12-13 线代期末考试卷 A

合集下载

2013年西安工业大学线性代数考试试题及答案评分标准(A卷)

2013年西安工业大学线性代数考试试题及答案评分标准(A卷)

2012级线性代数考试试题(A 卷)2012-2013学年第2学期5小题,每小题4分,总计20分)1、设n 阶方阵,,A B C 满足关系式ABC E =,其中E 为n 阶单位矩阵,则必有( ). (A) ACB E =; (B) CBA E =; (C )BAC E =; (D )BCA E =.2、设A 、B 均是3阶矩阵,且2, 2A B ==-,则112A B *-=( ) (A )2-; (B )1-; (C )21-; (D )41-. 3、设向量组321,,ααα线性无关,向量1β能由321,,ααα线性表出,向量2β不能由321,,ααα线性表出,则必有( )(A )121,,βαα线性相关; (B )121,,βαα线性无关; (C )221,,βαα线性相关; (D )221,,βαα线性无关. 4、设线性方程组(Ⅰ) b Ax =,其导出组(Ⅱ) 0=Ax ,则必有( ).(A )(Ⅰ)有无穷多解,则(Ⅱ)仅有零解; (B )(Ⅰ)仅有唯一解,则(Ⅱ)仅有零解; (C )若(Ⅱ)有非零解,则(Ⅰ)有无穷多解;(D )若(Ⅱ)仅有零解,则(Ⅰ)有唯一解.5、设1111111111111111A ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,4000000000000000B ⎛⎫⎪⎪= ⎪⎪⎝⎭,则A 与B ( ).(A) 合同且相似; (B) 合同但不相似;(C) 不合同但相似; (D) 不合同且不相似. 5小题,每小题4分,总计20分)1. 已知414243123452221127, 312451112243150D A A A ==++=则 ,=+4544A A ;2. 已知A 21401134⎛⎫= ⎪-⎝⎭,131012131402B ⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭,则()TAB =___________; 3. 设01000010********A ⎛⎫ ⎪⎪= ⎪⎪⎝⎭,则3A 的秩为______; 4. 设三阶方阵A 的特征值分别为1, 2, 3-,则2A A E +-= ____; 5. 已知2221231231223(,,)22f x x x x x x x x tx x =++++为正定的,则参数t 的取值范围是 .三、(12分)设423110,123A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭且2,AX A X =+ 求X .四、(10分)求向量组()T3,0,1,21-=α,()T4,2,3,12-=α,()T 1,2,0,33-=α,()T 6,4,2,24-=α的秩及一个极大无关组,并将其余的向量(如果有的话).用此极大无关组线性表出.五、(12分)求非齐次线性方程组⎪⎩⎪⎨⎧=++++=++++=++++2275532155432722543215432154321x x x x x x x x x x x x x x x 的通解.六、(14分)设211121112A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,判断A 能否对角化,若能,求可逆阵P ,使1P AP -为对角阵,并求20A .12分,其中(1)题5分,(2)题7分)(1)设B A ,是n 阶方阵,且B 可逆,满足O B AB A =++22,证明:A 和AB +都是可逆矩阵; (5分)(2)设向量组,,αβγ线性无关,证明: 向量组,,αββγγα+++也线性无关. (7分)2012~2013学年第2学期期末考试《线性代数》试卷(A )标准答案和评分标准一、选 择 题(5二、填 空 题(5×4分)1. 9, 18-;2. 6207586⎛⎫ ⎪-- ⎪ ⎪-⎝⎭; 3. 1 ; 4. 11 ; 5. 22<<-t三、解:由2AX A X =+,得(2)A E X A -=…………………………………1分由于2232110,210,121A E A E ⎛⎫ ⎪-=--=-≠ ⎪ ⎪-⎝⎭所以2A E -可逆;于是1(2)X A E A -=-………………………………………………………4分()132231001210012110010110010121001223100~r r A E E ↔-⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因为211123132(1)226121001121001101021~011011~011011~011011065102065102001164r r r r r r r r r+⨯-++-----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭13233(1)100143~010*********r r r r r ++⨯---⎛⎫ ⎪-- ⎪⎪-⎝⎭,1143(2)153164A E ---⎛⎫ ⎪-=-- ⎪ ⎪-⎝⎭…………………8分 1143423386(2)1531102961641232129X A E A -----⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=-=--=-- ⎪⎪ ⎪ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭故 ………12分四、解:以每个向量作为列构造一个矩阵,对该矩阵施以初等行变换.设()432,,,αααα=A 2132130202243416-⎡⎤⎢⎥--⎢⎥=⎢⎥⎢⎥-⎣⎦……………………..