周期为2π的周期函数展开成傅里叶级数
第三讲 收敛定理
数学分析第十五章傅里叶级数收敛定理第三讲若以数学分析第十五章傅里叶级数注尽管傅里叶级数的收敛性质不如幂级数, 函数的要求却比幂级数要低得多, 所以应用更广. 而且即将看到函数周期性的要求也可以去掉.概念解释1. 若f 的导函数在[,]a b 上连续, 则称f 在[a ,b ]上光滑.2. 如果定义在[,]a b 上函数f 至多有有限个第一类间断点, 在且连续, 极限存在, 但它对其导函数在[a , b ]上除了至多有限个点外都存f 的左、右并且在这有限个点上导函数[,]a b 上按段光滑.则称f 在数学分析第十五章傅里叶级数f '[,]a b (iii) 在补充定义在上那些至多有限个不存在f 'f '导数的点上的值后( 仍记为), 在[a ,b ]上可积.从几何图形上讲, 在区间[a ,b ] 上按段光滑函数, 多有有限个第一类间断点(图15-1).光滑弧段所组成,151-图O x ()y f x =1x 2x 3x 4x b a y 是由有限个它至若数学分析第十五章傅里叶级数表达式,(),(π,π],ˆ()(2π),((21)π,(21)π],1,2,.f x x f x f x k x k k k ∈-⎧=⎨-∈-+⎩=±± 解为它是定义在整个数轴上以2π为周期的函数,但我们认为它是周期函数. 注2在具体讨论函数的傅里叶级数展开式时, 经常只(π,π]-[π,π)-给出函数在(或)上的解析式, (π,π]-上的解析如f 为但应理即函数本身不一定是定义在整个数轴上的周期函数,那么周期延拓后的函数为数学分析第十五章傅里叶级数ˆ152()y fx -=图实线与虚线的全体表示O x()y f x =π3π-π-3π5πy如图15-2所示.ˆf的傅里叶级数.因此当笼统地说函数的傅里叶级数时就是指函数。
十五章傅里叶级数
2
2
2
当只给出一种周期旳体现式时,傅里叶级数在两端点旳值
可用 上述公式求之.
例1:设
x, f (x) 0,
0 x x 0
求f
旳傅里叶级数展开式.
解: 函数f 及其周期延拓后的图象如图所示,
y
3 2 O 2 3 4
x
显然 f 是按段光滑旳,故由收敛定理,它能够展开成傅里叶级数。
因为
第十五章 傅里叶级数
§15.1 傅里叶级数
一、 三角级数 • 正交函数系
二、以 2 为周期旳函数旳傅里叶级数
三、收敛定理
§15.1 傅里叶级数
一、三角函数 正交函数系
在科学试验与工程技术旳某些现象中,常会遇到一种周期运动,最简
单旳周期运动,可用正弦函数 A sin(x ) 来描写。
所体现旳周期运动也称为简谐运动,其中 A 为振幅, 为初相角,
f (x) cos kxdx
a0 cos kxdx 2
(an cos nx cos kx bn sin nx cos kx)dx n1
cos2 kxdx
f (x) cos kxdx ak
ak
1
f (x) cos kxdx
(k 1, 2, )
同理可得:
bk
1
f (x) sin kxdx
f 的傅里叶级数收敛于f 在点x的左,右极限的算术平均值,即
f
(x
0) 2
f
(x 0)
a0 2
(an
n1
cos nx bn
sin nx)
其中an ,bn为f的傅里叶系数。
推论:
若f 是以2为周期的连续函数,且在[, ]上按段光滑,则 f 的
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-傅里叶级数(圣才出品)
理 13.14(逐项求导)知
g(x),所以级数
的和函数 S(x)
有连续的导函数 g(x).
§2 以 2l 为周期的函数的展开式
1.求下列周期函数的傅里叶级数展开式: (周期π); (周期 1);
解:(1)将 f(x)进行周期延拓,又因 f(x)在(0,2π)内按段光滑,故由收敛定 理,f(x)可展开为傅里叶级数,
所以在区间(0,2π)内,有
7 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
(2)在[-π,π]上 所以
所以在区间(-π,π)内 在 x=π或 x=-π时,上式右端收敛于 所以在闭区间[-π,π]上
(3)
8 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台所以,在(0,2π源自内所以,在(-π,π)内 故
9 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
故 所以,在(-π,π)内
故 从而在区间(-π,π)内
及其周期延拓的图像如图 15-3 所示,
显见 因为
图 15-3 在(-π,π)内按段光滑,由收敛定理知它可以展开成傅里叶级数,
所以在(-π,π)内, (ii)函数 f(x)及其周期延拓的图像如图 15-4 所示,
2 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
4 / 28
圣才电子书 十万种考研考证电子书、题库视频学习平台
所以
时
当 x=0 时,上式的右端收敛到 0.
(1)当
时,由于
,因此
(2)因为 所以
(3)
时,因
,故
所以
4.设函数 f(x)满足条件:f(x+π)=-f(x),问此函数在(-π,π)上的傅里叶 级数具有什么特性.
