .x x x 2lg >>B .x x x>>lg 2C .x x xlg 2>> D .x x x lg 2>>【答案】C 【解析】 试题分析:(0,1)lg 0,01,21x x x ∈∴<>,故选C考点:函数的性质7。
届高三数学(理)第一次月考模拟试卷及答案
![届高三数学(理)第一次月考模拟试卷及答案](https://img.taocdn.com/s3/m/89fc6a5ea9956bec0975f46527d3240c8447a173.png)
届高三数学(理)第一次月考模拟试卷及答案2018届高三数学(理)第一次月考模拟试卷及答案高考数学知识覆盖面广,我们可以通过多做数学模拟试卷来扩展知识面!以下是店铺为你整理的2018届高三数学(理)第一次月考模拟试卷,希望能帮到你。
2018届高三数学(理)第一次月考模拟试卷题目一、选择题(本题共12道小题,每小题5分,共60分)1.已知全集U=R,A={x|x2﹣2x<0},B={x|x≥1},则A∪(∁UB)=( )A.(0,+∞)B.(﹣∞,1)C.(﹣∞,2)D.(0,1)2.已知集合A={1,2,3,4},B={y|y=3x﹣2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}3.在△ABC中,“ >0”是“△ABC为锐角三角形”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列说法错误的是( )A.命题“若x2﹣4x+3=0,则x=3”的逆否命题是:“若x≠3,则x2﹣4x+3≠0”B.“x>1”是“|x|>0”的充分不必要条件C.若p且q为假命题,则p、q均为假命题D.命题p:“∃x∈R使得x2+x+1<0”,则¬p:“∀x∈R,均有x2+x+1≥0”5.已知0A.a2>2a>log2aB.2a>a2>log2aC.log2a>a2>2aD.2a>log2a>a26.函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为( )A.3+2B.3+2C.7D.117.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin ),b=f(cos ),c=f(tan ),则( )A.a>b>cB.c>a>bC.b>a>cD.c>b>a8.若函数y=f(x)对x∈R满足f(x+2)=f(x),且x∈[-1 ,1]时,f(x)=1﹣x2,g(x)= ,则函数h(x)=f(x)﹣g(x)在区间x∈[-5 ,11]内零点的个数为( ) A.8 B.10 C.12 D.149设f(x)是定义在R上的恒不为零的函数,对任意实数x,y∈R,都有f(x)•f(y)=f(x+y),若a1= ,an=f(n)(n∈N*),则数列{an}的前n 项和Sn的取值范围是( )A.[ ,2)B.[ ,2]C.[ ,1)D.[ ,1]10.如图所示,点P从点A处出发,按逆时针方向沿边长为a的正三角形ABC运动一周,O为ABC的中心,设点P走过的路程为x,△OAP的面积为f(x)(当A、O、P三点共线时,记面积为0),则函数f(x)的图象大致为( )A . B.C. D.11.设函数f(x)=(x﹣a)|x﹣a|+b,a,b∈R,则下列叙述中,正确的序号是( )①对任意实数a,b,函数y=f(x)在R上是单调函数;②对任意实数a,b,函数y=f(x)在R上都不是单调函数;③对任意实数a,b,函数y=f(x)的图象都是中心对称图象;④存在实数a,b,使得函数y=f(x)的图象不是中心对称图象.A.①③B.②③C.①④D.③④12.已知函数,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值= =…= 成立,则n的取值集合是( )A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}第II卷(非选择题)二、填空题(本题共4道小题,每小题5分,共20分)13.命题:“∃x∈R,x2﹣x﹣1<0”的否定是 .14.定义在R上的奇函数f(x)以2为周期,则f(1)= .15.设有两个命题,p:x的不等式ax>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是 .16.在下列命题中①函数f(x)= 在定义域内为单调递减函数;②已知定义在R上周期为4的函数f(x)满足f(2﹣x)=f(2+x),则f(x)一定为偶函数;③若f(x)为奇函数,则 f(x)dx=2 f(x)dx(a>0);④已知函数f(x)=ax3+bx2+cx+d(a≠0),则a+b+c=0是f(x)有极值的充分不必要条件;⑤已知函数f(x)=x﹣sinx,若a+b>0,则f(a)+f(b)>0.其中正确命题的序号为 (写出所有正确命题的序号).三、解答题(本题共7道小题,第1题12分,第2题12分,第3题12分,第4题12分,第5题12分,第6题10分,第7题10分,共70分)17.已知集合A={x|x2﹣4x﹣5≤0},函数y=ln(x2﹣4)的定义域为B.(Ⅰ)求A∩B;(Ⅱ)若C={x|x≤a﹣1},且A∪(∁RB)⊆C,求实数a的取值范围.18.已知关于x的不等式ax2﹣3x+2≤0的解集为{x|1≤x≤b}.(1)求实数a,b的值;(2)解关于x的不等式: >0(c为常数).19.已知函数f(x)= 是定义在(﹣1,1)上的奇函数,且f( )= .(1)确定函数f(x)的解析式;(2)证明f(x)在(﹣1,1)上是增函数;(3)解不等式f(t﹣1)+f(t)<0.20.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈R,求该不等式解集表示的区间长度的最大值.21.设关于x的方程2x2﹣ax﹣2=0的两根分别为α、β(α<β),函数(1)证明f(x)在区间(α,β)上是增函数;(2)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小.选做第22或23题,若两题均选做,只计第22题的分。
甘肃省白银十中2016—2017学年第一学期高三年级第一次月考数学试题Word版含答案.doc
![甘肃省白银十中2016—2017学年第一学期高三年级第一次月考数学试题Word版含答案.doc](https://img.taocdn.com/s3/m/3d67d3e9f90f76c661371ac9.png)
白银十中2016—2017学年第一学期高三年级第一次月考数学(理科)试题出题人:田学礼 审题人:王开泰第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知全集U ={1,2,3,4,5,6},集合A ={2,3,4},集合B ={2,4,5},则下图中的阴影部分表示( )A .{5}B .{1,3}C .{2,4}D .{2,3,4,5} 2.下列函数中,与函数y =x 相同的是( ) A .y =x 2xB .y =(x)2C .y =lg 10xD . 2log 2x y =3. 下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数为 ( )A .2y x -=B .1y x -=C .2y x =D .13y x =4. 给出以下四个判断,其中正确的判断是 ( )A .函数f(x)的定义域关于原点对称是f(x)具有奇偶性的充分不必要条件B .命题“若x≥4且y≥2,则x +y≥6”的逆否命题为“若x +y <6,则x <4且y <2”C .若p :∂0x ≥ ,x 2-x +1>0,则¬p :∀x<0,x 2-x +1≤0D .己知n ∈N ,则幂函数y =x 3n-7为偶函数,且在x ∈(0,+∞)上单调递减的充分必要条件为n =15.已知函数220()log 0x x f x x x ⎧≤=⎨>⎩ ,则方程1()2f x =的解集为( ) A. B. C.{ D. 6. 如图给出了函数y =a x ,y =log a x ,y =log (a +1)x ,y =(a -1)x 2的图象,则与函数y =a x ,y =log a x ,y =log (a +1)x ,y =(a -1)x 2依次对应的图象是 ( )A .①②③④B .①③②④C .②③①④D .①④③②7. 已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x>0,都有1(2)()f x f x +=-,且当x ∈[0,2)时f(x)=log 2(x +1),则f(2 015)+f(2 016)的值为( )A .-1B .-2C .2D .18. 定义在区间[0,1]上的函数f(x)的图象如下图所示,以A(0,f(0))、B(1,f(1))、C(x ,f(x))为顶点的△ABC 的面积记为函数S(x),则函数S(x)的导函数S′(x)的大致图象为()9.