…………2分 1302011200110000⎡⎤⎢⎥⎢⎥−−−→⎢⎥⎢⎥⎣⎦行变换--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−→−0000110010101001行变换…………………………4分 故()3=A r ……………………………………………………………………6分321,ααα,为向量组4321,αα,α,α的一个极大无关组…………………………………8分3214αααα++=……………………………………………………………10分五、解:将该方程组表示为:Ax b =,其中112121234523557A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,12345x x x x x x ⎛⎫⎪⎪ ⎪= ⎪ ⎪⎪⎝⎭,71522b ⎛⎫ ⎪= ⎪ ⎪⎝⎭()3132112127112127123451512345152355722000000r r r r A A b --⎛⎫⎛⎫⎪ ⎪==−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭2112112127101211011338011338000000000000r r r r -----⎛⎫⎛⎫⎪ ⎪−−−→−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭………………………4分 得同解方程组⎩⎨⎧=+++-=--+8331254325431x x x x x x x x移项得 ⎩⎨⎧+---=-++-=8331254325431x x x x x x x x …………………………………………6分取3450x x x ===,得线性方程组的一个特解:0(18000)T η=-……………………………………………………8分在对应的齐次线性方程组134********x x x x x x x x =-++⎧⎨=---⎩中,取345100x x x ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,010⎛⎫ ⎪ ⎪ ⎪⎝⎭及001⎛⎫⎪⎪ ⎪⎝⎭得基础解系为:111100ξ-⎛⎫ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,223010ξ⎛⎫ ⎪- ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,313001ξ⎛⎫ ⎪- ⎪⎪= ⎪ ⎪ ⎪⎝⎭………………………10分于是所求的通解为:1231234512111338100001000010x x x x k k k x x --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪==+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(123,,k k k ∈ℜ). ………………………………………………………………………………………12分六、解:令()()2211121410112A E λλλλλλ--=-=---=-得的特征值为14λ=,231λλ==………………………………..…….3分1 对应14λ=,解方程组()40A E x -=由2111014121011112000r A E --⎛⎫⎛⎫⎪ ⎪-=-−−→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭得基础解系 1111p ⎛⎫⎪= ⎪ ⎪⎝⎭, ………………….………………………………5分2 对应132==λλ,解方程组()0=-X E A由111111111000111000r A E ⎛⎫⎛⎫ ⎪ ⎪-=−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭得基础解系 2110p -⎛⎫ ⎪= ⎪ ⎪⎝⎭,3101p -⎛⎫⎪= ⎪ ⎪⎝⎭, ……………………………………7分因此,三阶矩阵A 有三个线性无关的特征向量,所以它可相似对角化…………..8分.令()123111,,110101P p p p --⎛⎫ ⎪== ⎪ ⎪⎝⎭,则1411P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭于是1411A P P -⎛⎫⎪= ⎪ ⎪⎝⎭, 20201411A P P -⎛⎫⎪= ⎪ ⎪⎝⎭……………………………10分计算得 111111213112P -⎛⎫⎪=-- ⎪ ⎪--⎝⎭………………………………………………12分所以2020202020120202020202044241411141424131414142A P P -⎛⎫⎛⎫+--⎪ ⎪==-+-⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭…………….……14分七、(1) 证明: 由O B AB A =++22,得2)(B B A A -=+, ………………1分 两边取行列式,由方阵行列式性质及B 可逆,有()012≠-=+B B A A n, ………………………………………3分从而 0,0≠+≠B A A 且.故 B A A +和都是可逆矩阵 …………………………………… 5分(2)证明:方法一(定义法)设 123()()()0k k k αββγγα+++++=,……………………………1分 必有 131232()()()0k k k k k k αβγ+++++= (*) …………… 2分 已知,,αβγ线性无关,所以(*)式的系数全为零,即⎪⎩⎪⎨⎧=+=+=+.0,0,0232131k k k k k k ……………4分其系数行列式02110011101≠=, ……………5分 所以上述关于321,,k k k 的方程组只有零解,即0321===k k k , ………6分故向量组,,αββγγα+++也线性无关 …………………………………7分方法二(利用矩阵的秩)因为()()101,,,,110011αββγγααβγ⎛⎫ ⎪+++= ⎪ ⎪⎝⎭…………2分由于10111020011=≠,故101110011⎛⎫⎪⎪ ⎪⎝⎭可逆,………………………………4分所以()(),,,,3R R αββγγααβγ+++==,…………………………6分 故,,αββγγα+++线性无关………………………………………7分编辑:张永锋2013/6/9。

