特征根法求数列的通项公式

合集下载

特征根法求数列的通项公式

特征根法求数列的通项公式

数列通项公式的求法 特征根法题型一、设已知数列{}n a 的项满足11,n n a b a ca d +==+,其中0,1,c c ≠≠求这个数列的通项公式。

【解题步骤】Ⅰ、将1n n a ca d +=+中的下标去掉(剃光头),即为a ca d =+,由此可以解得1d a c=–,这个“a ”的值就叫做“特征根”。

Ⅱ、在1n n a ca d +=+的左右两边同时减去“特征根”a ,即 111n n d d a ca d c c+-=+-–– 将上式变形得 ()111n n d d a c a c c +-=-–– 即 111n n da c c d a c +-=-–– 此时,你就会得到一个以c 为公比的等比数列{}111n n n d a c b d a c +⎧⎫-⎪⎪=⎨⎬-⎪⎪⎩⎭–– Ⅲ、求出数列{}n b 的通项公式,由此求出数列{}n a 的通项公式。

注意:第Ⅰ步的过程只能在草稿纸上进行,决不可写在试卷上,否则老师会扣分。

【典例1】已知数列{}n a 的项满足115,23n n a a a +==+,求这个数列的通项公式。

解、在123n n a a +=+的两边同时减去3–得1236n n a a +=++则有 1323n n a a ++=+ 又因为 1+3=8a 所以 1+2+3=82=2n n n a -因此数列{}n a 的通项公式+2=23n n a –注意在草稿纸上进行此过程由题意得23a a =+,可以解得a =-3草稿纸题型二、已知数列{}n a 满足21n n n a pa qa ++=+,其中12,a a αβ==,求数列{}n a 的通项公式。

【解题步骤】Ⅰ、将21n n n a pa qa ++=+中的下标去掉(剃光头),即2a pa q =+,为了方便把a 替换为x ,则有2=0x p x q --此时,我们把2=0x p x q --叫做数列{}n a 的“特征方程”。

特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式一:A(n+1)=pAn+q, p,q为常数.(1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p).(2)此处如果用特征根法:特征方程为:x=px+q,其根为x=q/(1-p)注意:若用特征根法,λ的系数要是-1例一:A(n+1)=2An+1 , 其中q=2,p=1,则λ=1/(1-2)= -1那么A(n+1)+1=2(An+1)二:再来个有点意思的,三项之间的关系:A(n+2)=pA(n+1)+qAn,p,q为常数(1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn],则m+k=p, mk=q(2)此处如果用特征根法:特征方程是y×y=py+q(※)注意:①m n为(※)两根。

②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜,③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。

例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An,特征方程为:y×y= - 5y+6那么,m=3,n=2,或者m=2,n=3于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1)A(n+2)-2A(n+1)=3[A(n+1)-2A] (2)所以,A(n+1)-3A(n)= - 2 ^ n (3)A(n+1)-2A(n)= - 3 ^ (n-1) (4)you see 消元消去A(n+1),就是An勒例三:【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21……如果设F(n)为该数列的第n项(n∈N+)。

那么这句话可以写成如下形式:F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)显然这是一个线性递推数列。

用特征根法与不动点法求递推数列的通项公式

用特征根法与不动点法求递推数列的通项公式

用特征根法与不动点法求递推数列的通项公式特征根法和不动点法是两种常用的方法来求解递推数列的通项公式。

本文将从这两个角度详细介绍这两种求解方法,并举例说明其应用。

一、特征根法(Characteristic Root Method)特征根法是一种基于代数方法的求解递推数列通项公式的方法,它通过寻找递推关系式的特征根来获取通项公式。

1.步骤:(1)建立递推关系式:根据问题描述,建立递推数列的递推关系式。

(2)设通项公式:假设递推数列的通项公式为Un=a^n。

(3)代入递推关系式:将通项公式Un=a^n代入递推关系式,得到方程Un=P(Un-1,Un-2,...,Un-k),其中P为k个变量的多项式函数。

(4)寻找特征根:解方程Un=0,得到特征根r1,r2,...,rk。

(5)确定通项公式:根据特征根,得到通项公式Un=C1*r1^n+C2*r2^n+...+Ck*rk^n,其中C1,C2,...,Ck为待定系数。

(6)确定待定系数:利用已知序列的初始条件,求解待定系数,得到最终的通项公式。

2.示例:求解递推数列Un=3Un-1-2Un-2,已知U0=1,U1=2(1)建立递推关系式:Un=3Un-1-2Un-2(2)设通项公式:Un=a^n。

(3)代入递推关系式:a^n=3a^(n-1)-2a^(n-2)。

(4)寻找特征根:解方程a^n=3a^(n-1)-2a^(n-2),得到特征根a=2,a=1(5)确定通项公式:Un=C1*2^n+C2*1^n。

(6)确定待定系数:利用初始条件U0=1,U1=2,得到方程组C1+C2=1,2C1+C2=2,解得C1=1,C2=0。

最终的通项公式为Un=2^n。

二、不动点法(Fixed Point Method)不动点法是一种基于迭代的求解递推数列通项公式的方法,它通过设定一个迭代公式,求解极限来获得通项公式。

1.步骤:(1)建立递推关系式:根据问题描述,建立递推数列的递推关系式。

特征根法求通项公式

特征根法求通项公式

特征方程法‎ 解递推关系‎中 通项公式一、(一阶线性递‎推式)若已知数列‎}{n a 的项满足d ca a b a n n +==+11,,其中求这个‎,1,0≠≠c c 数列的通项‎公式。