函数2()(1)1f x x f x '=--+在x=1处的切线方程为( )A. 4y x =-+B. 3y x =C. 33y x =-D. 39y x =-10.已知函数f(x)的定义域为[-1,5],部分对应值如下表,f(x)的导函数()y f x '=的图象如图所示.下列关于f(x)的命题:①函数f(x) 在x=0,4处取到极大值;②函数f(x)在区间[0,2]上是减函数;③如果当x ∈[-1,t]时,f(x)的最大值是2,那么t 的最大值为4;④当1<a <2时,函数y =f(x)-a 不可能有3个零点.其中所有真命题的序号是( )A.①②B. ①②③C. ①②④D. ①②③④11.函数f(x)在定义域R 内可导,f(x)=f(2-x),当(1,)x ∈+∞时,()()10x f x '<-,设352a=f(),b=f 22(),c=f(5)log log log ,则( )A .c<a<bB .c<b<aC .a<b<cD .b<a<c12. 设函数2sin 20()20a x x f x x a x +≥⎧=⎨+<⎩(其中a ∈R )的值域为S ,若[1,+∞)⊆S ,则a 的取值范围是( )A .(﹣∞,)B .[1,]∪(,2]C .(﹣∞,)∪[1,2]D .(,+∞)第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.函数f(x)= 1-2log 6x 的定义域为________. 14.已知函数()()21()0,1m f x log x m m =-+>≠且的图象恒过点P,且点P 在直线1,,ax by a b R +=∈上,那么ab 的最大值为____________________.15. 已知a≥0,函数f(x)=(x 2-2ax)e x ,若f(x)在[-1,1]上是单调减函数,则a 的取值范围是________.16. 设函数f(x)=e 2x 2+1x ,g(x)=e 2x e x ,对任意x 1,x 2∈(0,+∞),不等式g(x 1)k ≤f(x 2)k +1恒成立,则正数k 的取值范围是________.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17. (本小题满分10分)已知()f x xlnx =.(1)求曲线f(x)在x e =处的切线方程.(2)求函数f(x)的单调区间.18. (本小题满分12分)已知函数f(x)=ax 3+cx +d(a ≠0)是R 上的奇函数,当x =1时,f(x)取得极值-2.(1)求函数f(x)的解析式;(2)求函数f(x)的单调区间和极大值;19.(本小题满分12分)设函数f(x)=a x -(k -1)a -x (a>0且a ≠1)是定义域为R 的奇函数. (1)求k 值;(2)若f(1)<0,试判断函数单调性并求使不等式f(x 2+tx)+f(4-x)<0恒成立的t 的取值范围.20.(本小题满分12分)已知函数()f x 是定义在R 上的偶函数,现已画出函数()f x 在y 轴左侧的图象(二次函数图象的一部分),如图所示,请根据图象:(1)画出函数()f x 在y 轴右边的图像并写出函数()()f x x R ∈的解析式.(2)若函数()()[]2()2,1,2g x f x ax x =-+∈(a R ∈为常数),求函数()g x 的最小值及最大值.21.(本小题满分12分)已知函数f(x)=ax 2+bx +c e x(a >0)的导函数y =f ′(x)的两个零点为-3和0.(1)求f(x)的单调区间;(2)若方程()0f x m -=有三个不同的的解,求m 的取值范围(用a 表示)。
高三第一次月考分析及学法指导
![高三第一次月考分析及学法指导](https://img.taocdn.com/s3/m/52137f62f242336c1eb95e49.png)
2016届1班高三第二次月考分析及后期学法指导高三第二次月考已经圆满落下帷幕。
相对上次月考大部分同学进步了,有些退步了,当然有些还在原地踏步。
其中反映的问题仍然很多,下面我具体从各个方面分析一下:一、班级整体状况:全班参加考试的人数为46人,班上总分最高分570分,最低分255分,平均为443分。
本次考试各科试题普遍较难,但学生的成绩还算可以,因此初步将二本线定在440分,这样一来,我们班只有24人,2班28人,3班29人,另外全级前百名分数应为459分以上,而我们班是16人,2班20人,3班20。
为什么我们成绩最低呢?我们看看各科的平均分就可以知道:班级1班2班3班科目语文99 99 88数学90 90 87英语91 94 90物理58 57 52化学48 54 47生物57 58 62总分444 452 446 由平均分可以看出:和2、3班差距就在化学、生物上。
化学比2班低6分,生物比3班低5分,平均分能低5分左右属于正常范围,但是只要一超过5分,这是一个很大的差距,是一个非常严重的差距。
另外,这两科上能存在如此大的差距,关键是同学们平时学习方法不当而且懒于记忆造成的,当然还有一些其它的客观因素。
比如,从这次考试中还反映出了以下这些问题:第一、学风比较浮躁;第二、基本知识掌握上似是而非、一知半解;第三、每一节中的类型题的思想方法没彻底掌握;第四、学习方法不当,这也是最核心和最关键的因素,等等。
针对以上严重现象,我们班的同学们在以后的学习中必须加强化学和生物的学习,同时其它四科也不能放松。
然后我们在看看各分数段的人数分布情况:总分<300 300-350 350-400 400-450 450-500 >500人数 1 3 12 14 13 3从上图可以表明全班同学的成绩集中在400-500之间,其中有65%的学生总分能够达到400分以上,但是同时低分段也较多,班级的高分段还是比较少,500分以上的同学仅仅有3名,并且成绩断层又比较严重,故而导致班级平均分与平行自强班平均分相差11分,从而显现出我班学生在诸多方面还存在问题。
高三数学一轮月考试卷
![高三数学一轮月考试卷](https://img.taocdn.com/s3/m/1c204643a9114431b90d6c85ec3a87c240288ad7.png)
考试时间:120分钟满分:150分一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = x^2 - 2x + 1在区间[-1, 3]上的最大值为()A. 0B. 1C. 2D. 42. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 30,则公差d为()A. 2B. 3C. 4D. 53. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是()A. 线段[-1, 1]B. 线段[1, -1]C. 线段[-1, 1]的垂直平分线D. 线段[1, -1]的垂直平分线4. 已知函数f(x) = ax^2 + bx + c在区间[1, 3]上单调递增,则a,b,c应满足()A. a > 0,b > 0,c > 0B. a > 0,b < 0,c > 0C. a < 0,b > 0,c < 0D. a < 0,b < 0,c < 05. 若向量a = (1, 2),向量b = (2, 1),则向量a·b的值为()A. 3B. 4C. 5D. 66. 已知函数y = log2(3x - 1),则其定义域为()A. (1, +∞)B. (1/3, +∞)C. (1, 2]D. (1/3, 2]7. 在三角形ABC中,角A,角B,角C的对边分别为a,b,c,若a = 5,b = 7,c = 8,则角A的余弦值为()A. 5/12B. 7/12C. 8/12D. 9/128. 已知等比数列{an}的前n项和为Sn,若a1 = 2,S4 = 32,则公比q为()A. 2B. 4C. 8D. 169. 若函数y = e^x在区间[0, 1]上单调递增,则函数y = e^-x在区间[0, 1]上()A. 单调递增B. 单调递减C. 先增后减D. 先减后增10. 在直角坐标系中,点P(m, n)到点A(2, 3)的距离等于点P到直线x + y - 5 = 0的距离,则点P的轨迹方程为()A. (x - 2)^2 + (y - 3)^2 = 5B. (x - 2)^2 + (y - 3)^2 = 10C. (x - 2)^2 + (y - 3)^2 = 20D. (x - 2)^2 + (y - 3)^2 = 25二、填空题(本大题共10小题,每小题5分,共50分。
高三数学第一次月考试卷及解答试题
![高三数学第一次月考试卷及解答试题](https://img.taocdn.com/s3/m/d680adf9f605cc1755270722192e453610665b06.png)
卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。
第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。
高三数学人教版A版数学(理)高考一轮复习教案二项式定理1
![高三数学人教版A版数学(理)高考一轮复习教案二项式定理1](https://img.taocdn.com/s3/m/d93f8421591b6bd97f192279168884868762b8af.png)
第三节 二项式定理二项式定理的应用(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题. 知识点一 二项式定理 1.定理公式(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n nb n (n ∈N *)叫作二项式定理. 2.通项T k +1=C k n an -k b k为展开式的第k +1项. 易误提醒 (1)二项式的通项易误认为是第k 项实质上是第k +1项.(2)(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)通项是T k +1=C k n an -k b k (k =0,1,2,…,n ).其中含有T k +1,a ,b ,n ,k 五个元素,只要知道其中四个即可求第五个元素.[自测练习]1.⎝⎛⎭⎫2x -1x 6的展开式中常数项为________. 解析:由题意可知常数项为C 46(2x )2⎝⎛⎭⎫-1x 4=60. 答案:602.⎝⎛⎭⎪⎫x -124x 8的展开式中的有理项共有________项. 解析:∵T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎫-124x r =⎝⎛⎭⎫-12r C r 8x 16-3r 4∴r 为4的倍数,故r =0,4,8共3项. 答案:3知识点二 二项式系数与项的系数 1.二项式系数与项的系数 (1)二项式系数二项展开式中各项的系数C k n (k ∈{0,1,…,n })叫作二项式系数. (2)项的系数项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.2.二项式系数的性质性质内容对称性与首末两端等距离的两个二项式系数相等,即C m n=C n-mn增减性当k<n+12时,二项式系数逐渐增大;当k>n+12时,二项式系数逐渐减小最大值当n是偶数时,中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大,最大值为Cn2n;当n 是奇数时,中间两项⎝⎛第n-12+1项和⎭⎫第n+12+1项的二项式系数相等,且同时取得最大值,最大值为Cn-12n或Cn+12n3.各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,即C0n+C1n+C2n+…+C k n+…+C n n=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C1n+C3n+C5n+…=C0n+C2n+C4n+…=2n-1.易误提醒二项式系数与展开式项的系数的异同:在T k+1=C k n a n-k b k中,C k n就是该项的二项式系数,它与a,b的值无关;T k+1项的系数指化简后除字母以外的数,如a=2x,b=3y,T k+1=C k n2n-k·3k x n-k y k,其中C k n2n-k3k就是T k +1项的系数.[自测练习]3.(2015·高考四川卷)在(2x-1)5的展开式中,含x2的项的系数是________.(用数字填写答案).解析:由二项展开式的通项T r+1=C r5(2x)5-r(-1)r(r=0,1,…,5)知,当r=3时,T4=C35(2x)5-3(-1)3=-40x2,所以含x2的项的系数是-40.答案:-404.C0n+3C1n+5C2n+…+(2n+1)C n n=________.解析:设S=C0n+3C1n+5C2n+…+(2n-1)·C n-1n+(2n+1)C n n,∴S=(2n+1)C n n+(2n-1)C n-1n+…+3C1n+C0n,∴2S=2(n+1)(C0n+C1n+C2n+…+C n n)=2(n+1)·2n,∴S=(n+1)·2n.答案:(n +1)·2n考点一 二项展开式中特定项与系数问题|1.(2016·海淀模拟)⎝⎛⎭⎫x 2-2x 3的展开式中的常数项为( ) A .12 B .-12 C .6D .-6解析:由题意可得,二项展开式的通项为T r +1=C r 3·(x 2)3-r ⎝⎛⎭⎫-2x r =(-2)r C r 3x 6-3r ,令6-3r =0,得r =2,∴⎝⎛⎭⎫x 2-2x 3的展开式中的常数项为T 2+1=(-2)2C 23=12,故选A. 答案:A2.(2015·高考安徽卷)⎝⎛⎭⎫x 3+1x 7的展开式中x 5的系数是________.(用数字填写答案) 解析:由题意知,展开式的通项为T r +1=C r 7(x 3)7-r ⎝⎛⎭⎫1x r =C r 7x 21-4r ,令21-4r =5,则r =4,∴T 5=C 47x 5=35x 5,故x 5的系数为35.答案:353.若⎝⎛⎭⎫1x -x x n 展开式中含有x 2项,则n 的最小值是________.解析:⎝⎛⎭⎫1x -x x n 的展开式的通项是T r +1=C r n ·⎝⎛⎭⎫1x n -r ·(-x x )r =C r n ·(-1)r ·x 52r -n .依题意得,关于r 的方程52r -n =2,即r =2×(n +2)5有正整数解;又2与5互质,因此n +2必是5的倍数,即n +2=5k ,n =5k -2,n 的最小值是3.答案:3求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.考点二 二项式系数性质与各项系数和问题|(1)若⎝⎛⎭⎫x +2x 2n 展开式中只有第6项的二项式系数最大,则展开式的常数项是( )A .360B .180C .90D .45(2)若a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4,则a 2+a 3+a 4=________. [解析] (1)展开式中只有第6项的二项式系数最大,则展开式总共11项,所以n =10, 通项公式为T r +1=C r 10(x )10-r ·⎝⎛⎭⎫2x 2r =C r 102r x 5-52r , 所以r =2时,常数项为180.(2)x 4=[(x -1)+1]4=C 04(x -1)4+C 14(x -1)3+C 24(x -1)2+C 34(x -1)+C 44,对照a 1(x -1)4+a 2(x -1)3+a 3(x -1)2+a 4(x -1)+a 5=x 4得a 2=C 14,a 3=C 24,a 4=C 34,所以a 2+a 3+a 4=C 14+C 24+C 34=14.[答案] (1)B (2)14(1)赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大. (2)如果n 是奇数,则中间两项⎝⎛⎭⎫第n +12项与第⎝⎛⎭⎫n +12+1项的二项式系数相等并最大.(2015·成都一中模拟)设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为( )A .-2B .-1C .1D .2解析:令等式中x =-1可得a 0+a 1+a 2+…+a 11=(1+1)(-1)9=-2,故选A. 答案:A考点三 多项式展开式中特定项或系数问题|在高考中,常常涉及一些多项式二项式问题,主要考查学生的化归能力,归纳起来常见的命题角度有:1.几个多项式和的展开式中的特定项(系数)问题. 2.几个多项式积的展开式中的特定项(系数)问题. 3.三项展开式中的特定项(系数)问题.探究一几个多项式和的展开式中的特定项(系数)问题1.(2016·商丘月考)在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是()A.74 B.121C.-74 D.-121解析:展开式中含x3项的系数为C35(-1)3+C36(-1)3+C37(-1)3+C38(-1)3=-121.答案:D探究二几个多项式积的展开式中的特定项(系数)问题2.(2015·高考全国卷Ⅱ)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.解析:法一:直接将(a+x)(1+x)4展开得x5+(a+4)x4+(6+4a)x3+(4+6a)x2+(1+4a)x +a,由题意得1+(6+4a)+(1+4a)=32,解得a=3.