3.3-周期序列的离散傅立叶级数
X 2 ( k ) = DFS [ x 2 ( n )]
线性
~ ~ ~ ~ DFS [ a x 1 ( n ) + b x 2 ( n )] = a X 1 ( k ) + bX 2 ( k )
移位
~ − DFS [ x ( n + m )] = W N mk X ( k ) = e
-N
0 1 ~ x 2 (1 − m ) 2 1
0 1
N-1 N
m
-N
N-1 N
——电子信息工程 电子信息工程 表格法求周期卷积 x1(m) 1 x (n-m) n
2
1 0 0 1 2 1 0
1 0 0 0 1 2 1
1 1 0 0 0 1 2
0 2 1 0 0 0 1
0 1 2 1 0 0 0
y(n) 1 1 3 4 4 3
则
∑ x(n)z
n=0
N −1
k=0
Re[z]
X ( k ) = X ( z ) | Z =W − k
N
~
为Z变换在单位圆上的抽样 变换在单位圆上的抽样
比较
X ( z) X (e ) X (k )
jω
在整个Z平面上的取值 在整个 平面上的取值 在Z平面单位圆上的取值 平面单位圆上的取值 在Z平面单位圆上离散点的取值 平面单位圆上离散点的取值
m=0 N− 1 N− 1
——电子信息工程 电子信息工程 计算周期卷积的方法
~ y(n) =
m =0
∑
N −1
~ (m ) x (n − m ) = x (n) ∗ x (n) ~ ~ ~ x1 2 1 2
傅里叶变换常用公式
傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
傅里叶级数展开公式大全
傅里叶级数展开公式大全一、正弦展开公式:对于一个周期为T的函数f(t),可以将其正弦展开为以下形式:f(t) = a0 + Σ(an*sin(nω0t) + bn*cos(nω0t))其中,a0、an和bn是常数,n为正整数,ω0=2π/T为基本频率。
1.常数项a0的计算公式:a0 = (2/T) * ∫[t0, t0+T] f(t)dt其中,[t0,t0+T]为f(t)的一个周期。
2.正弦系数an的计算公式:an = (2/T) * ∫[t0, t0+T] f(t)*sin(nω0t)dt3.余弦系数bn的计算公式:bn = (2/T) * ∫[t0, t0+T] f(t)*cos(nω0t)dt二、余弦展开公式:对于一个周期为T的函数f(t),可以将其余弦展开为以下形式:f(t) = a0/2 + Σ(an*cos(nω0t))其中,a0、an和bn是常数,n为正整数,ω0=2π/T为基本频率。
1.常数项a0的计算公式:a0 = (2/T) * ∫[t0, t0+T] f(t)dt2.余弦系数an的计算公式:an = (2/T) * ∫[t0, t0+T] f(t)*cos(nω0t)dt需要注意的是,正弦展开公式中同时包含了正弦和余弦函数,而余弦展开公式只包含余弦函数。
正弦展开的系数an和bn分别对应了傅里叶级数中正弦和余弦函数的系数。
除了上述的正弦展开和余弦展开公式外,还存在一些特殊的函数的傅里叶级数展开公式,例如矩形脉冲函数和三角波函数的展开公式。
这些特殊函数的展开公式可以通过将其分解为更基本的正弦和余弦函数来求解。
总结起来,傅里叶级数展开公式是一种将周期函数表示为正弦和余弦函数的线性组合的数学工具。
正弦展开和余弦展开是两种常见的展开形式,可以通过对周期函数进行积分求解展开系数。
在实际应用中,傅里叶级数展开公式有着广泛的应用,可以分析信号的频谱特性,计算信号的谐波含量,以及进行信号的合成和滤波等操作。
傅里叶级数和函数
傅里叶级数和函数傅里叶级数和函数是数学中重要的概念,广泛应用于物理、工程、计算机科学等领域。
本文将介绍傅里叶级数和函数的概念、性质、应用,并给出相关实例,以帮助读者更加深入理解。
一、傅里叶级数的概念傅里叶级数指的是将一个周期函数表示为一系列正弦余弦函数的线性组合。
具体而言,设f(x)为定义在区间[-L,L]上的周期函数,则其傅里叶级数为:f(x) = a0/2 + ∑[an*cos(nπx/L) + bn*sin(nπx/L)]其中,a0,a1,a2,...,an,b1,b2,...,bn为一系列常数,又称为傅里叶系数,多项式∑成为称为傅里叶级数。
二、傅里叶函数的概念傅里叶函数指的是由傅里叶级数展开得到的一系列正弦余弦函数。
具体而言,傅里叶函数包括正弦函数、余弦函数、复指数函数等。
三、傅里叶级数和函数的性质傅里叶级数和函数具有以下性质:1. 傅里叶级数是周期为2L的函数。
2. 傅里叶级数及其导数在周期内可积。
3. 傅里叶级数对应的傅里叶函数构成一组完备正交基。
4. 对于周期函数f(x),其傅里叶级数和函数的系数可以使用奇偶性、对称性、平移性等方式求得。
四、傅里叶级数和函数的应用傅里叶级数和函数在物理、工程、计算机科学等领域有广泛应用,例如:1. 信号分析和处理:傅里叶级数可以将不同频率的信号进行分解,而傅里叶函数可用于频域滤波和信号重构。