线性代数期末考试试题含答案

线性代数期末考试试题含答案

江西理工大学线性代数考题一、 填空题每空3分,共15分1. 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111c b a c b a c b a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________3. A 为3阶方阵,且21=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组n βββ ,,21的秩为 _____二、选择题每题3分,共15分6. 设线性方程组⎪⎩⎪⎨⎧=+=+--=-0322313221ax cx bc bx cx ab ax bx ,则下列结论正确的是 A 当c b a ,,取任意实数时,方程组均有解 B 当a =0时,方程组无解C 当b =0时,方程组无解D 当c =0时,方程组无解7. 同为n 阶方阵,则 成立 A B A B A +=+ B BA AB = C BA AB = D 111)(---+=+B A B A8. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=331332123111131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010100012P 则 成立 A 21P AP B 12P AP C A P P 21 D A P P 129. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(ABA **B A B 11--B A ABC 11--A BD **A B10. 设A 为n n ⨯矩阵,r A r =)(<n ,那么A 的n 个列向量中A 任意r 个列向量线性无关B 必有某r 个列向量线性无关C 任意r 个列向量均构成极大线性无关组D 任意1个列向量均可由其余n -1个列向量线性表示三、计算题每题7分,共21分11. 设⎪⎪⎪⎭⎫ ⎝⎛=300041003A ;求1)2(--E A12. 计算行列式1111111111111111--+---+---x x x x13. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛-=11322002a A 与⎪⎪⎪⎭⎫ ⎝⎛-=b B 00020001相似,求a 和b 的值四、计算题每题7分,共14分14. 设方阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=11k ξ,求k 的值15. 设⎪⎪⎪⎭⎫ ⎝⎛=111λα,⎪⎪⎪⎭⎫ ⎝⎛=1102α,⎪⎪⎪⎭⎫ ⎝⎛=λα113,⎪⎪⎪⎭⎫ ⎝⎛=111β1问λ为何值时,321,,ααα线性无关2当321,,ααα线性无关时,将β表示成它们的线性组合五、证明题每题7分,共14分16. 设3阶方阵0≠B ,B 的每一列都是方程组⎪⎩⎪⎨⎧=-+=+-=-+0302022321321321x x x x x x x x x λ的解1求λ的值2证明:0=B17. 已知4321,,,αααα为n 维线性无关向量,设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0,1,0,144332211αβαβαβαβ,证明:向量4321,,,ββββ线性无关 六、 解答题10分18.方程组⎪⎩⎪⎨⎧=+++=+++=+++λλλλ321321321)1(3)1(0)1(x x x x x x x x x ,满足什么条件时,方程组(1) 有惟一解2无解3有无穷多解,并在此时求出其通解七、解答题11分19. 已知二次型32212322213214432),,(x x x x x x x x x x f --++=,试写出二次型的矩阵,并用正交变换法化二次型为标准型;一1、20 2、44 t - 32716- 40,21====n n λλλ 5、 n二ACCDB 三11、⎪⎪⎪⎪⎭⎫ ⎝⎛-10002121001 12、4x 13、2,0-==b a 四14、2-=k 或0=k 15、32121)1(2121)2(1)1(ααλαβλ+--=-≠ 五16 )2(1)1(=λ略 17略六18、 13-≠λ且0≠λ;20=λ;33-=λ,解略七19、5,2,1-=λ,其余略。

