水准网条件方程
条件平差习题
![条件平差习题](https://img.taocdn.com/s3/m/88f205dc26fff705cc170ad8.png)
条件平差习题一、重点内容及难点1. 水准网条件平差● 条件方程列法 ● 权的确定方法2. 边角网条件平差● 条件方程个数确定方法● 条件方程类型:图形条件 极条件 边条件 方位角条件 基线条件3. 条件方程线性化11112ˆ()()()()()()()ˆˆˆˆnn i i ni f f f f f Lf L V V V f L V L L L L =∂∂∂∂=++++=+∂∂∂∂∑● 极条件方程及线性化● 符合三角网条件方程4. 理解条件平差的函数模型和随机模型● 明确必要起算数据、必要观测数据、多余起算数据和多余观测数据的概念; ● 条件平差的出发点:观测值的平差值之间应该存在的函数关系式; ● 随机模型的含义和作用二、公式汇编及条件平差计算步骤1. 根据实际问题,确定出总观测值的个数n 、必要观测值的个数t及多余观测个数r = n – t ,2. 列出条件平差值方程,对其线性化进一步列出改正数条件方程平差值条件方程 ˆ()0F L=改正数条件方程 0=+W AV3. 据具体情况确定观测值的权阵;)(21n p p p diag P =4. 组成法方程式,求出联系数;W NK =1K N W -=-5. 算出观测值改正数和观测值的平差值Lˆ; 1T V P A K -= V L L+=ˆ 6. 检查平差计算的正确性,将平差值L ˆ代入平差值条件方程式,检验平差值是否满足应有的条件关系式;0)ˆ(=LF 7. 计算单位权方差和单位权中误差;rPV V T =20ˆσ8. 列出平差值函数关系式,计算平差值函数及其精度。
对平差值函数全微分,应用广义传播律计算平差值函数的协因数,进一步计算出平差值函数的方差、协方差。
12ˆˆˆˆ(,,,)nf L L L ϕ= ˆˆˆˆTLL Q fQ f ϕϕ= 2ˆˆˆˆ0ˆD Q ϕϕϕϕσ=三、思考题:1.发现误差的必要条件是什么?2. 几何模型的必要元素与什么有关?为什么?3. 测量平差的函数模型和随机模型分别表示哪些量之间的什么关系?4. 什么叫必要起算数据?各类控制网的必要起算数据是如何确定的?5. 条件平差中求解的未知量是什么?能否由条件方程直接求得改正数?6.设某一平差问题的观测个数为n ,必要观测数为t ,若按条件平差法进行平差,其条件方程,法方程及改正数方程的个数各为多少?7. 通常用什么公式将非线性函数模型转化为线性函数模型? 8. 在条件平差中,能否根据已列出的法方程计算单位权方差? 9. 条件平差中的精度评定主要是解决哪些方面的问题?四、计算题5.1 有水准网如下图P1点位已知点Hp1=50.002米,P2、P3、P4,为待定点,观测六条线路的线路长度和高差为:S1= 1.0km h1=1.576m,S2=1.5 km h2=2.215m,S3=1.5 km h3=-3.800m,S4=1.0 km h4=0.871m,S5=2.0 km h5=-2.438m,S6= 2.0 km h6=-1.350m。
测量平差概要
![测量平差概要](https://img.taocdn.com/s3/m/669aac3b82c4bb4cf7ec4afe04a1b0717fd5b36c.png)
测量平差概要一、基本概念01、极条件的个数等于中点多边形、大地四边形和扇形的总数。
02、在间接平差中,独立未知量的个数等于必要观测数。
03、协方差与权互为倒数。
04、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
05、在间接平差中,误差方程的个数等于观测值的个数。
06、协因数阵与权阵互为逆阵。
07、偶然误差的四个统计特性是:有界性、聚中性、对称性和抵偿性。
08、圆周条件的个数等于中点多边形的个数。
09、偶然误差服从正态分布。
10、只有包含中点多边形的三角网才会产生圆周角条件。
11、条件平差的法方程个数等于多余观测个数,间接平差的法方程的个数等于必要观测数。
12、描述偶然误差分布常用的三种方法是:列表法、绘图法、密度函数法。
13、同一个量多次不等精度观测值的最或是值等于其加权平均值。
14、应用权倒数传播律时观测值间应误差独立。
15、极限误差是指测量过程中规定的最大允许误差值,通常取测量中误差的3倍作为极限误差。
16、在平地,水准测量的高差中误差与水准路线长度的算术平方根成正比。
17、在水准测量中要求前后视距相等是为了消除i角产生的系统误差。
18、在测角中正倒镜观测是为了消除系统误差。
19、水准网的必要起算数据为1个,独立测角网的必要起算数据为4个。
20、在水准测量中估读尾数不准确产生的误差是偶然误差。
21、独立测角网的条件方程有图形条件、圆周条件和极条件三种类型。
22、定权时单位权中误差可任意给定,它仅起比例常数的作用。
23、测角精度与角度的大小无关。
24、观测值的权通常是没有量纲的。
25、在山地,水准测量的高差中误差与测站数的算术平方根成正比。
26、测角网的必要观测个数等于待定点个数的2倍。
27、仪器误差、观测者和外界环境的综合影响称为观测条件28、独立水准网的条件方程式只有闭合水准路线。
29、根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
30、观测值的协因数与方差成正比,观测值的权与方差反比。
高程控制网平差
![高程控制网平差](https://img.taocdn.com/s3/m/f4fae033daef5ef7ba0d3cac.png)
i
i
i
h h V 改厕厕短的改正数, 代入上式,得:
i
i
i
V1 V2 V3 V4 W 0
W H A h1 h2 h3 h4 H B
1.附合水准路线的条件数和条件方程式组成
观测值5个,待定水准点2 个,所以条件有3个,可 以列出3个条件方程:
h1
H B h1 h2 H A 0
V 1 V 3 V 2 W a 0 V 2 V 4 V 6 W b 0 V 4 V 5 V 3 W c 0
(二)观测值权的确定:
1.各水准路线都进行了往返观测,每公里水准路线的观测中误差为 ,
则m:i
R mi2
1 4n
n i
2 i
i
式中,为测往返测高程不符值,以mm为单位;R为测段长度,以km为单位;n
H A h2 h3 h5 H D 0
H B h1 h3 h4 H C 0
一般以1个已知点为起点,其它已知点为终点,所构成的附合 水准路线为已知点数减1,这样可以列出的条件方程式为已知 水准点个数减1.
