2020年初一数学(下)半期考试试卷
2020年华东师大七年级下半期质量检测数学试题含答案
2015-16学年(下)半期质量检测七年级数 学一、选择题(每小题3分,共3分)1.在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个2.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x3.方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x4、若a 、b 是有理数,则下列说法正确的是( )A 、若22b a >,则b a >B 、若b a >,则22b a >C 、若ba >,则22b a > D 、若b a ≠,则22b a ≠5、若-72a 2b 3与101a x+1b x+y是同类项,则x 、y 的值为( )A {{{{x 1x=2x=1x=2B C D y 3y=2y=2y=3=- = 6、如果方程组x+y=8y+z=6z+x=4⎧⎪⎨⎪⎩的解使代数式kx +2y -3z 的值为8,则k =( )。
A 13B 13- C 3 D -3 7.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。
A .80元B .85元C .90元D .95元8、若不等式组⎩⎨⎧<≥bx a x 无解,则有( )A 、a b >B 、a b <C 、a b =D 、b ≤a9.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )小时A.2 B .512 C.3 D. 25 10、已知甲、乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,则可列方程组为 ( ) A x y=400x=y+400x y=400x y=400 B C D 27342437x+y=400x y=400x y=400x y=40034273724⎧⎧⎧⎧⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪⎩⎩⎩⎩------二、填空题(每小题3分,共18分)11、比a 的3倍大5的数是9,列出方程式是__________________。
2020人教版七年级下册数学《期中考试卷》含答案
2020⼈教版七年级下册数学《期中考试卷》含答案七年级下学期期中测试数学试卷⼈教版⼀.选择题(共10⼩题)1.点P (2,-3)() A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限2. 4的算术平⽅根是()B. 2C. ±2D. 3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 227 4.有下列命题:①对顶⾓相等;②若a ∥b ,b ∥c ,则a ∥c ;③在同⼀平⾯内,若a ⊥b ,b ⊥c ,则a ∥c ;④ac =bc ,则a =b .其中正确的有()A. 1个B. 2个C. 3个D. 4个 5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm ),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?7.(b ﹣3)2=0,则(a +b )2019等于()A. 1B. ﹣1C. ﹣2019D. 20198.下列说法错误的是()A. 2±B. 64的算术平⽅根是4C. 0=D. 0≥,则x =19.点P (3﹣2m ,m )不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限10.如图,把⼀张长⽅形纸⽚ABCD 沿EF 折叠后,点C 、D 分别落在C ′、D ′位置上,EC ′交AD 于点G ,已知∠EFG =56°,则∠BEG 等于()A. 112°B. 88°C. 68°D. 56°⼆.填空题(共6⼩题)11.若⼀个正数平⽅根是3a +2和2a ﹣1,则a 为_____.12.若点P (3a ﹣2,2a +7)在第⼆、四象限的⾓平分线上,则点P 的坐标是_____. 13.互为相反数,则b a =_____. 14.如图楼梯截⾯,其中AC =3m ,BC =4m ,AB =5m ,要在其表⾯铺地毯,地毯长⾄少需_____⽶.15.如图,直线l 1∥l 2,若∠1=130°,∠2=60°,则∠3=__________. 的的是16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.三.解答题(共8⼩题)(1(2;(3)|﹣|+1|+|1﹣|.18.求下列各式中的x .(1)4(3x +1)2﹣1=0;(2)(x +2)3+1=0.19.如图所⽰,直线AB ,CD 相交于点O ,P 是CD 上⼀点.(1)过点P 画AB 垂线段PE .(2)过点P 画CD 的垂线,与AB 相交于F 点.(3)说明线段PE ,PO ,FO 三者的⼤⼩关系,其依据是什么?20.△ABC 在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.21.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P和点Q都在过A(2,3)点且与x轴平⾏的直线上,PQ=3,求Q点的坐标.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.23.已知a、b满⾜b24.已知点A(1,a),将线段OA平移⾄线段BC,B(b,0),a是m+6n=3,n,且m<n,正数b满⾜(b+1)2=16.(1)直接写出A、B两点坐标为:A,B;(2)如图1,连接AB、OC,求四边形AOCB的⾯积;(3)如图2,若∠AOB=a,点P为y轴正半轴上⼀动点,试探究∠CPO与∠BCP之间的数量关系.答案与解析⼀.选择题(共10⼩题)1.点P(2,-3)在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答.【详解】解:点P(2,-3)在第四象限.故选D.【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第⼀象限(+,+);第⼆象限(-,+);第三象限(-,-);第四象限(+,-).2. 4的算术平⽅根是()B. 2C. ±2D.【答案】B【解析】试题分析:根据算术平⽅根的定义可得4的算术平⽅根是2,故答案选B.考点:算术平⽅根的定义.3.下列各数中,是⽆理数的是()A. B. C. 3.14 D. 22 7【答案】B【解析】【分析】根据⽆理数是⽆限不循环⼩数,逐⼀验证即可.【详解】A=2,是整数,属于有理数,故选项不符合题意;B.C.3.14属于有理数,故选项不符合题意;D.227是分数,属于有理数,故选项不符合题意.故选:B.【点睛】本题考查了⽆理数的定义,注意有理数的化简变形,理解⽆理数的定义是解题的关键.4.有下列命题:①对顶⾓相等;②若a∥b,b∥c,则a∥c;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c;④ac=bc,则a=b.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C根据对顶⾓定义,平⾏的“传递性”以及平⾏判定的条件,等式的性质进⾏逐⼀验证判断即可.【详解】①对顶⾓相等,是正确的;②若a∥b,b∥c,则a∥c,是正确的;③在同⼀平⾯内,若a⊥b,b⊥c,则a∥c,是正确的;④当a=1,b=2,c=0时,ac=bc,但a≠b,∴ac=bc,则a=b,是错误的;故选:C.【点睛】本题考查了平⾏线的概念和性质,等式的性质,熟练掌握相关概念内容是解题的关键.5.如图是⼀块电脑主板的⽰意图,每⼀转⾓处都是直⾓,数据如图所⽰(单位:mm),则该主板的周长是()A. 88mmB. 96mmC. 80mmD. 84mm 【答案】B【解析】【分析】根据题意,电脑主板是⼀个多边形,由周长的定义可知,周长是求围成图形⼀周的长度之和,计算周长只需要把横着的和竖着的所有线段加起来即可.【详解】由图形可得出:该主板的周长是:24+24+16+16+4×4=96(mm ),故该主板的周长是96mm ,故选:B .【点睛】本题考查了不规则多边形周长的求解⽅法,理解周长的定义是求解的关键. 6.如图,12∠∠=,且3108∠=?,则4∠的度数为()A. 72?B. 62?C. 82?D. 80?【答案】A【解析】【分析】求出a ,b ,得出,4=,5,根据,3的度数求出,5的度数,即可得出答案.【详解】解:∴∠4=∠5,∵∠3=108°,∴∠5=180°-108°=72°,∴∠4=72°,故选A .【点睛】本题考查了平⾏线的性质和判定的应⽤,能灵活运⽤性质和判定进⾏推理是解此题的关键.7.(b﹣3)2=0,则(a+b)2019等于()A. 1B. ﹣1C. ﹣2019D. 2019【答案】B【解析】【分析】根据⾮负数的性质,⾮负数的和为0,即每个数都为0,可求得a、b的值,代⼊所求式⼦即可.【详解】根据题意得,a+4=0,b﹣3=0,解得a=﹣4,b=3,∴(a+b)2019=(﹣4+3)2019=﹣1,故选:B.【点睛】本题考查了⾮负数的性质,以及-1的奇次⽅是-1,理解⾮负数的性质是解题关键.8.下列说法错误的是()A. 2± B. 64的算术平⽅根是4≥,则x=1 =0【答案】B【解析】【分析】根据平⽅根、算术平⽅根、⽴⽅根的概念对选项逐⼀判定即可.B.64的算术平⽅根是8,错误;C=,正确;D0≥,则x=1,正确;故选:B.【点睛】本题考查了平⽅根、算数平⽅根,⽴⽅根的概念,理解概念内容是解题的关键.9.点P(3﹣2m,m)不可能在()A. 第⼀象限B. 第⼆象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据象限内的点坐标的特征,分点P的横坐标是正数和负数两种情况讨论求解即可.【详解】当m>1.5时,点在第⼆象限;当m=1.5时,点在y轴上;当0<m<1.5时,点在第⼀象限;当m=0时,点x轴上;当m<0时,点在第四象限;故选:C.【点睛】本题考查了点坐标在象限内时的取值范围,注意分类讨论思想的应⽤.10.如图,把⼀张长⽅形纸⽚ABCD沿EF折叠后,点C、D分别落在C′、D′的位置上,EC′交AD于点G,已知∠EFG=56°,则∠BEG等于()A. 112°B. 88°C. 68°D. 56°【答案】C【解析】【分析】根据平⾏线和折叠的性质可知,∠GEF=∠CEF=∠EFG=56°,由平⾓的定义计算即可.【详解】∵AD∥BC,∠EFG=56°,∴∠EFG=∠FEC=56°,由折叠的性质可知,∠FEC=∠FEG,∴∠GEC=∠FEC+∠FEG=112°,∴∠BEG=180°-∠GEC=68°,故选:C.【点睛】本题考查了平⾏线和折叠结合的性质,平⾓的定义,熟练掌握平⾏和折叠的关系是解题的关键,也是中考常考的重难点.⼆.填空题(共6⼩题)11.若⼀个正数的平⽅根是3a+2和2a﹣1,则a为_____.【答案】15 -.【解析】【分析】根据⼀个正数的平⽅根有两个,且互为相反数可得3a+2+2a﹣1=0,解出a即可.【详解】由题意得,3a+2+2a﹣1=0,解得:a=15 -.故答案为:15 -.【点睛】本题考查了正数的平⽅根的定义,互为相反数的两个数和为0的性质,理解平⽅根的定义是解题的关键.12.若点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,则点P的坐标是_____.【答案】(﹣5,5).【解析】【分析】根据第⼆、四象限的⾓平分线上的点,横纵坐标互为相反数,由此可列出关于a的⽅程,解出a的值即可求得点P的坐标.【详解】∵点P(3a﹣2,2a+7)在第⼆、四象限的⾓平分线上,∴3a﹣2+2a+7=0,解得:a=﹣1,∴P(﹣5,5).故答案为:(﹣5,5).【点睛】本题考查了点坐标在象限⾓平分上的性质和列⼀次⽅程求解的问题,熟记点坐标在象限⾓平分线上的性质是解题的关键.13.互相反数,则ba=_____.【答案】32.【解析】【分析】根据⽴⽅根的概念,结合相反数的定义,可知两个被开⽅数也互为相反数,由两数和为0可列出关于a、b的关系式,化简整理即可.∴(3a﹣1)+(1﹣2b)=0,∴3a=2b,∴ba=32.故答案为:32.【点睛】本题考查了⽴⽅根的概念,相反数的定义,由关系式求两数的⽐值,理解⽴⽅根和相反数的概念是解题的关键.14.如图是楼梯截⾯,其中AC=3m,BC=4m,AB=5m,要在其表⾯铺地毯,地毯长⾄少需_____⽶.【答案】7.【解析】【分析】根据图形可知,由三⾓形三边长可知,满⾜勾股数,△ABC是直⾓三⾓形,需要铺的地毯的长度即为AC+BC的长度,数值代⼊计算即可.【详解】根据题意结合图形可知,△ABC三边长满⾜勾股数,是直⾓三⾓形,所以要铺的地毯的长度即为AC+BC,∴4+3=7(⽶).答:地毯长⾄少需7⽶.故答案为:7.【点睛】本题考查了勾股数判定直⾓三⾓形,图形的折叠和展开图与⽔平距离和竖直距离之间的关系,理解⽴体图展开成平⾯图形的关系是解题的关键.15.如图,直线l1∥l2,若∠1=130°,∠2=60°,则∠3=__________.【答案】70°【解析】试题分析:,直线l1,l2,,,4=,1=130°,,,5=,4﹣,2=70°,,,5=,3=70°.,故答案为70°.考点:平⾏线的性质.16.如图,在平⾯直⾓坐标系中,有若⼲个整数点,其顺序按图中“→”⽅向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第100个点的坐标为________.【答案】(15,5)【解析】由图形可知:点的个数依次是1,2,3,4,5,…,且横坐标是偶数时,箭头朝上,∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14⾏点的⾛向为向上,∴纵坐标为从第92个点向上数8个点,即为8,∴第100个点的坐标为(14,8).故答案为(14,8).点睛:本题考查了学⽣的观察图形的能⼒和理解能⼒,解此题的关键是根据图形得出规律,题⽬⽐较典型,但是是⼀道⽐较容易出错的题⽬.三.解答题(共8⼩题)17.计算:(1(2;(3)|﹣|+1|+|1﹣|.【答案】(1)5;(2)﹣1;(3【解析】【分析】(1)根据开平⽅的运算进⾏计算即可得;(2)根据开平⽅和开⽴⽅的运算进⾏化简,然后进⾏加减计算即可;(3)根据绝对值概念可知,正数的绝对值是它本⾝,负数的绝对值是它的相反数,0的绝对值是0,进⾏化简计算即可.【详解】(1=3+2=5,故答案为:5.(2=4﹣3﹣12﹣32=﹣1,故答案为:-1.(3)|﹣|+1|+|1﹣|﹣﹣1,.【点睛】本题考查了实数的混合运算法则,开平⽅,开⽴⽅的化简求值,去绝对值符号的化简,注意化简时符号的问题.18.求下列各式中的x.(1)4(3x+1)2﹣1=0;(2)(x+2)3+1=0.【答案】(1)1x=﹣16或2x=﹣12;(2)x=﹣3.【解析】【分析】(1)根据题意,把-1移项,然后直接开⽅即可求得;(2)由题⽬可知,把+1移项,根据⽴⽅根的定义,直接开⽴⽅计算可得.【详解】(1)4(3x+1)2﹣1=0,4(3x+1)2=1,(3x+1)2=14,3x+1=±12,∴1x=﹣16或2x=﹣12故答案为:1x=﹣16或2x=﹣12;(2)(x+2)3+1=0,(x+2)3=﹣1,x+2=﹣1,∴x=﹣3,故答案为:-3.【点睛】本题考查了利⽤直接开平⽅和开⽴⽅的⽅法求⽅程的解,注意开平⽅有两个根,且互为相反数.19.如图所⽰,直线AB,CD相交于点O,P是CD上⼀点.(1)过点P画AB的垂线段PE.(2)过点P画CD的垂线,与AB相交于F点.(3)说明线段PE,PO,FO三者的⼤⼩关系,其依据是什么?【答案】(1)见解析;(2)见解析;(3)PE<PO<FO,其依据是“垂线段最短”【解析】【分析】前两问尺规作图见详解,第(3)问中利⽤垂线段最短即可解题.【详解】(1)(2)如图所⽰.(3)在直⾓△FPO中,PO<FO,在直⾓△PEO中,PE<PO,∴PE<PO<FO,其依据是“垂线段最短”.【点睛】本题考查了尺规作图和垂线段的性质,属于简单题,熟悉尺规作图的⽅法和步骤,垂线段的性质是解题关键.20.△ABC在平⾯直⾓坐标系中的位置如图所⽰.(1)分别写出下列三点坐标:A,B,C;(2)将△ABC平移⾄△OB′C′位置,使点A与原点O重合,画出平移后的△OB′C′,写出B′、C′的坐标;(3)求△OB′C′的⾯积.【答案】(1)(1,3)、(2,0)、(4,1);(2)如图所⽰,△OB′C′即为所求,见解析;B′(1,﹣3)、C′(3,﹣2).(3)△OB′C′的⾯积为72.【解析】【分析】(1)根据点在平⾯直⾓坐标系的位置,可分别写出点所对应的坐标即可;(2)根据平移前后点A与对应点O坐标的位置,可以得出图形△ABC向左平移1个单位、向下平移3个单位,由此可得出平移后点B′、C′的坐标;(3)利⽤割补法,把△OB′C′补成⼀个正⽅形,减去三个直⾓三⾓形的⾯积计算即可.【详解】(1)由图形知A(1,3),B(2,0),C(4,1);故答案为:(1,3)、(2,0)、(4,1);(2)由A(1,3)及其对应点O(0,0)知,需将△ABC向左平移1个单位、向下平移3个单位,如图所⽰,△OB′C′即为所求,其中B′(1,﹣3)、C′(3,﹣2),故答案为:B′(1,﹣3)、C′(3,﹣2);(3)△OB ′C ′的⾯积为3×3﹣12×1×3﹣12×3×2﹣12×1×2=72,故答案为:72.【点睛】本题考查了平⾯直⾓坐标系内,点坐标的表⽰,平移图形的变化关系,割补法求⼀般三⾓形的⾯积,熟记平⾯直⾓坐标系的点坐标的表⽰是解题的关键.21.已知,点P (2m ﹣6,m +2).(1)若点P 在y 轴上,P 点的坐标为;(2)若点P 和点Q 都在过A (2,3)点且与x 轴平⾏直线上,PQ =3,求Q 点的坐标.【答案】(1)P (0,5);(2)Q 点坐标为(-1,3)或(-7,3)【解析】【分析】(1)根据y 轴上点的横坐标为0,得2m -6=0,求m 值即可得P 点坐标;(2)根据题意可得直线PQ 经过A 点且平⾏于x 轴,可得P 、Q 的纵坐标均为3,由此得m+2=3,确定m 值后根据PQ=3,可得Q 点的横坐标.【详解】解:(1)∵点P 在y 轴上∴2m -6=0∴m=3∴m+2=3+2=5∴P (0,5)(2)根据题意可得PQ ∥x 轴,且过A (2,3)点,∴m+2=3∴m=1的∴2m-6=-4∴P(-4,3)∵PQ=3∴Q点横坐标-4+3=-1,或-4-3=-7∴Q点坐标为(-1,3)或(-7,3)【点睛】本题考查y轴上和平⾏于x轴上点坐标的特征,根据此特征确定点的横坐标或纵坐标是解答此题的关键.22.已知,如图AB∥CD,∠B=80°,∠BCE=20°,∠CEF=80°,请判断AB与EF的位置关系,并说明理由.解:理由如下:∵AB∥CD∴∠B=∠BCD.∵∠B=80°,∴∠BCD=80°.∵∠BCE=20°,∴∠ECD=100°,⼜∵∠CEF=80°∴+=180°,∴EF∥⼜∵AB∥CD,∴AB∥EF.【答案】AB∥EF,理由见解析;填空答案:AB∥EF,两直线平⾏,内错⾓相等;等量代换,∠E,∠DCE,CD,同旁内⾓互补,两直线平⾏;平⾏于同⼀直线的两条直线互相平⾏.【解析】【分析】根据平⾏线性质,可得∠BCD=80°,进⽽可得到∠E+∠ECD=180°,可证明EF∥CD,由。
【推荐】人教版2020学年七年级(下)期中数学试卷【解析版】.doc
七年级(下)期中数学试卷一、选择题(每小题2分,共20分,每小题只有一个正确答案).±4.(2分)如图直线a∥b,∠1=52°,则∠2的度数是()5.(2分)下列各数中,3.14159265,,﹣8,,0.6,0,,,无理数的个数有()解:无理数有:,6.(2分)如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()AOC=∠EOC=8.(2分)(2012•梧州)如图,点E在AC的延长线上,下列条件中能判断AB∥CD的是()10.(2分)观察下列计算过程:…,由此猜想:二、填空题(每小题3分,共24分)11.(3分)比较大小:4>(填“>”、“<”或“=”)据二次根式的性质求出,比较和4=>,4=12.(3分)如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是垂线段最短.13.(3分)命题“同位角相等,两直线平行”中,条件是同位角相等,结论是两直线平行14.(3分)如图要证明AD∥BC,只需要知道∠B=∠EAD.15.(3分)如图,∠1+∠2=180°,∠3=108°,则∠4=72度.16.(3分)已知三角形ABC的三个顶点坐标为A(﹣2,3),B(﹣4,﹣1),C(2,0).在三角形ABC 中有一点P(x,y)经过平移后对应点P1为(x+3,y+5),将三角形ABC作同样的平移得到三角形A1B1C1,则A1的坐标为(1,8).17.(3分)如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=134°.18.(3分)在平面直角坐标系中,点A1(1,2),A2(2,5)A3(3,10),A4(4,17),…,用你发现的规律确定点A9的坐标为(9,82).三、解答题(共56分)19.(8分)计算:(1)(2).;20.(6分)作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.21.(8分)如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,求∠C的度数.22.(6分)多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?23.(8分)完成下面证明:(1)如图1,已知直线b∥c,a⊥c,求证:a⊥b证明:∵a⊥c (已知)∴∠1=∠2(垂直定义)∵b∥c (已知)∴∠1=∠2 (两直线平行,同位角相等)∴∠2=∠1=90°(等量代换)∴a⊥b (垂直的定义)(2)如图2:AB∥CD,∠B+∠D=180°,求证:CB∥DE证明:∵AB∥CD (已知)∴∠B=∠C(两直线平行,内错角相等)∵∠B+∠D=180°(已知)∴∠C+∠D=180°(等量代换)∴CB∥DE (同旁内角互补,两直线平行)24.(8分)如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1(4,7),B1(1,2),C1(6,4);(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.﹣3=25.(12分)(1)如图1,a∥b,则∠1+∠2=180°(2)如图2,AB∥CD,则∠1+∠2+∠3=360°,并说明理由(3)如图3,a∥b,则∠1+∠2+∠3+∠4=540°(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n=(n﹣2)•180°(直接写出你的结论,无需说明理由)11。