采用数学归‎纳法可以求‎解这一问题‎,然而这样做‎太过繁琐,而且在猜想‎通项公式中‎容易出错,这里提出一‎种易于掌握‎的解法——特征方程法‎:针对问题中‎的递推关系‎式作出一个‎方程称之为‎,d cx x +=特征方程;借助这个特‎征方程的根‎快速求解通‎项公式.下面以定理‎形式进行阐‎述.定理1:设上述递推‎关系式的特‎征方程的根‎为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中是以为‎}{n b c 公比的等比‎数列,即01111,x a b c b b n n -==-.证明:因为由特征‎,1,0≠c 方程得作换‎.10cdx -=元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列是以为‎}{n b c 公比的等比‎数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两‎例,说说说说明‎定理1的应‎用.例1.已知数列满‎}{n a 足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列是以为‎}{n b 31-公比的等比‎数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列满‎}{n a 足递推关系‎:,N ,)32(1∈+=+n i a a n n 其中为虚数‎i 单位。

数列特征根法原理

数列特征根法原理

数列特征根法原理数列特征根法是一种常见的数列求解方法,通过寻找数列的特征根,可以得到数列的通项公式,从而方便进行数列的求和、递推关系等操作。

本文将介绍数列特征根法的原理及其应用。

数列特征根法的原理主要基于数列的递推关系。

对于一个线性递推数列,其通项公式可以表示为:\[a_n = c_1r_1^n + c_2r_2^n + \cdots + c_kr_k^n\]其中,\(c_1, c_2, \cdots, c_k\)为常数,\(r_1, r_2, \cdots, r_k\)为数列的特征根。

特征根法的核心就是求解特征根\(r_1, r_2, \cdots, r_k\),进而得到数列的通项公式。

对于线性递推数列,其递推关系可以表示为:\[a_n = p_1a_{n-1} + p_2a_{n-2} + \cdots + p_ka_{n-k}\]其中,\(p_1, p_2, \cdots, p_k\)为常数。

为了求解特征根,可以将递推关系转化为特征方程:\[r^k p_1r^{k-1} p_2r^{k-2} \cdots p_{k-1}r p_k = 0\]解特征方程得到的根就是数列的特征根。

接下来,我们以一个具体的例子来说明数列特征根法的应用。

假设有一个线性递推数列,其递推关系为:\[a_n = 3a_{n-1} 2a_{n-2}\]我们可以将其转化为特征方程:\[r^2 3r + 2 = 0\]解特征方程得到特征根为\(r_1 = 2, r_2 = 1\),因此数列的通项公式为:\[a_n = c_1 \cdot 2^n + c_2 \cdot 1^n\]通过给定的初始条件,我们可以求解出常数\(c_1, c_2\),进而得到数列的具体形式。

除了求解数列的通项公式,数列特征根法还可以应用于求解数列的前n项和。

通过数列的通项公式,我们可以方便地计算出前n项和的表达式,从而简化求和运算。

此外,数列特征根法还可以应用于解决递推关系的问题。

特征根法求数列通项推导

特征根法求数列通项推导

特征根法求数列通项推导
特征根法是一种求解线性递推数列通项的方法。

该方法先求出数列的递推关系式,然后通过特征根分解的方式得到数列的通项公式。

具体步骤如下:
1. 求出数列的递推关系式:
设数列为{an},递推式为an=ra(n-1)+sa(n-2),其中r和s为常数。

2. 将递推式改写成矩阵形式:
设矩阵A为[ r s 1 0 ],列向量Xn为[an an-1 an-2 1],则有Xn=AXn-1。

3. 求出矩阵A的特征多项式:
特征多项式为det(A-λE),其中E为单位矩阵,λ为特征值。

4. 求出矩阵A的特征值:
解特征多项式得到矩阵A的特征值λ1、λ2、λ3、λ4。

5. 求出矩阵A的特征向量:
将λ1、λ2、λ3、λ4带入(A-λE)X=0中,解出矩阵A的特征向量。

6. 将矩阵A分解成特征向量的形式:
将特征向量组合成矩阵P,将特征值组合成对角矩阵D,得到
A=PDP^-1。

7. 求出数列的通项公式:
将A=PDP^-1带入Xn=AXn-1中,得到数列的通项公式为an=c1λ
1^n+c2λ2^n+c3λ3^n+c4λ4^n,其中c1、c2、c3、c4为常数,根据初始条件可求出。