2.闭合水准路线的条件数和条件方程式的组成
从一个水准点出发,经过若干水准测段,又回到该 水准点,这样的水准路线称为闭合水准路线。
V 1 V 7 V 8 W b 0
V 2 V 8 V 7 W c 0
V 3 V 5 V 8 W d 0
V 4 V 6 V 5 W e 0
2.闭合水准路线的条件数和条件方程式的组 成
图(c)是四边形状水准网,网中有4个待定点,没有已知点, 在平差计算时,只能确定个待定水准点之间的相互关系,如 果确定一个水准点的高程,就可以确定其他点的高程。因此, 该网的必要观测是3个,观测值总数是6个,又3个多余观测, 可以列出3个条件方程。为了让所列立的条件方程式互相独 立,没个条件方程都要求有一个其他方程没有用到的观测值, 即:
条件平差的基本原理
![条件平差的基本原理](https://img.taocdn.com/s3/m/61cd0491294ac850ad02de80d4d8d15abe23006b.png)
v1
V
n ,1
v2
vn
wa F1L1, L2 ,, Ln
wb F2 L1, L2 ,, Ln
wr Fr L1, L2 ,, Ln
则相应方程的矩阵表达式分别为
F Lˆ 0
AV W 0 W FL
3. 基础方程
按求函数极值的拉格朗日乘数法,设乘数
5)求观测值的平差值; Lˆ L V
6)检核。 F (Lˆ) 0
7)检核。
3. 实例分析 例6-1水准网如右图:观测值及其权矩阵如下:
L 0.023 1.114 1.142 0.078 0.099 1.216 T m
P diag1 1 1 2.5 2.5 2.5
求各水准路线的最或然值。
解: 1)列出条件方程
或
v1 v2 v3 v2
0 0 v4 4 0
v1
1 0
1 1
1 0
0 1
v2 vv43
0 4
0 0
令c=1,则由定权公式
,有 pi
C Si
1 Si
P 1
1 p1
0
0
0
0
1 p2
0
0
0
0
1 p3
0
0 s1 0 0 0 2 0 0 0
0 0
0 0
1 p4
0
K
r ,1
ka
kb
kr T
,称为联系数向量。组成函数
V T PV 2K T AV W
将 φ 对V 求一阶导数,并令其为零,得
d dV
2V T P
2KT
A
0
两边转置,得
3-2 高程网条件平差
![3-2 高程网条件平差](https://img.taocdn.com/s3/m/545298afdd3383c4bb4cd237.png)
§3-2 高程网条件平差0.5学时高程网包括水准网和三角高程网。
对高程网进行条件平差时,一般以已知高程点的高程值作为起算数据,以各测段的观测高差值作为独立观测值,写出其满足的条件关系式,按照条件平差的原理解算各高差值的改正数和平差值,然后再计算出各待求点的高程平差值,并进行精度评定。
一、高程网条件方程的个数及条件方程式进行条件平差时,首先要确定条件方程的个数。
从上节内容可知道,在一般情况下,条件方程式的个数与多余观测的个数r相符。
而要确定多余观测个数就必须先确定必要观测个数t。
高程测量(包括三角高程测量和水准测量)的主要目的是确定未知点的高程值。
如图3-2所示高程网中,有2个已知高程点A、B,3个未知高程点C、D、E和8个高差观测值。
从图中可以看出,要确定3个未知点的高程值,至少需要知道其中的3个高差观测值(如h1、h2、h3,或h6、h7、h8,或h2、h4、h5等多种选择),即必要观测个数t = 3。
图3-2 则多余观测个数r = n – t = 8 - 3 = 5,可以写出这5个条件方程式⎪⎪⎪⎭⎪⎪⎪⎬⎫=-++=+-=-+=+-=--0ˆˆ0ˆˆ ˆ0ˆˆˆ0 ˆˆˆ 0ˆˆˆ72875764532421B A H H h h h h h h h h h h h h h h相对应的改正数条件方程式形式⎪⎪⎪⎭⎪⎪⎪⎬⎫=-+=-+-=--+=-+-=--+00 0005724875376425321421w v v w v v v w v v v w v v v w v v v其中⎪⎪⎪⎭⎪⎪⎪⎬⎫-++-=+--=-+-=+--=---=)()()()()(7258754764353224211B A H H h h w h h h w h h h w h h h w h h h w这些条件方程式(或改正数条件方程式),大体上分为两类:其一是闭合路线情况,如条件方程式中前四个条件方程式,可称为闭合条件方程式;其二是附合路线情况,如条件方程式中第五个,反应的是从A 点出发后测得的B 点的高程值是否与B 点的已知高程值相等的问题,可称为附合条件方程式。
第三章条件平差
![第三章条件平差](https://img.taocdn.com/s3/m/485021e004a1b0717fd5ddde.png)
独立三角网
自由三角网
自由测角网
附合三角网(测角)
• 例:
∆ቤተ መጻሕፍቲ ባይዱ
α ∆
当n=35、n=22、n=35+22时,其条件式个数各为多 少?有哪些类型?