2020年七下数学半期试题及答案
学校 班级 姓名 考号//////////////////////////////////////////////////////////////////////////////////// 密 封 线 内 不 要 答 题 ///////////////////////////////////////////////////////////////////////////////////2019-2020学年(下)七年级期中质量检测数学试题本试卷满分 150分,考试时间 120分钟。
A 卷(100分)一、选择题(每题3分,共30分)1.下列各题中计算错误的是 ( )A.[(-m 3)2(-n 2)3]3= -m 18n 18B.(-m 3n)2(-mn 2)3= -m 9n 8C.[(-m)2(-n 2)3]3= - m 6n 6D.(-m 2n)3(-mn 2)3= m 9n 9 2.化简x(y-x)-y(x-y)得 ( )A.x 2-y 2B.y 2-x 2C.2xyD.-2xy 3. 若52=a ,32=b ,则b a 322-等于 ( ) A .2527 B .910 C .53 D .2725 4.要使x 2+2ax+16是一个完全平方式,则a 的值为( ) A.4 B.8 C.4或-4 D.8或-85.(43)-2、(56)2、(67)0三个数中,最大的是( ) A.(43)-2 B.(56)2 C.(67)0 D.无法确定6.如果两条平行线被第三条直线所截,那么一组同位角的平分线( ) A.互相平行 B.互相垂直 C.交角是锐角 D.交角是钝角7.如图是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B=140°, ∠D=120°,则∠C 的度数为( )A.120°B.100°C.140°D.90° 8.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中: ①90°-∠β;②∠α-90°;③21(∠α+∠β);④21(∠α-∠β).正确的有( ) A.4个 B.3个 C.2个 D.1个9. 已知三角形ABC 的底边BC 上的高为8cm ,当它的底边BC 从16cm 变化到5cm 时,三角形ABC 的面积( )A.从20cm 2变化到64cm 2B.从64cm 2变化到20cm 2C.从128cm 2变化到40cm 2D.从40cm 2变化到128cm 210.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点,用s1、s2分别表示乌龟和兔子所行的路程,t为所行的时间,则下列图象中与故事情节相吻合的是( )二、填空题(每题4分,共16分)11.已知(x3n-2)2x2n+4÷x n=x2n-5,则n= .12.已知x+y= -5,xy=6,则x2+y2= .13.如图,若∠A=110°,AB∥CD,AD∥BC,则∠ECD= .14.已知6x=5,6y=2,则62x+y= .三、解答题(54分)15.(12分)(1)计算:[(4b+3a)(3a﹣4b)﹣(b﹣3a)2]÷4b(2)先化简,再求值.(2x﹣1)(2x+1)﹣(x﹣2)2﹣(x+2)2,其中133x=-.16.(8分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示的方式折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.17.(6分)有一边长为xcm的正方形,若边长变化,则其面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)写出正方形的面积y(cm2)关于正方形的边长x(cm)的关系式.18.(8分)某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成图.请根据图象回答:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间?(2)第三天12时这头骆驼的体温是多少?19.(10分)(1)若a+b=3,ab=2,求a4+b4的值. (2)已知a n=2,求(2a3n)2-3(a2)2n÷a2n的值.20.(10分)如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D =∠3+60°,∠CBD =70°.(1)求证:AB ∥CD ; (2)求∠C 的度数.B 卷(50分)一.填空(每题4分,共20分)21.已知长方形的面积是3a 2-3b 2,如果它的一边长是a+b ,则它的周长是 .22. 如果一个角的余角是这个角的补角的41,则这个角的度数为 .23. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为 厘米,挂物体质量x(千克)与弹簧长度y(厘米)的关系式为24.已知a -b =b -c =35,a 2+b 2+c 2=1,则ab +bc +ca 的值等于25. 已知a 1=2112-,a 2=2113-,a 3=2114-,…,a n =()2111n -+,S n =a 1•a 2…a n ,则S 2015= . 二.解答题(共30分)26.(8分)某机动车出发前油箱内有油42L ,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q (L )与行驶时间t (h )之间的函数关系如图所示,根据图回答问题: (1)机动车行驶5h 后加油,途中加油 升;(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?(3)如果加油站距目的地还有400km ,车速为60km/h ,要到达目的地,油箱中的油是否够用?请说明理由.27.(10分)你能求(x 一1)(99x +98x +97x +…+x+1)的值吗?(10分)遇到这样的问题,我们可以先思考一下,从简单的情形人手,分别计算下列各式的值. (1)(x -1)(x+1) =_____________; (2)(x —1)( 2x +x+1) =_____________; (3)(x -1)(3x + 2x +x+1) =____________; …由此我们可以得到:(4)(x 一1)( 99x +98x +97x +…+x+1) =___________, 请你利用上面的结论,完成下列的计算: (5)992+982+972+…+2+1;28.(12分)若()221333x mx x x n ⎛⎫+--+ ⎪⎝⎭的积中不含x 和x 3项, (1)求2214m mn n -+的值; (2)求代数式(﹣18m 2 n )2+(9mn )-2 +(3m )2014n 2016的值2020年2019-2020学年(下)七年级期中质量检测数学试题 答案一、选择题(每题3分,共30分)1.C2.B3.D4.C.5.A6.A7.B.8B9.B10.D二、填空题(每题4分,共16分)11. -1 12. 13 13. 70° 14.50三、解答题(54分)15. (12分)解:(1)原式=(9a 2﹣16b 2﹣b 2+6ab ﹣9a 2)÷4b=(﹣17b 2+6ab )÷4b=17342b a -+;(2)原式=4x 2﹣1﹣x 2+4x ﹣4﹣x 2﹣4x ﹣4=2x 2﹣9,当133x =-时,原式=2×100811192999⨯-=. 16. (8分)(1)B’E//DC. (2)∠AEB=65017. (6分)(1)自变量是边长,因变量是正方形的面积. (2)y=x 2 18. (8分)(1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要:16-4=12(小时). (2)第三天12时这头骆驼的体温是380C. 19. (10分)(1) ∵()()()222442222222a b a ba b a b ab ab ⎡⎤+=+-=+--⎣⎦ ∵a+b=3,ab=2,∴原式=()2942417--⨯= (2) (2a 3n )2-3(a 2)2n ÷a 2n =4a 6n -3a 2n =4(a n )6-3(a n )2 =24420. (10分)(1)证明:∵AE ⊥BC ,FG ⊥BC ,∴AE ∥GF ,∴∠2=∠A .∵∠1=∠2,∴∠1=∠A ,∴AB ∥CD .(2)解:∵AB ∥CD ,∴∠D +∠CBD +∠3=180°,∠C =∠3.∵∠D =∠3+60°, ∠CBD =70°,∴∠3=25°.∴∠C =∠3=25°.B 卷(50分)一.填空(每题4分,共20分)21.8a-4b 22.60° 23. 18 y=13+0.5x (0≤x ≤16) 24.-22525. 20174032二.解答题(共30分)26. (10分)解:(1)由图可得,机动车行驶5小时后加油为36﹣12=24;(2)∵出发前油箱内余油量42L ,行驶5h 后余油量为12L ,共用去30L ,因此每小时耗油量为6L ,(3)由图可知,加油后可行驶6h ,故加油后行驶60×6=360km ,∵400>360,∴油箱中的油不够用.27. (8分)(1)12-x (2)13-x (3)14-x (4)1100-x (5)12100-28. (12分)解: ()221333x mx x x n ⎛⎫+--+ ⎪⎝⎭=x 4+nx 2+(3m ﹣3)x 3﹣9mx 2+(3mn+1)x ﹣13x 2﹣13n ,由积中不含x 和x 3项,得到3m ﹣3=0,3mn+1=0, 解得:m=1,13n =-,(1)原式=212m n ⎛⎫- ⎪⎝⎭=(76)2 =4936;(2)原式=324m 4n 2+22181m n +(3mn )2014•n 2=36+19+19=2369.。
2020-2021学年度七年级下册期中考试数学试卷及答案
2020-2021学年度第二学期期中考试试卷七年级数学满分:120分 时间:90分钟一、选择题(本大题共10分,每小题3分,共30分) 1.下列图中,∠1和∠2是对顶角的有( )个.A .1个B .2个C .3个D .4个 2.在平面直角坐标系中,点(-2,3)所在的象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3.已知点A (4,-3)到y 轴的距离为( )A 、4B 、-4C 、3D 、-3 4.下列说法错误的是( )A 、1)1(2=-B 、113-=-C 、2的平方根是2±D 、81-的平方根是9±5.在实数,,,0,﹣1.414,,中,无理数有( )A .2个B .3个C .4个D .5个6.下列命题是真命题的是( )A 、邻补角相等B 、对顶角相等C 、内错角相等D 、同位角相等 7.如题7图,能够判断AD ∥BC 的条件是( ) A .∠1=∠2 B .∠1=∠4C .∠B=∠DD .∠3=∠4 题7图8.将点P (2,1)向左平移2个单位后得到P ’,则P ’的坐标是( ) A 、(2,3) B 、(2,-1) C 、(4,1) D 、(0,1)9.如题9图,已知直线AB ,CD 相交于点O ,OE ⊥AB ,∠EOC=28°,则∠BOD 的度数为( ) A .28° B .52°C .62°D .118°题9图10.如题10图,原来是完全重叠的两个直角三角形,将其中一个直角三角形沿着BC 方向平移BE 的距离,就得到此图形,则阴影部分面积是( )平方厘米 A 、24 B 、20 C 、32.5 D 、60题10图 二、填空题(本大题共7小题,每小题4分,共28分) 11.如题11图,AB 、CD 相交于点O ,射线OE 在∠DOB 的内部, 则∠AOD 的邻补角是________________.12.9的平方根是_______,4的算术平方根是_________,13.如题13图,直线a 与直线b 、c 分别相交于点A 、B ,将直线b 绕点A 转动,当∠1=∠ 时,c ∥b ;14.5的相反数是______,绝对值是_______. 15.已知|x+1|+=0,则P (x,y )在第_____________象限.16.1+x 的算术平方根是3,则x =________. 题13图 17.在y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为_______________. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:2252383+--+19.如图题19图,将△ABC 向右平移5个单位长度,再向下平移2个单位长度,得到△A'B'C',请画出平移后的图形,并写出△A'B'C'各顶点的坐标。
年七年级下册期中数学试卷及答案-(2020)
七年级〔下〕期中数学试卷一、选择题〔每题4分,共48分〕1.49的平方根是〔〕A.7 B.﹣7C.±7D.2.以下列图的车标,能够看作由“根本图案〞经过平移获得的是〔〕A.B.C.D.3.在以下各数:,﹣π,,、、中无理数的个数是〔〕A.2 B.3 C.4 D.54.下边四个图形中,∠1=∠2必定建立的是〔〕A.B.C.D.5.在平面直角坐标系中,点M〔﹣2,3〕在〔〕A.第一象限B.第二象限C.第三象限D.第四象限6.在同一平面内,以下说法正确的选项是〔〕A.两直线的地点关系是平行、垂直和订交B.不平行的两条直线必定相互垂直C.不垂直的两条直线必定相互平行D.不订交的两条直线必定相互平行7.〔4分〕以下运算正确的选项是〔〕A.B.〔﹣3〕3=27C.=2D.=38.〔4分〕以下命题中正确的有〔〕①相等的角是对顶角;②在同一平面内,假定a∥b,b∥c,那么a∥c;③同旁内角互补;④互为邻补角的两角的角均分线相互垂直.A.0个B.1个C.2个D.3个9.〔4分〕点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为〔〕A.〔1,﹣8〕B.〔1,﹣2〕C.〔﹣7,﹣1〕D.〔0,﹣1〕10.〔4分〕假定一个正数的平方根是2a﹣1和﹣a+2,那么这个正数是〔〕A.1B.3C.4D.911.〔4分〕假定平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,那么点M的坐标为〔〕A.〔2,1〕B.〔﹣2,1〕C.〔2,﹣1〕D.〔1,﹣2〕12.〔4分〕如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的地点,假定∠EFB=65°,那么∠AED′等于〔〕A.50°B.55°C.60°D.65°1二、填空〔每小4分,共32分〕13.〔4分〕的平方根.14.〔4分〕把命“角相等〞改写成“假如⋯那么⋯〞的形式:.15.〔4分〕中A、B两点的坐分〔3,3〕、〔3,3〕,C的坐.16.〔4分〕如所示,用直尺和三角尺作直AB,CD,从中可知,直 AB与直CD的地点关系.17.〔4分〕如,a∥b,∠1=70°,∠2=40°,∠3=度.18.〔4分〕x、y数,且+〔y+2〕2=0,y x=.19.〔4分〕平方根等于它自己的数是.20.〔4分〕在平面直角坐系中,于平面内任一点〔m,n〕,定以下两种:1〕f〔m,n〕=〔m,n〕,如f〔2,1〕=〔2,1〕;2〕g〔m,n〕=〔m,n〕,如g〔2,1〕=〔2,1〕依照以上有:f[g〔3,4〕]=f〔3,4〕=〔3,4〕,那么g[f〔3,2〕]=.三、解答〔每8分,共16分〕21.〔8分〕算〔1〕+;〔2〕||〔〕|2|.22.〔8分〕解以下方程1〕4x216=0;2〕〔x1〕3=125.四、解答〔23-25每10分,26-27每12分,共54分〕23.〔10分〕推理填空:如:①假定∠1=∠2,∥〔内角相等,两直平行〕;假定∠DAB+∠ABC=180°,∥〔同旁内角互,两直平行〕;②当∥,2∠C+∠ABC=180°〔两直线平行,同旁内角互补〕;③当∥时,∠3=∠C〔两直线平行,同位角相等〕.24.〔10分〕如图,△ABC在直角坐标系中,1〕请写出△ABC各点的坐标.2〕假定把△ABC向上平移2个单位,再向左平移1个单位获得△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.3〕求出三角形ABC的面积.25.〔10分〕+1的整数局部为a,﹣1的小数局部为b,求2a+3b的值.26.〔12分〕:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.(27.〔12分〕研究题:1〕如图1,假定AB∥CD,那么∠B+∠D=∠E,你能说明原因吗?2〕反之,假定∠B+∠D=∠E,直线AB与直线CD有什么地点关系?简要说明原因.3〕假定将点E移至图2的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.4〕假定将点E移至图3的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.5〕在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.3七年级〔下〕期中数学试卷参照答案与试题分析一、选择题〔每题4分,共48分〕1.49的平方根是〔〕A.7B.﹣7C.±7D.【剖析】依据一个正数有两个平方根,它们互为相反数解答即可.2∴±=±7,应选:C.【评论】本题考察了平方根的观点,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根是解题的重点.2.以下列图的车标,能够看作由“根本图案〞经过平移获得的是〔〕A.B.C.D.【剖析】依据平移的观点:在平面内,把一个图形整体沿某一的方向挪动,这类图形的平行挪动,叫做平移变换,简称平移,即可选出答案.【解答】解:依据平移的观点,察看图形可知图案B经过平移后能够获得.应选:B.【评论】本题主要考察了图形的平移,在平面内,把一个图形整体沿某一的方向挪动,学生混杂图形的平移与旋转或翻转,而误选.3.在以下各数:,﹣π,,、、中无理数的个数是〔〕A.2 B.3C.4D.5【剖析】依据无理数的三种形式:①开方开不尽的数,②无穷不循环小数,③含有π的数,找出无理数.【解答】解:无理数有﹣π,,共3个.应选B.【评论】本题考察了无理数的定义:无穷不循环小数叫无理数,常有形式有:①开方开不尽的数,如等;②无穷不循环小数,如⋯等;③字母,如π等.4.下边四个图形中,∠1=∠2必定建立的是〔〕A.B.C.D.【剖析】依据对顶角、邻补角、平行线的性质及三角形的外角性质,可判断;【解答】解:A、∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B、∠1、∠2是对顶角,依据其定义;故本选项正确;C、依据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D、依据三角形的外角必定大于与它不相邻的内角;故本选项错误.应选B.4【评论】本题考察了对顶角、邻补角、平行线的性质及三角形的外角性质,本题考察的知识点许多,熟记其定义,是解答的根基.5.在平面直角坐标系中,点M〔﹣2,3〕在〔〕A.第一象限B.第二象限C.第三象限D.第四象限【剖析】横坐标小于0,纵坐标大于0,那么这点在第二象限.【解答】解:∵﹣2<0,3>0,∴〔﹣2,3〕在第二象限,应选B.【评论】本题考察了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是根基知识要娴熟掌握.6.在同一平面内,以下说法正确的选项是〔〕A.两直线的地点关系是平行、垂直和订交B.不平行的两条直线必定相互垂直C.不垂直的两条直线必定相互平行D.不订交的两条直线必定相互平行【剖析】在同一平面内,两直线的地点关系有2种:平行、订交,依据以上结论判断即可.【解答】解:A、∵在同一平面内,两直线的地点关系是平行、订交,2种,∴在同一平面内,两直线的地点关系是平行、订交〔订交不必定垂直〕,故本选项错误;B、在同一平面内,不平行的两条直线必定订交,故本选项错误;C、在同一平面内,不垂直的两直线可能平行,可能订交,故本选项错误;D、在同一平面内,不订交的两条直线必定平行,故本选项正确;应选D.