2. 图像处理和压缩:傅里叶变换可将图片分解为不同频率的正弦余弦函数,从而实现图片压缩和去噪等操作。
3. 物理学中的波动和振动:声波、电磁波、机械波等可以被表示为傅里叶级数和函数的组合。
五、实例以信号处理为例,假设有一个周期为T的方波信号,其傅里叶级数为:f(x) = 4/π * ∑[1/(2n-1)*sin(2π(2n-1)x/T)]则该信号的傅里叶级数系数为an = 4/(π(2n-1)),bn = 0。
其对应的傅里叶函数为:f(x) = 4/π * [sin(2πx/T) + 1/3*sin(6πx/T) +1/5*sin(10πx/T) + ...]通过傅里叶级数可以得到该方波信号的频域表示,即不同频率正弦函数在信号中的占比,从而可以用于滤波、降噪等信号处理操作。
高等数学一(2)课外复习题
高等数学一(2)课外复习题期末测试题一一、求下列各函数的偏导数(每小题6分,共12分)1、设22222222,0(,)0,0x y xy x y f x y x y x y ⎧-+≠⎪=+⎨⎪+=⎩,求 (1) (0,)x f y ,(2) (0,0)xy f 。
2、设,x y z f xy g y x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中f ,g 均可微,求,z z x y ∂∂∂∂。
二、(本题8分)设函数z =z (x ,y )由方程222y x y z x f x ⎛⎫++=⎪⎝⎭,且可微,求dz 。
三、(本题10分) 设f (x ,y )在区域D 上连续,且f (x ,y )=xy +(,)Df u v dudv ⎰⎰,其中D 是由20,,1y y x x ===所围成的区域,求f (x ,y )。
四、(本题10分) 求半径为R五、(本题10分) 计算3222x zdydz x yzdxdz x z dxdy ∑--⎰⎰,其中∑为222z xy =--(12z ≤≤)。
六、(本题10分) 求曲线积分()()()sin cos xx LI ey b x y dx e y ax dy =-++-⎰,其中a ,b为常数,L 为从点A (2a ,0)沿曲线y =0,0)的弧。
七、(本题10分) 将函数21()43f x x x =-+展开成(x -2)的幂级数,并指出收敛区间。
八、(本题10分) 求级数11!nn n x n ∞=+∑的收敛半径与和函数。
九、(本题10分) 求微分方程76sin y y y x '''-+=的通解。
十、(本题10分) 已知()1ϕπ=,试确定()x ϕ,使线积分()()cos AByx x dx x dyx ϕϕ-+⎡⎤⎣⎦⎰与路径无关,并求当A ,B 两点分别为(1,0),(π,π)时,曲线积分的值。
期末测试题二一、填空题(每小题3分,共15分) 1、1y x y →→= 。
第7章 第7讲 周期为2π的函数的傅里叶级数
1)( = 0, ±1, ±2, ⋯ )处不连续, ()的傅里叶级数收敛于
( − 0) + (− + 0) 0 −
=
=− .
2
2
2
在连续点 ( ≠ (2 + 1))处, ()的傅里叶级数收敛于
().
其中0 , , ( = 1,2, ⋯ ) 均为常数.
3
01
三角级数与三角函数系的正交性
2.三角函数系的正交性
函数系1, cos , sin , cos 2 , sin 2 , ⋯ , cos , sin , ⋯
(7.30)称为三角函数系.
性质7.8 在三角函数系(7.30)中, 任意两个不同函数的
0
因此“奇延拓”+“周期延拓”的步骤可以省略.
21
02
周期为2π的函数展开成傅里叶级数
(4) ②根据收敛定理, “偶延拓”+“周期延拓”下得到的
余弦级数
∞
0
+ cos
2
=1
,
∈ [0, ]且为()的连续点;
= ൞1
[( − 0) + ( + 0)], ∈ [0, ]且为()的间断点.
3
3 0
2
2
2
= + sin 3 ห 0 = .
3
9
3
24
02
周期为2π的函数展开成傅里叶级数
例2
设()是周期为2的周期函数, 它在[−, )上的表达式为
, − ≤ < 0,
() = ቊ
傅里叶变换
线性性质
k f(x) → k F(ω); f(x)+g(x) → F(ω)+ G(ω)
分析性质
f '(x) → iωF(ω);
∫
x
∞
f ( x ) dx →
1 iω
F (ω )
傅里叶变换
位移性质
f(x-a) → exp(-iωa)F(ω) ; exp(iφx)f(x) → F(ω-φ)
相似性质
f(ax) → F(ω/a)/a; f(x/b)/b → F(bω) .
卷积性质
f(x)*g(x)≡∫f(ξ)g(x-ξ)dξ → 2πF(ω)G(ω); f(x)g(x) → F(ω)*G(ω)≡∫ F(φ)G(ω-φ)dφ
对称性质
正变换与逆变换具有某种对称性; 适当调整定义中的系数后,可以使对称性更加明显.