图形条件(内角和条件):
B
b1
a2
c1 D c2 a1 b3 c3 a3 b2 C
A
圆周条件(水平条件):
b1
a2
c1 a1 a3 c3
c2 b2 b3
5.1.06、 5.1.07
上节内容回顾:
改正数条件式 观测值的协方差阵 法方程
AV W 0
D P Q
2 0 1 2 0
r n n n
Naa K W 0 N aa AQ AT
r r n r
改正数方程
V P A K QA K
T
1 T
wr
T
• 则条件方程可写成:
ˆA 0 AL 0
• 以及改正数条件式:
W AL A0
AV W 0
这样一来,对于一个平差问题,我们能够得到 其数学模型:
AV W 0 D P Q
2 0 1 2 0
下面要解决的问题是: 由上述的数学模型来求改正数V。
不难发现,不能求得V的唯一解!!! 解决不唯一解的办法就是附加一个约束条件---“最小二乘估计” 即满足:
极条件(边长条件):
b1 a2
c1
a1 b3 c3
c2 b2 a3
极条件(边长条件)就是指由不同路线推算得到 的同一边长的长度应相等。
三角网的基本图形 1) 单三角形 2)大地四边形
3)中点多边形。
测量程序设计_条件平差和间接平差
![测量程序设计_条件平差和间接平差](https://img.taocdn.com/s3/m/a7b17f1ca76e58fafab0034e.png)
程序代码如下:
disp(‘-------水准网间接平差示例-------------’) disp(‘已知高程’) Ha = 5.015 % 已知点高程,单位m Hb = 6.016 % 已知点高程,单位m
A h2 D h1
C h6 E h7 B h4
h5
h3
disp(‘观测高差,单位m’)
L = [1.359; 2.009; 0.363; 1.012; 0.657; -0.357] disp(‘系数矩阵B’)
则: PV AT K
V P A K QA K
T
1 T
4、法方程: 将条件方程 AV+W=0代入到改正数方程V=QATK 中,则得到:
AQAT K W 0
r1 r1 r1
记作: 由于
N aa K W 0
rr
R( Naa ) R( AQAT ) R( A) r
Naa为满秩方阵, K Naa1W ( AQAT )1 ( AL A0 )
if H(1,1)+H(2,1)-H(3,1)+HA-HB==0 && H(2,1)H(4,1)==0 disp(‘检核正确') else disp(‘检核错误') end disp(‘平差后的高程值') HC = HA + H(1,1) HD = HA + H(1,1) + H(4,1)
二、间接平差的基本原理
其中l=L-d.
ˆ 设误差Δ和参数X的估计值分别为V 和 X
则有
ˆ V AX l
X0 为了便于计算,通常给参数估计一个充分接近的近似值
ˆ ˆ X X0 x
则误差方程表示为
《测量平差》课程教案
![《测量平差》课程教案](https://img.taocdn.com/s3/m/42365e0d4a73f242336c1eb91a37f111f1850d21.png)
附件3
交通职业学院
课程教案
学年第学期
开课单位交通职业学院道桥系测量教研室
授课教师
职称
课程名称测量平差
课程性质职业能力课
教材名称《测量平差》
适用专业(方向)工程测量与监理
交通职业学院制
年9月8日
《课程教案》填写说明
一、用宋体、5号字填写,每项页面大小可按照规定格式自行添减。
二、一次课为一份教案(不包括封面)。
三、“课程性质”填基本素质课、职业能力课、素质拓展课;素质拓展课的“适用专业(方向)”填写“全校各专业”。
四、“开课单位”填学院、学系和教研室(无教研室只填学院和学系)。
五、授课类型指理论课、讨论课、实验、社会实践、实习或见习课、其他等。
六、“教学内容”应具体,而不应只填写教材章节名称或讲授主题的题目。
误差理论与测量平差基础第6章课后答案
![误差理论与测量平差基础第6章课后答案](https://img.taocdn.com/s3/m/79c31ffdf705cc1755270911.png)
第六章思考题6.1某平差问题有12个同精度观测值,必要观测数t = 6,现选取2个独立的参数参与平差,应列出多少个条件方程?6.2 有水准网如图,A 为已知点,高程为10.000A H m =,同精度观测了5条水准路线,观测值为17.251h m =,20.312h m =,30.097h m =-,4 1.654h m =,50.400h m =,若设AC 间高差平差值ˆˆACh X 为参数,试按附有参数的条件平差法, (1)列出条件方程(2)列出法方程(3)求出待定点C 的最或是高程6.3 下图水准网中,A 为已知点,P1,P2,P3为待定点,观测了高差15~h h ,观测路线长度相等,现选择P3点的高程平差值为参数,求P3点平差后高程的权。
6.4 下图水准网中,A 为已知点,高程为10.000A H m =,P 1~P 4为为待定点,观测高差及路线长度为:h 1=1.270m, S1=2;h 2=-3.380m, S2=2;h 3=2.114m, S3=1;h 4=1.613m, S4=2;h 5=-3.721m, S5=1;h 6=2.931m, S6=2;h 7=0.782m, S7=2;若设P2点高程平差值为参数,求:(1)列出条件方程;(2)列出法方程;(3)求出观测值的改正数及平差值;(4)平差后单位权方差及P2点高程平差值中误差。
6.5 如图测角网中,A 、B 为已知点,C 、D 为待定点,观测了6个角度,观测值为: L1=40。
23’58”, L2=37。
11’36”,L3=53。
49’02”, L4=57。
00’05”L5=31。
59’00”, L4=36。
25’56”若按附有参数的条件平差,(1)需要设哪些量为参数;(2)列出条件方程;(3)求出观测值的改正数及平差值。