【评论】本题考察了对平行线的理解和运用,注意:①在同一平面内,两直线的地点关系有种:平行、订交,②订交不必定垂直.7.以下运算正确的选项是〔〕A.B.〔﹣3〕3=27C.=2 D.=3【剖析】依据算术平方根、立方根计算即可.【解答】解:A、,错误;3C、,正确;D、,错误;应选C【评论】本题考察算术平方根、立方根,重点是依据算术平方根、立方根的定义计算.8.以下命题中正确的有〔〕①相等的角是对顶角;②在同一平面内,假定a∥b,b∥c,那么a∥c;③同旁内角互补;④互为邻补角的两角的角均分线相互垂直.A.0个B.1个C.2个D.3个【剖析】依据对顶角的性质、平行公义、平行线的判断定理和垂直的定义对各个选项进行判断即可.【解答】解:相等的角不必定是对顶角,①错误;在同一平面内,假定a∥b,b∥c,那么a∥c,②正确;同旁内角不必定互补,③错误;5互为邻补角的两角的角均分线相互垂直,④正确,应选:C.【评论】本题考察的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假重点是要熟习课本中的性质定理.9.点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为〔〕A.〔1,﹣8〕B.〔1,﹣2〕C.〔﹣7,﹣1〕D.〔0,﹣1〕【剖析】依据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:依据题意,∵点A〔3,﹣5〕向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为〔0,﹣1〕.应选D.【评论】本题考察了点的坐标平移,依据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的重点.10.假定一个正数的平方根是2a﹣1和﹣a+2,那么这个正数是〔〕A.1 B.3C.4D.9【剖析】依照平方根的性质列方出求解即可.【解答】解:∵一个正数的平方根是2a﹣1和﹣a+2,2a﹣1﹣a+2=0.解得:a=﹣1.2a﹣1=﹣3.∴这个正数是9.应选:D.【评论】本题主要考察的是平方根的定义和性质,依照平方根的性质列出对于a的方程是解题的重点.11.假定平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,那么点M的坐标为〔〕A.〔2,1〕B.〔﹣2,1〕C.〔2,﹣1〕D.〔1,﹣2〕【剖析】可先依据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,从而判断出点的符号,获得详细坐标即可.【解答】解:∵M到x轴的距离为1,到y轴的距离为2,M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,M坐标为〔2,﹣1〕.应选C.【评论】考察点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.12.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的地点,假定∠EFB=65°,那么∠AED′等于〔〕6A.50°B.55°C.60°D.65°【剖析】第一依据AD∥BC,求出∠FED的度数,而后依据称的性,折叠前后形的形状和大小不,地点化,和角相等,可知∠FED=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性知,∠FED=∠FED′=65°,∴∠AED′=180°2∠FED=50°.故∠AED′等于50°.故:A.【点】本考了:1、折叠的性;2、矩形的性,平行的性,平角的观点求解.二、填空〔每小4分,共32分〕13.的平方根±3.【剖析】依据平方根的定即可得出答案.【解答】解:8l的平方根±3.故答案:±3.【点】此考了平方根的知,属于基,掌握定是关.14.把命“角相等〞改写成“假如⋯那么⋯〞的形式:假如两个角是角,那么它相等.【剖析】命中的条件是两个角相等,放在“假如〞的后边,是两个角的角相等,放在“那么〞的后边.【解答】解::角,:相等,故写成“假如⋯那么⋯〞的形式是:假如两个角是角,那么它相等,故答案:假如两个角是角,那么它相等.【点】本主要考了将原命写成条件与的形式,“假如〞后边是命的条件,“那么〞后边是条件的,解决本的关是找到相的条件和,比.15.中A、B两点的坐分〔3,3〕、〔3,3〕,C的坐〔1,5〕.【剖析】第一依据A、B两点的坐确立坐系,而后确立出C的坐即可.7【解答】解:如图,,∵A,B两点的坐标分别为〔﹣3,3〕,〔3,3〕,∴线段AB的中垂线为y轴,且向上为正方向,最下边的水平线为x轴,且向右为正方向,C点的坐标为〔﹣1,5〕.故答案为:〔﹣1,5〕.【评论】本题主要考察了坐标确立地点,解题的重点是确立坐标原点和x,y轴的地点及方向.16.以下列图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的地点关系为平行.【剖析】依据同位角相等,两直线平行判断.【解答】解:依据题意,∠1与∠2是三角尺的同一个角,因此∠1=∠2,因此,AB∥CD〔同位角相等,两直线平行〕.故答案为:平行.【评论】本题考察了平行线的判断娴熟掌握同位角相等,两直线平行,并正确识图是解题的重点.17.如图,a∥b,∠1=70°,∠2=40°,那么∠3= 70度.【剖析】把∠2,∠3转变为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,8∴∠3=∠ABC=70°.故答案为:70.【评论】本题考察了平行线与三角形的有关知识.18.x、y为实数,且+〔y+2〕2=0,那么y x=﹣8.【剖析】依据非负数的性质列式求出x、y的值,而后辈入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,x3因此,y=〔﹣2〕=﹣8.【评论】本题考察了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.平方根等于它自己的数是0.【剖析】依据平方根的定义即可求出平方根等于它自己的数.20的平方根是0.∴平方根等于它自己的数是0.故填0.【评论】本题考察了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.在平面直角坐标系中,对于平面内任一点〔m,n〕,规定以下两种变换:1〕f〔m,n〕=〔m,﹣n〕,如f〔2,1〕=〔2,﹣1〕;2〕g〔m,n〕=〔﹣m,﹣n〕,如g〔2,1〕=〔﹣2,﹣1〕依照以上变换有:f[g〔3,4〕]=f〔﹣3,﹣4〕=〔﹣3,4〕,那么g[f〔﹣3,2〕]=〔3,2〕.【剖析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算次序及坐标的符号变化.【解答】解:∵f〔﹣3,2〕=〔﹣3,﹣2〕,g[f〔﹣3,2〕]=g〔﹣3,﹣2〕=〔3,2〕,故答案为:〔3,2〕.【评论】本题考察了一种新式的运算法那么,考察了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,重点是理解两种运算改变了哪个坐标的符号.三、解答题〔每题8分,共16分〕21.计算〔1〕﹣+﹣;〔2〕|﹣ |﹣〔﹣〕﹣|﹣2|.【剖析】〔1〕原式利用平方根、立方根定义计算即可获得结果;2〕原式利用绝对值的代数意义化简,计算即可获得结果.【解答】解:〔1〕原式=2﹣﹣+1=1;〔2〕原式=﹣+﹣2+=2﹣2.【评论】本题考察了实数的运算,娴熟掌握运算法那么是解本题的重点.22.〔8分〕解以下方程91〕4x2﹣16=0;2〕〔x﹣1〕3=﹣125.【剖析】〔1〕依据平方根的定义计算即可;〔2〕依据立方根的定义计算即可.【解答】解:〔1〕4x2=16,2x=4,2〕x﹣1=﹣5,x=﹣4.【评论】本题考察了平方根和立方根,掌握它们的定义是解题的重点.四、解答题〔23-25题每题10分,26-27题每题12分,共54分〕23.推理填空:如图:①假定∠1=∠2,那么AD∥CB〔内错角相等,两直线平行〕;假定∠DAB+∠ABC=180°,那么AD∥BC〔同旁内角互补,两直线平行〕;②当AB∥CD时,∠C+∠ABC=180°〔两直线平行,同旁内角互补〕;③当AD∥BC时,∠3=∠C〔两直线平行,同位角相等〕.【剖析】依据平行线的性质和平行线的判断直接达成填空.两条直线平行,那么同位角相等,内错角相等,同旁内角互补;反之亦建立.【解答】解:①假定∠1=∠2,那么AD∥CB〔内错角相等,两条直线平行〕;假定∠DAB+∠ABC=180°,那么AD∥BC〔同旁内角互补,两条直线平行〕;②当AB∥CD时,∠C+∠ABC=180°〔两条直线平行,同旁内角互补〕;③当AD∥BC时,∠3=∠C〔两条直线平行,同位角相等〕.【评论】在做此类题的时候,必定要仔细察看,看两个角究竟是哪两条直线被第三条直线所截而形成的角.(24.〔10分〕如图,△ABC在直角坐标系中,1〕请写出△ABC各点的坐标.2〕假定把△ABC向上平移2个单位,再向左平移1个单位获得△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.3〕求出三角形ABC的面积.10【剖析】〔1〕依据平面直角坐标系写出各点的坐标即可;2〕依据网格构造找出点A、B、C平移后的对应点A′、B′、C′的地点,而后按序连结即可,再依据平面直角坐标系写出点A′、B′、C′的坐标;3〕利用△ABC所在的矩形的面积减去周围三个直角三角形的面积,列式计算即可得解.【解答】解:〔1〕A〔﹣2,﹣2〕,B〔3,1〕,C〔0,2〕;2〕△A′B′C′以下列图,A′〔﹣3,0〕、B′〔2,3〕,C′〔﹣1,4〕;〔3〕△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,=20﹣4﹣﹣,=20﹣13,=7.【评论】本题考察了利用平移变换作图,娴熟掌握网格构造正确找出对应点的地点是解题的重点.25.〔10分〕+1的整数局部为a,﹣1的小数局部为b,求2a+3b的值.【剖析】求出2<<3,依据的范围求出+1和﹣1的范围,求出a、b的值,代入求出即可.【解答】解:∵2<3∴3+1<4,1﹣1<2,a=3,b=﹣2,2a+3b=2×3+3×〔﹣2〕=3.【评论】本题考察了估量无理数的性质和二次根式的加减的应用,解本题的重点是求出a、b的值.1126.〔12分〕:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.【剖析】求出AD∥EF,推出∠1=∠2=∠BAD,推出DG∥AB即可.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,DG∥AB,∴∠DGC=∠BAC.【评论】本题考察了平行线的性质和判断的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.27.研究题:1〕如图1,假定AB∥CD,那么∠B+∠D=∠E,你能说明原因吗?2〕反之,假定∠B+∠D=∠E,直线AB与直线CD有什么地点关系?简要说明原因.3〕假定将点E移至图2的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.4〕假定将点E移至图3的地点,此时∠B、∠D、∠E之间有什么关系?直接写出结论.5〕在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.【剖析】〔1〕第一作EF∥AB,依据AB∥CD,可得EF∥CD,据此分别判断出∠B=∠1,∠D=∠2,即可判断出∠B+∠D=∠E,据此解答即可.2〕第一作EF∥AB,即可判断出∠B=∠1;而后依据∠E=∠1+∠2=∠B+∠D,可得∠D=∠2,据此判断出EF∥CD,再依据EF∥AB,可得AB∥CD,据此判断即可.3〕第一过E作EF∥AB,即可判断出∠BEF+∠B=180°,而后依据EF∥CD,可得∠D+∠DEF=180°,据此判断出∠E+∠B+∠D=360°即可.4〕第一依据AB∥CD,可得∠B=∠BFD;而后依据∠D+∠E=∠BFD,可得∠D+∠E=∠B,据此解答即可.5〕第一作EM∥AB,FN∥AB,GP∥AB,依据AB∥CD,可得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,因此∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;而后依据∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,可得∠E+∠G=∠B+∠F+∠D,据此判断即可.12【解答】解:〔1〕如图1,作EF∥AB,,AB∥CD,∴∠B=∠1,AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.〔2〕如图2,作EF∥AB,,EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,EF∥CD,又∵EF∥AB,AB∥CD.〔3〕如图3,过E作EF∥AB,,EF∥AB,∴∠BEF+∠B=180°,EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.〔4〕如图4,,13AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.〔5〕如图5,作EM∥AB,FN∥AB,GP∥AB,,又∵AB∥CD,∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;∵∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,∴∠E+∠G=∠B+∠F+∠D.【评论】本题主要考察了平行线的性质和应用,要娴熟掌握,解答本题的重点是要明确:〔1〕定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.〔2〕定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.〔3〕定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.14。
2020学年七年级下学期期中考试数学试题(含答案)
2020年春学期初一期中考试数学试卷 2020.5注意事项:1. 考试时间为100分钟,试卷满分为110分.2. 所有答案必须填涂到答卷纸上相应位置,答案写在试卷其他部分无效.一、选择题(本大题共10小题,每小题3分,共30分.)1.把图形(1)进行平移,能得到的图形是 ( ▲ )2.下列等式从左到右的变形,属于因式分解的是 ( ▲ )A .2(1)(1)1x x x +-=-B .224(4)(4)x y x y x y -=+-C .221(1)1x x x x -+=-+D .22816(4)x x x -+=- 3.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是( ▲ )A .2B .9C .10D . 114.下列计算正确的是 ( ▲ )A . 1266a a a =+B .22414mm =- C .877222=+ D .93339)3(y x xy = 5.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED 度数为( ▲ )A.110°B.125°C.135°D.140°6.若()()A b a b a +-=+223535,则A 等于 ( ▲ ) A .ab 12 B .ab 15 C .ab 30 D .ab 607.下列说法中,正确的个数有( ▲ )①同位角相等; ②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加180°;⑤两个角的两边分别平行,则这两个角相等。
第9题A.0个B.1个C.2个D.3个8.已知0222)21(,)21(,2,)2.0(-=-=-=-=--d c b a ,则比较a 、b 、c 、d 的大小结果是 ( ▲ )A. c d a b <<<B.c d b a <<<C. d c a b <<<D.c a d b <<<9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM 平分∠AOD ,ON 平分∠COB,则∠M0N 的度数为( ▲ )A.60°B.45°C. 65.5°D.52.5°10.如图,若平行四边形AFPE 、BGPF 、EPHD 的面积分别为15、6、25,则阴影部分的面积是( ▲ )A.20B. 15.5C.23D.25二、填空题(本大题共8小题,每小题2分,共16分.)11.2019年末,新型冠状病毒引发的肺炎在我国爆发,被命名为2019-nCoV 的新型冠状病毒直径最小约0.00000006厘米,用科学计数法表示为 ▲ 厘米.12.若92-2++x m x )(是一个完全平方式,则m = ▲ .13. 若3424==y x ,,则=-y x 24 ▲ .14.计算)8)(4(22+++-mx x n x x 的结果不含3x 的项,那么m= ▲ .15.将长方形ABCD 折叠,折痕为EF ,BC 的对应边为''C B 与CD 交于点M ,若∠MD B '=50°,则∠BEF 的度数为 ▲ °.16.计算:()()870.1258⨯-= ▲ . 17.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = ▲ ° .18.无锡市旅游局为了亮化某景点,在两条笔直且互相平行的景观道MN 、QP 上分别放置A 、B 两盏激光灯,如图所示.A 灯发出的光束自AM 逆时针旋转至AN 便立即回转;B 灯发出的光束自BP 逆时针旋转至BQ 便立即回转,两灯不间断照射,A 灯每秒转动30°,B 灯每秒转动10°.B 灯先转第17题 第18题第15题第10题动2秒,A 灯才开始转动.当B 灯光束第一次到达BQ 之前,两灯的光束互相平行时A 灯旋转的时间是 ▲ 秒.三、解答题(本大题共8小题,共64分.)19.计算:(每小题3分,共12分.)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+-- (2)23)3)(()2(x x x ---(3))2)(3()7(+--+x x x x (4))21)(12()12(2a a a +-+-+20.因式分解:(每小题3分,共9分.)(1)b a b a ab 322375303+- (2))(16)(2x y y x a -+- (3)()222224y x y x -+ 21.(6分)先化简,再求值:)3)(3()23)(12(62-++-+-x x x x x ,其中21=x22.( 8分)如图,在10×10的正方形网格中,每个小正方形的边长为1个单位长度.△ABC 的顶点都在正方形网格的格点上,且通过两次平移(沿网格线方向作上下或左右平移)后得到△'''C B A ,点C 的对应点是直线上的格点'C .(1)画出△'''C B A .(2)若连接'AA 、'BB ,则这两条线段之间的关系是 .(3)试在直线l 上画出所有符合题意的格点P ,使得由点'A 、'B 、'C 、P 四点围成的四边形的面积为9.23.(6分)如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C+∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.24.(6分)如图,AD 平分BAC ∠,EAD EDA =∠∠.(1)EAC ∠与B ∠相等吗?为什么?(2)若50B =︒∠,:13CAD E =∠∠:,求E ∠的度数.25. (8分)完全平方公式:(a ±b )2=a 2±2ab+b 2适当的变形,可以解决很多的数学问题. 例如:若a+b =3,ab =1,求a 2 +b 2 的值.解:因为a+b =3,ab =1所以(a+b )2=9,2ab =2所以a 2+b 2+2ab =9,2ab =2得a 2+b 2=7根据上面的解题思路与方法,解决下列问题:(1)若(7﹣x )(x ﹣4)=1,求(7﹣x )2+(x ﹣4)2的值;(2)如图,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设AB =5,两正方形的面积和S 1+S 2=17,求图中阴影部分面积.26.(9分)在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交射线BC 于点F .(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)EC B A D图② 图① 备用图(1)如图①,当AE ⊥BC 时,求证:DE ∥AC .(2)若︒=∠-∠10B C ,∠BAD =x ° .①如图②,当DE ⊥BC 时,求x 的值;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.2020年春学期初一期中考试数学参考答案和评分标准2020.5一、选择题(每题3分,共30分)1. C 2 .D 3 . B 4 . C 5 . B 6. D 7. B 8. A 9. D 10. B二、填空题(每空2分,共16分)11. 