天津大学2021年《线性代数》期末试题A卷及答案

天津大学2021年《线性代数》期末试题A卷及答案

《线性代数》课程试卷:A 卷一、选择题(每小题3分,共15分)1、一个值不为零的n 阶行列式,经过若干次矩阵的初等变换后,该行列式的值______________.(A) 保持不变; (B) 保持不为零; (C) 保持相同的正、负号; (D) 可以变为任何值. 2、下列公式正确的是_______________. (A)111)(---=B A AB ; (B) T T A A )()(11--=;(C)111)(---+=+A B B A ; (D)113)3(--=A A .3、设C B A ,,均为n 阶方阵,且E ABC =,则下列矩阵中为单位矩阵的是 _______________.(A)ACB ; (B)CBA ; (C)BAC ; (D)BCA .4、设A 是n m ⨯矩阵,),min()(n m r A r <=,则A 中必有________. (A) 没有等于零的1-r 阶子式,至少有一个r 阶子式不为零; (B) 有等于零的r 阶子式,没有不等于零的1+r 阶子式; (C) 有不等于零的r 阶子式,所有1+r 阶子式等于零; (D) 任何r 阶子式不等于零,任何 1+r 阶子式等于零.5、设向量组),,,(:21s A ααα ,),,,,,(:21r s s B +αααα ,则必有_______. (A) A 线性相关⇒B 线性相关; (B) A 线性无关⇒B 线性无关; (C) B 线性相关⇒A 线性相关; (D) B 线性无关⇒A 线性相关.二、填空题(每小题3分,共24分)1.=-601504321;2.在五阶行列式中项256651144332a a a a a a 符号是 ;(填“正号”或“负号”)3.行列式中两行(列)元素对应成比例,则此行列式的值等于 ;4.已知⎪⎪⎪⎭⎫ ⎝⎛=300020001A ,则1A -= ;5.设132325510,256236132A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则2A B += ;6.设2131,4262A B -⎛⎫⎛⎫==⎪ ⎪---⎝⎭⎝⎭,则AB = ;7.若三阶矩阵A 的伴随矩阵为*A ,已知21||=A ,求=--|*2)3(|1A A ; 8.已知向量组TT T T )8,7,6,5(,)7,6,5,4(,)6,5,4,3(,)5,4,3,2(4321====αααα,则=),,,(4321ααααr .三、解答题(共61分)1、计算下列行列式:(第1小题3分,第2小题4分,第5小题,共12分)(1)1log log 1ba ab ; (2) 043021200; (3)3111131111311113.2、(10分)已知⎪⎪⎪⎭⎫ ⎝⎛--=111111111A ,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求A AB 23-及B A T.3、(10分)求解矩阵方程X A AX +=,其中⎪⎪⎪⎭⎫⎝⎛=010312022A .4、(6分)求向量组T T T T )0,10,3,1(,)11,3,2,3(,)4,2,1,1(,)2,4,1,1(4321=--=--==αααα的一个极大无关组.5、(10分)求解齐次线性方程组⎪⎩⎪⎨⎧=---=--+=+++0340222022432143214321x x x x x x x x x x x x .6、(13分)λ取何值时,方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x 无解、有唯一解或有无穷多解?并在有无穷多解时求出其解.《线性代数》试卷参考答案及评分标准卷别:A 卷一、选择题(每题3分,合计15分)1、B ;2、B ;3、D ;4、C ;5、A .二、填空题(每题3分,合计24分)1、-58;2、正号;3、0;4、⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛31000210001;5、7712911124910⎛⎫⎪⎪ ⎪⎝⎭;6、0000⎛⎫ ⎪⎝⎭;7、2716-;8、2.三、解答题(合计61分)1、1、计算下列行列式:(第1小题3分,第2小题4分,第5小题,共12分)(1)1log log 1ba ab ; (2)043021200; (3)3111131111311113.解:(1)1log log 1b aa b =1×1-b a log ×a b log ……………… 2分=1-1=0 ……………………3分(2)043021200=4321)1(231+-⋅ ……………… 2分=-4 ……………………………………4分(3)311113111131666631111311113111134321r r r r +++ ……………………3分48200002000020111163111131111311111661413121=---÷r r r r r r r ………………5分2、(10分)已知⎪⎪⎪⎭⎫ ⎝⎛--=111111111A ,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求A AB 23-及B A T .解:⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ………1分=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-11111111120926508503 ………………4分 =⎪⎪⎪⎭⎫ ⎝⎛----22942017222132 ……………………………5分B A T =⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--150421321111111111 ……………………………7分= ⎪⎪⎪⎭⎫ ⎝⎛-092650850 ………………………………………10分3、(10分)求解矩阵方程X A AX +=,其中⎪⎪⎪⎭⎫⎝⎛=010312022A .解:把所给方程变形为A X E A =-)(. ……………………………2分⎪⎪⎪⎭⎫ ⎝⎛-=-010110312302022021)(A EA ……………………………4分⎪⎪⎪⎭⎫ ⎝⎛----→↔-33234001011002202131122r r r r ……………………………6分 ⎪⎪⎪⎭⎫ ⎝⎛---→-÷+312100010110022021)1(4313r r r ……………………………7分 ⎪⎪⎪⎭⎫ ⎝⎛-----→-+31210030211062202121322r r r r ……………………………8分 于是⎪⎪⎪⎭⎫ ⎝⎛----=-=-312302622)(1A E A X . ……………………………10分4、(6分)求向量组T T T T )0,10,3,1(,)11,3,2,3(,)4,2,1,1(,)2,4,1,1(4321=--=--==αααα的一个极大无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=011421032432111311),,,(4321αααα ……………………………2分⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----→25206156025201311 ……………………………3分⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→00000000125101311 ……………………………4分 知2),,,(4321=ααααr ,且21,αα是一个极大无关组. …………………6分5、(10分)求解齐次线性方程组⎪⎩⎪⎨⎧=---=--+=+++0340222022432143214321x x x x x x x x x x x x .解:对系数矩阵A 施以初等行变换.⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫ ⎝⎛-----=463046301221341122121221A ………………………3分⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→00003/42103/520100003/42101221 ……………………………5分 即⎩⎨⎧--=+=432431)3/4(2)3/5(2x x x x x x (43,x x 可取任意值) ……………………………7分 令2413,c x c x ==,将其写成向量形式为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛103/43/50122214321c c x x x x (21,c c 为任意实数). ………………………10分 6、(13分)λ取何值时,方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x 无解、有唯一解或有无穷多解?并在有无穷多解时求出其解.解:⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛----=λλλλλλλλ222~3302233012121121121212111212112A⎪⎪⎪⎭⎫⎝⎛+----→⎪⎪⎪⎭⎫ ⎝⎛-+---→)2)(1(000)1(23301212000223301212λλλλλλλλ ……………3分 (1)当2,1-≠λ时,3)(2)(~=<=A r A r ,方程组无解; ……………5分 (2)当1=λ时,32)()(~<==A r A r ,方程组有无穷多解, 这时⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛+----=000001101121000003301121)2)(1(000)1(2330121~λλλλA从而有⎩⎨⎧=-=+-01232321x x x x x ,令c x =3,则原方程组的全部解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321c x x x ,(R c ∈) ……………8分 (3)当2-=λ时,32)()(~<==A r A r ,方程组有无穷多解, 这时⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛+----=000021102121000063302121)2)(1(000)1(2330121~λλλλA从而有⎩⎨⎧=--=+-22232321x x x x x ,令c x =3,则原方程组的全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321c x x x ,(R c ∈) ………………………11分(4)方程组不存在有唯一解的情况. ………………………13分。