思考题参考答案6.2n=5 t=3 r=2 u=1 c=3 6.3n=5 t=3 r=2 u=1 c=3v 1+v 4+v 5+w 1=0v 2+v 3-v 5+w 2=0v 1+v 2-ˆX+w 3=0 ˆˆ11X X Q P ==,6.4(1)v 1+v 2+v 3+4=0v 3+v 4+v 5+6=0v 5+v 6+v 7+8=0v 1+v 7-ˆX=0 (2)123455102041410060015208202410000100K K K K K ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+=-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ (3)[]1124044()T v mm =----[]ˆ 1.269 3.381 2.112 1.609 3.721 2.9350.786()T L mm =--(4)22034.7()mm σ=ˆ0.5X Q =,22ˆ17.3()X Q mm =,ˆ 4.2()Xmm σ=6.5 (1)设0ˆ,10310'06"X ADB X =∠=(2)v 1+v 6=0v 2+v 3+v 4+ v 5-17”=0 -0.955 v 1+ 0.220 v 2-0.731 v 3+0.649 v 4-0.396 v 5+ 0.959 v 6+2”=0(3)法方程:123200.00410040.25801700.0040.258 2.9902ˆ10000K K K x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ []0 4.230.3T K =- ˆx =0 []0.3 4.2 4.44 4.30.3(")T V =- ˆ4023'58.3"3711'40.2"5349'06.4"5700'09"3159'04.3"3625'55.7"L ⎡⎤=⎣⎦。
条件平差算例
![条件平差算例](https://img.taocdn.com/s3/m/a6da13fc4693daef5ef73d7a.png)
一、水准网条件平差示例 范例:有一水准网(如图8-3所示),已知点A ,B 的高程为: HA=50.000m , HB=40.000 m ,观测高差及路线长度见表8-1。
试用条件平差求:(1) 各观测高差的平差值;(2) 平差后P 1到P 2点间高差的中误差。
图8-3【解】1)、求条件方程个数;由图易知:n=7,t=3,条件式r=4。
故应列4个平差值条件方程,三个闭合环,一个附和路线2)、列平差值条件方程; 所列4个平差值条件方程为:⎪⎪⎭⎪⎪⎬⎫=-+-=--=-+=+-0ˆˆ0ˆˆˆ0ˆˆˆ0ˆˆˆ31643765521BA H H h h h h h h h h h h h 3)、转换成改正数条件方程;以ii i V L L +=ˆ代入上式可得: ⎪⎪⎭⎪⎪⎬⎫=-+-+-=--+--=-++-+=+-++-00003131643643765765521521B A H H h h v v h h h v v v h h h v v v h h h v v v 化简可得:⎪⎪⎭⎪⎪⎬⎫=--=+--=+-+=++-0403070731643765521mm mm mm mm v v v v v v v v v v v 可知条件方程系数阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----000101010110011100000010011⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=2101001000210000210000010000001称对P ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=2010010002000020000010000001称对Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----=320125100141101300100110001101001100000110010002010102200211000000100114)、组成法方程; 先求权阵P ;以1km 观测高差为单位权观测高差,则: 11=P ,12=P ,213=P ,214=P ,15=P ,16=P ,217=P ,而各观测高差两两相互独立,所以权阵为:,则协因数阵为:则,法方程的系数阵Naa 为:⎥⎥⎦⎤⎢⎢⎣⎡-----⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==-=00010101011001110000001001120100100020000200000100000010001010101100111000000100111TT AQA T A AP aa N 称对所以,法方程为:043773212510014110134321=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----k k k k 5)、解算法方程,求出联系数K⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡34831.213483.002247.177528.2437758427.025843.012360.023596.025843.032584.011236.012360.012360.011236.031461.014607.023596.012360.014608.046067.04377320125100141101314321k k k k 6)、求V 及高差平差值Lˆ 所以4210.212.118.3213.0214.418.214.0ˆ22222220⨯+⨯-+⨯-+⨯-+⨯-+⨯+⨯-==)()()()()(r PV V T