8106-⨯ ; 12. 84或- ; 13.92 ; 14. 4 ;15. 70 ; 16 . 81- ; 17. 66 ; 18. 2171或 三、解答题(共64分)19. 计算(每题3分,共12分)(1)(1)()02200614.3211π--⎪⎭⎫ ⎝⎛-+--;=-1+4-1------------------------2分(化错1个扣一分)= 2 ----------------------3分(2)23)3)(()2(x x x ---.= 3398x x +- ------------2分(每个化简1分)= 3x --------------------3分(3) )2)(3()7(+--+x x x x= )6(722---+x x x x ------------2分 = 68+x --------------------3分(4) )21)(12()12(2a a a +-+-+ =)14(14422--++a a a ------------2分 =24+a ------------3分20.把下列各式分解因式:(每题3分,共9分)(1) b a b a ab 322375303+-=)2510(322a ab b ab +-------------1分 =2)5(3a b ab -------------3分(2) )(16)(2x y y x a -+-=)16)((2--a y x -----------------------------------1分 =)4)(4)((-+-a a y x -------------------------------3分(3) ()222224y x y x -+ = )2)(2(2222xy y x xy y x -+++--------1分 = 22)()(y x y x -+ ------------3分21.(6分)解:原式= 9)26(6222-+---x x x x ------------------2分 = 72-+x x --------------------4分当21=x ,原式=7-2141+=416- -----------------------6分22. (8分)(1)画图--------------2分 (2)平行且相等--------------4分(3)8分23. (6分)(1)证明:∵AD ⊥BC∴∠1+∠C=90°………………1′∵∠C+∠ADE =90°∴∠1=∠ADE ………………2′∴DE ∥AC ………………3’(2) EF ⊥BC ………………4′∵∠1=∠2,∠1=∠ADE∴∠2=∠ADE∴EF ∥AD ………………5′∴∠EFD =∠ADC=90°∴EF ⊥BC ………………6′(其他方法酌情给分)24. (6分)解:(1)∠E AC =∠B ………………1′理由:∵AD 平分∠BAC∴∠1=∠2………………2′∵∠ADE=∠B+∠1,∠EAD=∠2+∠EAC ,且∠EAD=∠EDA∴∠B=∠EAC ………………3’(2)∵:13CAD E =∠∠:∴设∠CAD (即∠2)=x °,则∠E=x 3°∵∠B=50°∴∠EAD=∠EDA=(50+x )° (4)∴180325050=+++x x∴16=x ………………5′∴∠E=48° ………………6′(其他方法酌情给分)25. (8分)解:(1)设4,7-=-=x b x a则由题意可得:1,3==+ab b a∴7291232)(2222=-=⨯-=-+=+ab b a b a 即7)4()7(22=-+-x x ………………4′ (2)………………8′26. (9分)(1)∵AE ⊥BC∴∠EAC+∠C=90°∵∠BAC=90°∴∠B+∠C=90°∴∠B=∠EAC∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E∴∠EAC=∠E∴DE ∥AC ………………3′(2)①∵∠B+∠C=90°,︒=∠-∠10B C∴∠B=40°,∠C=50°∵DE ⊥BC∴∠EDF=90°∵将△ABD 沿AD 翻折后得到△AED∴∠B=∠E=40°,∠BAD=∠EAD=x °∴∠DFE=5O °∵∠DFE=BAF B ∠+∠∴50402=+x 5=x ………………3′②由题意可得,∠ADC=x +40, ∠ABD=x -140 ,∠EDF=x x x 2100)40(140-=+--∠DFE=x 240+(ⅰ)若∠EDF=∠DFE x x 2402-100+= 15=x (ⅱ)若∠EDF=∠E 402-100=x 30=x(ⅲ)若∠DFE =∠E 40240=+x 0=x (舍去)综上可得3015或=x . ………………3′。
人教版七年级数学半期试卷
一、选择题(每题4分,共20分)1. 下列数中,是负数的是()A. -3B. 0C. 3D. -5.62. 下列各数中,绝对值最小的是()A. -2B. 2C. -1D. 03. 若|a| = 5,那么a的值可能是()A. 5B. -5C. 0D. ±54. 在数轴上,表示-2的点与表示5的点的距离是()A. 3B. 7C. 2D. 85. 下列运算正确的是()A. (-3) + (-2) = 5B. (-3) × (-2) = -6C. (-3) ÷ (-2) = 1.5D. (-3) - (-2) = -1二、填空题(每题4分,共16分)6. 有理数-3的相反数是__________,绝对值是__________。
7. 若|a| = 4,则a的值可能是__________或__________。
8. 计算:(-5)×(-2)+ 3×2 = _________。
9. 若a = -3,b = 2,则a + b的值是__________。
10. 计算:-4 - (-3) + 2 = _________。
三、解答题(共64分)11. (10分)比较下列数的大小:-3,-2,-1,0,1,2,3。
12. (10分)已知数轴上A点的坐标是-2,B点的坐标是4,求点A和点B之间的距离。
13. (12分)解下列方程:(1)3x - 2 = 7(2)5 - 2x = 3(3)2(x - 3) = 4x - 614. (12分)已知a、b、c是三个不相等的实数,且a + b = 5,b + c = 3,a +c = 4,求a、b、c的值。
15. (10分)某商店进了一批商品,单价为20元,售价为25元。
为了促销,商店决定打x折出售。
已知打折后的售价为20元,求x的值。
四、应用题(共12分)16. (6分)某班级有男生30人,女生25人,求该班级男生和女生的人数比。
2020年七年级下册数学半期考试试题 (含答案) (1)
2020年七年级下册数学期中考试(全卷共五个大题,满分150分,考试时间120分钟)注意事项:试题的答案书写在答题卡...上,不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1.下列哪个图形是由如图平移得到的( )A B C D2.在平面直角坐标系中,点(2,3)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.下列实数中:3.14159,38,0.101001…,-π,5,71-,0,无理数个数为( ) A .5 B .4 C .3 D .24. 若y x >,则下列式子中错误的是( ) A .22+>+y x B .22y x > C .y x ->-22 D .y x 22-<-5. 如果82m =-,那么m 的取值范围是( )A.01m <<B.12m <<C.23m <<D.34m <<6.不等式62≤-x 的解集在数轴上表示正确的是( )A B C D7.已知12=-y x ,则y x 423+-的值为( )A .-1B .0C .1D .28.坐标平面内有一点),(y x A ,且点A 到x 轴的距离为3,到y 轴的距离恰为到x 轴距离的2倍.若0<xy ,则点A 的坐标为( )A .(6,-3)B .(-6,3)C .(3,-6)或(-3,6)D .(6,-3)或(-6,3)9.下列说法中,正确的是( )A .直线外一点到这条直线的垂线段,叫做点到直线的距离;B .已知线段4=MN ,y MN //轴,若点M 的坐标为(-1,2),则点N 的坐标为(-1,-2)或(-1,6);C .若321m -与322-n 互为相反数,则21612=+n m ; D .已知关于x 的不等式2)1(>+x a 的解集是1-<x ,则a 的取值范围为3-≤a .10. 重庆市巴川中学校园超市购进某种学生笔记本共500本,进价为3元/本,出售时标价为5元/本,当售出80%时,超市准备更换新的笔记本,于是决定打折出售,直到售完为止.若该超市要保证利润不少于850元,则至多可打( )A .6折B .7折C .8折D .9折第11题图11.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB ∥CD ,∠BAE=87°,∠DCE=121°,则∠E 的度数是( )A .28°B .34°C .46°D .56°12.下列命题:①垂直于同一直线的两条直线互相平行;②364的平方根是8±;③若一个角的两边与另一个角的两边互相垂直,且其中一个角是45°,则另一个角为45°或135°;④若m 是75-的整数部分,n 是不等式)1(3)1(2->+x x 的最大整数解,则关于x ,y 方程541=+ny mx 的自然数解共有3对;⑤在平面直角坐标系中,点A 、B 的坐标分别为(2,0),(0,1),将线段AB 平移至),3(1a A ,)2,(1b B 的位置,则2=+b a .其中真命题的个数是( )A .2B .3C .4D .5二、填空题:(本大题8个小题,每小题3分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.如图,计划把河中的水引到水池M 中,可以先过M 点作MC ⊥AB ,垂足为C ,然后沿MC 开渠,则能使所开的渠最短,这种设计方案的根据是 .14.若⎩⎨⎧==21y x 是二元一次方程13=-y ax 的解,则a = . 15.计算: 32812+--= .16.如图,已知AD ∥BC ,∠B=36°,BD 平分∠ADE ,则∠DEC= .第16题图 第13题图第19题图17.已知:2-x 的平方根是2±,72++y x 的立方根为3,则22y x +的算术平方根为 . 18.A 、B 两地相距20千米,甲乙两人分别从A 、B 两地相向而行,2小时后在途中相遇,然后甲立即返回A 地,乙继续向A 地走,当甲回到A 地时,乙距离A 地还有2千米,则甲的速度为 千米/时,乙的速度为 千米/时.19.已知实数a 、b 、c 在数轴上的位置如图所示,化简=-++-22)(b c c a a .20.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…,那么点2018A 的坐标为 .三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 21.如图,EF ⊥AC 于点F ,DB ⊥AC 于点M ,∠1=∠2,∠3=∠C ,请问AB 与MN 平行吗?说明理由.完成下列推理过程:解:AB ∥MN .理由如下:∵EF ⊥AC ,DB ⊥AC ,(已知)∴∠CFE=∠CMD=90°,( )∴EF ∥DM ,( )∴∠2=∠CDM ,( )∵∠1=∠2,(已知)∴∠1=∠ ,( )∴MN ∥CD ,( )∵∠3=∠C ,(已知)∴AB ∥CD ,( )∴AB ∥MN .( )22.解不等式1236131+-≥--+x x x ,并在数轴上把它的解集表示出来.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 23.用适当的方法解下列方程组 (1)⎩⎨⎧-=-=+52392y x y x (2)⎪⎩⎪⎨⎧=+=-+23213)3(2y x y x24.已知:A (0,1),B (2,0),C (4,3)(1)在坐标系中描出各点,画出三角形ABC ;(2)若三角形ABC 内有一点P (x ,y )经平移后对应点为P 1(3-x ,4-y ),将三角形ABC 作同样的平移得到三角形A 1B 1C 1,画出平移后的三角形A 1B 1C 1,并直接写出点A 1,B 1,C 1的坐标;(3)求三角形ABC 的面积.25. 对于x ,y 定义一种新运算△,规定:by ax y x +=∆(其中a ,b 均为非零常数),例如:a =∆01,已知311=∆,111-=∆-.(1)求a ,b 的值;(2)在(1)的条件下,若关于x ,y 的方程组⎩⎨⎧+=-=+12m by ax m by ax 的解满足1-<+y x ,求m 的取值范围.26.如图,已知ο180=∠+∠AGC AMD ,ο180=∠+∠B D .(1)求证:DF AB //;(2)如果ο110=∠D ,ο35=∠A ,求AGC ∠的度数.27.铜梁永辉商场今年二月份以每桶40元的单价购进1000桶甲、乙两种食用油,然后以甲种食用油每桶75元、乙桶食用油每桶60元的价格售完,共获利29000元。
2020人教版七年级下册数学《期中考试试题》附答案
人教版七年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. -2的相反数是( )A. -2B. 2C. ±2D. 122.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102 3.将如图所示直角梯形绕直线l 旋转一周,得到的立体图形是( )A.B. C.D.4.在227,π,这些实数中,无理数有( )个 A. 1 B. 2 C. 3 D. 4 5.已知关于x 的一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( ) A. ﹣1 B. 1 C. ﹣2 D. ﹣36.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为( )A. 55°B. 45°C. 35°D. 25° 7.半面直角坐标系中,点A (-2,1)到y 轴的距离为( )A. -2B. 1C. 2D. 8.下列计算正确的是( )A.B. C. ∥2 D. ∥±29.把不等式x+2>4的解集表示在数轴上,正确的是 ( )A. B. C. D.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6 B. -6 C. 1 D. -1二、填空题13.比较实数的大小:3.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.15.如图:已知:a∥b,∥1=80°,则∥2=______.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.17.不等式8x2>1的解集是______.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.三、解答题19.求值:(-1)2018-|1|20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC面积.21.已知关于x,y方程组4x y53x y9-=⎧⎨+=⎩和13418ax byx by+=-⎧⎨+=⎩有相同的解.(1)求出它们相同的解;(2)求(2a+3b)2019的值.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD 与EF 平行吗?为什么?(2)如果∥1=∥2,CD 平分∥ACB ,且∥3=120°,求∥ACB 与∥1的度数.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18x y =⎧⎨=⎩就是方程3x+y=11的一组“好解”;123x y z =⎧⎪=⎨⎪=⎩是方程组3206x y z x y z ++=⎧⎨++=⎩的一组“好解”. (1)请直接写出方程x+2y=7所有“好解”;(2)关于x ,y ,k 的方程组1551070x y k x y k ++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x ,y 为方程33x+23y=2019的“好解”,且x+y=m ,求所有m 的值.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b 20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由. ()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.的26.已知a+1是4的算术平方根,b-1是27的立方根,化简求值:2(2a-b2)-(4a-a2).答案与解析一、选择题1. -2的相反数是()A. -2B. 2C. ±2D. 1 2【答案】B【解析】【分析】直接利用相反数的定义进而分析得出答案.【详解】解:-2的相反数是:2.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A. 0.76×104B. 7.6×103C. 7.6×104D. 76×102【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:7600=7.6×103,故选B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A. B. C. D.【答案】A【解析】【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【详解】题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选:A .【点睛】本题主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.4.在227,π,这些实数中,无理数有( )个 A. 1B. 2C. 3D. 4 【答案】B【解析】【分析】根据无限不循环小数是无理数的定义进行判断选择即可.2=-,所以在227,π,这些实数中,无理数有,π共两个,故答案选B.【点睛】本题考查的是无理数的概念,能够准确区别无限不循环小数是解题的关键. 5.已知关于x 一元一次方程2(x ﹣1)+3a =3的解为4,则a 的值是( )A. ﹣1B. 1C. ﹣2D. ﹣3【答案】A【解析】【分析】把x=1代入方程,即可得到一个关于a 的方程,即可求解.【详解】把x =4代入方程得()24133,a -+=解得: 1.a =-故选∥A.【点睛】考查方程解的概念,使方程左右两边相等的未知数的值就是方程的解. 6.如图所示,直线a∥b ,点B 在直线b 上,且AB∥BC ,∥1=55°,则∥2的度数为()A. 55°B. 45°C. 35°D. 25°【答案】C【解析】【分析】先根据余角的定义求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∥1=55°,∥ABC=90°,∴∥3=90°-55°=35°.∵a ∥b ,∴∥2=∥3=35°. 的故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.半面直角坐标系中,点A(-2,1)到y轴的距离为()A. -2B. 1C. 2【答案】C【解析】【分析】根据点到y轴的距离等于横坐标的绝对值解答.【详解】解:∵点A(-2,1),∴点A(-2,1)到y轴的距离=|-2|=2,故选:C.【点睛】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的绝对值是解题的关键.8.下列计算正确的是()∥2∥±2【答案】A【解析】【分析】根据算数平方根的定义可判断:若一个正数的平方等于a,则这个正数就是a的算数平方根【详解】A=2故B是错误C=4故C、D都是错误所以本题答案应为:A【点睛】算术平方根的定义是本题的考点,注意区别算数平方根和平方根.9.把不等式x+2>4的解集表示在数轴上,正确的是( )A. B.C.D.【答案】B【解析】 试题分析:移项得,x >4-2,合并同类项得,x >2,把解集画在数轴上,故选B .考点: 在数轴上表示不等式的解集.10.下列命题中是假命题的是( )A. 若a >b ,则a+3>b+3B. 若a >b ,则-a <-bC. 若a >b ,则a 2>b 2D. 若a >b ,则33a b > 【答案】C【解析】【分析】利用不等式的性质分别判断后即可确定正确的选项.【详解】解:A.若a >b ,则a+3>b+3,正确,是真命题;B.若a >b ,则-a <-b ,正确,是真命题;C.若a >b ,则a 2>b 2不一定成立,错误,是假命题;D.若a >b ,则33a b >,正确,是真命题; 故选:C.【点睛】本题考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大. 11.