线性代数期末试卷A试题答案及评分标准(样卷)

线性代数期末试卷A试题答案及评分标准(样卷)

则 Q 为正交矩阵,且 Q − 1
A Q = Λ ,其中
⎫ ⎛1 ⎞ ⎬n1 = 2 ⎜ ⎟ ……………8 分 =⎜ 1 ⎭ ⎟ ⎜ ⎟ n = 1 − 2 } 2 ⎝ ⎠
A
⎛λ1 ⎞ ⎜ ⎟ ~ Λ=⎜ λ2 ⎟ ⎜ ⎟ ⎜ λ3⎟ ⎝ ⎠ ��� ��� � 对应
γ1 γ 2 γ3
-3-
5.【解】
………4 分
(3)得同解方程组


………………6 分
其中 x2 , x4 为自由求知量,令 x 2 = x 4 = 0 ,得该非齐次线性方程组的一个特解
γ0
1 ⎞ ⎛1 = ⎜ , 0, , 0 ⎟ 2 ⎠ ⎝2
T
……………………………………………7 分
又,由①式得导出组的同解方程组为 ⎧ x1 = x2 + x4 ⎨ ⎩ x3 = 2 x4
α3 α3
1 1 ⎞ ⎛ 1 = ⎜− ,− , ⎟ 3 3 3 ⎠ ⎝
T
………4 分
(2)令矩阵 ⎛ 1 ⎜ ⎜ 2 ⎜ ⎜ 0 ) = 3 ⎜ ⎜ ⎜ 1 ⎜ 2 ⎝ − 1 6 2 6 1 6 1 ⎞ ⎟ 3⎟ 1 ⎟ ⎟ − 3⎟ ⎟ 1 ⎟ 3 ⎟ ⎠ −
Q = (γ 1 ,γ 2 ,γ
…………………………6 分
T
X
γ0
η 1 = (1,1,
个基础解系. 解法 2
0 ⎞ ⎛ 1 −1 −1 1 ⎛ 1 −1 0 −1 1 2 ⎞ ⎜ ⎟ ⎜ 1 ⎟ (1) A = ⎜ 1 −1 1 −3 1 ⎟ ⎯⎯ → ⎜ 0 0 1 −2 2 ⎟ ⎜ 1 −1 −2 3 − 1 ⎟ ⎜ 0 0 0 0 0⎟ ⎝ 2 ⎠ ⎝ ⎠
由梯矩阵知

线性代数期末试题及参考答案

线性代数期末试题及参考答案

线性代数期末试题及参考答案一、单项选择题<每小题3分,共15分)1.下列矩阵中,< )不是初等矩阵。

<A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B>100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C> 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D> 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是< )。

<A )122331,,αααααα--- <B )1231,,αααα+ <C )1212,,23αααα- <D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。

则1(2)A E -+=< )(A> A E - (B> E A + (C> 1()3A E - (D> 1()3A E +4.设A 为n m ⨯矩阵,则有< )。

<A )若n m <,则b Ax =有无穷多解;<B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;<C )若A 有n 阶子式不为零,则b Ax =有唯一解; <D )若A 有n 阶子式不为零,则0=Ax 仅有零解。

5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则< )<A )A 与B 相似 <B )A B ≠,但|A-B|=0<C )A=B <D )A 与B 不一定相似,但|A|=|B|二、判断题(正确填T ,错误填F 。