傅里叶变换
应用举例
rect( x) → sin 1 ω /(π ω) 2
S1 1
S3 0.75
0.5
0.5 0.25
-3
-2
-1 -0.5
1
2
3
-3
-2
-1 -0.25 -0.5 -0.75
1
2
3
-1
S6 0.75 0.5 0.25 -3 -2 -1 -0.25 -0.5 -0.75 1 2 3 -3 -2 -1
S24 0.75 0.5 0.25 1 -0.25 -0.5 -0.75 2 3
展开系数:
1 cn = 2L
∫
L
L
exp(i
nπ x ) f ( x)dx L
傅里叶生平
1768年生于法国 1807年提出"任何 周期信号都可用正 弦函数的级数表示" 1822年发表"热的 分析理论",首次 提出"任何非周期 信号都可用正弦函 数的积分表示" 返 回
傅里叶级数展开
傅里叶级数展开傅里叶级数其实是一种三角级数。
三角级数的一般形式是∑∞=++10)sin cos (2a n n n nx b nx a 其中0a ,n a ,n b (n=1,2,···)都是实数。
现在能否把一个任意周期为2π的函数表示为一系列正弦函数之和呢?这样表示有什么条件吗?且听慢慢分辨。
现在的焦点就是把一个周期为2π的函数f (x )表示为:∑∞=++=10)sin cos (2a )(f n n n nx b nx ax [1]这样的形式。
现在有两个问题:1.在什么条件下把f (x )展开成[1]的形式:2.0a ,n a ,n b 如何确定。
由三角函数系的正交性可知,三角函数系中任意两个相同的函数之积在[-π,π]上积分不为零;任意两个不相同的函数之积在[-π,π]上积分为零。
接下来可以这样推导0a ,n a ,n b 的值第一步:对[1]两边同时在[-π,π]上积分有:∑∫∫∫∫∞=++=1---0-dx]sin b dx cos [dx 2a dx )(f n n n nx nx a x ππππππππ=π0a ,故0a =∫πππ-dxx f 1)(第二步:对[1]两边同时乘以cosnπ然后在[-π,π]上积分有:∑∫∫∫∫∞=++=1---0-]d cos sin b d cosn cos [d cosn 2a d cosn)(f n n n x nx nx x x nx a x x x x x ππππππππ得,),()(∫==πππ-n2,1n cosnxdx x f 1a ⋯第三步:对[1]两边同时乘以cosnπ然后在[-π,π]上积分有:∑∫∫∫∫∞=++=1---0-]d sin sin b d sinn cos [d sinn 2a d sinn)(f n n n x nx nx x x nx a x x x x x ππππππππ得,),()(∫==πππ-n2,1n sinnxdx x f 1b ⋯那么什么条件下才能有以上展开呢?Dirichlet 收敛定理回答了这个问题。
函数展开成傅里叶级数
函数展开成傅里叶级数傅里叶级数是一种将一个周期函数展开成三角函数的级数的方法。
一个周期为T的函数f(某)可以表示为傅里叶级数的形式:f(某) = a0 + Σ(an某cos(nω某) + bn某sin(nω某))其中,a0是一个常数,an和bn是函数f(某)的系数,ω=2π/T是角频率。
为了求解傅里叶级数的系数,我们需要先求解函数f(某)的周期T和角频率ω。
然后,通过计算函数f(某)在一个周期内的积分,可以得到an和bn的表达式:an = (2/T) 某∫[0,T](f(某)某cos(nω某)d某)bn = (2/T) 某∫[0,T](f(某)某sin(nω某)d某)这样,通过计算积分,我们可以得到函数f(某)的傅里叶级数的系数。
傅里叶级数的展开有许多应用。
其中最重要的应用是信号处理,特别是在频域分析和滤波中的应用。
通过将信号展开成傅里叶级数,我们可以分析信号的频谱特性,并且在频域上对信号进行处理。
另一个重要的应用是在数学物理中的泛函分析。
傅里叶级数可以用于求解微分方程的边值问题,并且可以将一些复杂的算符问题转化为更简单的代数问题。
此外,傅里叶级数还有一些特殊的性质,比如Parseval定理。
根据Parseval定理,如果一个函数f(某)的傅里叶级数收敛,则有以下等式成立:(1/T) 某∫[0,T] (f(某))^2 d某= (a0/2)^2 + Σ[(an^2 +bn^2)/2]这个等式表明,一个函数f(某)的能量可以通过其傅里叶级数的系数来计算。
这个性质在信号处理中具有很重要的意义,因为它可以用于信号的能量计算和信号压缩等问题。
综上所述,傅里叶级数是一种将函数展开成三角函数的方法,具有广泛的应用领域。
通过计算函数在一个周期内的积分,可以得到函数的傅里叶级数的系数。
傅里叶级数在信号处理、数学物理等领域都发挥着重要的作用。
基本函数的傅里叶级数展开公式
基本函数的傅里叶级数展开公式
傅里叶级数展开是一种将周期函数表示为无限三角函数序列的方法。
在此基础上,我们可以将各种复杂的信号分解为简单的周期函数,从而更好地理解和处理信号。
基本函数的傅里叶级数展开公式如下:
1. 正弦函数的展开公式
对于周期为T的正弦函数f(x)=sin(2πx/T),它的傅里叶级数展开式为:
f(x)=a0+∑(n=1)∞(an*sin(2πnx/T)+bn*cos(2πnx/T)) 其中,
a0=1/T∫(0~T)f(x)dx