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x 两、y 两,则可列方程组为( )A. 5210258x y x y +=⎧⎨+=⎩B. 5210258x y x y -=⎧⎨-=⎩C. 5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 【答案】A【解析】 【分析】每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】由题意可得,5210258x y x y +=⎧⎨+=⎩∥ 故选A∥【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,找准等量关系列出相应的方程组.12.已知方程ax+by=10的两个解是10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩,求a+b 的值( ) A. 6B. -6C. 1D. -1【答案】B【解析】【分析】把方程的两个解代入,则可得到一个关于a 和b 的二元一次方程组,解答即可. 【详解】解:把两个解10x y =-⎧⎨=⎩,15x y =⎧⎨=⎩分别代入方程ax+by=10中, 得:10510a a b -=⎧⎨+=⎩, 解得:104a b =-⎧⎨=⎩, ∴a+b=-10+4=-6,故选:B.【点睛】本题考查了二元一次方程的解,解题关键把方程的两个解代入原方程,得到关于a和b的二元一次方程组,再求解.二、填空题13.比较实数的大小:.【答案】>【解析】【分析】此题涉及的知识点是二次根式的性质,根据二次根式的性质,将3化成根号的形式即可比较出两实数的大小.【详解】将39>5,所以3【点睛】此题重点考察学生对二次根式的理解,熟练掌握二次根式的性质是本题解题的关键.14.在平面直角坐标系中,已知,点A(m-2,3+m)x轴上,则m=______.【答案】-3【解析】【分析】根据x轴上点的纵坐标为0列式计算即可得解.【详解】解:∵点A(m-2,3+m)在x轴上,∴3+m=0,解得:m=-3.故答案为:-3.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.15.如图:已知:a∥b,∥1=80°,则∥2=______.【答案】100°【解析】【分析】利用两直线平行,同位角相等和邻补角的定义求∠2的度数.【详解】解:∵a∥b,∴∥3=∥1=80°.∥∥2=180°-∥3=100°.故答案为:100°.【点睛】本题比较简单,考查的是平行线的性质和邻补角的定义.16.如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,则线段AD的长为______cm.【答案】7.5【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=10cm,继而即可求出答案.【详解】解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,∴AC=CB=12AB=5cm,CD=12BC=2.5cm,∴AD=AC+CD=5+2.5=7.5cm.故答案为:7.5.【点睛】本题考查了比较线段的长短的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.17.不等式8x2->1的解集是______.【答案】x<6【解析】【分析】先去分母,去括号,然后移项,合并同类项,系数化成1即可.【详解】解:8x1 2->,82x ->,28x->-,x->-,6x<,6x<.故答案为:6【点睛】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.18.如图,把自然数按图的次序排在直角坐标系中,每个自然数都对应着一个坐标.如1的对应点是原点(0,0),3的对应点是(1,1),16的对应点是(-1,2),那么,2019的对应点的坐标是______.【答案】(16,-22)【解析】【分析】观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.依此先确定2025的坐标为(22,-22),再根据图的结构求得2019的坐标.【详解】解:观察图的结构,发现所有奇数的平方数都在第四象限的角平分线上.452=2025,由2n+1=45得n=22,∴2025的坐标为(22,-22),由9的对应点是(1,1),在同一直线上且在第四象限,9的前面有0个点,25的对应点是(2,2),在同一直线上且在第四象限,10的前面有1个点,∴2019在同一直线上且在第四象限,2019的前面有21个点,2019=2025-6,22-6=16,∴2019坐标是(16,-22).故答案为:(16,-22).【点睛】本题考查了点的坐标,找到所有奇数的平方数所在位置是解题的关键.三、解答题19.求值:(-1)2018-|1|【答案】2【解析】【分析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案.【详解】解:原式=1--1)-2+2=1+1-2+2=2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.如图,在平面直角坐标系中,∥ABC的三个顶点的坐标分别为:A(-1,2),B(-2,-1),C(2,0).(1)作图:将∥ABC先向右平移4个单位,再向上平移3个单位,则得到∥A1B1C1,作出∥A1B1C1;(不要求写作法)(2)写出下列点的坐标:A1______;B1______;C1______.(3)求∥ABC的面积.【答案】(1)详见解析;(2)(3,5),(2,2),(6,3);(3)5.5【解析】【分析】(1)、(2)利用点平移的坐标变换规律,然后写出A1、B1、C1的坐标,然后描点、连线即可;(3)用一个矩形的面积分别减去三个直角三角形的面积可计算出△ABC的面积.【详解】解:(1)如图,∥A1B1C1为所作.(2)写出下列点的坐标:A1坐标为(3,5);B1坐标为(2,2);C1坐标为(6,3).故答案为:(3,5),(2,2),(6,3);(3)∥ABC 的面积=4×3-12×1×3-12×4×1-12×3×2=5.5. 【点睛】本题考查了作图-平移变换:确定平移后图形基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.已知关于x ,y 的方程组4x y 53x y 9-=⎧⎨+=⎩和13418ax by x by +=-⎧⎨+=⎩有相同的解. (1)求出它们相同的解;(2)求(2a+3b )2019的值.【答案】(1)x 2y 3=⎧⎨=⎩;(2)-1 【解析】【分析】(1)求出第一个方程组的解即可;(2)求出a 、b 的值,再代入求出即可.【详解】解:(1)∵解方程组4x y 5{3x y 9-=+=得:x 2{y 3==, ∴它们的相同的解是x 2{y 3==; (2)把x 2{y 3==代入方程组ax by 1{3a 4by 18+=-+=, 得:2a 3b 1{612b 18+=-+=, 解得:a 2{b 1=-=, ∴(2a+3b )2019=[2×(-2)+3×1]2019=-1.【点睛】本题考查了二元一次方程组的解,解二元一次方程组和求代数式的值等知识点,能求出两方程组的相同的解是解此题的关键.22.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如的的(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?【答案】(1)商场购进甲种矿泉水300箱,购进乙种矿泉水200箱(2)该商场共获得利润6600元【解析】【详解】(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得:500{243313800 x yx y+=+=,解得:300 {200 xy==,答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱;(2)300×(36−24)+200×(48−33)=3600+3000=6600(元),答:该商场共获得利润6600元.23.如图,在∥ABC中,CD∥AB,垂足为D,点E在BC上,EF∥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∥1=∥2,CD平分∥ACB,且∥3=120°,求∥ACB与∥1的度数.【答案】(1)详见解析;(2)∥ACB=120°,∥1=60°【解析】(1)根据垂直于同一直线的两直线平行判定;(2)根据平行线的性质和已知求出∠1=∠2=∠DCB,推出DG∥BC,根据平行线的性质得出∠ACB的度数即可;再由∠ACB的度数和已知得∠DCG的度数,利用三角形的外角的性质即可求出∠1的度数.【详解】解:(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴CD∥EF;(2)∵CD∥EF,∴∥2=∥DCB,∵∥1=∥2,∴∥1=∥DCB,∴DG∥BC,∴∥ACB=∥3,∵∥3=120°,∴∥ACB=120°.∵CD平分∥ACB,∴∥DCG=12∥ACB=60°,∵∥3=∥1+∥DCG,∴∥1=120°-60°=60°.∴∥ACB=120°,∥1=60°.【点睛】本题考查了对平行线的性质和判定的应用,三角形的内角和定理以及三角形外角的性质,角平分线的定义.熟练掌握平行线的判定与性质是解决本题的关键.24.阅读材料:我们把多元方程(组)的正整数解叫做这个方程(组)的“好解”例如:18 xy=⎧⎨=⎩就是方程3x+y=11的一组“好解”;123xyz=⎧⎪=⎨⎪=⎩是方程组3206x y zx y z++=⎧⎨++=⎩的一组“好解”.(1)请直接写出方程x+2y=7的所有“好解”;(2)关于x,y,k的方程组1551070x y kx y k++=⎧⎨++=⎩有“好解“吗?若有,请求出对应的“好解”;若没有,请说明理由;(3)已知x,y为方程33x+23y=2019的“好解”,且x+y=m,求所有m的值.【答案】(1)x1y3=⎧⎨=⎩,x3y2=⎧⎨=⎩,x5y1=⎧⎨=⎩;(2)x3y7=⎧⎨=⎩;(3)63,73,83【解析】【分析】(1)根据“好解”的定义,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解;(2)解方程组求得554{5594kxky+=-=,,根据“好解”的定义得5519k-<<,在范围内列举正整数代入求解;(3)根据题意,联立方程组,求出方程组的解,根据“好解”的定义得到k的取值范围,在范围内列举正整数代入求解.【详解】解:(1)由x+2y=7,得y=7x2-(x.y为正整数).∵x0 {7x2->>,即0<x<7,∴当x=1时,y=3;当x=3时,y=2;当x=5时,y=1;∴方程x+2y=7的“好解”有x1{y3==,x3{y2==,x5{y1==;(2)由x y k15{x5y10k70++=++=,解得554{5594kxky+=-=,∵55k 04{559k 04+->>,即-1<k <559, ∴当k=3时,x=5,y=7,∴方程组x y k 15{x 5y 10k 70++=++=有“好解“, ∴“好解”为x 3{y 7==;(3)由33x 23y 2019{x y m +=+=,解得201923m x 10{33m 2019y 10-=-=, ∵201923m 010{33m 2019010-->>,即201933<m <201923, ∴当m=63时,x=57,y=6;m=73时,x=38,y=39;m=83时,x=11,y=72;∴所有m 的值为63,73,83.【点睛】本题考查了三元一次方程组的应用,解题关键是要理解方程(组)的“好解”条件,根据条件求解.25.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ∥OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ∥(),0C b20b -=∥()1则C 点的坐标为______∥A 点的坐标为______∥()2已知坐标轴上有两动点P ∥Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.【答案】(1)()2,0;()0,4 ;(2)1;(3)2.【解析】分析:(1)根据绝对值和算术平方根的非负性,求得a ,b 的值即可;(2)先得出CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,再根据S △ODP =S △ODQ ,列出关于t 的方程,求得t 的值即可;(3)过H 点作AC 的平行线,交x 轴于P ,先判定OG ∥AC ,再根据角的和差关系以及平行线的性质,得出∠PHO =∠GOF =∠1+∠2,∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,最后代入OHC ACE OEC ∠∠∠+进行计算即可.详解:(1+|b ﹣2|=0,∴a ﹣2b =0,b ﹣2=0,解得:a =4,b =2,∴A (0,4),C (2,0);(2)由条件可知:P 点从C 点运动到O 点时间为2秒,Q 点从O 点运动到A 点时间为2秒,∴0<t ≤2时,点Q 在线段AO 上,即 CP =t ,OP =2﹣t ,OQ =2t ,AQ =4﹣2t ,∴1111222212222DOP D DOQ D S OP y t t S OQ x t t =⋅=-⨯=-=⋅=⨯⨯=V V (),. ∵S △ODP =S △ODQ ,∴2﹣t =t ,∴t =1;(3)OHC ACE OEC∠∠∠+的值不变,其值为2. ∵∠2+∠3=90°.又∵∠1=∠2,∠3=∠FCO ,∴∠GOC +∠ACO =180°,∴OG ∥AC ,∴∠1=∠CAO ,∴∠OEC =∠CAO +∠4=∠1+∠4,如图,过H 点作AC 的平行线,交x 轴于P ,则∠4=∠PHC ,PH ∥OG ,∴∠PHO =∠GOF =∠1+∠2,∴∠OHC =∠OHP +∠PHC =∠GOF +∠4=∠1+∠2+∠4,∴124421421414OHC ACE OEC ∠∠∠∠∠∠∠∠∠∠∠∠∠+++++===++().点睛:本题主要考查了坐标与图形性质,解决问题的关键值作辅助线构造平行线.解题时注意:任意一个数的绝对值都是非负数,算术平方根具有非负性,非负数之和等于0时,各项都等于0.26.已知a+1是4的算术平方根,b -1是27的立方根,化简求值:2(2a -b 2)-(4a -a 2).【答案】-31【解析】【分析】先根据算术平方根和立方根的定义得出a 、b 的值,再去括号、合并同类项化简原式,继而代入计算可得.【详解】解:∵a+1是4的算术平方根,b -1是27的立方根,∴a+1=2,b -1=3,解得a=1,b=4,原式=4a -2b 2-4a+a 2=a 2-2b 2,当a=1,b=4时,原式=1-2×16=1-32=-31.【点睛】本题主要考查整式的化简求值,熟练掌握整式的混合运算顺序和法则是解题的关键.。
2020年七年级下册数学半期考试试题(含答案)(2)(20200515105029)
7.( 2 分)下列命题中的假命题是(
)
A.过直线外一点有且只有一条直线与这条直线平行
B.平行于同一直线的两条直线平行
C.带根号的都是无理数
D.数轴上的点和实数是一一对应的 【分析】利用平行公理及推理、无理数的定义、实数与数轴的关系等知识分别判断后即
可确定正确的选项.
【解答】解: A、过直线外一点有且只有一条直线与这条直线平行,正确,是真命题;
69 人,其中成人的人数比儿
童的人数的 2 倍少 3 人.
( 1)报名的成人和儿童各多少人?
( 2)为了管理方便, 旅行社准备给每位游客准备一件 t 恤衫作为团队服装, 在 T 恤衫批
发市场,商店优惠活动显示:成人 T 恤衫每购买 10 件赠送 1 件儿童 T 恤衫,不足 10 件
不赠送, 已知所有儿童 T 恤衫均定价 15 元 / 件,旅行社准备了 1200 元来购买服装, 请问
2020 学年七年级下册数学
期中试卷
一. 选择题(共 10 小题,每小题 2 分满分 20 分,) 1.( 2 分)下列各数: ﹣ 2, ,0, ,0.020020002 ,π, ,其中无理数的个数是 ( )
A. 4
B. 3
2.( 2 分)如图,∠ B 的同位角可以是(
C. 2 )
D.1
A.∠ 1
B.∠ 2
A. 4就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概
念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环
小数是无理数.由此即可判定选择项.
【解答】解:
,
,
故无理数有: ,π,共 2 个.
故选: C.
2.( 2 分)如图,∠ B 的同位角可以是(
2020-2021学年度七年级下学期期中考试数学试卷(含答案)
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某数学兴趣小组在网上获取了声音在空气中传播的速度与空气温度关系的一些数据(如下表),下列说法错误的是()温度/℃−20−100102030声速/(m/s)318324330336342348A. 在这个变化中自变量是温度,因变量是声速B. 当温度每升高10℃,声速增加6m/sC. 当空气温度为20℃,5s的时间声音可以传播1740mD. 温度越高声速越快2.体育课上,老师测量跳远成绩的依据是()A. 平行线间的距离相等B. 两点之间,线段最短C. 垂线段最短D. 两点确定一条直线3.下列各项中,两个幂是同底数幂的是()A. x2与a2B. (−a)5与a3C. (x−y)2与(y−x)2D. −x2与x34.若(x−1)0−2(2x−6)−2有意义,那么x的取值范围是()A. x>1B. x<3C. x≠1或x≠3D. x≠1且x≠35.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠46.一蓄水池中有水50m3,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1234…水池中水量/m348464442…下列说法不正确的是()A. 蓄水池每分钟放水2m3B. 放水18分钟后,水池中水量为14m3C. 蓄水池一共可以放水25分钟D. 放水12分钟后,水池中水量为24m37.某商场为了增加销售额,推出优惠活动,其活动内容为凡活动期间一次购物超过50元,超过50元的部分按9折优惠.在活动期间,李明到该商场为单位购买单价为30元的办公用品x(件)(x>2),则应付款y(元)与商品件数x的关系式为()A. y=27x(x>2)B. y=27x+5(x>2)C. y=27x+50(x>2)D. y=27x+45(x>2)8.如图 ①,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的关系的图象如图 ②,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的关系的图象大致是()A. B.C. D.9.如图,将一副三角尺按下列位置摆放,使∠α和∠β互余的摆放方式是()A.B.C.D.10.如图,直线AB,CD相交于点O,射线OM平分∠BOD.若∠AOC=42∘,则∠AOM等于()A. 159∘B. 161∘C. 169∘D. 138∘11.小萌在利用完全平方公式计算一个二项整式的平方时,得到正确结果4x2+20xy+■,不小心把最后一项染黑了,你认为这一项是()A. 5y2B. 10y2C. 100y2D. 25y212.某同学在计算−3x2乘一个多项式时错误的计算成了加法,得到的答案是x2−x+1,由此可以推断正确的计算结果是()A. 4x2−x+1B. x2−x+1C. −12x4+3x3−3x2D. 无法确定13.若多项式x2+x+m能被x+5整除,则此多项式也能被下列哪个多项式整除()A. x−6B. x+6C. x−4D. x+414.如图所示,与∠α构成同位角的角的个数为()A. 1B. 2C. 3D. 415.某人要在规定的时间内加工100个零件,则工作效率η与时间t之间的关系中,下列说法正确的是()A.数100和η、t都是变量B. 数100和η都是常量C. η和t是变量D. 数100和t都是常量卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.在一个边长为2的正方形中挖去一个边长为x(0<x<2)的小正方形,如果设剩余部分的面积为y,那么y关于x的函数解析式是_________________.17.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路边选一点来建火车站(位置已选好),理由是.18.已知2x=a,3x=b,则6x=.19.如图,直线EF与CD相交于点O,OA⊥OB,且OC平分∠AOF.若∠AOE=40∘,则∠BOD的度数为.20.观察下列图形及表格:梯形个数n123456⋯周长l5811141720⋯则周长l与梯形个数n之间的关系式为.三、解答题(本大题共7小题,共80.0分)21.(8分)计算:(1)(x2y−12xy2−2xy)÷12xy;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y).22.(8分)如图,直线a、b被直线l所截,已知∠1=40°,试求∠2的同位角及同旁内角的度数.23.(12分)(1)表示汽车性能的参数有很多,例如:长宽高、轴距、排量、功率、扭矩、转速、百公里油耗等等.