数列特征根和不动点法解题原理

数列特征根和不动点法解题原理

数列特征根和不动点法解题原理一、数列特征根法。

1. 原理。

- 对于二阶线性递推数列a_n + 2=pa_n+1+qa_n(p,q为常数,n∈ N^*),其特征方程为x^2=px + q。

- 设特征方程的两个根为x_1,x_2。

- 当x_1≠ x_2时,数列a_n的通项公式为a_n=C_1x_1^n+C_2x_2^n,其中C_1,C_2由初始条件a_1,a_2确定。

- 当x_1 = x_2时,数列a_n的通项公式为a_n=(C_1+C_2n)x_1^n,同样C_1,C_2由初始条件确定。

2. 例题。

- 例1:已知数列{a_n}满足a_n + 2=3a_n+1-2a_n,且a_1=1,a_2=3,求数列{a_n}的通项公式。

- 解:特征方程为x^2=3x - 2,即x^2-3x + 2=0。

- 分解因式得(x - 1)(x - 2)=0,解得x_1=1,x_2=2。

- 所以a_n=C_1×1^n+C_2×2^n=C_1+C_2×2^n。

- 由a_1=1,a_2=3可得C_1+2C_2=1 C_1+4C_2=3。

- 用第二个方程减去第一个方程得2C_2=2,解得C_2 = 1。

- 把C_2=1代入C_1+2C_2=1得C_1=-1。

- 所以a_n=-1 + 2^n。

- 例2:已知数列{a_n}满足a_n + 2=2a_n+1-a_n,a_1=1,a_2=2,求a_n。

- 解:特征方程为x^2=2x - 1,即x^2-2x + 1 = 0。

- 解得x_1=x_2=1。

- 所以a_n=(C_1+C_2n)×1^n=C_1+C_2n。

- 由a_1=1,a_2=2可得C_1+C_2=1 C_1+2C_2=2。

- 用第二个方程减去第一个方程得C_2=1。

- 把C_2=1代入C_1+C_2=1得C_1=0。

- 所以a_n=n。

二、数列不动点法。

1. 原理。

- 对于一阶分式递推数列a_n + 1=frac{pa_n+q}{ra_n+s}(p,q,r,s为常数,r≠0),令x=(px + q)/(rx + s),这个方程称为不动点方程。

特征方程法求递推数列的通项介绍

特征方程法求递推数列的通项介绍

征方程法求递推数列的通项介绍1、引例:已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a 解:11131323232n n n n a a a a ++⎛⎫=--⇔+=-+ ⎪⎝⎭ 得13111()223n n a -=-+- 这里的32-恰为方程0132,.32x x x =--=-的根 则称方程123x x =--为特征方程 一般地:定理1:在数列{}n a 中,已知1a ,且2n ≥时,1n n a pa q -=+(,p q 是常数),这时数列{}n a 的通项公式为:11()n n a a x p x -=-+2、定理2:在数列{}n a 中,已知1a 与2a ,且21n n n a pa qa ++=+(,p q 是常数),则称2x px q =+是数列{}n a 的二阶特征方程,其根1x ,2x 叫做特征方程的特征根。

(1)当12x x ≠时,有111122n n n a c x c x --=+;(2)当12x x =时,有()1121n n a c c n x -=+;其中12,c c 由12,a a 代入n a 后确定。

例2. (1)已知数列{n a }满足1a =3,2a =6,2n a +=41n a +-4n a 求n a解:作特征方程x 2=4x-4由特征根方程得122x x ==,故设n a =(1c +2c ) 12n -, 其中3=1c +2c ,6=(1c +22c ).2,所以1c =3, 2c =0,则n a =3.12n -(2)已知数列{n a }满足1a =3,2a =6,2n a +=21n a ++3n a 求n a解:作特征方程x 2=2x+3由特征根方程得α=3, β=-1所以n a =1c 13n -+2c 1(1)n --其中3=1c +2c , 6=31c -2c得1c =94, 2c =34所以n a =14.13n ++341(1)n --例 3. 已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。

「学习笔记」特征根法求解数列问题

「学习笔记」特征根法求解数列问题

「学习笔记」特征根法求解数列问题听说特征法是数学中解常系数线性微分⽅程的⼀种通⽤⽅法。

⽽这⾥简单谈谈特征根法的运⽤:⽤数列的递推公式求通项公式,⽤通项公式求递推公式特征根⽅法的证明需要线性代数相关知识,留坑。

斐波那契数列的公式推导:定义Fibonacci数列:f(0)=0,f(1)=1,f(n)=f(n−1)+f(n−2),n≥2考虑这个递推式:f(n)=f(n−1)+f(n−2),找到⼀个⼀元⼆次⽅程与之对应(⼆次项对应f(n),⼀次项对应f(n−1),常数项对应f(n−2))x2=x+1这个⽅程称为特征⽅程。

解出来特征根:x1=1+√52,x2=1−√52则f(n)=c1x n1+c2x n2。

把f(0)=0,f(1)=1代⼊,得到了:c1+c2=0,c1x1+c2x2=1解得:c1=1√5,c2=−1√5,整理后得到:f(n)=1+√52n−1−√52n√5⼀般递推式的解法形式化地,考虑形如f(n+2)=pf(n+1)+qf(n)的递推式⼦我们把上⾯的式⼦换成:f(n+2)−(x1+x2)f(n+1)+(x1x2)f(n)=0显然x1+x2=p,x1x2=−q。