法二:(1+x)4展开式的通项为T r+1=C r4x r,由题意可知,a(C14+C34)+C04+C24+C44=32,解得a=3.答案:3探究三三项展开式中特定项(系数)问题3.(2015·高考全国卷Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20C.30 D.60解析:(x2+x+y)5=[(x2+x)+y]5的展开式中只有C25(x2+x)3y2中含x5y2,易知x5y2的系数为C25C13=30,故选C.答案:C(1)对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.(3)对于三项式问题一般先变形化为二项式再解决.30.一般与特殊的思想在二项式问题中的应用(赋值法)【典例】若(2x+3)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值是________.[思维点拨] 要求解的问题与二项式系数有关考虑赋值法,令x =±1,可求得奇数项与偶数项系数之和.[解析] 令x =1,得a 0+a 1+a 2+a 3+a 4=(2+3)4,① 令x =-1,得a 0-a 1+a 2-a 3+a 4=(-2+3)4.②故(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)(a 0+a 2+a 4-a 1-a 3)=(2+3)4×(-2+3)4=(3-4)4=1.[答案] 1[方法点评] 赋值法是求展开式中的系数与系数和的常用方法,注意所赋的值要有利于问题的解决,可以取一个或几个值,常赋的值为0,±1.一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2. [跟踪练习] 若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=________. 解析:令x =1,则a 0+a 1+a 2+…+a 12=36, 令x =-1,则a 0-a 1+a 2-…+a 12=1, ∴a 0+a 2+a 4+…+a 12=36+12.令x =0,则a 0=1,∴a 2+a 4+…+a 12=36+12-1=364.答案:364A 组 考点能力演练1.若⎝⎛⎭⎫x 2-1x n 的展开式中的所有二项式系数之和为512,则该展开式中常数项为( ) A .-84 B .84 C .-36D .36解析:由二项式系数之和为2n =512,得n =9.又T r +1=(-1)r C r 9x18-3r , 令18-3r =0,得r =6,故常数项为T 7=84.故选B. 答案:B2.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2D .-1解析:(1+x )5中含x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1.答案:D3.(2016·青岛模拟)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3解析:∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n , 令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6, 又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3.答案:B4.(2016·西城一模)若⎝⎛⎭⎪⎫3x -13x 2m 的展开式中二项式系数之和为128,则展开式中1x 3的系数是( )A .21B .-21C .7D .-7解析:∵2m =128,∴m =7,∴展开式的通项T r +1=C r 7(3x )7-r ·⎝ ⎛⎭⎪⎫-13x 2r =C r 737-r (-1)r x 7-5r3, 令7-53r =-3,解得r =6,∴1x 3的系数为C 6737-6(-1)6=21,故选A. 答案:A5.(2016·广州调研)已知a =2⎠⎛0πcos ⎝⎛⎭⎫x +π6d x ,则二项式⎝⎛⎭⎫x 2+ax 5的展开式中x 的系数为( )A .10B .-10C .80D .-80解析:a =2⎠⎛0πcos ⎝⎛⎭⎫x +π6d x =2sin ⎝⎛⎭⎫x +π6| π0=-2,展开式的通项为T r +1=C r 5(-2)r x 10-3r ,令10-3r =1,则r =3,T 4=C 35(-2)3x =-80x.答案:D6.⎝⎛⎭⎫x -12x 6的展开式中常数项为________. 解析:⎝⎛⎭⎫x -12x 6的通项为T k +1=C k 6x 6-k ⎝⎛⎭⎫-12x k =⎝⎛⎭⎫-12k C k 6x 6-2k ,令6-2k =0,得k =3,故展开式中常数项为-52.答案:-527.(2015·高考天津卷)在⎝⎛⎭⎫x -14x 6的展开式中,x 2的系数为________. 解析:二项式⎝⎛⎭⎫x -14x 6展开式的第r +1项为T r +1=C r 6x 6-r ·⎝⎛⎭⎫-14r x -r =C r 6⎝⎛⎭⎫-14r x 6-2r ,令6-2r =2,解得r =2,故x 2的系数为C 26⎝⎛⎭⎫-142=1516. 答案:15168.若(1-2x)2 015=a 0+a 1x +a 2x 2+…+a 2 015x 2 015,则a 12+a 222+…+a 2 01522 015=________.解析:当x 0=0时,左边=1,右边=a 0,∴a 0=1 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01522 015∴0=1+a 12+a 222+…+a 2 01522 015∴a 12+a 222+…+a 2 01522 015=-1 答案:-19.已知(a 2+1)n 展开式中的各项系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 的展开式的系数最大的项等于54,求正数a 的值.解:⎝⎛⎭⎫165x 2+1x 5展开式的通项T r +1=C r5⎝⎛⎭⎫165x 25-r ·⎝⎛⎭⎫1x r =⎝⎛⎭⎫1655-r C r 5x 20-5r 2, 令20-5r =0,得r =4,故常数项T 5=C 45·165=16,又(a 2+1)n 展开式的各项系数之和为2n , 由题意,得2n =16,∴n =4.∴(a 2+1)4展开式中系数最大的项是中间项T 3,从而C 24(a 2)2=54,∴a = 3.10.(1)求证:1+2+22+…+25n -1(n ∈N *)能被31整除;(2)求S =C 127+C 227+…+C 2727除以9的余数.解:(1)证明:∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.(2)S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数,∴S 被9除的余数为7.B 组 高考题型专练1.(2014·高考湖北卷)若二项式⎝⎛⎭⎫2x +a x 7的展开式中1x 3的系数是84,则实数a =( ) A .2 B.54 C .1D.24解析:T r +1=C r 7·(2x )7-r ·⎝⎛⎭⎫a x r =27-r C r 7a r ·1x 2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a =1,故选C.答案:C2.(2014·高考四川卷)在x (1+x )6的展开式中,含x 3项的系数为( )A .30B .20C .15D .10解析:在(1+x )6的展开式中,含x 2的项为T 3=C 26·x 2=15x 2,故在x (1+x )6的展开式中,含x 3的项的系数为15.答案:C3.(2015·高考湖北卷)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212解析:因为(1+x )n 的展开式中第4项与第8项的二项式系数相等,所以C 3n =C 7n,解得n =10,所以二项式(1+x )10的展开式中奇数项的二项式系数和为12×210=29.答案:A4.(2015·高考广东卷)在(x -1)4的展开式中,x 的系数为________. 解析:由题意得T r +1=C r 4(x )4-r (-1)r =(-1)r C r 4·x 4-r 2,令4-r2=1,得r =2,所以所求系数为(-1)2C 24=6.答案:65.(2013·高考浙江卷)设二项式⎝⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________.解析:展开式通项为T r +1=C r 5·(x )5-r⎝⎛⎭⎪⎫-13x r =C r 5(-1)r x 52-56r .令52-56r =0,得r =3, 当r =3时,T 4=C 35(-1)3=-10.故A =-10.答案:-10。