为了了解某种车的耗油量,某专业检测人员对这种车在高速公路上做了耗油试验,并把试验的数据记录下米,制成下表:汽车行驶时间t(ℎ)0123…油箱剩余油量Q(L)100948882…①上表反映的两个变量中,白变量是______;②根据上表可知,每小时耗油______升;③根据上表的数据,写出用t表示Q的关系式:______④若汽车油箱中剩余油量为55L,则汽车行驶了多少小时?(2)年龄与手机号码的秘密:①选取你家里任意一部手机的最后一位:②把这个数字乘上2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥最后用这个数目减去你出生的那一年(例如2004年).现在你看到一个三位数的数字.第一位数字是你家手机号的最后一位,接下来就是你的实际年龄!你能否用你所选数字按照上述步骤验证下?你能用所学知识解释这一问题吗?(计算年龄时按照农历现在为2017年)24.(10分)观察下列式:(x2−1)÷(x−1)=x+1;(x3−1)÷(x−1)=x2+x+1;(x4−1)÷(x−1)=x3+x2+x+1;(x5−1)÷(x−1)=x4+x3+x2+x+1;(1)猜想:(x7−1)÷(x−1)=______;(27−1)÷(2−1)=______;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27.25.(12分)如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=72∘,求∠BOD的度数;(2)若∠DOE=2∠AOC,判断射线OE,OD的位置关系,并说明理由.26.(14分)2018年5月14日川航3U8633航班挡风玻璃在高空爆裂,机组临危不乱,果断应对,正确处置,顺利返航,避免了一场灾难的发生,下面表格是成都当日海拔ℎ(千米)与相应高度处气温t(℃)的关系(成都地处四川盆地,海拔较低,为方便计算,在此题中近似为0米).海拔ℎ(千米)012345…气温t(℃)201482−4−10…根据上表,回答以下问题:(1)由上表可知海拔5千米的上空气温约为________℃;(2)由表格中的规律请写出当日气温t与海拔高度h的关系式为________;如图表示当日飞机下降过程中海拔与玻璃爆裂后立即返回地面所用的时间关系.根据图象回答以下问题:(3)挡风玻璃在高空爆裂时飞机所处的高度为________千米,返回地面用了________分钟;(4)飞机在2千米高空水平面上大约盘旋了________分钟;(5)求挡风玻璃在高空爆裂时,飞机所处高空的气温.27.(16分)已知:如图是一个跳棋棋盘,其游戏规则是:一个棋子从某一个起始角开始,经过若干步跳动以后,到达终点角.跳动时,每一步只能跳到它的同位角或内错角或同旁内角的位置上,例如:从起始位置∠1跳到终点位置∠3写出其中两种不同路径,路径1:∠1−同旁内角→∠9−内错角→∠3.路径2:∠1一内错角→∠12一内错角→∠6−同位角→∠10−同旁内角→∠3.试一试:(1)从起始∠1跳到终点角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能否跳到终点∠8?答案1.C2.C3.D4.D5.D6.D7.B8.C9.A10.A11.D12.C13.C14.C15.C16.y=4−x2(0<x<2)17.垂线段最短18.ab19.20∘20.l=3n+221.解:(1)(x2y−12xy2−2xy)÷12xy=x2y÷12xy−12xy2÷12xy−2xy÷12xy=2x−y−4;(2)[2(x+y)3−4(x+y)2−x−y]÷(x+y)=2(x+y)3÷(x+y)−4(x+y)2÷(x+y)−(x+y)÷(x+y) =2(x+y)2−4(x+y)−1.22.解:如图,由图可知,∠4是∠2的同位角,∠3是∠2的同旁内角,∵∠1=40°,∴∠3=∠1=40°,∠4=180°−∠1=140°,即∠2的同位角是140°,∠2的同旁内角是40°.23.解:(1)①自变量是t,②据上表可知,每小时耗油100−94=6升;③Q=100−6t;④当Q=55时,55=100−6t,6t=45,t=7.5.答:汽车行使了7.5小时;(2)比如:我选择数字为9,出生时间为2004年,我的年龄为13岁,由题意得(9×2+5)×50+1767−2004=900+2017−2004=913,解释:假设选取数字为m,出生时间为n年,由题意得(m×2+5)×50+1767−n=100m+(2017−n)因为m为个位数字,(2017−n)两位数,所以100m+(2017−n)三位数,而且第一位数字就所选数字,后两位恰好为年龄.24.(1)x6+x5+x4+x3+x2+x+1;26+25+24+23+22+2+1;(2)根据①猜想的结论计算:1+2+22+23+24+25+26+27=(28−1)÷(2−1)=28−1=255.25.解:(1)因为OA平分∠EOC,∠EOC=72∘,∠EOC=36∘.所以∠AOC=12所以∠BOD=∠AOC=36∘.(2)OE⊥OD.理由如下:因为∠DOE=2∠AOC,OA平分∠EOC,所以∠DOE=2∠AOC=∠EOC.又因为∠DOE +∠EOC =180∘, 所以∠DOE =∠EOC =90∘. 所以OE ⊥OD .26.解:(1)−10;(2)t =20−6ℎ; (3)9.8,20; (4)2;(5)根据图象可知,当ℎ=9.8时,挡风玻璃爆裂,此时t =20−6×9.8=−38.8, 所以挡风玻璃在高空爆裂时,飞机所处高空的气温为−38.8℃.27.解:(1)路径∠1→内错角∠12→同旁内角∠8;(2)从起始角∠1依次按同位角、内错角、同旁内角的顺序跳,能跳到终点∠8.其路径为: 路径:∠1→同位角∠10→内错角∠5→同旁内角∠8.。
2019-2020年七年级下半期考试数学卷及答案
2019-2020年七年级下半期考试数学卷班级 姓名 学号一、选择题(本大题共8小题,每小题4分,共32分)1. 下列各图中,∠1与∠2是对顶角的是( )A. B.C.D.2.4的平方根是( ) A. 2B. ±2C.2D.±23. 在下列所给出坐标的点中,在第二象限的是( )A. (2,3)B. (-2,3)C. (-2,-3)D. (2,3)4. 在实数5,227,38-,0,−1.414,2π,36,0.1010010001中,无理数有( )A. 2个B. 3个C. 4个D. 5个5.如图,直线AB ,CD 被直线EF 所截,则∠3的同旁内角是( ) A.∠1 B.∠2 C.∠4 D.∠56. 估计 位于( )A.0~1之间B.1~2之间C.2~3之间D.3~4之间7. 已知∠AOB ,P 是任一点,过点P 画一条直线与OA 平行,则这样的直线( ) A. 有且仅有一条 B. 有两条 C. 不存在 D. 有一条或不存在 8. 下列语句中是命题的有( )①如果两个角都等于70°,那么这两个角是对顶角; ②三角形内角和等于180°; ③画线段AB=3 cm .④你的作业做完了吗?A 、0个B 、1个C 、2个D 、3个二、填空题(本大题共4小题,每小题4分,共32分)9. 一个正数a 的两个平方根分别是m+1和m-3,则m= ,a= . 10.如图,直线AB ,CD ,EF 交于点O ,OG 平分∠BOF ,且 CD ⊥EF ,∠AOE =70∘,则∠DOG= 。
11. 比较大小:3__________5.12. 从新华书店向北走100 m ,到达购物广场,从购物广场向西走250 m 到达体育馆,若体育馆所在位置的坐标是(-250,0),则选取的坐标原点是_ __15-13.在如图所示直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=58°,则∠BED的度数为.14.已知x、y为实数,且3x +(y+2)2=0,则y x=.15.我们知道:3是一个无理数,它是一个无限不循环小数,且1<3<2,我们把1叫做3的整数部分,3-1叫做3的小数部分.请你利用上面的知识,确定一下无理数10的整数部分是;小数部分是16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n 为自然数)的坐标为______(用n表示)三、解答题(本大题共8小题,共86分)17.计算:(每小题5分,共10分)(1)√100+√−83(2)|√3−2|−√(−2)218.求下列各式中x的值:(每小题5分,共10分)(1)2x2=4;;(2)64x3+27=019. (8分)如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数.CAADCF20. (14分)完成下面的证明如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF, ∠C=∠D . 求证:∠A=∠F . 证明:∵∠AGB=∠EHF∠AGB =______(对顶角相等) ∴∠EHF=∠DGF∴DB ∥EC ( )∴∠ =∠DBA ( )又∵∠C=∠D ∴∠DBA=∠DDF ∥ ( ) ∴∠A=∠F( )21.已知a+2的立方根是3,3a+b-1算术平方根是4,c 是√13的 整数部分.(9分) (1)求a,b,c 的值; (2)求3a - b+c 的平方根。
七年级数学半期412020202140下41七年级数学半期试卷
2020-2021学年下期半期质量抽测七年级数学试卷(考试时刻120分钟,总分值150分)一、选择题:(4分×10=40分)一、在同一平面内,两条直线可能的位置关系是( )A .平行B .相交C .平行或相交D .平行、相交或垂直二、 下面以下各组数不可能是一个三角形的边长的是( )A 、2,2,3B 、2,3,4C 、3,4,7D 、4,5,63、以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限4、以下各方程中,是二元一次方程的是( )A 、x y yx 523+=- B 、y x y x 2223+=+C 、1512+=y xD 、6534y x y -=5.在△ABC 中,∠A=12∠B=13∠C ,那么那个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确信 6.如图,点E 在BC 的延长线上,以下条件中能判定AB ∥CD ( )(第 6题)A .∠3=∠4B .∠D=∠DCEC .∠D+∠ACD=180°D .∠1=∠2 7. 四个图形中,线段BE 是△ABC 的高的图是( )8.以下4组x 、y 的值,是⎩⎨⎧-=+=-4272y x y x 的解的是( )A .⎩⎨⎧-==51y xB .⎩⎨⎧-==20y x C .⎩⎨⎧-==3,2y x D .⎩⎨⎧-==1,3y x8.以下4组x 、y 的值,是⎩⎨⎧-=+=-4272y x y x 的解的是( )A .⎩⎨⎧-==51y xB .⎩⎨⎧-==20y x C .⎩⎨⎧-==3,2y x D .⎩⎨⎧-==1,3y x学校___________________________班级___________________________姓名___________________________学号___________________________密封 线 内 不要答 题A B C D9、DEF ∆是由ABC ∆平移取得的,点()4,1--A 的对应点为()1,1-D ,点()1,1B 的对应点E 、点()4,1-C 的对应点F ,则E 、F 的坐标别离为( ) A .()()4,3,2,2 B .()()7,1,4,3 C .()()7,1,2,2- D .()()2,2,4,3-10、一幅漂亮的图案,在某个极点处由三个边长相等的正多边形镶嵌而成,其中两个别离为正十二边形、正四边形,那么另一个为( )A .正三角形B .正四边形C .正五边形D .正六边形二、填空题(4分×6=24分)1一、把命题“对顶角相等”写成“若是……,那么……。
2020年七年级下册数学半期考试试题 (含答案) (1)
2020年七年级下册数学期中试卷一、选择题(每题2分,共16分)1.(2分)下列各式是二元一次方程的是()A.y+x B.﹣2y=0 C.x=+1 D.x2+y=02.(2分)下列计算中,正确的是()A.2x2+3x3=5x5B.2x2•3x3=6x6C.2x3÷(﹣x2)=﹣2x D.(﹣2x2)3=﹣2x63.(2分)下列整式乘法中,能运用平方差公式进行运算的是()A.(2a+b)(2b﹣a)B.(﹣x﹣b)(x+b)C.(a﹣b)(b﹣a)D.(y+)(﹣y)4.(2分)已知是方程ax+y=4的一个解,则a的值为()A.﹣2 B.2 C.﹣6 D.65.(2分)如图,∠1、∠2、∠3、∠4 是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4等于()A.540°B.360°C.300°D.240°6.(2分)已知a,b,c是三角形的三边,那么代数式a2﹣2ab+b2﹣c2的值()A.大于零B.等于零C.小于零D.不能确定7.(2分)若3x2+6x+2=a(x+k)2+h(其中a、k、h为常数),则k和h的值分别为()A.1,1 B.1,﹣1 C.1,﹣D.﹣1,8.(2分)如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为()A.70°B.75°C.80°D.85°二、填空题(每空2分,共26分)9.(2分)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为.10.(4分)直接写出计算结果:(1)(﹣0.25)2017×24036=;(2)(﹣ab)5÷(﹣ab)3=.11.(4分)直接写出因式分解的结果:(1)6a2﹣8ab=;(2)x2﹣xy+=.12.(2分)把二元一次方程3x﹣4y=1变形成用含y的代数式表示x,则x=.13.(4分)若a+b=3,ab=2,则a2b+ab2=,(a﹣b)2=.14.(2分)已知2m+3n+3=0,则4m×8n的值为.15.(2分)已知多项式x2+ax﹣4恰等于两个多项式x+1和x+n的积,则a n=.16.(2分)如图,将边长为7cm的正方形ABCD先向上平移3cm,再向右平移lcm,得到正方形A′B′C′D′,此时阴影部分的面积为cm.17.(2分)如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是.18.(2分)现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,则小正方形卡片的面积是.三、解答题(共7小题,满分58分)19.(12分)计算:(1)(﹣2a2)3+2a2•a4﹣a8÷a2(2)﹣12018﹣()﹣2+(﹣3)0(3)2a(a﹣b)(a+2b)(4)(﹣3m+2n)(﹣2n﹣3m)(9m2﹣4n2)20.(12分)因式分解:(1)m3(a﹣2)+m(2﹣a)(2)x4﹣16y4(3)81x4﹣18x2y2+y4(4)(x2﹣4x)2+8(x2﹣4x)+1621.(6分)图,在方格纸内将△ABC经过一次平移后得到△A'B'C′,图中标出了点B的对应点B′.利用网格点和直尺,完成下列各题:(1)补全△A′B'C’;(2)画出BC边长的高线AE;(3)连接AA′,BB′,则这两条线段之间的关系是;(4)点Q为格点(点Q不与点B重合),且△ACQ的面积等于△ABC的面积,则图中满足要求的Q点共有个.22.(6分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.23.(8分)(1)已知A=2a﹣7,B=a2﹣4a+2,C=a2+6a+2.试比较A与C的大小,并说明理由;(2)已知△ABC的三边长为4、x、y,试判断16y+2x2﹣32﹣2y2的值是正数还是负数.24.(8分)定义:若△ABC中,其中一个内角是另一个内角的一半,则称△ABC为“半角三角形”.根据此定义,完成下面各题:(1)若△ABC为半角三角形,且∠A=90°,则△ABC中其余两个角的度数为;(2)若△ABC是半角三角形,且∠C=40°,则∠B;(3)如图,在四边形ABCD中,AB∥CD,AD∥BC,∠C=72°,点E在边CD上,以BE 为折痕,将△BCE向上翻折,点C恰好落在AD边上的点F,若BF⊥AD,则△EDF是半角三角形吗?若是,请说明理由.25.(6分)已知△ABC中,∠C是其最小的内角,如果过点B的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 关于点B的奇异分割线.例如:图1,在Rt△ABC中,∠A=90°,∠C=20°,过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的奇异分割线.(1)如图2,在△ABC中,若∠A=50°,∠C=20°.请过顶点B在图2中画出△ABC 关于点B的奇异分割线BD交AC于点D,此时∠ADB=度;(2)在△ABC中,∠C=30°,若△ABC存在关于点B的奇异分割线,画出相应的△ABC 及分割线BD,并直接写出此时∠ABC的度数(要求在图中标注∠A、∠ABD及∠DBC的度数).参考答案与试题解析一、选择题(每题2分,共16分)1.(2分)下列各式是二元一次方程的是()A.y+x B.﹣2y=0 C.x=+1 D.x2+y=0【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:A、不是等式,则不是方程,选项错误;B、正确;C、不是整式方程,故选项错误;D、是二次方程,选项错误.故选:B.2.(2分)下列计算中,正确的是()A.2x2+3x3=5x5B.2x2•3x3=6x6C.2x3÷(﹣x2)=﹣2x D.(﹣2x2)3=﹣2x6【分析】根据合并同类项法则、单项式乘单项式、单项式除以单项式及单项式的乘方逐一计算可得.【解答】解:A、2x2、3x3不是同类项,不能合并,故A式子错误;B、2x2•3x3=6x5,故B式子错误;C、2x3÷(﹣x2)=﹣2x,故C式子正确;D、(﹣2x2)3=﹣8x6,故D式子错误;故选:C.3.(2分)下列整式乘法中,能运用平方差公式进行运算的是()A.(2a+b)(2b﹣a)B.(﹣x﹣b)(x+b)C.(a﹣b)(b﹣a)D.(y+)(﹣y)【分析】结合平方差公式的概念:两个数的和与这两个数的差相乘,等于这两个数的平方差.进行求解即可.【解答】解:A、(2a+b)(2b﹣a),不符合平方差公式,故此选项错误;B、(﹣x﹣b)(x+b)=﹣(x+b)(x+b),不符合平方差公式,故此选项错误;C、(a﹣b)(b﹣a)=﹣(a﹣b)(a﹣b),不符合平方差公式,故此选项错误;D、(y+)(﹣y),符合平方差公式,故此选项正确;故选:D.4.(2分)已知是方程ax+y=4的一个解,则a的值为()A.﹣2 B.2 C.﹣6 D.6【分析】根据方程的解的定义,将方程的解代入,然后解关于a的一元一次方程即可.【解答】解:∵是方程ax+y=4的一个解,∴a﹣2=4,∴a=6.故选:D.5.(2分)如图,∠1、∠2、∠3、∠4 是五边形ABCDE的4个外角,若∠EAB=120°,则∠1+∠2+∠3+∠4等于()A.540°B.360°C.300°D.240°【分析】根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.【解答】解:由题意得,∠5=180°﹣∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°﹣∠5=300°.故选:C.6.(2分)已知a,b,c是三角形的三边,那么代数式a2﹣2ab+b2﹣c2的值()A.大于零B.等于零C.小于零D.不能确定【分析】根据三角形中任意两边之和大于第三边.把代数式a2﹣2ab+b2﹣c2分解因式就可以进行判断.【解答】解:a2﹣2ab+b2﹣c2=(a﹣b)2﹣c2=(a+c﹣b)[a﹣(b+c)].∵a,b,c是三角形的三边.∴a+c﹣b>0,a﹣(b+c)<0.∴a2﹣2ab+b2﹣c2<0.故选:C.7.(2分)若3x2+6x+2=a(x+k)2+h(其中a、k、h为常数),则k和h的值分别为()A.1,1 B.1,﹣1 C.1,﹣D.﹣1,【分析】把等式左边配成完全平方加或减常数的形式,再与等式右边比较对应位置的字母与数字即可得答案.【解答】解:∵3x2+6x+2=a(x+k)2+h,等式左边 3x2+6x+2=3(x2+2x+1)﹣1=3(x+1)2﹣1把上式与a(x+k)2+h比较得k=1,h=﹣1.故选:B.8.(2分)如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为()A.70°B.75°C.80°D.85°【分析】先根据翻折变换的性质得出∠1=∠D′MN,∠2=∠D′NM,再由平行线的性质求出∠1+∠=∠D′MN及∠2+∠D′NM的度数,进而可得出结论.【解答】解:∵△MND′由△MND翻折而成,∴∠1=∠D′MN,∠2=∠D′NM,∵MD′∥AB,ND′∥BC,∠A=50°,∠C=150°∴∠1+∠D′MN=∠A=50°,∠2+∠D′NM=∠C=150°,∴∠1=∠D′MN===25°,∠2=∠D′NM===75°,∴∠D=180°﹣∠1﹣∠2=180°﹣25°﹣75°=80°.故选:C.二、填空题(每空2分,共26分)9.(2分)每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为 1.05×10﹣5.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为1.05×10﹣5.故答案为:1.05×10﹣5.10.