σ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==045.2157.1798.3270.0427.4775.2427.034831.213483.002247.177528.2002001100011020022000001100134831.213483.002247.177528.200001010101100111000000100112010010002000020000010000001m m T K T QA V 称对mmmm v v v v v v v h h h h h h h h h h h h h h L ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=5020.108548.56472.45007.143556.200028.153556.100.22.18.33.04.48.24.0500.10856.5651.4501.14360.20000.15356.10ˆˆˆˆˆˆˆˆ7654321765432176543217)、精度评定1)、单位权方差估值计算mm 98.24605.35±==2)、建立所求精度的平差值函数的算式,并按误差传播律求平差值函数的精度 依题意列平差值函数为: 5ˆh =ϕ 则:[]Tf 0010000=[][][][]51687.048313.01)16853.3146.0(1001111236.001124.016853.03146.0100110011111ˆˆ=-=+-=⨯---=-=-=--TTT T T aaaa N AQf N QA f Qf fQ ϕϕ所以:mm Q 14.251687.098.2ˆˆ0ˆ±=⨯==ϕϕϕσσ【答】:各观测高差的平差值为:}{m m m m m m m5020.108548.56472.45007.143556.200028.153556.10平差后P1到P2点间高差的中误差为:±2.14mm987654321ACPB 图8-11二、测角网条件平差 范例:有一测角网(如图8-11所示),A 、B 、C 三点为已知三角点,P 为待定点。
6 第五章 条件平差
![6 第五章 条件平差](https://img.taocdn.com/s3/m/b6bb3fd926fff705cc170aa4.png)
三角网的基本图形构成
单三角形; 大地四边形; 中点多边形
30
§2 条件方程
二.三角网 1.独立测角网条件方程
测角网的观测值
测角网的观测值很简单,全部是角度观测值
测角网的作用
确定待定点的平面坐标
测角网的基准
位置基准2个(任意一点坐标X0Y0) 方位基准1个(任意一边方位角α0) 长度基准1个(任意一边的边长S0)
Av f 0
V PV min
T
在满足 Av f 0 的条件下,
求函数 V PV min 的V值
T
条件 极值 问题
4
§1 条件平差原理 条件平差的步骤
5
§1 条件平差原理
列条件方程 观测值权阵
最小二乘原则
求唯一解
6
§1 条件平差原理 一.基础方程及其解
r个线性条件方程:
3 ka 3 k 2 0 6 b
写成矩阵形式:
(2)定权: 100米量距为单位权:Pi=100/Si
1/Pi=Si/100 1/P1=2, 3=3, 1/P 1/P2=3, 4=5, 1/P
2 0 Q 0 0 0 3 0 0 0 0 3 0 0 0 0 5
AV f 0 PLL diag p1 p2 p4
组、解法方程: AQAT K f 0
由改正数方程求: V P A K
T 1
ˆ 求平差值: L L V
15
§1 条件平差原理 二.条件平差的求解步骤及示例
条件平差计算步骤
16
§1 条件平差原理
例:
r 1
r 1
r个改正数条件式:
a1v1 a2 v2 an vn wa 0 b1v1 b2 v2 bn vn wb 0 r1v1 r2 v2 rn vn wr 0
第二章2自由网平差基准
![第二章2自由网平差基准](https://img.taocdn.com/s3/m/e47344ae05a1b0717fd5360cba1aa81144318fbe.png)
1 0 0 ...
...
GCT
42t
0
ac1132
1 b12 d13
0 a12
0
... b12
0
0 c13
... d13
... ... 0 ...
3、二维测边网、边角网、导线网 ①基准条件:一个已知点坐标、一条边上的方位角
Xˆ1 0 Yˆ1 0
a12 Xˆ1 b12Yˆ1 a12 Xˆ 2 b12Yˆ2 0
M
GTG
M
H
m
m
, H
(Yi 2
X
2 i
)
S
2 i
H
i 1
i 1
标准化后G:
1
m
0
GT
Y1
m
X1
m
0
1
m
1
0
m
X 1 Y2
mm
Y1 X 2
mm
0 ....
1
...
m
X2
...
m
Y2
...
m
基准条件也可写为:
1 m
m i 1
Xˆ i
1 m
m
Yˆi
i 1
0 0
S02i
(S00i )2
2(
X
0 i
X 0 )Xˆ i
2(Yi0
Yi )Yˆi
(S00i )2
2(
X
0 i
Xˆ
i
Yi0Yˆ) 2X 0 Xˆ i
2YYˆi
将m个点至重心点的边长取和得:
m
m
m
m
m
S
2 0i
(
S
0 0i
高程控制网平差
![高程控制网平差](https://img.taocdn.com/s3/m/f4fae033daef5ef7ba0d3cac.png)
1.单位权中误差的计算公式:
m0 ˆ0
PVV
r
2.每km高差中误差:
m m0
C
3.最弱点的高程中误差
最弱点是指误差最大的待定水准点,一般为离开已知水准点 最远的点。首先要列出最弱点的权函数式:
V F f 1V1 f 2V 2 f nV n
利用m f
1
m0式P计f 算最弱点高程中误差。
V 1 V 7 V 8 W b 0
V 2 V 8 V 7 W c 0
V 3 V 5 V 8 W d 0
V 4 V 6 V 5 W e 0