高三第一次月考数学试卷
![高三第一次月考数学试卷](https://img.taocdn.com/s3/m/717bd27c182e453610661ed9ad51f01dc28157eb.png)
高三第一次月考数学试卷一、选择题(每题5分,共60分)1.已知集合A={x∣x2−3x−4≤0},则A的解集为:A. (−1,4]B. [−1,4]C. (−∞,−1]∪[4,+∞)D. [−4,3]2.复数z=1+i2i的共轭复数为:A. 1−iB. 1+iC. −1+iD. −1−i3.函数f(x)=log2(x2−2x−3)的定义域为:A. (−∞,−1)∪(3,+∞)B. (−1,3)C. [−1,3]D. (−∞,−1]∪[3,+∞)4.已知向量a=(1,2),b=(3,−1),则a⋅b=:A. 1B. -1C. 5D. -55.下列函数中,在区间(0,+∞)上单调递增的是:A. y=x1B. y=x2−2xC. y=log21xD. y=2x6.已知等差数列{an}的前n项和为Sn,若a1=1,S3=−3,则a2+a4=:A. -4B. -2C. 0D. 27.下列命题中,正确的是:A. 若a>b,则ac2>bc2B. 若a>b,c>d,则a−d>b−cC. 若a>b,c>d,则ac>bdD. 若a>b,则a1<b18.已知函数f(x)=sin(2x+6π),则f(6π)的值为:A. 21B. −21C. 23D. −239.已知抛物线y2=2px(p>0)的焦点为F,准线为l,过F的直线与抛物线交于A,B两点,交准线l于D,若BF=3FA,则∣AB∣∣DF∣=:A. 21B. 31C. 32D. 4310.已知函数f(x)=ln(x+1)−x+1ax在其定义域内单调递增,则实数a的取值范围是:A. (−∞,1]B. [−1,+∞)C. (−∞,−1]D. [1,+∞)11.已知椭圆C:a2x2+b2y2=1(a>b>0)的左、右焦点分别为F1,F2,过F1的直线与椭圆C交于A,B两点,若∣BF2∣=2∣AF2∣,4cos∠AF1F2=10,则C的离心率为:A. 22B. 23C. 35D. 3612.已知函数f(x)={(3a−1)x+4a,log ax,x<1x≥1是(−∞,+∞)上的减函数,则实数a的取值范围是:A. (0,71]B. [71,31)C. (0,31]D. [31,1)二、填空题(每题5分,共20分)1.若x,y∈R,且xy=2,则x2+y2的最小值为 _______。
2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]
![2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]](https://img.taocdn.com/s3/m/4ca444db8662caaedd3383c4bb4cf7ec4afeb6db.png)
2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。
安徽省合肥168中学2016届高三数学上学期10月月考试卷 理(含解析)
![安徽省合肥168中学2016届高三数学上学期10月月考试卷 理(含解析)](https://img.taocdn.com/s3/m/bc3daa49804d2b160b4ec029.png)
2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡的相应位置.)1.设集合M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2﹣y=0,x∈R,y∈R},则集合M∩N中元素的个数为()A.1 B.2 C.3 D.42.函数y=的定义域是()A.[﹣,﹣1)∪(1,] B.(﹣,﹣1)∪(1,)C.[﹣2,﹣1)∪(1,2] D.(﹣2,﹣1)∪(1,2)3.设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.34.在曲线y=x2上切线倾斜角为的点是()A.(0,0)B.(2,4)C.(,)D.(,)5.偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为()A.﹣2 B.﹣1 C.0 D.16.已知a为常数,则使得成立的一个充分而不必要条件是()A.a>0 B.a<0 C.a>e D.a<e7.若f′(x0)=﹣3,则=()A.﹣3 B.﹣12 C.﹣9 D.﹣68.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()A.﹣1 B.2 C.﹣5 D.﹣39.已知f(x)=x3﹣3x+m,在区间[0,2]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是()A.m>2 B.m>4 C.m>6 D.m>810.已知f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,则f(x)g(x)>0的解集为()A.(﹣,﹣a2)∪(a2,)B.(﹣,a2)∪(﹣a2,)C.(﹣,﹣a2)∪(a2,b)D.(﹣b,﹣a2)∪(a2,)11.设x,y∈R,且满足,则x+y=()A.1 B.2 C.3 D.412.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.f(x)=x(x﹣c)2在x=2处有极大值,则常数c的值为.14.已知集合,若3∈M,5∉M,则实数a的取值范围是.15.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]的最小正周期是.16.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a>0且a≠1),+=.若数列{}的前n项和大于62,则n的最小值为.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.)17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.(1)证明:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.19.已知函数f(x)=ln.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求证:当x∈(0,1)时,f(x)>2(x+)20.已知P(x,y)为函数y=1+lnx图象上一点,O为坐标原点,记直线OP的斜率k=f(x).(Ⅰ)若函数f(x)在区间(a,a+)(a>0)上存在极值,求实数a的取值范围;(Ⅱ)如果对任意的x1,x2∈[e2,+∞),有|f(x1)﹣f(x2)|≥m||,求实数m的取值范围.21.已知x n是函数f(x)=x n+x n﹣1+x n﹣2+…+x﹣1(x>0,n∈N且n≥2)的零点.(1)证明:<x n+1<x n<1;(2)证明:<.22.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡的相应位置.)1.设集合M={(x,y)|x2+y2=1,x∈R,y∈R},N={(x,y)|x2﹣y=0,x∈R,y∈R},则集合M∩N中元素的个数为()A.1 B.2 C.3 D.4【考点】交集及其运算.【专题】计算题.【分析】此题是点集求交集的题,也就是求交点问题,所以此题可以联立方程组,求方程组有几组解就有几个交点,也可以画图求解.【解答】解:根据题意,M∩N={(x,y)|x2+y2=1,x∈R,y∈R}∩{(x,y)|x2﹣y=0,x∈R,y∈R}═{(x,y)|}将x2﹣y=0代入x2+y2=1,得y2+y﹣1=0,△=5>0,所以方程组有两组解,因此集合M∩N中元素的个数为2个,故选B.【点评】本题既是交集运算,又是函数图形求交点个数问题2.函数y=的定义域是()A.[﹣,﹣1)∪(1,] B.(﹣,﹣1)∪(1,)C.[﹣2,﹣1)∪(1,2] D.(﹣2,﹣1)∪(1,2)【考点】函数的定义域及其求法;对数的运算性质.【专题】计算题.【分析】由函数表达式知,被开方数大于或等于0,故对数的真数大于0且对数值小于或等于1,x2﹣1>0,且x2﹣1≤1;解可得答案.【解答】解:﹣≤x<﹣1或1<x≤.∴y=的定义域为[﹣,﹣1)∪(1,].