(4分)直接写出计算结果:(1)(﹣0.25)2017×24036=﹣4 ;(2)(﹣ab)5÷(﹣ab)3=a2b2.【分析】(1)把24036写成42017×4,再根据积的乘方法则计算即可;(2)根据同底数幂的除法法则计算即可.【解答】解:(1)(﹣0.25)2017×24036=(﹣0.25)2017×42017×4=;故答案为:﹣4;(2)(﹣ab)5÷(﹣ab)3=(﹣ab)5﹣3=(﹣ab)2=a2b2.故答案为:a2b2.11.(4分)直接写出因式分解的结果:(1)6a2﹣8ab=2a(3a﹣4b);(2)x2﹣xy+=(x﹣y)2.【分析】(1)原式提取公因式即可;(2)原式利用完全平方公式分解即可.【解答】解:(1)原式=2a(3a﹣4b);(2)原式=(x﹣y)2,故答案为:(1)2a(3a﹣4b);(2)(x﹣y)212.(2分)把二元一次方程3x﹣4y=1变形成用含y的代数式表示x,则x=.【分析】把y看做已知数求出x即可.【解答】解:方程3x﹣4y=1,解得:x=,故答案为:13.(4分)若a+b=3,ab=2,则a2b+ab2= 6 ,(a﹣b)2= 1 .【分析】直接利用提取公因式法以及公式法将原式变形计算得出答案.【解答】解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=3×2=6,(a﹣b)2=(a+b)2﹣4ab=9﹣4×2=1.故答案为:6,1.14.(2分)已知2m+3n+3=0,则4m×8n的值为.【分析】把4m×8n写成22m×23n,再根据同底数幂的乘法法则计算即可.【解答】解:∵2m+3n+3=0,∴2m+3n=﹣3,∴4m×8n=22m×23n=.故答案为:15.(2分)已知多项式x2+ax﹣4恰等于两个多项式x+1和x+n的积,则a n=.【分析】先计算出(x+1)(x+n)=x2+(n+1)x+n,根据x2+ax﹣4=x2+(n+1)x+n得出n、a的值,代入计算可得.【解答】解:(x+1)(x+n)=x2+(n+1)x+n,由题意知a=n+1,n=﹣4,则a=﹣3,所以a n=(﹣3)﹣4=,故答案为:.16.(2分)如图,将边长为7cm的正方形ABCD先向上平移3cm,再向右平移lcm,得到正方形A′B′C′D′,此时阴影部分的面积为24 cm.【分析】求出阴影部分的长和宽,再求出面积即可.【解答】解:∵将边长为7cm的正方形ABCD先向上平移3cm,再向右平移1cm,得到正方形A′B′C′D′,∴B′F=7cm﹣1cm=6cm,B′E=7cm﹣3cm=4cm,∴阴影部分的面积为4cm×6cm=24cm2,故答案为:24.17.(2分)如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正确的结论是①②③.【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【解答】解:①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故答案为:①②③18.(2分)现有一张边长为a的大正方形卡片和三张边长为b的小正方形卡片(a<b<a)如图1,取出两张小正方形卡片放入“大正方形卡片”内拼成的图案如图2,再重新用三张小正方形卡片放入“大正方形卡片”内拼成的图案如图3.已知图3中的阴影部分的面积比图2中的阴影部分的面积大2ab﹣15,则小正方形卡片的面积是 5 .【分析】根据题意、结合图形分别表示出图2、3中的阴影部分的面积,根据题意列出算式,根据整式是混合运算法则计算即可.【解答】解:图3中的阴影部分的面积为:(a﹣b)2,图2中的阴影部分的面积为:(2b﹣a)2,由题意得,(a﹣b)2﹣(2b﹣a)2=2ab﹣15,整理得,b2=5,则小正方形卡片的面积是5,故答案为:5.三、解答题(共7小题,满分58分)19.(12分)计算:(1)(﹣2a2)3+2a2•a4﹣a8÷a2(2)﹣12018﹣()﹣2+(﹣3)0(3)2a(a﹣b)(a+2b)(4)(﹣3m+2n)(﹣2n﹣3m)(9m2﹣4n2)【分析】(1)直接利用积的乘方运算法则以及结合同底数幂的乘除运算法则计算得出答案;(2)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(3)直接利用多项式乘以多项式运算法则计算得出答案;(4)直接利用乘法公式计算得出答案.【解答】解:(1)(﹣2a2)3+2a2•a4﹣a8÷a2=﹣8a6+2a6﹣a6=﹣7a6;(2)﹣12018﹣()﹣2+(﹣3)0=﹣1﹣+1=﹣;(3)2a(a﹣b)(a+2b)=2a(a2+ab﹣2b2)=2a3+2a2b﹣4ab2;(4)(﹣3m+2n)(﹣2n﹣3m)(9m2﹣4n2)=(9m2﹣4n2)(9m2﹣4n2)=81m4﹣12m2n2+16n4.20.(12分)因式分解:(1)m3(a﹣2)+m(2﹣a)(2)x4﹣16y4(3)81x4﹣18x2y2+y4(4)(x2﹣4x)2+8(x2﹣4x)+16【分析】(1)原式变形后,提取公因式,再利用平方差公式分解即可;(2)原式利用平方差公式分解即可;(3)原式利用完全平方公式及平方差公式分解即可;(4)原式利用完全平方公式分解即可.【解答】解:(1)原式=m3(a﹣2)﹣m(a﹣2)=m(a﹣2)(m+1)(m﹣1);(2)原式=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y);(3)原式=(9x2﹣y2)2=(3x+y)2(3x﹣y)2;(4)原式=(x2﹣4x+4)2=(x﹣2)4.21.(6分)图,在方格纸内将△ABC经过一次平移后得到△A'B'C′,图中标出了点B的对应点B′.利用网格点和直尺,完成下列各题:(1)补全△A′B'C’;(2)画出BC边长的高线AE;(3)连接AA′,BB′,则这两条线段之间的关系是平行且相等;(4)点Q为格点(点Q不与点B重合),且△ACQ的面积等于△ABC的面积,则图中满足要求的Q点共有7 个.【分析】(1)依据平移的方向和距离,即可得到△A′B'C';(2)过点A作BC的垂线段,即可得到AE;(3)依据平移的性质可得,AA′,BB′这两条线段之间的关系是平行且相等;(4)依据同底等高的三角形面积相等,即可得到满足要求的Q点.【解答】解:(1)如图所示,△A′B'C'即为所求;(2)如图所示,AE即为所求;(3)由平移可得,AA′,BB′这两条线段之间的关系是平行且相等;故答案为:平行且相等;(4)如图所示,满足要求的Q点共有7个,故答案为:7.22.(6分)如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=110°,DF平分∠BDE,求∠C的度数.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【解答】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=110°,∴∠FDE=70°,∵DF平分∠BDE,∴∠FDB=70°,∵DF∥AC,∴∠C=∠FDB=70°23.(8分)(1)已知A=2a﹣7,B=a2﹣4a+2,C=a2+6a+2.试比较A与C的大小,并说明理由;(2)已知△ABC的三边长为4、x、y,试判断16y+2x2﹣32﹣2y2的值是正数还是负数.【分析】(1)用C减去A,化简并配方,即可得答案;(2)将16y+2x2﹣32﹣2y2先利用完全平方公式因式分解,再利用提取公因式及平方差公式因式分解,再结合三角形的三边关系可作出判断.【解答】解:(1)∵A=2a﹣7,C=a2+6a+2∴C﹣A=a2+6a+2﹣(2a﹣7)=a2+6a+2﹣2a+7=a2+4a+4+5=(a+2)2+5≥5∴A<C.(2)∵16y+2x2﹣32﹣2y2=2x2﹣2(y2﹣8y+16)=2x2﹣2(y﹣4)2=2(x+y﹣4)(x﹣y+4)∵△ABC的三边长为4、x、y∴x+y﹣4>0,x﹣y+4>0∴16y+2x2﹣32﹣2y2的值是正数.24.(8分)定义:若△ABC中,其中一个内角是另一个内角的一半,则称△ABC为“半角三角形”.根据此定义,完成下面各题:(1)若△ABC为半角三角形,且∠A=90°,则△ABC中其余两个角的度数为45°,45°或30°,60°;(2)若△ABC是半角三角形,且∠C=40°,则∠B20°,80°,60°,120°,°或°;(3)如图,在四边形ABCD中,AB∥CD,AD∥BC,∠C=72°,点E在边CD上,以BE 为折痕,将△BCE向上翻折,点C恰好落在AD边上的点F,若BF⊥AD,则△EDF是半角三角形吗?若是,请说明理由.【分析】(1)分两种情况进行解答,①若另一个锐角等于∠A=90°的一半,②若除∠A 以外的两个角中,有一个角是另一个的一半,根据三角形的内角和为180°,进行解答,(2)分六种情况进行讨论解答,把其中的一个内角等于另一个内角的一半的情况都进行考虑,分别求出相应的角的度数.(3)根据题意分别求出三角形DEF的各个内角的度数,结合“半角三角形”的意义进行判断.【解答】解:(1)①若另一个锐角等于∠A=90°的一半,则这个角为45°,第三角为45°,②若除∠A以外的两个角中,有一个角是另一个的一半,则有较小的角为(180°﹣90°)÷(1+2)=30°.那么较大的角为60°,故答案为:45°,45°或30°,60°,(2)根据题意有以下几种情况:①若∠B=∠C,则∠B=20°,②若∠C=∠B,则∠B=80°,③若∠A=∠C,则∠A=20°,∠B=120°,④若∠C=∠A,则∠A=80°,∠B=60°,⑤若∠B=∠A,则∠B=(180°﹣40°)÷3=°,⑥若∠A=∠B,则∠B=(180°﹣40°)÷3×2=°,(3)∵AB∥CD,AD∥BC,∠C=72°,∴ABCD是平行四边形,∴∠C=∠A=72°,∠D=∠ABC=180°﹣72°=108°,由折叠得,∠C=∠BFE=72°,∵BF⊥AD,∴∠AFB=90°,∴∠DFE=180°﹣90°﹣72°=18°,∴∠DEF=180°﹣108°﹣18°=54°∴∠DEF=∠D,∴△EDF是半角三角形.25.(6分)已知△ABC中,∠C是其最小的内角,如果过点B的一条直线把这个三角形分割成了两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC关于点B的奇异分割线.例如:图1,在Rt△ABC中,∠A=90°,∠C=20°,过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC的关于点B的奇异分割线.(1)如图2,在△ABC中,若∠A=50°,∠C=20°.请过顶点B在图2中画出△ABC 关于点B的奇异分割线BD交AC于点D,此时∠ADB=40 度;(2)在△ABC中,∠C=30°,若△ABC存在关于点B的奇异分割线,画出相应的△ABC 及分割线BD,并直接写出此时∠ABC的度数(要求在图中标注∠A、∠ABD及∠DBC的度数).【分析】(1)首先了解奇异分割线.的定义,然后把角ABC分成90°角和20°角即可;(2)设BD为△ABC的奇异分割线.,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形;第二种情况:△BDC是直角三角形,△ABD是等腰三角形分别进行分析.【解答】解:(1)如图所示:直线BD即为所求,此时∠ADB=90°﹣∠A=40°.故答案为40.(2)设BD为△ABC的奇异分割线,分以下两种情况.第一种情况:△BDC是等腰三角形,△ABD是直角三角形,易知∠C和∠DBC必为底角,∴∠DBC=∠C=30°.当∠A=90°时,△ABC存在奇异分割线,此时∠ABC=60°.当∠ABD=90°时,△ABC存在奇异分割线,此时∠ABC=120°当∠ADB=90°时,不符合题意.第二种情况:△BDC是直角三角形,△ABD是等腰三角形,当∠DBC=90°时,此时BD=AD,则△ABC存在奇异分割线,此时∠ABC=120°.当∠BDC=90°时,此时BD=AD,则△ABC存在奇异分割线,此时∠ABC=105°综上所述,满足条件的∠ABC的值为60°或120°或105°。
2020-2021学年七年级(下)半期数学考试试题
2020-2021学年七年级(下)半期考试数学试卷(满分150分 考试时间 120分钟)一、选择题(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出来A 、B 、C 、D 四个选项,其中只有一个是正确的。
1.下列各图中,∠1与∠2是对顶角的是()2.实数41的算数平方根是( ) A.2B.41±C.4-D.3-3.点A 的坐标(3-,4-),它到x 轴的距离是( ) A.3B.4C.4-D.3- 4.如图,AB ∥CD ,EF 与AB ,CD 分别相交于点E ,F ,EP ⊥EF ,与∠EFD 的平分线FP 相交于点P ,且∠BEP=40°,则∠EPF=()度A.70B.65C.60D.555.已知⎩⎨⎧=-=21y x 是二元一次方程组⎩⎨⎧=-=+123y nx m y x 的解,则n m +的值是( )A.-1B.-2C.-3D.-4 6.不等式组⎩⎨⎧<-≥12x x 的解集在数轴上表示为()7.在3.14,1729,3-,0.23,0.2020020002…这五个数中,既是正实数也是无理数的个数有( )个A.1B.2C.3D.48. 有下列四个命题:(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行 (2) 两条直线被第三条直线所截,同旁内角互补(3) 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直(4) 在同一平面内,过一点有且只有一条直线与已知直线垂直 其中所有正确的命题是( )A.①④B.①②C.②③D.③④9.若7)1()2(21=--+-b a y b x a 是关于x ,y 的二元一次方程组,则a ,b 的值分别是( ) A.12==b a ,B.12-=-=b a ,C.12=-=b a ,D.12-==b a ,10.已知方程组⎩⎨⎧-=++=+m y x m y x 32312的解满足2<-y x ,则m 的取值范围为( )A.1>mB.1<mC.2>mD.2-<m11.如图,在平面直接坐标系中,有若干个横坐标分别为整数的点,其顺序按图中)2,2()2,1()1,1()1,2()0,2(0,1(→→→→→)…根据这个规律,则第2016个点的横坐标为( )A.44B.45C.46D.4712.如果关于x 的方程21361=+-x ax 有整数解,且关于x 的不等式组⎪⎩⎪⎨⎧<---≥a x x x x 212)1(34有且仅有四个整数解,那么符合条件的所有整数a 的个数是( )A.0B.1C.2D.3二、填空题(本大题共6小题,每小题4分,共24分) 13.在平面直角坐标系中,点P(1,-3)在第 象限.14.若不等式的4)1(2>-x 最小正整数解是方程32=-ax x 的解,则a 的值为 .15.如图,直线1l ∥2l ,βα∠=∠,∠1=50°,则∠2= .16. 如果点P (n+2,n-3)想做平移2个单位长度正好落在y 轴上,那么P 点的坐标为 .17. 若不等式2)2(>+x m 的解集是22+<m x ,则m 的取值范围是 . 18. 某校在“筑梦少年正当时,不忘初心跟党走”知识竞赛中,七年级(1)班2人获一等奖,1人获二等奖,3人获三等奖,奖品价值41元;七年级(2)班1人获一等奖,3人获二等奖,3人获三等奖,奖品价值37元;七年级(3)班5人获二等奖,3人获三等奖,奖品价值 元. 三、解答题(本大题共2小题,每小题8分,共16分)19.(1)解方程组:⎩⎨⎧-=-=+421y x y x(2)计算:)13(332)2(2+--+-.20.解不等式组,并将解集在数轴上表示出来:⎪⎩⎪⎨⎧≤-+<+23132)1(3x x x x .四、解答题(本大题共4小题,每小题10分,共40分)21.如图,在平面直角坐标系xoy 中,A(-1,5) , B(-1,0),C(-4,3)(1)△ABC 的面积是 .(2)在下图中画出△ABC 向下平移2个单位,向右平移5个单位后的△A 1B 1C 1. (3)写出点A 1,B 1,C 1的坐标.22.已知2a的算术平方根是4,c是13的整数部分.3-+ba的立方根是3,15+(1) 求a,b,c的值;(2)求c3的平方根.-ba+23.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG = 9:10,试说明AB 与CD有怎样的位置关系?24.西安某商场需要购进一批电脑和电子白板,经过市场考查得知,购买2台电脑和3台电子白板需要5.5万元,购进3台电脑和2台电子白板需要4.5万元. (1)你能求出每台电脑、每台电子白板各多少万元?(2)根据商场实际,需购进电脑和电子白板共30台,现要求购进电脑的台数不大于购进电子白板的2倍,总费用不超过27万元,请你通过计算求出有几种购买方案?哪种方案费用最低?25.若一个四位自然数满足个位数字与百位数字相同,十位数字与千位数字相同,我们称这个四位自然数为“双子数”.将“双子数”m的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到一个新的双子数'm,记1111'22)(mm mF +=为“双子数”m的“双11数”.例,2424=m ,4242'=m ,则1211114242224242)2424(=⨯+⨯=F(1)计算3636的“双11数”=)3636(F .(写出计算过程)(2)已知两个“双子数”p 、q ,其中abab p =,cdcd q =(其中91≤<≤b a ,91≤≤c ,91≤≤d , d c ≠且a ,b ,c ,d 都为整数),若p 的“双11数”)(p F 能被17整除,且p 、q 的“双11数”满足0)234()(2)(=+++-+c d b a q F p F ,求),(q p G 的值.26.在平面直角坐标中有三个点A(a ,0),B(b ,0),C(0,c ),且a ,b ,c 满足042)6(2=-+-++c b a ,点P 、Q 是平面直角坐标系上两个点. (1)直接写出a ,b ,c 的值。
2020年七年级下册数学半期考试试题(含答案)(3)
2020学年七年级下册数学期中检测一.选择题(共10小题)1.计算3﹣2的结果是()A.﹣9 B.9 C.D.2.在数学课上,老师让同学们画对顶角∠1与∠2,其中正确的是()A.B.C.D.3.如图是画平行线时,采用推三角尺的方法从图1到图2得到平行线,在平移三角尺画平行线的过程中,使用的数学原理是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线平行,同位角相等D.内错角相等,两直线平行4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×1085.下列图形中,由∠1=∠2,能推出AB∥CD的是()A.B.C.D.6.从边长为a的正方形中去掉一个边长为b的小正方形,如图,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)7.在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s0 10 20 30 40 油温y/℃10 30 50 70 90 王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃8.为了给居民创造舒适的居住环境,某物业请绿化队对小区的部分场所进行绿化,在绿化的过程中体息了一段时间,已知绿化面积S(m2)与工作时间t(h)的关系图象如图所示,则绿化队平均每小时绿化的面积为()A.100m2B.80m2C.50m2D.40m29.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b210.如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n=()A.n?180°B.2n?180°C.(n﹣1)?180°D.(n﹣1)2?180°二.填空题(共5小题)11.已知∠a=35°,则∠a的余角是.12.骆驼被称为“沙漠之舟”,它的体温随时间的变化,而变化在这一变量关系中,因变量是.13.如图,直线AB,CD相交于点O,∠AOC=40°,过点O作EO⊥AB,则∠DOE的度数为.14.已知m+n=mn,则(m﹣1)(n﹣1)=.15.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.三.解答题(共8小题)16.计算:(1)﹣(π+3.14)0﹣5÷(﹣1)2019(2)(x+2y)(x﹣2y)+4(y2﹣4)17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.18.一个角补角比它的余角的2倍多30°,求这个角的度数.19.如图,已知点D在∠AOB的边OA上,过点D作射线DE,点E在∠AOB的内部.(1)若∠ADE=∠AOB,请利用尺规作出射线DE;(不写作法,保留作图痕迹)(2)根据上面的作图判断直线DE与OB是否平行,并说明理由.20.王师傅非常喜欢自驾游,为了解他新买轿车的耗油情况,将油箱加满后进行了耗油实验,得到下表中的数据:行驶的路程s(km)0 100 200 300 400 …油箱剩余油量Q(L)50 42 34 26 18 …(1)在这个问题中,自变量是,因变量是;(2)该轿车油箱的容量为L,行驶150km时,估计油箱中的剩余油量为L;(3)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请直接写出A,B两地之间的距离是km.21.