所以x1,x2是x2−px−q=0的两个根f(n)就可以表⽰成C1x n1+C2x n2,C1,C2是常数没有实数解怎么办?⽤复数。

反求递推式某些时候通项公式可能不好计算,我们只能求出递推式然后矩阵快速幂求看⼀个例⼦:f(n)=(√a+b)n+(√a−b)n2令x1=√a+b,x2=√a−b特征根⽅程即x2−2bx+(b2−a)=0(韦达定理)所以f(n)=2bf(n−1)−(b2−a)f(n−2)()() Processing math: 100%。

特征根法求数列通项原理

特征根法求数列通项原理

特征根法求数列通项原理
特征根法求数列通项是一种解线性递推数列的方法,其原理如下:
1.对于递推数列$a_n$,可以写成线性递推方程$a_n=a_{n-1}+b_{n-1}$的形式,其中$b_n$是已知数列。

2.将递推方程转化为特征方程,令$a_n=r^n$,带入递推方程,得到:$r^n=r^{n-1}+b_{n-1}$。

3. 令特征方程的根为 $r_i$,则 $a_n$ 的通项公式为
$a_n=\sum_{i=1}^k C_ir_i^n$,其中 $C_i$ 是由初始条件求出的常数。

4.当特征方程的根为实数时,通项公式中的系数$C_i$可以通过初始
条件和根的值求解。

当特征方程的根为复数时,通项公式中的系数
$C_i$可以通过欧拉公式求解。

5.对于非齐次递推数列,通项公式需要加上一个特解,其形式可以根
据非齐次项的不同而不同。

特征根法求数列的通项公式

特征根法求数列的通项公式

特征根法求数列的通项公式类型一、n n n qa pa a +=++12 对于由递推公式n n n qa pa a+=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。

若21,x x 是特征方程的两个根.(1)当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);(2)当21x x=时,数列{}n a 的通项为12)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a决定(即把2121,,,x x a a 和2,1=n ,代入12)(-+=n n x Bn A a ,得到关于A 、B 的方程组).例1. 数列{}n a 满足*12212,3,32()n n n aa a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232xx =-,解得121,2x x ==,令n n n B A a 21⋅+⋅=,由⎩⎨⎧=+==+=342221B A a B A a ,得⎪⎩⎪⎨⎧==211B A , 112n na-∴=+.例2.已知数列{}na 满足*12211,2,44()n n n a a a a a n N ++===-∈,求{}n a 的通项n a .解:其特征方程为2441xx =-,解得1212x x ==,令n nnB A a)21)((+=,由⎪⎪⎩⎪⎪⎨⎧=+==+=241)2(121)(21B A a B A a ,得⎩⎨⎧=-=64B A , 1322n n n a --∴=.类型二、 hra qpa a n n n ++=+1如果数列}{na 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa an n n ++=+1, (其中p 、q 、r 、h 均为常数,且r h ar qr ph -≠≠≠1,0,),那么,其特征方程为hrx qpx x ++=,变形为0)(2=--+q x p h rx(1)若方程有二异根1x 、2x ,则可令212111x a x a c x a x an nn n --⋅=--++(其中c 是待定常数),代入12,a a 的值可求得c 值.这样数列12nn ax a x ⎧⎫-⎨⎬-⎩⎭是首项为2111x a x a --,公比为c 的等比数列,于是可求得na .(2)若方程有二重根0x ,则c x a x a n n +-=-+00111(其中c 是待定常数),代入12,a a 的值可求得c 值.这样数列01n a x ⎧⎫⎨⎬-⎩⎭是首项为011x a -,公差为c 的等差数列,于是可求得na .例3. 已知数列{}na 满足11122,(2)21n n n a aa n a --+==≥+,求数列{}n a 的通项n a . 解:其特征方程为221x x x +=+,化简得2220x -=,解得121,1x x ==-,令111111n n n n a a c a a ++--=⋅++ 由12,a=得245a =,可得13c =-, ∴数列11n n a a ⎧⎫-⎨⎬+⎩⎭是以111113a a -=+为首项,以13-为公比的等比数列,1111133n n n a a --⎛⎫∴=⋅- ⎪+⎝⎭,3(1)3(1)n nn nna --∴=+-.例4.已知数列{}na 满足*11212,()46n n n a aa n N a +-==∈+,求数列{}n a 的通项n a . 解:其特征方程为2146x x x -=+,即24410xx ++=,解得1212x x ==-,令1111122n n c a a +=+++由12,a=得2314a =,求得1c =, ∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+-⋅=-+, 135106n n a n -∴=-.例5(2005,重庆,文,22)数列).1(0521681}{111≥=++-=++n a a a a aa n n n n n且满足记).1(211≥-=n a b n n(Ⅰ)求b 1、b 2、b 3、b 4的值;(Ⅱ)求数列}{nb 的通项公式及数列}{nn b a 的前n 项和.nS解:由已知,得nn n a a a816521-+=+,其特征方程为xx x 81652-+=解之得,211=x 或452=x∴n n n a a a 816)21(6211--=-+,nn n a a a 816)45(12451--=-+∴452121452111--⋅=--++n n n n a a a a , ∴n n n n a a a a 24)21(45214521111-=⋅--=---∴42521++=-nn n a )1(34231≥+⋅=n b n n ,121211+=-=n n n n n b b a a b 得由 n n n b a b a b a S +++= 2211故121()2n b b b n=++++ 1(12)53123n n -=+-1(251)3n n =+-.。