an=2/T∫(0~T)f(x)sin(2πnx/T)dx
bn=2/T∫(0~T)f(x)cos(2πnx/T)dx
2. 余弦函数的展开公式
对于周期为T的余弦函数f(x)=cos(2πx/T),它的傅里叶级数展开式为:
f(x)=a0+∑(n=1)∞(an*cos(2πnx/T)+bn*sin(2πnx/T)) 其中,
a0=1/T∫(0~T)f(x)dx
an=2/T∫(0~T)f(x)cos(2πnx/T)dx
bn=2/T∫(0~T)f(x)sin(2πnx/T)dx
以上就是基本函数的傅里叶级数展开公式。
需要注意的是,这些
公式仅适用于周期为T的函数,而且函数必须满足一定的条件才能进行傅里叶级数展开。
同时,傅里叶级数方法也有其局限性,不能用来处理所有类型的信号。
matlab傅里叶级数展开
matlab傅里叶级数展开一、概述傅里叶级数展开是一种将周期函数表示为一组正弦和余弦函数的方法,它可以用于信号处理、图像处理等领域。
在Matlab中,可以使用fft函数进行傅里叶变换,从而得到周期函数的频谱信息。
通过对频谱信息进行分析,可以得到该周期函数的傅里叶级数展开式。
二、傅里叶级数展开的原理1. 周期函数的Fourier级数在傅里叶级数展开中,我们将一个周期为T的实际信号f(x)表示为以下形式:f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中,a0是直流分量,an和bn是正弦和余弦系数,ω=2π/T是角频率。
2. Fourier系数的计算公式为了计算出这些系数,我们需要使用以下公式:an = (2/T)*Σ(f(x)*cos(nωx))dxbn = (2/T)*Σ(f(x)*sin(nωx))dxa0 = (1/T)*Σ(f(x))dx其中,Σ表示求和符号,dx表示积分元素。
三、Matlab实现傅里叶级数展开1. 使用fft函数进行傅里叶变换在Matlab中,我们可以使用fft函数对一个周期为T的信号f(t)进行傅里叶变换,得到其频谱信息F(f)。
具体步骤如下:1)将信号f(t)进行零填充,使其长度为2^N。
2)使用fft函数对零填充后的信号进行傅里叶变换。
3)根据变换结果得到频率信息与振幅信息。
2. 计算傅里叶系数得到频谱信息后,我们可以使用以下公式计算出傅里叶系数:an = 2*real(F(n))/Tbn = -2*imag(F(n))/Ta0 = real(F(1))/T其中,F(n)表示频率为nω的复数振幅,real表示实部,imag表示虚部。
3. 绘制傅里叶级数展开图像通过计算出的傅里叶系数,我们可以绘制出该周期函数的傅里叶级数展开图像。
具体步骤如下:1)定义周期函数f(x)及其周期T。
2)计算出直流分量a0、正弦系数an和余弦系数bn。
3)定义绘图区域,并设置坐标轴范围和标签。
数学分析15.1傅里叶级数
第十5章 傅里叶级数1傅里叶级数一、三角级数·正交函数系概念1:由正弦函数y=Asin(ωx+φ)表示的周期运动称为简谐振动,其中A 为振幅,φ为初相角,ω为角频率,其周期T=ω2π.常用几个简谐振动y k =A k sin(k ωx+φk ), k=1,2,…,n 的叠加来表示较复杂的周期运动,即:y=∑=n 1k k y =∑=n1k k k )φ+ x sin(k ωA ,其周期为T=ω2π.若由无穷多个简谐振动叠加得函数项级数A 0+∑∞=1n n n )φ+ x sin(n ωA 收敛,当ω=1时,sin(nx+φn )=sin φn cosnx+cos φn sinnx ,所以 A 0+∑∞=1n n n )φ+sin(nx A = A 0+∑∞=1n n n n n sinnx )cos φA +cosnx sin φ(A ,记A 0=2a 0,A n sin φn =a n ,A n cos φn =b n ,n=1,2,…,则该级数可以表示为: 2a 0+∑∞=1n n n sinnx )b +cosnx (a . 它是由三角函数列(或称为三角函数系) 1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…构成一般形式的三角级数.定理15.1:若级数2a 0+∑∞=+1n n n |)b ||a (|收敛,则三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上绝对收敛且一致收敛.证:对任何实数x ,∵|a n cosnx+b n sinnx|≤|a n |+|b n |, 由魏尔斯特拉斯M 判别法得证.概念2:若两个函数φ与ψ在[a,b]上可积,且⎰ba φ(x )ψ(x )dx=0,则 称函数φ与ψ在[a,b]上是正交的, 或称它们在[a,b]上具有正交性,若有一系列函数两两具有正交性,则称其为正交函数系.注:三角函数列:1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…有以下性质: 1、所有函数具有共同的周期2π;2、任何两个不相同的函数在[-π, π]上具有正交性,即为在 [-π, π]上的正交函数系. 即有:⎰ππ-cosnx dx=⎰ππ-sinnx dx=0;⎰ππ-cosmx cosnx dx=0 (m ≠n);⎰ππ-sinmx sinnx dx=0 (m ≠n);⎰ππ-cosmx sinnx dx=0 (m ≠n).3、任何一个函数的平方在[-π, π]上的积分都不等于零,即⎰ππ-2nx cos dx=⎰ππ-2nx sin dx=π;⎰ππ-21dx=2π.