2.闭合水准路线的条件数和条件方程式的组 成
图(c)是四边形状水准网,网中有4个待定点,没有已知点, 在平差计算时,只能确定个待定水准点之间的相互关系,如 果确定一个水准点的高程,就可以确定其他点的高程。因此, 该网的必要观测是3个,观测值总数是6个,又3个多余观测, 可以列出3个条件方程。为了让所列立的条件方程式互相独 立,没个条件方程都要求有一个其他方程没有用到的观测值, 即:
在水准网中,把3条或3条以 上水准路线的交点称为结点。 两条水准路线的交点称为节点。
(一)按间接平差法对结点进行平差
1.误差方程式的列立
不考虑水准路线中的节点,将水准路线的高差作为独立观测 值,取结点的近似高程改正数为未知数,列立每条水准路线 高差观测值的误差方程。
如图,路线高差观测值以表示,已知
(一)按间接平差法对结点进行平差
3.法方程式的解算 法方程式系数阵的逆阵为:
Q
N Q QQ 1
11
XX
21
31
Q 12
Q 22
Q 32
Q
13
Q Q23
第五章 条件平差
![第五章 条件平差](https://img.taocdn.com/s3/m/e73e3f13a76e58fafab003d6.png)
v1 v V 2 n ,1 vn
W AL A0
则相应方程的矩阵表达式分别为
AV W 0
第五章:条件平差
3. 基础方程
按求函数极值的拉格朗日乘数法,设乘数 联系数向量。组成函数 将 φ 对V 求一阶导数,并令其为零,得
r , n n ,1
A V W 0 ——改正数条件方程 r ,1
W AL A0 —改正数条件方程常数项(闭合差)计算式
第五章:条件平差
例题 :右图中L1、L2、L3为观测角度, 试列出该图形的条件方程和改正数条件方 程。 解:t=2, r=n-t=3-2=1 条件方程:
ˆ L ˆ L ˆ 180 0 L 1 2 3
试列出条件方程 解:t=2p-q-4=4,r=n-t=9-4=5 条件方程为:
ˆ L ˆ L ˆ 1800 0 L 1 2 3 ˆ L ˆ L ˆ 1800 0 L 4 5 6 ˆ L ˆ L ˆ 1800 0 L
7 8 9
ˆ L ˆ L ˆ 3600 0 L 3 6 9 ˆ sin L ˆ sin L ˆ sinL 1 4 7 1 ˆ ˆ ˆ sinL sin L sin L
第五章:条件平差
4.基础方程的解
将改正数方程代入改正数条件方程,得
AQAT K W 0
令 则有
N aa AQAT AP1 AT
N aa K W 0 ——联系数法方程
秩 RN aa RAQAT RA r ,即 N aa 是个r阶的满秩方阵,由此 可解出
试按条件平差法求C、D点高程的平差值。 解:此例 n=4,t=2,r=n-t=2,可列出两个条件方程。 (1)列条件方程:
误差理论与测量平差基础考试试卷
![误差理论与测量平差基础考试试卷](https://img.taocdn.com/s3/m/03c48910b8f67c1cfbd6b82d.png)
误差理论测量与测量平差基础考试试卷学年 下 学期期末考试试题 时间100分钟误差理论与测量平差基础 课程56 学时3.5学分 考试形式:闭卷 专业年级:测绘工程1401、1402、遥感1401 、测绘实验班1401 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上一、 简答题(每题5分,共15分)1、 何谓极限误差?设某一观测值中误差8σ''=,则观测值真误差的取值范围为多少?2、 测量平差的数学模型包含哪些?是如何定义的?3、 何谓方差-协方差传播律?和误差传播律区别在哪里?二、 填空题(每空2分,共26分)1、 间接分组平差时,要求第一组误差方程个数( )、条件分组平差对分组的条件式个数( )。
2、 水准测量定权的公式i i c P s =,其中i s 代表( ),C 代表( )。
3、 设有两条边长观测值及其中误差分别为:11S 1000.234m,3mm σ==,22S 1200.456m,3mm σ==,则1S 比2S 的精度( ),原因是( )。
4、 观测向量[]T 123L L L L =的方差阵为LL 322D 232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,202σ=。
则LL Q = ( ),对应的2L P =( )。
5、 如下图所示水准网,条件平差时,条件方程式为( ),评定P 点高程平差值精度时的平差值函数式为( )。
间接平差时,选P 点高程平差值为参数,则误差方程式为( )和( ),评定P 点高程平差值精度时的未知数函数式为( )。
三、 计算题(每题15分,共30分)1、(15分)下图所示为某隧道横截面,通过弓高弦长法测定圆弧的半径。
已知测得s S 3.6m,24mm σ==,H H 0.3m,4mm σ==,试求半径的测量精度R σ。
(已知弓高弦长法求半径的公式为2H S R 28H=+)2、(15分)误差椭圆描述的是待定点和已知点的精度关系,相对误差椭圆是表示待定 点之间相对位置的精度分布。
测量平差知识点
![测量平差知识点](https://img.taocdn.com/s3/m/fbe47532cdbff121dd36a32d7375a417866fc108.png)
测量平差知识点1、测量学的研究内容:测定和测设。
2、测定:将地⾯上客观存在的物体通过测量的⼿段将其测成数据或图形。
3、测设:就是将测量的⼿段标定在地⾯上。
4、⽔准⾯:静⽌的⽔⾯。
5、⼤地⽔准⾯:⽔准⾯与静⽌的平均海⽔⾯相重合的闭合⽔准⾯。
6、铅垂线:重⼒⽅向线,是测量⼯作的基准线。
7、地球椭球⾯是测量⼯作的基准⾯。
8、地物:地⾯上⼈造或天然固定的物体:地貌:地⾯⾼低起伏形态。
9、测量上常⽤坐标系:天⽂、⼤地、⾼斯平⾯直⾓、独⽴平⾯直⾓。
10、绝对⾼程:地⾯点沿铅垂线到⼤地⽔准⾯的距离。
相对⾼程:某点到任意⽔准⾯的距离。
11、⾼差:地⾯上两点之间⾼程差。