答案:A【点评】考查对数的定义域和单调性.3.设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3【考点】利用导数研究曲线上某点切线方程.【专题】导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.4.在曲线y=x2上切线倾斜角为的点是()A.(0,0)B.(2,4)C.(,)D.(,)【考点】利用导数研究曲线上某点切线方程.【专题】计算题.【分析】根据切线的倾斜角的大小,求出其切点的坐标,故先设切点的坐标,利用导数求出在切点处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为()A.﹣2 B.﹣1 C.0 D.1【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.6.已知a为常数,则使得成立的一个充分而不必要条件是()A.a>0 B.a<0 C.a>e D.a<e【考点】微积分基本定理;必要条件、充分条件与充要条件的判断.【专题】计算题;导数的概念及应用.【分析】由定积分计算公式,求出函数f(x)=的一个原函数F(x)=lnx,从而利用微积分基本定理得到=lne,结合充分条件、必要条件的定义,即可得到不等式成立的一个充分而不必要条件.【解答】解:由积分运算法则,得=lnx=lne﹣ln1=1因此,不等式即即a>1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a>e故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.7.若f′(x0)=﹣3,则=()A.﹣3 B.﹣12 C.﹣9 D.﹣6【考点】导数的运算.【专题】导数的概念及应用.【分析】根据= [4]=4()=4f′(x0),利用条件求得结果.【解答】解:∵f′(x0)=﹣3,则=[4]=4()=4f′(x0)=4×(﹣3)=﹣12,故选:B.【点评】本题主要考查函数在某一点的导数的定义,属于基础题.8.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=()A.﹣1 B.2 C.﹣5 D.﹣3【考点】函数在某点取得极值的条件;导数的运算.【专题】导数的综合应用.【分析】根据函数导数和极值之间的关系,求出对应a,b,c的关系,即可得到结论.【解答】解:由三次函数的图象可知,x=2函数的极大值,x=﹣1是极小值,即2,﹣1是f′(x)=0的两个根,∵f(x)=ax3+bx2+cx+d,∴f′(x)=3ax2+2bx+c,由f′(x)=3ax2+2bx+c=0,得2+(﹣1)==1,﹣1×2==﹣2,即c=﹣6a,2b=﹣3a,即f′(x)=3ax2+2bx+c=3ax2﹣3ax﹣6a=3a(x﹣2)(x+1),则===﹣5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力.9.已知f(x)=x3﹣3x+m,在区间[0,2]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是()A.m>2 B.m>4 C.m>6 D.m>8【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】计算题;压轴题.【分析】三角形的边长为正数,而且任意两边之和大于第三边才能构成三角形,故只需求出函数在区间[0,2]上的最小值与最大值,从而可得不等式,即可求解.【解答】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值10.已知f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,则f(x)g(x)>0的解集为()A.(﹣,﹣a2)∪(a2,)B.(﹣,a2)∪(﹣a2,)C.(﹣,﹣a2)∪(a2,b)D.(﹣b,﹣a2)∪(a2,)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据函数奇偶性的性质,求出不等式f(x)<0和g(x)<0的解集,进行求解即可.【解答】解:∵f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,∴f(x)<0的解集为(﹣b,﹣a2),g(x)<0的解集为(﹣,﹣),则不等式f(x)g(x)>0等价为或,即a2<x<或﹣<x<﹣a2,故不等式的解集为(﹣,﹣a2)∪(a2,),故选:A.【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)<0和g (x)<0的解集是解决本题的关键.11.设x,y∈R,且满足,则x+y=()A.1 B.2 C.3 D.4【考点】函数的零点.【专题】函数的性质及应用.【分析】根据条件,构造函数f(t)=t3+2t+sint,利用函数f(t)的奇偶性和单调性解方程即可.【解答】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.12.函数y=2|x|的定义域为[a,b],值域为[1,16],当a变动时,函数b=g(a)的图象可以是()A.B.C.D.【考点】指数函数的定义、解析式、定义域和值域;函数的图象.【专题】计算题;压轴题;数形结合.【分析】根据a变动时,以及函数的值域可知b为定值4,结合选项即可得到答案.【解答】解:根据选项可知a≤0a变动时,函数y=2|x|的定义域为[a,b],值域为[1,16],∴2|b|=16,b=4故选B.【点评】本题主要考查了指数函数的定义域和值域,同时考查了函数图象,属于基础题.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.f(x)=x(x﹣c)2在x=2处有极大值,则常数c的值为6 .【考点】利用导数研究函数的极值.【专题】计算题.【分析】先求出f′(x),根据f(x)在x=2处有极大值则有f′(2)=0得到c的值为2或6,先让c=2然后利用导数求出函数的单调区间,从而得到x=2取到极小值矛盾,所以舍去,所以得到c的值即可.【解答】解:f(x)=x3﹣2cx2+c2x,f′(x)=3x2﹣4cx+c2,f′(2)=0⇒c=2或c=6.若c=2,f′(x)=3x2﹣8x+4,令f′(x)>0⇒x<或x>2,f′(x)<0⇒<x<2,故函数在(﹣∝,)及(2,+∞)上单调递增,在(,2)上单调递减,∴x=2是极小值点.故c=2不合题意,c=6.故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式.14.已知集合,若3∈M,5∉M,则实数a的取值范围是[1,)∪(9,25] .【考点】其他不等式的解法.【专题】集合.【分析】根据分式不等式的解法,对实数a进行分类讨论,然后结合条件3∈M,5∉M进行求解.【解答】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.15.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣[x]的最小正周期是 1 .【考点】函数的周期性.【专题】函数的性质及应用.【分析】当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,再左右扩展知f(x)为周期函数.由此利用数形结合思想能求出函数f(x)=x﹣[x]的最小正周期.【解答】解:∵x为实数,[x]表示不超过x的最大整数,∴如图,当x∈[0,1)时,画出函数f(x)=x﹣[x]的图象,再左右扩展知f(x)为周期函数.结合图象得到函数f(x)=x﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.16.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a>0且a≠1),+=.若数列{}的前n项和大于62,则n的最小值为 6 .【考点】数列的求和;导数的运算.【专题】等差数列与等比数列.【分析】由已知条件推导出=a x,利用导数的性质求出=a x是增函数,利用+=推导出a=2.从而得到数列{}为{2n}.由此能求出结果.【解答】解:∵f(x)=a x g(x)(a>0且a≠1),∴=a x,又∵f′(x)g(x)>f(x)g′(x),∴()′=>0,∴=a x是增函数,∴a>1,∵+=.∴a1+a﹣1=,解得a=或a=2.综上得a=2.∴数列{}为{2n}.∵数列{}的前n项和大于62,∴2+22+23+…+2n==2n+1﹣2>62,即2n+1>64=26,∴n+1>6,解得n>5.∴n的最小值为6.