(完整版)特征根法求数列通项

(完整版)特征根法求数列通项

2i2 4特征根法求解数列递推公式类型一、形如a n 2 pa * i qa n (p,q 是常数)的数列(二阶线性递推式)形如a i m i , a 2 m 2,a * 2 pa * 1 qa *( p,q 是常数)的二阶递推数列都可用特征根法求得通项a n ,其特征方程为x 2 px q …①(1) 若①有二异根,,则可令a n C i n C 2 n (C i ,C 2是待定常数) (2) 若①有二重根,则可令a n (C i nC 2) n (C i ,C 2是待定常数)再利用a i m i ,a 2 m 2,可求得G ©,进而求得a .已知数列{a n }满足a i2,a 2 3, a n 2 3a n i 2a n (n N ),求数列{a n }的通项a n 解: 其特征方程为x 23x 2,解得 X i i,X 2 2,令 a n C i iC 2 2n ,a i C i 2C 2 2a 2 C 4C 2 3 c ,得 C 2n ia n i 2例2已知数列{a n }满足a i i,a 22,4a n 24a n i a n (n求数列{a n }的通项a n 解:其特征方程为4x 24x解得 X iX 2a i ( C i C 2)Cinc 2a 2 (C i 2C 2),得 &C 2a n3n 2 * i5133类型二、形如a n 1 A?」的数列 Ca n D (分式递推式)对于数列a n 1Aa n B,a 1 m,nCa n D N (代 B,C,D 是常数且 C 0,AD BC 0)其特征方程为 Ax B X,变形为 Cx DCx 2 (DA)x B 0…② (1)若②有二异根,,则可令旦口a n 1a n c— a n(其中c 是待定常数)代入a 1, a 2的值可求得c 值。

即数列aa n是首项为aa 1,公比为c 的等比数列,于是这样可求得a(2)若②有二重根,则可令 —1-—— c (其中c 是待定常数)a n 1a n代入a 1, a 2的值可求得c 值。

用特征根方程法求数列通项

用特征根方程法求数列通项
—代入特征方程可整理得
r
0.③
0
ph
时,
qr,这与已知条件
由②式得bn0,n
ph
h
0,a1-),那么,可作特征方
r
,n
N;
P r
2Cn
q 0.
Cn
N.特别地,当存在n0N,使
n N,
(d
qr矛盾.故特征方程的根
卫于是
r
N,故andn
,n N.
例2:在数列{an}中,ai
3,a
(参考答案:
i22n i)考虑一个简单的线性递推问题
设已知数列{an}的项满足
a
其中c0,c1,求这个数列的通项公式.
采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学
生掌握的解法一一特征方程法:针对问题中的递推关系式作出一个方程
4(
例3.已知数列
{aj满足:
对于
an
(5)
2 (
,n
N.
N
13a
1
(0若a15,求an;
(2)若a16,求an;
13x
解:作特征方程x
25
2
变形得x
10x
250,
特征方程有两个相同的特征根
x
3'
5n
43,,
(1)^a15, q x.
对于n
N,都有an
x
5;(2)
•-an
,n N.
n
7
一、数列的一阶特征方程(an
(2)当特征方程有两个相异的根
(称作特征根)
时,若a1
,则an
N,
a1
(n

特征方程求数列通项原理

特征方程求数列通项原理

特征方程求数列通项原理
特征根法求数列通项原理是数列{a(n)},设递推公式为
a(n+2)=p*a(n+1)+q*a(n),则其特征方程为x^2-px-q=0。

若方程有两相异根A、B,则a(n)=c*A^n+d*B^n,若方程有两等根A=B,则
a(n)=(c+nd)*A^n。

按一定次序排列的一列数称为数列,而将数列{an}的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。

这正如函数的解析式一样,通过代入具体的n值便可求知相应an项的值。

数列(sequence of number)是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。

数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

著名的数列有斐波那契数列,三角函数,卡特兰数,杨辉三角等。

1。

(完整版)特征根法求数列通项

(完整版)特征根法求数列通项

特征根法求解数列递推公式类型一、形如21(,n n n a pa qa p q ++=+是常数)的数列 (二阶线性递推式) 形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…①(1)若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数)(2)若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a例1 已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例2已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特征方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭, 由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=类型二、形如1n n n Aa B a Ca D++=+的数列 (分式递推式) 对于数列1n n n Aa B a Ca D ++=+,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为Ax B x Cx D+=+,变形为2()0Cx D A x B +--=…② (1) 若②有二异根,αβ,则可令11n n n n a a c a a ααββ++--=⋅--(其中c 是待定常数) 代入12,a a 的值可求得c 值。

特征根求通项

特征根求通项

特征根法求通项1、设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

作出一个方程,d cx x +=则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +=≠=时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.例19.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n2、对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。

若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。

例20:已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式。

特征根法求解递推数列通项

特征根法求解递推数列通项

a2
− ba1 b2
的等差数列.