周末,小明乘坐家门口的公交车到和平公园游玩,他先乘坐公交车0.8小时后达到书城,逗留一段时间后继续坐公交车到和平公园,小明出发一段时间后,小明的妈妈不放心,于是驾车沿相同的路线前往和平公园,如图是他们离家的路程y(km)与离家时间x (h)的关系图,请根据图回答下列问题:(1)小明家到和平公园的路程为km,他在书城逗留的时间为h;(2)图中A点表示的意义是;(3)求小明的妈妈驾车的平均速度(平均速度=).22.在《几何原本》中记载着这样的题目:如果同一条线段被两个分点先后分成相等和不相等的线段,以得到的各线段为边作正方形,那么不相等的两个正方形的面积之和等于原线段一半上的正方形与两个分点之间一段上正方形的面积之和的两倍.王老师带领学生在阅读的基础上画出的部分图形如图,已知线段AB,点C为线段AB的中点,点D为线段AB上任意一点(D不与C重合),分别以AD和BD为边在AB的下方作正方形ADEF 和正方形BDGH,以AC和CD为边在线段下方作正方形ACMJ和正方形CDPQ,则正方形ADEF 与正方形BDGH的面积之和等于正方形ACMJ和正方形CDPQ面积之和的两倍.(1)请你画出正方形ACMJ和正方形CDPQ(不必尺规作图);(2)设AD=a,BD=b,根据题意写出关于a,b的等式并证明.23.问题情境在综合与实践课上,同学们以“一个含30°的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a,b且a∥b和直角三角形ABC,∠BCA=90°,∠BAC=30°,∠ABC=60°.操作发现:(1)在图1中,∠1=46°,求∠2的度数;(2)如图2,创新小组的同学把直线a向上平移,并把∠2的位置改变,发现∠2﹣∠1=120°,说明理由;实践探究(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分∠BAM,此时发现∠1与∠2又存在新的数量关系,请直接写出∠1与∠2的数量关系.参考答案与试题解析一.选择题(共10小题)1.计算3﹣2的结果是()A.﹣9 B.9 C.D.【分析】直接利用负指数幂的性质进而得出答案.【解答】解:3﹣2=.故选:C.2.在数学课上,老师让同学们画对顶角∠1与∠2,其中正确的是()A.B.C.D.【分析】有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.依此即可求解.【解答】解:由对顶角的定义可知,画对顶角∠1与∠2,其中正确的是选项C.故选:C.3.如图是画平行线时,采用推三角尺的方法从图1到图2得到平行线,在平移三角尺画平行线的过程中,使用的数学原理是()A.同位角相等,两直线平行B.两直线平行,内错角相等C.两直线平行,同位角相等D.内错角相等,两直线平行【分析】根据平行线的判定方法即可解决问题.【解答】解:如图,∵∠1=∠2,∴a∥b(同位角相等两直线平行),故选:A.4.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B.4×10﹣8C.0.4×108D.﹣4×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000 000 04=4×10﹣8,故选:B.5.下列图形中,由∠1=∠2,能推出AB∥CD的是()A.B.C.D.【分析】直接利用平行线的判定方法进而分别判断得出答案.【解答】解:A、由∠1=∠2,不能推出AB∥CD,故此选项错误;B、由∠1=∠2,能推出AB∥CD,故此选项正确;C、由∠1=∠2,不能推出AB∥CD,故此选项错误;D、由∠1=∠2,不能推出AB∥CD,故此选项错误;故选:B.6.从边长为a的正方形中去掉一个边长为b的小正方形,如图,然后将剩余部分剪后拼成一个矩形,上述操作所能验证的等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故a2﹣b2=(a+b)(a﹣b).故选:A.7.在《科学》课上,老师讲到温度计的使用方法及液体的沸点时,好奇的王红同学准备测量食用油的沸点,已知食用油的沸点温度高于水的沸点温度(100℃),王红家只有刻度不超过100℃的温度计,她的方法是在锅中倒入一些食用油,用煤气灶均匀加热,并每隔10s测量一次锅中油温,测量得到的数据如下表:时间t/s0 10 20 30 40油温y/℃10 30 50 70 90 王红发现,烧了110s时,油沸腾了,则下列说法不正确的是()A.没有加热时,油的温度是10℃B.加热50s,油的温度是110℃C.估计这种食用油的沸点温度约是230℃D.每加热10s,油的温度升高30℃【分析】从表格可知:t=0时,y=10,即没有加热时,油的温度为10℃;每增加10秒,温度上升20℃,则t=50时,油温度y=110;t=110秒时,温度y=230.【解答】解:从表格可知:t=0时,y=10,即没有加热时,油的温度为10℃;每增加10秒,温度上升20℃,则50秒时,油温度110℃;110秒时,温度230℃;故选:D.8.为了给居民创造舒适的居住环境,某物业请绿化队对小区的部分场所进行绿化,在绿化的过程中体息了一段时间,已知绿化面积S(m2)与工作时间t(h)的关系图象如图所示,则绿化队平均每小时绿化的面积为()A.100m2B.80m2C.50m2D.40m2【分析】绿化的总面积÷总的用时,即可求解.【解答】解:绿化的总面积为200m2,总的用时为5h,故每小时绿化的面积为200÷5=40(m2),故选:D.9.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b2【分析】利用完全平方公式的结构特征判断即可.【解答】解:根据题意得:9a2+12ab+(),其中被染黑的这一项应是4b2,故选:C.10.如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n=()A.n?180°B.2n?180°C.(n﹣1)?180°D.(n﹣1)2?180°【分析】根据第1个图形∠1+∠2=180°,第2个图形∠1+∠2+∠3=2×180°,第,3个图形∠1+∠2+∠3+∠4=3×180°…,进而得出答案.【解答】解:由题意可得:∠1+∠2+…+∠n=(n﹣1)?180°.故选:C.二.填空题(共5小题)11.已知∠a=35°,则∠a的余角是55°.【分析】根据余角的概念计算,得到答案.【解答】解:90°﹣∠a=90°﹣35°=55°,则∠a的余角是55°,故答案为:55°.12.骆驼被称为“沙漠之舟”,它的体温随时间的变化,而变化在这一变量关系中,因变量是体温.【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x 和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间,因变量是体温.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间,因变量是体温,故答案为:体温13.如图,直线AB,CD相交于点O,∠AOC=40°,过点O作EO⊥AB,则∠DOE的度数为50°.【分析】根据对顶角相等求∠BOD,由垂直的性质求∠BOE,根据∠DOE=∠BOE﹣∠BOD 求解.【解答】解:∵直线AB与直线CD相交,∠AOC=40°,∴∠BOD=∠AOC=40°.∵EO⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE﹣∠BOD=90°﹣40°=50°.故答案为:50°.14.已知m+n=mn,则(m﹣1)(n﹣1)= 1 .【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.15.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是37.2 min.【分析】首先小亮早晨从家骑车到学校,先上坡后下坡,回家也是先上坡后下坡,而据图象知道上坡路程是3600米,下坡路程是6000米,由此先求出上坡和下坡的速度,再根据返回时原来上坡变为下坡,下坡变为上坡,利用时间=路程÷速度即可求出小亮从学校骑车回家用的时间.【解答】解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.2三.解答题(共8小题)16.计算:(1)﹣(π+3.14)0﹣5÷(﹣1)2019(2)(x+2y)(x﹣2y)+4(y2﹣4)【分析】(1)分别根据负整数指数幂,任何非0数的0次幂等于1,﹣1的奇数次幂等于﹣1化简计算即可;(2)根据平方差公式,去括号以及合并同类项的法则计算即可.【解答】解:(1)原式=9﹣1+5=13;(2)原式=x2﹣4y2+4y2﹣16=x2﹣16.17.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy(1)求所捂的多项式;(2)若x=,y=,求所捂多项式的值.【分析】(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)计算即可.(2)把x=,y=代入多项式求值即可.【解答】解:(1)设多项式为A,则A=(3x2y﹣xy2+xy)÷(﹣xy)=﹣6x+2y﹣1.(2)∵x=,y=,∴原式=﹣6×+2×﹣1=﹣4+1﹣1=﹣4.18.一个角补角比它的余角的2倍多30°,求这个角的度数.【分析】设这个角为x,根据余角和补角的概念列出方程,解方程即可.【解答】解:设这个角为x,由题意得,180°﹣x=2(90°﹣x)+30°,解得x=30°.答:这个角的度数是30°.19.如图,已知点D在∠AOB的边OA上,过点D作射线DE,点E在∠AOB的内部.(1)若∠ADE=∠AOB,请利用尺规作出射线DE;(不写作法,保留作图痕迹)(2)根据上面的作图判断直线DE与OB是否平行,并说明理由.【分析】(1)利用尺规作∠ADE=∠AOB即可.(2)根据同位角相等两直线平行判断即可.【解答】解:(1)直线DE即为所求.(2)结论:DE∥OB.理由:∵∠ADE=∠AOB,∴DE∥OB.20.王师傅非常喜欢自驾游,为了解他新买轿车的耗油情况,将油箱加满后进行了耗油实验,得到下表中的数据:行驶的路程s(km)0 100 200 300 400 …油箱剩余油量Q(L)50 42 34 26 18 …(1)在这个问题中,自变量是行驶的路程,因变量是油箱剩余油量;(2)该轿车油箱的容量为50 L,行驶150km时,估计油箱中的剩余油量为38 L;(3)王师傅将油箱加满后驾驶该轿车从A地前往B地,到达B地时油箱中的剩余油量为22L,请直接写出A,B两地之间的距离是350 km.【分析】(1)通过观察统计表可知:轿车行驶的路程s(km)是自变量,油箱剩余油量Q (L)是因变量;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得答案;(3)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式,把Q=22代入函数关系式求得相应的s值即可.【解答】解:(1)上表反映了轿车行驶的路程s(km)和油箱剩余油量Q(L)之间的关系,其中轿车行驶的路程s(km)是自变量,油箱剩余油量Q(L)是因变量;故答案是:行驶的路程;油箱剩余油量;(2)由表格可知,开始油箱中的油为50L,每行驶100km,油量减少8L,据此可得Q与s的关系式为Q=50﹣0.08s,当s=150时,Q=50﹣0.08×150=38(L);故答案是:50,38;(3)由(2)得Q=50﹣0.08s,当Q=22时,22=50﹣0.08s解得s=350.答:A,B两地之间的距离为350km.故答案是:350.21.周末,小明乘坐家门口的公交车到和平公园游玩,他先乘坐公交车0.8小时后达到书城,逗留一段时间后继续坐公交车到和平公园,小明出发一段时间后,小明的妈妈不放心,于是驾车沿相同的路线前往和平公园,如图是他们离家的路程y(km)与离家时间x (h)的关系图,请根据图回答下列问题:(1)小明家到和平公园的路程为30 km,他在书城逗留的时间为 1.7 h;(2)图中A点表示的意义是小明离开书城,继续坐公交到公园;(3)求小明的妈妈驾车的平均速度(平均速度=).【分析】(1)、(2)看图象即可求解;(3)用平均速度=,即可求解.【解答】解:(1)从图象可以看出,小明距离公园的路程为30千米,小明逗留的时间为:2.5﹣0.8=1.7,故答案为30,1.7;(2)表示小明离开书城,继续坐公交到公园,故答案为:小明离开书城,继续坐公交到公园;(3)30÷(3.5﹣2.5)=30(km/h),即:小明的妈妈驾车的平均速度为30km/h.22.在《几何原本》中记载着这样的题目:如果同一条线段被两个分点先后分成相等和不相等的线段,以得到的各线段为边作正方形,那么不相等的两个正方形的面积之和等于原线段一半上的正方形与两个分点之间一段上正方形的面积之和的两倍.王老师带领学生在阅读的基础上画出的部分图形如图,已知线段AB,点C为线段AB的中点,点D为线段AB上任意一点(D不与C重合),分别以AD和BD为边在AB的下方作正方形ADEF 和正方形BDGH,以AC和CD为边在线段下方作正方形ACMJ和正方形CDPQ,则正方形ADEF 与正方形BDGH的面积之和等于正方形ACMJ和正方形CDPQ面积之和的两倍.(1)请你画出正方形ACMJ和正方形CDPQ(不必尺规作图);(2)设AD=a,BD=b,根据题意写出关于a,b的等式并证明.【分析】(1)根据要求画出图形即可.(2)根据正方形ADEF与正方形BDGH的面积之和等于正方形ACMJ和正方形CDPQ面积之和的两倍,构建关系式即可.【解答】解:(1)如图正方形ACMJ和正方形CDPQ即为所求.(2)关于a,b的等式:a2+b2=.理由:右边==a2+b2=左边,∴a2+b2=.23.问题情境在综合与实践课上,同学们以“一个含30°的直角三角尺和两条平行线”为背景开展数学活动如图1,已知两直线a,b且a∥b和直角三角形ABC,∠BCA=90°,∠BAC=30°,∠ABC=60°.操作发现:(1)在图1中,∠1=46°,求∠2的度数;(2)如图2,创新小组的同学把直线a向上平移,并把∠2的位置改变,发现∠2﹣∠1=120°,说明理由;实践探究(3)缜密小组在创新小组发现结论的基础上,将图2中的图形继续变化得到图3,AC 平分∠BAM,此时发现∠1与∠2又存在新的数量关系,请直接写出∠1与∠2的数量关系.【分析】(1)根据直角三角形的性质求出∠3,根据平行线的性质解答;(2)过点B作BD∥a,根据平行线的性质得到∠ABD=180°﹣∠2,∠DBC=∠1,结合图形计算,证明结论;(3)过点C作CE∥a,根据角平分线的定义、平行线的性质计算即可.【解答】解:(1)∵∠BCA=90°,∴∠3=90°﹣∠1=44°,∵a∥b,∴∠2=∠3=44°;(2)理由如下:过点B作BD∥a,则∠ABD=180°﹣∠2,∵a∥b,BD∥a,∴BD∥b,∴∠DBC=∠1,∵∠ABC=60°,∴180°﹣∠2+∠1=60°,∴∠2﹣∠1=120°;(3)∠1=∠2,理由如下:∵AC平分∠BAM,∴∠BAM=2∠BAC=60°,过点C作CE∥a,∴∠2=∠BCE,∵a∥b,CE∥a,∴CE∥b,∠1=∠BAM=60°,∴∠ECA=∠CAM=30°,∴∠2=∠BCE=60°,∴∠1=∠2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学(下)半期考试试卷
一、精心选一选(每题2分,共24分)
2、下列说法正确的是( )
A 、4.3万精确到千位
B 、0.010有一个有效数字
C 、近似数2.8与2.80表示的意义相同
D 、由四舍五入得近似数43.0,精确到个位
3、如图,要得到a ∥b ,则需要条件( )
A 、24∠=∠
B 、13180∠+∠=
C 、12180∠+∠=
D 、23∠=∠
5、如图,已知AB ∥DE ,80,140ABC CDE ∠=∠=,则C ∠=( )
A 、20
B 、30
C 、40
D 、50
6、式子n m -与()n
m -的正确判断是( )
A 、这两个式子互为相反数
B 、这两个式子是相等的
C 、当n 为奇数时,它们互为相反数;n 为偶数时它们相等
D 、当n 为偶数时,它们互为相反数;n 为奇数时它们相等
7、23,24m n ==,则322m n -等于( ) A 、1 B 、98 C 、278 D 、2716
8、下列各题中正确的个数有( )个
(1)两个角和其中一角的对边对应相等的两个三角形全等;
(2)两条边和其中一边的对角对应相等的两个三角形全等;
(3)两条边和其中一边的对角对应相等的两个三角形一定不全等;
(4)三个角对应相等的两个三角形全等;
(5)三角形的最大角不小于60度,最小角不大于60度。
A 、1
B 、2
C 、3
D 、4
9、已知:11,2
x y ==,则20332()x x y -的值等于( )
A 、3544--或
B 、3544或
C 、34
D 、54
- 10、小明有两根5cm 、8cm 的木棒,他想以这两根木棒为边做一个等腰三角形,还需再选用一根( )长的木棒。
A 、5cm
B 、8cm
C 、5cm 或8cm 者说
D 、大于3cm 且小于13cm 的任意长
11、如图,光线a 照射到平面镜CD 上,然后在平面镜AB 和CD 之间来回反射,这时光线的入射角等于反射角,即16,53∠=∠∠=∠,24∠=∠。
若已知155,375∠=∠=,那么2∠等于( )
A 、50
B 、55
C 、66
D 、65
12、已知20,1a a a >-=且,则224a a
-等于( ) A 、3 B 、5 C 、3- D 、1
二、耐心填一填(每题2分,共32分)
13、单项式2
310
xy -的系数是 。
14、多项式3
322x y xy -+的次数是 。
15、如果直线a ∥b ,且直线c ⊥a ,则直线c 与b 的位置关系 (填“平行”或“垂直”)。
16、计算324(2)xy z -= 。
17、2(23)ab -+= 。
18、已知:AB=AE ,AC=AD ,要使EC=BD ,需附加的一个条件可以是 。
19、观察下列各式: 2221132,1243,1354+⨯=+⨯=+⨯=,……
请将你找出的规律用公式表示出来: 。
(请注明公式中字母的取值范围)
20、如图,AB ∥CD ,AD ∥BC ,180,250∠=∠=,则C ∠= 。
21、若22
28162n n ⨯⨯=,则n = 。
22、如图,△ABC 中,ABC ACB ∠∠和的平分线交于点O ,若120BOC ∠=,则A ∠= 。
23、一个角的余角比它的补角的
29多1,则这个角的度数为 。
24、若225x kx ++是一个完全平方式,则k = 。
25、已知2()2()10x y x y +-++=,则x y += 。
26、已知114,1xy x y -==-,则2211x y
+= 。
27、已知一个角的两边分别平行另一个角的两边,且一个角比另一个角大40,这两个角的度数分别是 。
28、当a 与b 满足的关系为 时,代数式24()a b -+有最大值 。
三、细心算一算(29~32题每题3分,33题4分,共16分)
29、222314()(12)()33xy x y x y ⋅-÷-
30、0231122(2005)2()28802333π---⨯÷
+-÷--
31、(32)(32)a b c a b c +---
32、22
2222m n m n +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭
33、化简求值:()222()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中12,2
x y =-=
四、获取需要的信息(6分)
34、下图是明明作的一周的零用钱开支的统计图(单位:元)
分析上图,试回答以下问题:
(1)周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?
(2)哪几天他花的零用钱是一样的?分别为多少?你能帮明明算一算他一周平均每天花的零用钱吗?
五、看谁做得好(35题4分,36题5分,37题5分,共14分)
35、已知线段b 和α∠,用尺规作一个三角形,使它的两边长分别为b 和2b ,且这两条边
的夹角等于α∠。
(不写作法,保留作图痕迹)
36、如图,已知,AC ∥DE ,DC ∥FE ,CD 平分ACB ∠,求证:EF 平分BED ∠。
37、如图,点C 、E 分别在直线AB 、DF 上,小华想知道ACE DEC ∠∠和是否互补,但是他没有带量角器,只带了一副县长三角板,于是他想了这样一个办法:首先连结DF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO=BO ,因此他得出结论:ACE DEC ∠∠和互补,而且他还发现BC=EF 。
小华的想法对吗?为什么?
六、其实并不难(38题3分,39题5分,共8分)
38、,,a b c 是三个连续的正整数()a b c <<,以b 为边长作正方形,分别以c ,a 为长和宽作长方形,哪个图形的面积大?为什么?
39、如图,△ABC 中,12AC AB =,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 。