每小题2分,共10分>1. A 是n 阶方阵,R ∈λ,则有A A λλ=。

< )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。

< )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。

四川大学数一二线性代数期末考试试卷A

四川大学数一二线性代数期末考试试卷A

第 页 共6页1四川大学期末考试试卷(A )科 目:《大学数学》(线性代数)一、填空题(每小题3分,共15分)1. 232323a a ab bb c c c = __abc()_____.2. 向量组1(2,5,5)α=,2(2,0,1)α=,3(2,3,1)α=,4(7,8,11)α=-线性_______.3. 设A =378012002⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦, A *是A 的伴随矩阵, 则 |15-A*| = _________.4. 当t 满足______的条件时, 22212311223(,,)222f x x x x tx x x x =+++为正定二次5. 设A, B 都是3阶矩阵, 秩(A )=3, 秩(B )=1, C =AB 的特征值为1, 0, 0, 则C =AB __相似对角化.第 页 共6页2 二、选择题(每小题3分,共15分)1. 设矩阵,23⨯A ,32⨯B 33⨯C , 则下列式子中, ( )的运算可行.(A) AC; (B) C AB -; (C) CB ; (D) BC CA -.2. 设D=123012247-, ij A 表示D 中元素ij a 的代数余子式, 则3132333A A A ++=( ).(A) 0; (B) 1; (C) 1-; (D) 2 . 3. 设A 为4m ⨯矩阵, 秩(A)=2,123,,X X X 是非齐次线性方程组AX =β的三个线性无关解向量, 则( )为AX =0的通解.(A) 11223;k X k X X +- (B) 123();X k X X +-(C)1122123(1);k X k X k k X ++-- (D) 1122123().k X k X k k X +-+4. 设A,B,C 都为n 阶矩阵, 且|AC|≠0, 则矩阵方程AXC=B 的解为( ).(A) 11--=BC A X ; (B) 11--=C BA X ; (C) 11--=A BC X ; (D) 11--=BA C X .5. 设A 为n 阶方阵,A 可以相似对角化的( )是A 有n 个不同的特征值.(A) 充分必要条件 (B) 必要而非充分的条件 (C) 充分而非必要的条件 (D) 既不充分也非必要的条件三、计算下列各题(每小题10分,共30分)1. 计算行列式 11120132.12231420------第 页 共6页32. 解矩阵方程,X B AX +=其中21125111,3001214A B -⎡⎤⎡⎤⎢⎥⎢⎥=--=⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦.X=[-1 5]5/4 2 .-1/2 .-1 3.求向量组]1,3,2,1[1-=α, ]1,10,11,5[2--=α,]9,1,8,3[3-=α, ]19,9,2,0[4-=α的秩与它的一个极大线性无关组.四、解答下列各题(每小题12分,共24分)1.讨论当b取何值时, 非齐次线性方程组123412341234237335135543x x x xx x x xx x x x b+++=⎧⎪+++=⎨⎪++-=⎩有解; 当有解时, 求方程组的通解.第页共6页4第 页 共6页5232232133),,(x x x x x f +=323121244x x x x x x -++ 化为标准形.第 页 共6页6 五、证明题(每小题8分, 共16分)1. 设12321311A λ-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, 如果存在三阶矩阵 0,B ≠ 满足AB =0, 试求λ的值,并证明. rank B *=0, 其中B *是B 的伴随矩阵.2. 设A 是一个三阶矩阵,向量组123,,()I ααα中的三个向量分别是A 属于特征值0,1,3的特征向量, 向量组)(,,421II ααα线性相关, 证明: 向量组)(,,4321III αααα-线性无关.。

海南大学2012-2013《线性代数》 试题(A卷)

海南大学2012-2013《线性代数》 试题(A卷)

海南大学2012-2013学年度第二学期试卷科目:(工科类)《线性代数》试题(A 卷)姓名: 学 号: 学院: 专业班级:时限: 120 分钟 考试形式:闭卷笔试所有试卷均配有答题纸,考生应将答案写在答题纸上,写在试卷上一律无效大题号 一 二 三 四 五 六 七 八 总分 得分一、选择题:(每题3分,共15分)1.行列式0100002000034000=_____-24_____2. 设4阶方阵A 的秩为2,则其伴随矩阵A *的行列式为0___3. 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,若m n >,则AB =____0___4.若n 元齐次线性方程组AX O =有n 个线性无关的解向量,则A =O5. 设三阶方阵A 有三个特征值1232,3,λλλ==,若 A =24,则3λ=4二、填空题(每题3分,共15分)1. 设A 为n 阶方阵,且AX O =有非零解,则矩阵A 必有一个特征值为( C )(A) 1 (B) -1 (C) 0 (D) 无法确定得分 阅卷教师得分 阅卷教师2. 设矩阵A 、B 都为n 阶方阵A =2,B =-3,则13A B *-=( D )(A) 6 (B) 6n (C) -6 (D) 16n --3.若可逆方阵A 满足2A A = ,则 A =( A )(A)1 (B) 0 (C) -1 (D)无法确定4. 设三阶行列式D 的第三行元素依次是1、-1、1,它们的代数余子式依次是2、8、-5,则D =( B ) (A ) 11 (B) -11 (C) 5 (D)-55. n 元非齐次线性方程组AX β=有解,其中A 为(1)n n +⨯的矩阵,则A β=( A )(A) 0 (B) 1 (C) -1 (D) 无法确定三 、计算题(14分)求非齐次线性方程组1234123412343133445980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩的通解。