此可求得数列 an 的通项为
an = a1bn−1 + (a2 − ba1)(n − 1)bn−2.
3 特征根方法
对上面待定系数法的过程进行总结,即可得到所谓的特 征根方法.
具体做法如下: 对于数列 an+1 = pan + qan−1,称 x2 = px + q 是数列对应
an = (α + βn)2n 分别令 n = 1, 2, 可得
a1 = 2(α + β) = 2 a2 = 4(α + 2β) = 6 可求得 α = β = 1. 综上即得 2
an = (1 + n)2n−1.
7
特征根法求解递推数列通项
孙老师
May 4, 2020
目录
1 一阶递推问题
2
2 二阶递推问题
3
3 特征根方法
4
4 应用举例
5
1
1 一阶递推问题
所谓“一阶线性递推数列”非常常见,是指下面的这种数
列:若数列 {an} 满足 an+1 = pan + q,其中 p, q 是给定的实数, 首项为 a1. 如何求数列的通项公式?
5
因此 an + 1 = 2(an−1 + 1), 即数列 an + 1 是首项为 2,公比为 2 的等比数列. 所以易求得 an = 2n − 1.
例 4.2 已知斐波那契数列 Fn 的前两项 F1 = F2 = 1, 且满足 Fn+1 = Fn + Fn−1. 求斐波那契数列的通项公式.
解. 利用特征值方法求解. 斐波那契数列对应的特征方程为