二、以2π为周期的函数的傅里叶级数定理15.2:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则:a n =⎰ππ-f(x)cosnx π1dx, b n =⎰ππ-f(x)sinnx π1dx, n=1,2,…. 证:由定理条件可知,f(x)在[-π, π]上连续且可积,∴⎰ππ-f(x )dx=2a⎰ππ-dx +∑⎰⎰∞=1n ππ-n ππ-n )sinnx dx b +dx cosnx (a =2a 0·2π=a 0π.即a 0=⎰ππ-f(x)π1dx. 对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以coskx(k 为正整数),可得:f(x)coskx=2a 0coskx +∑∞=1n n n )sinnx coskx b +cosnx coskx (a ,则新级数收敛,有coskx f(x )ππ-⎰dx=2a 0⎰ππ-coskx dx +∑⎰⎰∞=1n ππ-n ππ-n )dx sinnx coskx b +coskx dx cosnx a (.由三解函数的正交性,等式右边除了以=a k 为系数的那一项积分kx cos a 2ππ-k ⎰dx= a k π外,其余各项积分都为0,∴coskx f(x )ππ-⎰dx= a k π,即a k =⎰ππ-f(x)coskx π1dx (k=1,2,…). 同理,对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以sinkx(k 为正整数),可得:b k =⎰ππ-f(x)sinkx π1dx (k=1,2,…).概念3:若f 是以2π为周期且在[-π, π]上可积的函数,则按定理15.2中所求a n , b n 称为函数f(关于三角函数系)的傅里叶系数,以f 的傅里叶系数为系数的三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 称为f(关于三角函数系)的傅里叶级数,记作f(x)~2a 0+∑∞=1n n n sinnx )b +cosnx (a .注:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则,f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a .三、收敛定理概念4:若f 的导函数在[a,b]上连续,则称f 在[a,b]上光滑. 若定义在[a,b]上除了至多有限个第一类间断点的函数f 的导函数在[a,b]上除了至多有限个点外都存在且连续,在这有限个点上导函数f ’的左右极限存在,则称f 在[a,b]上按段光滑.注:若函数f 在[a,b]上按段光滑,则有: 1、f 在[a,b]上可积;2、在[a,b]上每一点都存在f(x ±0),且有t 0)f(x -t)f(x lim 0t +++→=f ’(x+0),t-0)f(x -t)f(x lim 0t ---→=f ’(x-0);3、补充定义f ’在[a,b]上那些至多有限个不存在点上的值后,f ’在[a,b]上可积.定理15.3:(傅里叶级数收敛定理)若周期为2π的函数f 在[-π, π]上按段光滑,则在每一点x ∈[-π, π],f 的傅里叶级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 收敛于f 在点x 的左右极限的算术平均值,即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a ,其中a n , b n 为傅里叶系数.注:当f 在点x 连续时,则有20)-f(x 0)f(x ++=f(x),即f 的傅里叶级数收敛于f(x).推论:若周期为2π的续连函数f 在[-π, π]上按段光滑,则f 的傅里叶级数在(-∞,+∞)上收敛于f.注:由f 周期为2π,可将系数公式的积分区间[-π, π]任意平移,即:a n =⎰+2πc c f(x)cosnx π1dx, b n =⎰+2πc c f(x)sinnx π1dx, n=1,2,….c 为任意实数. 在(-π, π]以外的部分,按函数在(-π, π]上的对应关系作周期延拓,如 f 通过周期延拓后的函数为:,2,1k ],1)π(2k , 1)π-(-(2k x ,) 2π-f(x ]π, (-πx ,f(x)(x)f ˆ⎩⎨⎧⋯±±=+∈∈= 函数f 的傅里叶级数就是指函数(x)fˆ的傅里叶级数.例1:设f(x) )0, (-πx ,0]π[0,x x ,⎩⎨⎧∈∈=,求f 的傅里叶级数展开式.解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰ππ-f(x)π1dx=⎰π0x π1dx=2π. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx=⎰π0xcosnx π1dx=⎰-π0π0sinnx n π1|xsinnx n π1dx=π2|cosnx πn 1 =πn 12(cosn π-1)=πn 1(-1)2n -;b n =⎰ππ-f(x)sinnx π1dx=⎰π0xsinnx π1dx=-⎰+π0π0cosnx n π1|xcosnx n π1dx=n (-1)1n +.