线代期末考试A卷及答案

线代期末考试A卷及答案

2011-2012学年第一学期期末考试《线性代数》试卷 (A )评阅人:_____________ 总分人:______________一、单项选择题。

(本大题共10小题,每小题3分,共30分) 1.设1111011x x x xx x++=+,则实数x =A .1 ;B .-1;C .0;D .4. 2.设A 为n 阶方阵,则kA =A .A k n; B. A k ; C. A k ; D. nA k )(. 3.设B A ,均为n 阶矩阵,且AB =O ,则下列命题中一定成立的是( ) A. A =O 或B =O ; B. A ,B 都不可逆;C. A +B =O ;D. A ,B 至少有一个不可逆.4.下列矩阵中与矩阵123218001A ⎛⎫⎪= ⎪ ⎪⎝⎭同秩的矩阵是 A .()456; B.123456⎛⎫⎪⎝⎭; C.12111011⎛⎫ ⎪- ⎪ ⎪⎝⎭; D.122101402⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5.设A 是正交矩阵,则下列结论错误的是( ) A. A 2必为1; B. A 必为1; C. T A A=-1; D. A 的行(列)向量组是正交单位向量组.6.设非齐次线性方程组Ax =b 的导出组为Ax =0,则下列结论中正确的是( )A.若Ax =0仅有零解,则Ax =b 有唯一解;B.若Ax =0有非零解,则Ax =b 有无穷多解;C.若Ax =b 有无穷多解,则Ax =0仅有零解;D.若Ax =b 有唯一解,则Ax =0仅有零解。

__________________系__________专业___________班级 姓名_______________ 学号_______________………………………………(密)………………………………(封)………………………………(线)………………………………27.已知λ=3是可逆矩阵A 的一个特征值,则1-A 有一特征值是( )A.49; B. 94; C. 13; D. 19 .8.设n 维向量α与β满足α,β()=0,则有( )A. α,β 全为零向量;B. α,β中至少有一个是零向量;C. α与β的对应分量成比例;D. α与β 正交. 9.设向量组A 与向量组B 等价,则有( )A. B A R R <B. B A R R >C. B A R R =D. 不能确定A R 和B R 的大小.10.设齐次线性方程组0AX =的系数矩阵A 为m n ⨯矩阵,()()R A s s n =<,则此方程组基础解系的秩为A .m s - ; B. s n - ; C. n s - ; D. m n -.二、填空题。

《线性代数》期末考试题及详细答案(本科A、B试卷)

《线性代数》期末考试题及详细答案(本科A、B试卷)

XXX 学年期末考试试卷《线性代数》期末考试题及详细答案(本科A 、B 试卷)A 卷一、填空题 (将正确答案填在题中横线上。

每小题2分,共10分)。

1、设1D =3512, 2D =345510200,则D =12DD OO=_____________。

2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。

3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。

4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。

5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。

二、单项选择题 (每小题仅有一个正确答案,将正确答案的番号填入下表内,每小题2分,共20分)。

1、若方程13213602214x x xx -+-=---成立,则x 是:课程代码: 适用班级:命题教师:任课教师:(A )-2或3; (B )-3或2; (C )-2或-3; (D )3或2; 2、设A 、B 均为n 阶方阵,则下列正确的公式为: (A )()332233A B+3AB +B A B A +=+; B )()()22A B A+B =A B --; (C )()()2A E=A E A+E --; (D )()222AB =A B ; 3、设A 为可逆n 阶方阵,则()**A=?(A )A E ; (B )A ; (C )nA A ; (D )2n A A -;4、下列矩阵中哪一个是初等矩阵:(A )100002⎛⎫ ⎪⎝⎭; (B )100010011⎛⎫⎪⎪ ⎪⎝⎭; (C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭; (D )010002100⎛⎫⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是:(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++=,则1,α2α,,m α 线性无关; (B )向量组1,α2α,,m α 若其中有一个向量可由向量组线性表示,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α 的一个部分组线性相关,则原向量组本身线性相关; (D )向量组1,α2α,,m α线性相关,则每一个向量都可由其余向量线性表示。