故答案为:6.【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.解答写在答题卡的制定区域内.)17.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.(1)证明:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.【考点】函数奇偶性的性质;函数解析式的求解及常用方法;函数的周期性.【专题】计算题;证明题.【分析】(1)由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).又函数f(x)是定义在R上的奇函数,故f(x+2)=﹣f(x),得到f(x)是周期为4的周期函数.(2)根据函数f(x)是定义在R上的奇函数,得到x∈[﹣1,0]时的解析式.当x∈[﹣5,﹣4]时,x+4∈[﹣1,0],写出解析式,得到x∈[﹣5,﹣4]时,函数f(x)的解析式.【解答】(1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1﹣x),即有f(﹣x)=f(x+2).又函数f(x)是定义在R上的奇函数,有f(﹣x)=﹣f(x).故f(x+2)=﹣f(x).从而f(x+4)=﹣f(x+2)=f(x).即f(x)是周期为4的周期函数.(2)解:由函数f(x)是定义在R上的奇函数,有f(0)=0.x∈[﹣1,0)时,﹣x∈(0,1],.故x∈[﹣1,0]时,.x∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x∈[﹣5,﹣4]时,函数f(x)的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.18.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】(1)根据函数奇偶性的性质建立条件关系即可.(2)利用数形结合,以及函数奇偶性和单调性的关系进行判断即可.【解答】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1≤a﹣2≤1∴1≤a≤3【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.19.已知函数f(x)=ln.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求证:当x∈(0,1)时,f(x)>2(x+)【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【专题】导数的概念及应用;导数的综合应用;不等式的解法及应用.【分析】(1)求得函数的导数,求得切线的斜率和切点坐标,即可得到所求切线的方程;(2)构造函数y=ln﹣2(x+),0<x<1,求得导数,判断符号,由单调性即可得证.【解答】(1)解:f(x)=ln的导数为f′(x)==﹣,可得在点(0,f(0))处的切线斜率为2,切点(0,0),即有在点(0,f(0))处的切线方程为y=2x;(2)证明:由y=ln﹣2(x+),0<x<1,导数为y′=﹣2(1+x2)=﹣2(1+x2)=,由0<x<1可得>0,即导数y′>0在(0,1)恒成立,则有函数y=ln﹣2(x+)在(0,1)递增,则有ln﹣2(x+)>0,故有当x∈(0,1)时,f(x)>2(x+).【点评】本题考查导数的运用:求切线的方程和单调区间,考查不等式的证明,注意运用单调性,属于中档题.20.已知P(x,y)为函数y=1+lnx图象上一点,O为坐标原点,记直线OP的斜率k=f(x).(Ⅰ)若函数f(x)在区间(a,a+)(a>0)上存在极值,求实数a的取值范围;(Ⅱ)如果对任意的x1,x2∈[e2,+∞),有|f(x1)﹣f(x2)|≥m||,求实数m的取值范围.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】(I)由斜率计算公式可得f(x)=,再利用函数在区间(a,a+)(a>0)上存在极值时与参数的关系即可得出;((II)由(I)可知:函数f(x)在∈[e2,+∞)单调递减,不妨设,则|f(x1)﹣f(x2)|≥m||,⇔f(x2)﹣f(x1)|≥m⇒.⇔函数F(x)=f(x)﹣在∈[e2,+∞)单调递减,再利用导数研究其单调性即可.【解答】解:(I)k=f(x)=,f′(x)=,当0<x<1时,f′(x)>0,函数f(x)单调递增;当1<x时,f′(x)<0,函数f(x)单调递减.故f(x)在x=1处取得极大值1.∵函数f(x)在区间(a,a+)(a>0)上存在极值,∴,解得,∴实数a的取值范围是.(II)由(I)可知:函数f(x)在∈[e2,+∞)单调递减,不妨设,则|f(x1)﹣f(x2)|≥m||⇔f(x2)﹣f(x1)|≥m⇒⇔函数F(x)=f(x)﹣在x∈[e2,+∞)单调递减.F(x)=,x∈[e2,+∞).∴F′(x)=≤0在x∈[e2,+∞)恒成立,∴m≤lnx在x∈[e2,+∞)上恒成立,∴m≤2.【点评】本题考查了利用导数研究函数的单调性极值与最值、在给出含参数区间上取得极值的条件、恒成立问题的等价转化方法,考查了推理能力和计算能力,属于难题.21.已知x n是函数f(x)=x n+x n﹣1+x n﹣2+…+x﹣1(x>0,n∈N且n≥2)的零点.(1)证明:<x n+1<x n<1;(2)证明:<.【考点】综合法与分析法(选修);函数零点的判定定理;利用导数求闭区间上函数的最值.【专题】综合题;导数的综合应用.【分析】(1)求导数,证明f(x)在(0,+∞)上是增函数,利用f(1)=n﹣1>0,f()=1﹣<0,可得f(x)在(,1)内有唯一零点,利用反证法证明x n+1<x n;(3)原不等式等价于x2+x3+…+x n<,证明x n<+,即可得出结论.【解答】证明:(1)∵f(x)=x n+x n﹣1+x n﹣2+…+x﹣1,∴f′(x)=nx n﹣1+(n﹣1)x n﹣2+…+2x+1,∵x>0,∴f′(x)>0,∴f(x)在(0,+∞)上是增函数,且连续∵f(1)=n﹣1>0,f()=1﹣<0,∴f(x)在(,1)内有唯一零点,∴<x n<1,假设:x n+1≥x n,∴x n+1n+1+x n+1n+x n﹣2+…+x n+1﹣1>x n n+x n n﹣1+x n n﹣2+…+x n﹣1,∴f(x n+1)>f(x n),即0>0,矛盾,∴x n+1<x n,∴<x n+1<x n<1;(2)原不等式等价于x2+x3+…+x n<,∵|f(x n)﹣f()|=|x n n+x n n﹣1+x n n﹣2+…+x n﹣1﹣)n﹣…﹣+1|>x n﹣f(x n)=0,f()=﹣,∴x n<+,∴x2+…+x n<+=+﹣<∴<.【点评】本题考查导数知识的运用,考查函数的零点,考查不等式的证明,考查学生分析解决问题的能力,难度大.22.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.【考点】简单曲线的极坐标方程.【专题】计算题;转化思想;综合法;坐标系和参数方程.【分析】(1)分别求出C1的直角坐标方程和C2的普通方程,联立方程组能求出C1与C2交点的坐标.(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程,联立消元,由其判别式得到压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【解答】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,∴C1是以原点为圆心,以1为半径的圆,∵曲线C2:(t为参数),∴C2的普通方程为x﹣y+=0,是直线,联立,解得x=﹣,y=.∴C2与C1只有一个公共点:(﹣,).(2)压缩后的参数方程分别为:(θ为参数):(t为参数),化为普通方程为::x2+4y2=1,:y=,联立消元得,其判别式,∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.。
高三数学一轮复习.pptx
![高三数学一轮复习.pptx](https://img.taocdn.com/s3/m/b869a52026284b73f242336c1eb91a37f11132cf.png)
(2)集合 A={1,4,7,10,13,16,19,21},则集合 A 有___2_8____个 子集、___2_8-__1__个真子集、__2_8_-__1__个非空子集、__2_8-__2___个非 空真子集.
解析:因为集合 A 中有 8 个元素,所以集合 A 有 28 个子集, 28-1 个真子集,28-1 个非空子集,28-2 个非空真子集.