∴在(-π, π)上,f(x)=4π+∑∞=⎥⎦⎤⎢⎣⎡+-1n n2n sinnx n (-1)cosnx πn 1-)1(.当x=±π时,该傅里叶级数收敛于20)πf(0)πf(+±+-±=20π+=2π.∴f 在[-π, π]上的傅里叶级数图象如下图:例2:把函数f(x)= π2x πx πx 0πx 0 x 22⎪⎩⎪⎨⎧≤<-=<<,,,展开成傅里叶级数. 解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰2π0f(x)π1dx=⎰π02x π1dx-⎰2ππ2x π1dx =-2π2. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx =⎰π02cosnx x π1dx-⎰2ππ2cosnx x π1dx ; 又⎰π02cosnx x π1dx=⎰-π0π02xsinnx n π2|sinnx x n π1dx=21n n 2(-1)+-;⎰2ππ2cosnx x π1dx=⎰-2ππ2ππ2xsinnx n π2|sinnx x n π1=21n 2n 2(-1)n 4++; ∴a n =21n 221n n 2(-1)n 4n 2(-1)++---=2n4[(-1)n -1]. b n =⎰2π0f(x)sinnx π1dx=⎰π02sinnx x π1dx-⎰2ππ2sinnx x π1dx ;又⎰π02sinnx x π1dx=-⎰-π0π02xcosnx n π2|cosnx x n π1dx=πn ](-1)-2[1n π)1(3n 1n --+;⎰2ππ2sinnx x π1dx=-⎰-2ππ2ππ2xcosnx n π2|cosnx x n π1dx=-πn ](-1)-2[1n π)1(n 4π3n 1n +--+; ∴b n =πn ](-1)-2[1n π)1(3n 1n --++πn ](-1)-2[1n π)1(n 4π3n 1n --++ =πn ](-1)-4[1n 2π)1(n 4π3n n ---=πn ](-1)-4[1n (-1)]-[1 2πn 2π3n n -+ =⎪⎭⎫ ⎝⎛-+πn 4n 2π](-1)-[1n 2π3n ;∴当x ∈(0, π)∪(π, 2π]时, f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4 .当x=π时,该傅里叶级数收敛于20)f(π0)f(π++-=2)π(π22-+=0;当x=0或2π时,该傅里叶级数收敛于20)f(00)f(0++-=204π-2+=-2π2.注:由当x=2π时,有f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4=-π2+∑∞=1n n 21]-[(-1)n4=-π2-8∑∞=+0n 21)(2n 1=-2π2. 可求得∑∞=+0n 21)(2n 1=8π2.例3:在电子技术中经常用到矩形波,用傅里叶级数展开后,就可以将巨形波看成一系列不同频率的简庇振动的叠加,在电工学中称为谐波分析。
傅里叶级数实例
傅里叶级数实例傅里叶级数是数学中的一个重要工具,可以将一个周期函数分解成一系列正弦和余弦函数的和。
在实际应用中,傅里叶级数有广泛的用途,如信号处理、图像压缩、音频分析等。
本文将以一个实例来介绍傅里叶级数的应用。
假设有一个周期为T的函数f(x),我们希望将其展开成一系列正弦和余弦函数的和。
首先,我们需要求解函数f(x)的周期T和其在一个周期内的表达式。
假设函数f(x)的周期T为2π,即f(x+2π) = f(x),我们可以取一个周期内的任意一点x0作为参考点,求解f(x)在该点的函数值。
对于周期函数,我们只需求解一个周期内的函数值即可。
接下来,我们需要将函数f(x)展开成正弦和余弦函数的和。
根据傅里叶级数的定义,我们可以得到如下的展开式:f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中,a0、an和bn分别为展开式中的常数项、余弦项和正弦项的系数,n为正整数,ω为角频率,ω = 2π/T。
我们需要求解展开式中的各项系数。
首先,我们来求解常数项a0。
根据傅里叶级数的定义,常数项a0为函数f(x)在一个周期内的平均值,即a0 = (1/T) * ∫(f(x)dx)其中积分范围为一个周期内的任意一段。
接下来,我们来求解余弦项的系数an。
根据傅里叶级数的定义,余弦项的系数an为函数f(x)与cos(nωx)的乘积在一个周期内的平均值,即an = (2/T) * ∫(f(x)*cos(nωx)dx)其中积分范围为一个周期内的任意一段。
我们来求解正弦项的系数bn。
根据傅里叶级数的定义,正弦项的系数bn为函数f(x)与sin(nωx)的乘积在一个周期内的平均值,即bn = (2/T) * ∫(f(x)*sin(nωx)dx)其中积分范围为一个周期内的任意一段。
通过求解常数项、余弦项和正弦项的系数,我们就可以得到函数f(x)的傅里叶级数展开式。
傅里叶级数的应用非常广泛。
例如,在信号处理中,我们可以将一个信号展开成傅里叶级数,利用其频谱分析的特性来实现滤波、降噪等操作。