12、半径为10km范围内⾯积为320km2之内可以⽤⽔平⾯代替⽔准⾯时距离产⽣的误差可忽略不计;测距范围的100km2时,⽤平⾯代替⽔准⾯时对⾓度的影响可忽略不计;在⾼程测量中即使很短的距离也不可忽略。
13、测量⼯作的原则:a由整体到局部、由控制到碎部;b步步检核。
14、测量的基本⼯作:测⾓、量边、测⾼程。
15、测绘的基本⼯作:确定地⾯点的基本位置。
16、施⼯测量包括:建筑物施⼯放样、建筑物变形监测、⼯程竣⼯测量。
17、⾼程测量:测量地⾯上各点⾼程的⼯作。
18、⽔准测量的实质:测量地⾯上两点之间的⾼差,是利⽤⽔准仪所提供的⼀条⽔平视线来实现的。
19、⾼差计算⽅法:⾼差法、仪⾼法。
20、⽔准仪按构造可分为:微倾式、⾃动安平、数字⽔准仪,及⽔准尺和尺垫。
21、DS3构造:望远镜、⽔准器,基座。
22、⽔准仪轴线之间的⼏何条件:a圆⽔准器轴平⾏于竖轴b⼗字丝横丝垂直于竖丝c ⽔准管轴平⾏于视准轴。
23、尺垫的作⽤:减少⽔准尺下沉和标志转点。
24、⽔准尺的使⽤:粗平、瞄准、精平、读数。
24、⽔准点的分类:永久性和临时性。
25、测站的检核⽅法:双⾯尺法和双仪⾼法。
26、⽔准路线检核⽅法:闭合⽔准路线、附合⽔准路线、⽀⽔准路线、⽔准⽹。
27、误差:仪器误差,观测误差、外界条件的影响。
最新10控制网平差计算汇总
![最新10控制网平差计算汇总](https://img.taocdn.com/s3/m/83792c9367ec102de2bd89ce.png)
10控制网平差计算§9.1 条件平差原理在条件观测平差中,以n 个观测值的平差值1ˆ⨯n L作为未知数,列出v 个未知数的条件式,在min =PV V T 情况下,用条件极值的方法求出一组v 值,进而求出平差值。
9.1.1基础方程和它的解设某平差问题,有n 个带有相互独立的正态随机误差的观测值 ,其相应的权阵为 , 它是对角阵,改正数为 ,平差值为 。
当有r 个多余观测时,则平差值 应满足r 个平差值条件方程为:⎪⎪⎭⎪⎪⎬⎫=++++=++++=++++0ˆˆˆ0ˆˆˆ0ˆˆˆ221122112211οοοr L r L r L r b L b L b L b a L a L a L a n n n n n n (9-1)式中i a 、i b 、…i r (i =1、2、…n )——为条件方程的系数;0a 、0b 、…0r ——为条件方程的常项数以ii i v L L +=ˆ(i =1、2、…n )代入(9-1)得条件方程(9-2)式中a w 、b w 、……r w 为条件方程的闭合差,或称为条件方程的不符值,即(9-3)令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯n n n n r r r r b b b a a a A212121⎪⎪⎭⎪⎪⎬⎫++⋅⋅⋅++=++⋅⋅⋅++=++++=022110221102211r L r L r L r w b L b L b L b w a L a L a L a w n n n n n b n n a ⎪⎪⎭⎪⎪⎬⎫=++⋅⋅⋅++=++⋅⋅⋅++=++⋅⋅⋅++000221122112211r n n b n n a n n w v r v r v r w v b v b v b w v a v a v a ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯n n L L L L 211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯n n L L L L ˆˆˆˆ2111⨯n L n n P ⨯1⨯n V 1ˆ⨯n L 1ˆ⨯n L则(9-1)及(9-2)上两式的矩阵表达式为0ˆ0=+A L A (9-4) 0=+W AV (9-5) 上改正数条件方程式中V 的解不是唯一的解,根据最小二乘原理,在V 的无穷多组解中,取PV V T = 最小的一组解是唯一的,V 的这一组解,可用拉格朗日乘数法解出。
列立水准网条件方程式的原则和方法
![列立水准网条件方程式的原则和方法](https://img.taocdn.com/s3/m/8141698284868762caaed546.png)
b t e t e sa ls d e we n h e t b ihe Co i on q a i n . H O ndt e u to s i W t ls i f 1, i d p n e t t e o it n u 1 n e e d n , h m os sm p e t i l Le l ve
Th rn i lsa d M e h d f etn u v l t r ’ Co d to eP i cp e n t o so ti g o t S Le e wo k S Ne n ii n
Equa i n to s
C AO u n z i, Y a .h
e ut n vl ew r’a is n i o dt n o eb s f u ri n e s bi e r c ls q a o snl e n t ok dut t t c n io . nt ai o mma z gt t lh dpi i e i i e S me w h i h s S i hea s n p
高精 度水 准 网严 密平差 常采 用条件 平差 或间
接平 差 2 方法 l J 但这 2种方 法均具 有一 定 的 种 】, 之 优点 和缺 点 ,利 用条件 平差 时具 有简 明易行 ,不
hl h7 HA HB O; +h2 5 +h + . =
() 3 () 4
Unvri Y yn , fn4 3 0 , ia iesy,iag Hu a 1 nlvl e r’a js n i o dt n ima xs tel er orl inp e o n n b ta t I e nt kS dut t t cn io .t ye i n a r a o hn meo e wo me w h i th i c et