特征根法求数列的通项公式

特征根法求数列的通项公式

特征根法求数列的通项公式求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通项公式的一种有效途径.1.已知数列{}n a 满足1n n n a a ba c a d+⋅+=⋅+......①其中*0,,c ad bc n N ≠≠∈.定义1:方程ax bx cx d+=+为①的特征方程,该方程的根称为数列{}n a 的特征根,记为,αβ.定理1:若1,a αβ≠且αβ≠,则11n n n n a a a c a a c a αααβββ++−−−=⋅−−−.证明:2()0,ax b a d bx cx d a x b cx d c cαβαβ+−=⇒+−−=⇒+==−+(),d a c b cαβαβ∴=−+=−11()()()()()()()()n n n n n n nn n n n n aa ba ca d aab ca d ac a bd aa b a aa b ca d a c a b d ca d αααααβββββ+++−−++−+−+−∴===+−+−+−+−−+()[()]()()()[()]()()n n n n a c a c a c c a c a a c a c a c a c c a c a a c ααβαβααααβαβαβββββ−+−−−−−−−==−+−−−−−−−n n a a c a c a ααββ−−=⋅−−证毕定理2:若1a αβ=≠且0a d +≠,则1121n n c a a d a αα+=+−+−.证明:22,d a c b cαα=−=−∵111()()()n n n n n n n n ca d ca daa b a aa b ca d a c a b dca dααααα+++∴===+−+−+−+−−+22222()(2)()()()2n n n n n nca a c ca a c ca a ca d a c a c a c a c a a αααααααααα+−+−+−===+−−+−−−−2242(2)2()()()()()()()()n n n n n n ca a c ca a c d c a a d a d a a d a a d a αααααα+−+−+−++===+−+−+−21n c a d a α=++−证毕例1.(09·江西·理·22)各项均为正数的数列{}n a ,12,a a a b ==,且对满足m n p q +=+的正数,,,m n p q 都有(1)(1)(1)(1)p q m nm n p q a a a a a a a a ++=++++.(1)当14,25a b ==时,求通项n a ;(2)略.解:由(1)(1)(1)(1)p q m n m n p q a a a a a a a a ++=++++得121121(1)(1)(1)(1)n n n n a a a a a a a a −−++=++++将14,25a b ==代入上式化简得11212n n n a a a −−+=+考虑特征方程212x x x +=+得特征根1x =±所以11111121112112113112n n n n n n n n a a a a a a a a −−−−−−+−−+−==⋅+++++所以数列11n n a a ⎧⎫−⎨⎬+⎩⎭是以111113a a −=−+为首项,公比为13的等比数列故11111()()1333n nn n a a −−=−⋅=−+即3131n n na −=+例2.已知数列{}n a 满足*1112,2,n n a a n N a −==−∈,求通项n a .解:考虑特征方程12x x=−得特征根1x =111111111111111(2)11n n n n n n a a a a a a −−−−−====+−−−−−−所以数列11n a ⎧⎫⎨⎬−⎩⎭是以1111a =−为首项,公差为1的等差数列故11n n a =−即1n n a n+=例3.已知数列{}n a 满足11122,(2)21n n n a a a n a −−+==≥+,求数列{}n a 的通项na 解:其特征方程为221x x x +=+,化简得2220x −=,解得121,1x x ==−,令111111n nn n a a c a a ++−−=⋅++由12,a =得245a =,可得13c =−,∴数列11n n a a ⎧⎫−⎨⎬+⎩⎭是以111113a a −=+为首项,以13−为公比的等比数列,1111133n n n a a −−⎛⎞∴=⋅−⎜⎟+⎝⎠,3(1)3(1)n nn n n a −−∴=+−例4.已知数列{}n a 满足*11212,()46n n n a a a n N a +−==∈+,求数列{}n a 的通项na 解:其特征方程为2146x x x −=+,即24410x x ++=,解得1212x x ==−,令1111122n n ca a +=+++由12,a =得2314a =,求得1c =,∴数列112n a ⎧⎫⎪⎪⎨⎬⎪⎪+⎩⎭是以112152a =+为首项,以1为公差的等差数列,123(1)11552n n n a ∴=+−⋅=−+,135106n n a n −∴=−2.已知数列{}n a 满足2112n n n a c a c a ++=+②其中12,c c 为常数,且*20,c n N ≠∈.定义2:方程212x c x c =+为②的特征方程,该方程的根称为数列{}n a 的特征根,记为12,λλ.定理3:若12λλ≠,则1122n n n a b b λλ=+,其中12,b b 常数,且满足111222221122a b b a b b λλλλ=+⎧⎨=+⎩.定理4:若12λλλ==,则12()n n a b b n λ=+,其中12,b b 常数,且满足1122212()(2)a b b a b b λλ=+⎧⎨=+⎩.设)(11−+−=−n n n n ta a s ta a ,则11)(−+−+=n n n sta a t s a ,令⎩⎨⎧−==+qst p t s (*)(1)若方程组(*)有两组不同的解),(),,(2211t s t s ,则)(11111−+−=−n n n n a t a s a t a ,)(12221−+−=−n n n n a t a s a t a ,由等比数列性质可得1111211)(−+−=−n n n s a t a a t a ,1212221)(1−+−=−n n n s a t a a t a ,,21t t ≠∵由上两式消去1+n a 可得()()()n n n s t t s a t a s t t s a t a a 21221221121112..−−−−−=.(2)若方程组(*)有两组相等的解⎩⎨⎧==2121t t s s ,易证此时11t s =,则()()112112112111111)(a t a s a t a s a t a s a t a n n n n n n n −==−=−=−−−−−+…,211121111s a t a s a s a nn n n −=−∴++,即⎭⎬⎫⎩⎨⎧n n s a 1是等差数列,由等差数列性质可知()21112111.1s a t a n s a s a n n −−+=,所以n n s n s a t a s a t a s a a 1211122111211.⎥⎥⎦⎤⎢⎢⎣⎡−+⎟⎟⎠⎞⎜⎜⎝⎛−−=.例5.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===−∈,求数列{}n a 的通项n a 解:其特征方程为232x x =−,解得121,2x x ==,令1212n n n a c c =⋅+⋅,由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩,112n n a −∴=+例6.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===−∈,求数列{}n a 的通项na 解:其特征方程为2441x x =−,解得1212x x ==,令()1212nn a c nc ⎛⎞=+⎜⎟⎝⎠,由1122121()121(2)24a c c a c c ⎧=+×=⎪⎪⎨⎪=+×=⎪⎩,得1246c c =−⎧⎨=⎩,1322n n n a −−∴=例7.已知数列{}n a 满足12212,8,44n n n a a a a a ++===−,求通项n a .解:考虑特征方程244x x =−得特征根2λ=则12()2n n a b b n =+其中1211222()2024(2)81nn b b b a n b b b +==⎧⎧⇒⇒=⎨⎨+==⎩⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

an
⎩ an

1⎫ ⎬
是以
+ 1⎭
a1 a1
−1= 1 为首项,以 − +1 3
1 为公比的等比数列,∴ an
3
an
−1 +1
=
1 3

⎛ ⎜⎝

1 3
⎞ ⎟⎠
n−1


an
=
3n 3nห้องสมุดไป่ตู้
− (−1)n + (−1)n
例 4.
已知数列{an }满足 a1
= 2,an+1
=
2an 4an
− +
1 6
(n
can + d
=
can + a − 2α c (a −α c)an − (α 2c + aα
− 2α 2 c)
=
can + a −2α c (a − α c)( an − α )
=
can + a −2α c
a
+ 2
d
(an

α)
= 2can + 2a − 4αc = 2can + (a − 2αc ) + d = 2c (an − α )+ (a + d )
将a
=
1 2
,b
=
4 5
代入上式化简得
an
=
2an−1 +1 an−1 + 2
考虑特征方程 x = 2x +1 得特征根 x = ±1 x+2
2an−1 +1 −1
所以
an an
−1 = +1
an−1 + 2 2an−1 +1
+
1
=
1⋅ 3
an−1 an−1
−1 +1
an−1 + 2
所以数列
⎧ ⎨
an
2
.
设 an+1 − tan = s(an − tan−1 ) ,则 an+1 = (s + t)an − stan−1 ,