3.2 周期信号的傅里叶级数分析
1
∞
f (t) = a0 + ∑(an cos nω1t + bn sin nω1t), n为正整数
n=1
∞
1 直流分量: a 0 = T1
∫
t 0 + T1
t0
f ( t ) dt
2 t0 +T1 余弦分量的幅度:n = ∫ a f (t ) cos(nω1t )dt T1 t0
2 正弦分量的幅度: bn = T1
sin(ω1t )
4 T1 a1 = ∫ 2 f (t) cos(ω1t)dt T 0 1
4 T1 b = ∫ 2 f (t) sin( ω1t)dt 1 T 0 1
cos(2ω1t )
sin(2ω1t )
∞
令:Fn = Fn e
∞
jϕn
1 − jϕn 1 = (an − jbn ) F−n = F−n e = (an + jbn ) 2 2
jnwt 1
f (t) = F0 + ∑Fne
n=1
+ ∑F−ne
n=1
∞
− jnwt 1
= ∑Fne
n=0
∞
jnwt 1
+ ∑Fne jnw1t
n=−∞
−1
周期函数: f (t) =
7
周期信号的复数频谱 F0
complex frequency spectrum
F = Fn n − F = c0 0
1 = cn 2
8
周期信号的功率特性
1 t0 +T1 2 周期信号f (t )的平均功率 : P = f (t ) = ∫ f (t )dt T1 t0
2
sinwt绝对值的傅里叶级数
sinwt绝对值的傅里叶级数傅里叶级数是将一个周期函数分解为一系列正弦函数和余弦函数的和,通过这种分解可以得到原函数的频率成分和振幅。
对于一个周期为T的函数f(t),其傅里叶级数表示为:f(t) = a0/2 + ∑[an*cos(nωt) + bn*sin(nωt)]其中an和bn分别是傅里叶级数中的系数,ω = 2π/T是角频率。
我们下面将对周期函数sin(wt)的傅里叶级数进行推导。
首先,对于sin(wt)函数来说,其周期为2π/w。
根据傅里叶级数的公式,我们可以将其展开为:sin(wt) = a0/2 + ∑[an*cos(nωt) + bn*sin(nωt)]对于此处的周期函数,我们可以计算出a0和bn的值,因为对于偶函数sin(wt)来说,其bn为0。
而a0可以通过计算周期函数在一个周期内取值的平均值得到,即:a0 = (2/w) * ∫[0,w] sin(wt) dt对于sin(wt)函数而言,它可以看作是奇函数,即满足f(-t) = -f(t)。
根据这个性质,可以得出:a0 = 0因此,sin(wt)的傅里叶级数简化为:sin(wt) = ∑[bn*sin(nωt)]接下来我们来计算bn的值。
根据傅里叶级数的公式,可以计算bn的表达式为:bn = (2/T) * ∫[0,T] sin(wt) * sin(nωt) dt但是由于sin函数乘法的特殊性质,上述积分在不同的情况下有不同的结果。
当n = 1时,积分结果为T/2;当n ≠ 1时,积分结果为0。
因此,对于sin(wt)而言,我们可以得到:bn = (2/T) * (T/2) = 1最终,sin(wt)的傅里叶级数可以表示为:sin(wt) = ∑[sin(nωt)]这是因为系数bn的值为1,an的值为0,进一步简化了傅里叶级数的表达式。
通过对周期函数sin(wt)的傅里叶级数的推导,我们可以发现,该函数的傅里叶级数中只包含了一系列sin函数的和,而没有cos函数的存在。
傅里叶变换与傅里叶级数
重温傅里叶—笔记篇本文记录得大多就是基础得公式,还有一些我认为比较重要得有参考价值得说明、(如果对这些公式已经很熟悉,可以直接瞧第三部分:总结性说明)重温傅里叶—笔记篇一、傅里叶级数$关于三角函数系得正交性:三角函数系包括:1, cosx, sinx , cos2x, sin 2x, ……cos nx, sin nx, ……“正交性"就是说,三角函数系中得任何一项与另一项得乘积,在(-π, π) 区间内得积分为0。
(任何两相得积总可以展成两个频率为整数倍基频得正余弦函数之与或差,而这两个展开后得正余弦在(—π,π)上积分都为0)。
不同频率(但都就是整数倍基频)得两个正弦函数之积,在(-π, π)上积分恒为0。
同频率得两个正弦函数之积,只有在这两个正弦得相位正交时,其在(-π,π)上积分才就是0、三角函数系中除“1”以外得任何一项得平方,在(—π,π)上得积分恒为π,“1”在这个区间上得积分为2π。
$上公式!①当周期为2π时:式(1):上式成立得条件就是f(x)满足狄立克雷充分条件:1。
在任意有限区间内连续,或只有有限多个第一类间断点;2. 任意得有限区间,都可被分成有限多个单调区间(另一种说法就是:任意有限区间内只有有限多个极值点,其实就是一样得)式(1)第一行中得a0/2 就就是f(x)得周期平均值,而且第一行得式子只对f(x)就是连续函数得情况成立;如果f(x)不连续,则应表示成“(1/2)×[f(x—0)+f(x+0)]”,即f(x)左右极限得算术平均。
下面得类似情况都就是这样,之后就不再专门说明,这些大家应该都懂。
第三、四行中,n得取值都就是:1,2,3,4,……n,……(都为正,且不包含0)。
②当周期为2L时(这也就是最一般得情形):式(2):第一行中得a0/2 就就是f(x)得周期平均值;第三、四行中,n得取值都就是:1,2,3,4,……n,……(都为正,且不包含0)。