测量平差复习题
![测量平差复习题](https://img.taocdn.com/s3/m/cc9ff465998fcc22bdd10d49.png)
《测量平差》复习题第一章:绪论1、什么是观测量的真值任何观测量,客观上总存在一个能反映其真正大小的数值,这个数值称为观测量的真值。
2、什么是观测误差观测量的真值与观测值的差称为观测误差。
3、什么是观测条件仪器误差、观测者和外界环境的综合影响称为观测条件。
4、根据误差对观测结果的影响,观测误差可分为哪几类根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
5、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
6、观测条件与观测质量之间的关系是什么观测条件好,观测质量就高,观测条件差,观测质量就低。
7、怎样消除或削弱系统误差的影响一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。
8、测量平差的任务是什么⑴求观测值的最或是值(平差值);⑵评定观测值及平差值的精度。
第二章:误差理论与平差原则1、描述偶然误差分布常用的三种方法是什么⑴列表法;⑵绘图法;⑶密度函数法。
2、偶然误差具有哪些统计特性(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。
(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。
(3) 对称性:绝对值相等的正负误差出现的概率相等。
(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。
3、由偶然误差特性引出的两个测量依据是什么⑴制定测量限差的依据;⑵判断系统误差(粗差)的依据。
4、什么叫精度精度指的是误差分布的密集或离散的程度。
5、观测量的精度指标有哪些(1) 方差与中误差;(2) 极限误差;(3) 相对误差。
6、极限误差是怎样定义的在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。
通常取三倍中误差为极限误差。
当观测要求较严时,也可取两倍中误差为极限误差。
7、误差传播律是用来解决什么问题的误差传播律是用来求观测值函数的中误差。
8、应用误差传播律的实际步骤是什么(1) 根据具体测量问题,分析写出函数表达式;(2) 根据函数表达式写出真误差关系式;(3) 将真误差关系式转换成中误差关系式。
《测量误差与数据处理》复习资料
![《测量误差与数据处理》复习资料](https://img.taocdn.com/s3/m/b43abce6998fcc22bcd10d21.png)
《测量误差与数据处理》复习资料一、填空题1、若用L表示观测值,L~表示真值,则观测误差的计算方法为:。
2、测量上传统的直接测量数据为、和。
3、误差椭圆研究的是待定点相对于的精度,相对误差椭圆研究的是任意两个之间相对位置的精度。
(起始点/待定点)4、某测角网共有n个角度观测值,t个必要观测,如按条件平差进行时,此三角网可以列出个条件方程,如按间接平差进行时,此三角网可以列出个误差方程。
5、设某角度观测值的协因数为9,则其观测值的权为。
6、偶然误差的统计规律性是指:、聚中性、和抵偿性。
7、观测误差按其性质不同可以分为系统误差和偶然误差,其中误差在观测或计算过程中可以采用一定的措施消除或消弱,而误差在观测结果中必然存在。
8、观测误差产生的原因可归结为:、、,当观测条件好时,观测质量就会;反之,观测条件差时,观测成果质量就会;如果观测条件相同,观测成果的质量也就可以说是。
9、根据观测误差对观测结果影响的性质,可将误差分为和。
10、误差具有累积性,对成果的影响较大,应当设法消除或减弱的。
11、消除系统误差的方法有两种:(1);(2)。
12、为了提高最后结果的质量,同时也为了检查和及时发现观测值中有无错误存在,通常要,也就是要进行。
13、测量平差的任务是:(1);(2)。
14、由偶然误差的对称性和抵偿性可知,误差的理论平均值为。
15、若误差的理论平均值不为0,且数值较大,说明观测成果中含有和。
16、在一定观测条件下进行的一组观测,如果分布较为密集,则表示该组观测质量较也就是说,这一组观测精度较。
17、在一定观测条件下进行的一组观测,如果分布较为离散,则表示该组观测质量较也就是说,这一组观测精度较。
18、判定观测误差中粗差的标准是,即超过这个标准的误差就列入粗差,相应的观测值应予以剔除或返工重测。
19、我们把衡量单位长度的精度叫做,一般来说,当观测误差随着观测量的大小而变化时,用 来描述其精度。
20、当观测量i L 和观测量j L 之间误差相关时,描述这种相关程度的指标有 、 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有已知点 无已知点
t=待定点的个数 t=总点数-1
-
水准网中条件方程的分类
件附 合 条
件闭 合 条
已知点个数>1,两类条件都存在 已知点个数<=1,只有闭合条件大原则
独立
最简
-
水准网条件方程的列立方法
1)先列附合条件,再列闭合条件
2)附合条件按测段少的路线列立, 附合条件的个数=已知点个数-1
水准网条件平差中 条件方程式的列立
-
条件平差的数学模型
函数模型 AV+W=0
随机模型 平差准则
P D 2Q 2 1
0
0
VT PVmin
-
回顾:条件平差的解题步骤
-
举例
-
-
-
3)解法方程
-
-
-
水准网的条件方程
水准网的基准 水准网的分类
-
点的高程 有已知点 无已知点
水准网中必要观测数t的确定
3)闭合条件按小环列立,闭合条件 的个数=小环的个数
-
案例
B h3
P1
h1
h2
A
h4
P2
h6
C
h5
P3
-
-
-
案例
h1 P4
h4
P1 h2
P2 h5 h6
h3 P3
-
-
-
Thank you!
-