第2页/共60页
§1.1 集合及其运算
第3页/共60页
考纲展示► 1.了解集合的含义,体会元素与集合的属于关系. 2.理解集合之间包含与相等的含义,能识别给定集合的子集. 3.理解两个集合的并集与交集的含义,会求两个简单集合的 并集与交集. 4.理解在给定集合中一个子集的补集的含义,会求给定子集 的补集. 5.能使用韦恩(Venn)图表达集合间的基本关系及运算.
第41页/共60页
解析: 设 x∈∁U(A∪B),则 x∉A∪B,得 x∉A 且 x∉B,即 x ∈∁UA 且 x∈∁UB,即 x∈(∁UA)∩(∁UB),即∁U(A∪B)⊆(∁UA)∩(∁ UB);反之,当 x∈(∁UA)∩(∁UB)时,得 x∈∁UA 且 x∈∁UB,得 x∉ A 且 x∉B,则 x∉A∪B,所以 x∈∁U(A∪B),即∁U(A∪B)⊇(∁UA)∩(∁ UB).根据集合相等的定义,得∁U(A∪B)=(∁UA)∩(∁UB).同理可 证另一结论.
第25页/共60页
(2)已知集合 A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}, 若 B⊆A,则实数 m 的取值范围为______(_-__∞__,__3_]______.
[解析] ∵B⊆A, ∴①若 B=∅,则 2m-1<m+1,此时 m<2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陇东中学 2016 届第一次月考数学试题(理科) A .命题“若x24x 3 0 ,则x3”的逆否命题是“若x 3,则x2 4 x 30 ”
第Ⅰ卷
一、选择题 (共 12 小题,每小题 5 分,共 60 分 ,在每小题给出的四个选项中,只有一项是符合题目要求
的 ).
1.复数z 4 3i
的虚部为()
1 2i
A.i B . i C . 1 D . 1
B." x >1”是“x >0”的充分不必要条件;
C.若p q 为假命题,则p, q 均为假命题;
D .命题p :“x R ,使得x2x 1 <0”,则? p :“x R ,x2x 1 >0”。
7.在极坐标系中与圆4sin相切的一条直线的方程是()
A .cos2
B .sin2C. 4 sin() D . 4 sin()
3 3
2.已知I为实数集,M { x | x 2 2x 0}, N { y | y x 1},则M N =().
8.设f (x)是, 上的奇函数, f ( x 2) f (x) ,当0 x 1时,f ( x) x ,则 f (7.5) ()
A .{ x | 0 x 1}
B .{ x | 0 x 2} C.{ x |1 x 2} D. A .0.5 B. 1.5 C. -0.5 D. -1.5
x 3t 2 2
(t 是参数 ) ,则曲线是()9.下列说法不正确的是()
3.曲线的参数方程为
t 2 1
y
a x a x
A .函数f ( x) ( a >0且a 1)是奇函数;
A. 线段
B. 双曲线的一支
C. 圆
D. 射线 2
4.设函数f ( x)是定义在R上的奇函数,当x 0 时,f ( x) 3x 2x a (a R) ,则 f ( 2) ()
a x 1 x
( a >0且
B .函数f ( x)
a )是偶函数;
A .-1,B. -4 C. 1 D . 4 a
x 1 1 5.已知命题p : 函数f (x) sin 2 的最小正周期为;命题q : 若函数 f ( x 1) 为偶函数,C.若f (x) 3x,则 f ( x y) f ( x) f ( y) ;
则 f ( x) 的图像关于x 1 对称。
则下列命题是真命题的是() D .若f ( x) a x(a>0且a 1 ),且 x1 x2,则1
f ( x1 ) f ( x2 ) < f (
x
1
x
2 ) 2 2
A .p q B.P (? q ) C. (?P)?(?q) D.p q 10.已知f ( x)是奇函数,当x >0时, f (x) x(1 x) ,当x<0时, f (x) ()
6.下列说法错误的是()
A .x(1 x)
B . x(1 x) C.x(1 x) D.x(1 x)
j精选
11.若函数y f ( x) 的值域是1
,3 ,则 F (x) f ( x) 1 的值域是()17.( 本小题满分 10 分) 在极坐标中,已知圆C经过点P 2,,圆心为直线 sin
3
与极2 f ( x) 4 32
轴的交点,求圆 C 的极坐标方程.
A .1
,3 B.2,
10
C.
5
,10 D.3,
10 2 3 2 3 3
12.设函数f ( x) 1 , g (x) ax2 bx a, b R,a 0 ,若 y f ( x) 的图像与 y g( x) 的图像有且
x
仅有两个不同的公共点 A x1 , y1 , B x2 , y2,则下列判断正确的是()
0 ,设 p : 函数y c x在R上单调递减; q : 函数
18 . ( 本小题满分12 分 ) 已知 c >0,且c
A .a <0 时,x1 x2<0, y1 y2>0 B. a <0时 x1 x2>0, y1 y2<0 f ( x) x2 2cx 1在1 , 上是增函数,若" p 且 q" 为假,“p或q”为真,求c的取值范围。
2
C.a >0 时,x1 x2<0, y1 y2<0,D. a >0时, x1 x2>0, y1 y2>0.
第Ⅱ卷
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分 )
13.已知随机变量X~ B( 4,p),若 E( X) =2,则 D( X) =
14.在极坐标系中 , 过点 A(4, )引圆4sin 的一条切线 , 则切线长.
2
15.若函数f ( x) x3 ax 3x 1在0, 上是单调增函数,则实数 a 的取值范围是_______
16. 已知函数f (x)满足:f (1) 1
f ( x y) f ( x y) x, y R ,则 f ( 2015) , 4 f ( x) f ( y)
4
_______ 。
三、解答题 ( 本大题共 6 小题,共70 分,解答应写出文字说明、证明过程或演算步骤) .
19 . ( 本小题满分 12 分) 已知甲、乙两名篮球运动员每次投篮命中的概率分别为、 p,甲、乙每次投
篮是否投中相互之间没有影响,乙投篮 3 次均未命中的概率为8 。
27
(1)求 p 的值;
( 2)若甲投篮 1 次、乙投篮 2 次,两人投篮命中的次数的和记为X,求 X 的分布列和数学期望E( X)
j精选
20. ( 本小题满分 12 分) 已知函数 f ( x) =ax3,函数 g( x) =x 2+bx+c 满足 g( 1) =g( 3) =﹣6.(1)当 a=﹣时,求函数h( x) =f ( x)﹣ g( x)在 [0 ,)上的最值;
(2)当 x∈ [ ﹣ 2, 0] 时, f (x)≥ g( x)恒成立,求实数 a 的取值范围
21. (本小题满分 12 分)在平面直角坐标系xoy 中,已知曲线 C1x2 y 2 1
,以平面直角坐标系
xoy 的原点 O为极点, x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :
( 2 cos sin ) 6
(1)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的 3 、2倍后得到曲线C2,试写出直
线 l 的直角坐标方程和曲线C2的参数方程 .
(2)在曲线C2上求一点P,使点 P 到直线l的距离最大,并求出此最大值.
22. (本小题满分12 分)已知a∈ R,函数f ( x) =(-x2+ax) e x(x∈R,e为自然对数的底数) .
(1)当 a =2时,求函数 f ( x)的单调递增区间;
(2)若函数 f (x) 在(-1,1)上单调递增,求a的取值范围;
j精选。