⎧ ⎨ ⎩
s+t st =
=p −q
(*)
(1) 若方程组(*)有两组不同的解 (s1 , t1 ), (s2 , t 2 ) ,
则 an+1 − t1 an = s1 (an − t1 an −1 ) ,
为①的特征方程,该方程的根称为数列 { an}
的特征根,记为
α
,
β
.
定理 1:若 α , β
≠ a1 且 α

β
,则
an+1 −α an+1 − β
=
a − cα a − cβ

an an
−α −β
.
证明: x = ax + b ⇒ cx2 + (d − a) x − b = 0 ⇒ α + β = a − d ,αβ = −b
an+1 − t 2 an = s2 (an − t2 an−1 ) ,
由等比数列性质可得 an+1 − t1an = (a2 − t1a1 )s1 n−1, an+1 − t 2an = (a2 − t 21 a1 )s2 n −1 ,
∵ t1 ≠ t 2 ,由上两式消去 an+1 可得
3
an
=
1
am + an
=
ap + aq
.
(1 + am )(1 + an ) (1+ ap )(1+ aq )
(1)当
a
=
1 2
,b
=
4 5
时,求通项
an
;(2)略.
解:由 am + an
=
ap + aq
得 a1 + an
=
a2 + an−1
(1 + am )(1 + an ) (1+ ap )(1+ aq ) (1 + a1 )(1 + an ) (1+ a2 )(1 + an−1 )
=
2,an
=
an−1 + 2 (n 2an−1 +1

2),求数列 {an }的通项
an
解:其特征方程为
x
=
x+2 2x +1
,化简得 2x2
−2
=
0
,解得
x1
= 1,
x2
=
−1,令
an+1 an+1
−1 +1
=
c

an an
−1 +1
2
由 a1
=
2,得
a2
=
4 ,可得 5
c
=

1 3

∴数列
⎧ ⎨
1 =
1
= 1 = an −1 =1 + 1
an −1
1 (2− ) −1
1 1−
an−1 −1
an−1 −1
an−1
an−1
⎧ 所以数列 ⎨
1
⎫ ⎬ 是以
1
= 1为首项,公差为 1 的等差数列
⎩ an −1⎭
a −1 1
故 1 =n an −1

an
=
n +1 n
例 3.
已知数列{an }满足
a1
=
4x
−1 ,解得
x1
=
x2
=
1 2
,令
an
=
( c1
+
nc
2
)
⎛ ⎜⎝
1 2
n
⎞ ⎟



⎧ ⎪⎪
a1

⎪ ⎪⎩
a2
1 = (c1 + c2 ) × 2 = (c1 + 2c2 ) ×
=1 1= 4
2
,得
⎧c1 ⎨ ⎩c2
= =
−4

6
3n − 2 ∴an = 2n−1
{ } 例 7. 已知数列 an 满足 a1 = 2,a2 = 8,an+2 = 4an+1 − 4an ,求通项 an .
特征根法求数列的通项公式
求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通项公式的一种有效途径.
1.已知数列{an}
满足 an +1
=
a ⋅ an + b c ⋅ an + d
......①
其中 c ≠ 0,ad ≠ bc,n ∈ N *.
定义
1: 方程
x
=
ax + b cx + d
− t1an−2)
=…
=
s n−1 1
a2
− t1a1


a n+1 s n+1
1

an s1n
=
a2
− t1 a1 s12
,即
⎧ ⎨ ⎩
an s1n
⎫ ⎬ ⎭
是等差数列,
( ) 由等差数列性质可知 an
s1n
= a1 s1
+
n
−1
.
a2
− s1
t1 a1
2

所以 a n
=
⎡⎛
⎢ ⎢⎣
⎜ ⎜ ⎝
a1 s1

N
*
)
,求数列
{an
}的通项
a
n
解:其特征方程为 x=
2x−1 ,即 4x2 4x + 6
+
4x
+1=
0
,解得
x1
=
x2
=

1 2
,令
1 an+1 +
1 2
=
an
1 +
1 2
+
c
由 a1
=
2,得
a2
=
3 14
,求得
c
=
1,
⎧⎫
∴数列


⎪ ⎩
an
1 +

1
⎬ ⎪
2⎭
是以
1 a1 +
1 2
=
2 5
为首项,以 1为公差的等差数列,∴ an
1 +
1 2
=
2 5
+ (n
−1) ⋅1
=n
3 −
5

13 − 5n ∴an = 10n − 6
{ } 2.已知数列 an 满足 an +2 = c1an +1 + c2an ② 其中 c1 , c2 为常数,且 c2 ≠ 0, n ∈ N * . 定义 2:方程 x2 = c1x + c2 为②的特征方程,该方程的根称为数列 {an} 的特征根,记为 λ1, λ2 .

⎧ a1
⎨ ⎩
a2
= c1 + 2c2 = c1 + 4c2
=2
,得
=3
⎧⎪c1 ⎨⎪⎩c2
=1 =1
2

∴an =1 + 2n−1
例 6. 已知数列{an }满足 a1 =1,a2 = 2, 4an+2 = 4an+1 − an (n ∈ N * ) ,求数列 {an }的通项 an
相关文档
最新文档