线性代数期末考试试卷+答案

线性代数期末考试试卷+答案

共3页第1页线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.n 阶方阵A 满足032=--E A A ,则=-1A 。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,,Λ21中任意两个向量都线性无关 ② s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,,,Λ21中任一个向量都不能用其余向量线性表示 ④ s ααα,,,Λ21中不含零向量 3. 下列命题中正确的是( )。

共3页第2页 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

2012-2013-1-线性代数A 期末试卷及答案

2012-2013-1-线性代数A 期末试卷及答案

②若秩 (A) ≥ 秩 (B) ,则 Ax = 0 的解均是 Bx = 0 的解;
③若 Ax = 0 与 Bx = 0 同解,则秩 (A) = 秩 (B) ;
④若秩 (A) = 秩 (B) ,则 AX = 0 与 BX = 0 同解。
以上命题中正确的是

(A)①②
(B)①③
(C)②④
(D)③④
5. 方阵 A 与 B 相似的充分必要条件是
北京科技大学 2012--2013 学年第一学期
线性代数 试卷(A 卷)
院(系)
班级
学号
姓名
试卷卷面成绩
题 号














小计
占课程 考核成 绩 70%
平时 成绩 占 30%
课程考 核成绩
注意事项: (1)本试卷共八道大题,共八页,请认真核对。 (2)正确填写学院、班级、姓名、学号等个人信息,空填或错填的试卷为无效试卷。 (3)请使用钢笔、签字笔或者圆珠笔答卷,使用铅笔答卷无效。
(A)2000
(B)-2000
。 (C)2300
(D)-2300
3.设向量组α1,α2 ,α3 线性无关,向量 β1 可由α1,α2 ,α3 线性表示,而向量 β2 不能由α1,α2 ,α3 线性表示,
则对于任意常数 k ,必有

(A)α1,α2 ,α3, kβ1 + β2 线性无关;
(B)α1,α2 ,α3, kβ1 + β2 线性相关;
⎟ ⎟ ⎟
,
α
3

=
⎜ ⎜
0 7

线性代数期末考试试卷(doc 6页)

线性代数期末考试试卷(doc 6页)

D .12.n ααα⋅⋅⋅中任一部分线性无关。

5.下列条件中不是n 阶方阵A 可逆的充要条件的是( )。

A .0A ≠;B .()R A n =;C .A 是正定矩阵;D .A 等价于n 阶单位矩阵。

二、填空题(每小题3分,共15分)6.123212233031332x x x x x x x x x ------=+-的根的个数为 个。

7.20102009100110100001012010010101001-⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪-= ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭。

8.010100002A x ⎛⎫ ⎪=- ⎪ ⎪⎝⎭,当 时,矩阵A 为正交矩阵。

9.设A 为5阶方阵,且()3R A =,则()*R A = 。

10.设三阶方阵A 的特征值为1、2、2,则14A E --= 。

三、计算题(每小题10分,共50分)11.计算行列式ab ac ae bd cd de bfcf ef ---。

得分 得分12.已知111022003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求()1*A -、()*1A -、1A -。

13.问,a b 各取何值时,线性方程组1231231232021324x x x x x ax x x x b ++=⎧⎪++=⎨⎪++=⎩有唯一解?无解?有无穷多解?有无穷多解时求其通解。

得分 得分14.设向量组()131T a α=,()223T b α=,()3121T α=,()4231T α=的秩为2,求,a b 。

15. 设n 维向量(),0,0,T a a α=⋅⋅⋅,0a <,且T A E αα=-⋅,11T A E a αα-=+⋅,求a 。

得分得分学院:专业:班级:四、解答题(10分)16.设3阶对称矩阵A的特征值为6、3、3,与6对应的特征向量为()1111TP=,,,求矩阵A。

得分五、证明题(每小题5分,共10分) 17.设A 、B 为两个n 阶方阵,且A 的n 个特征值互异,若A 的特征向量恒为B 的特征向量,证明AB BA =。

华南农业大学2013年线性代数期末试卷A 参考答案和评分标准

华南农业大学2013年线性代数期末试卷A 参考答案和评分标准

第 1 页 共 3 页2012-2013 学年第2学期 线性代数A 参考答案和评分标准一、选择题(本大题共5小题,每小题3分,共15分) 1. D 2. B 3. C 4. C 5. D二、填空题(本大题共5小题,每小题4分,满分20分)6.2-.7.⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤-2/110010002/1. 8.TT k k )1,0,1()0,1,1(21+-. 9. 34, 10.21n)(-. 三、计算题11.解(1)AB T =120340*********-⎛⎝ ⎫⎭⎪⎪⎪--⎛⎝ ⎫⎭⎪⎪⎪……….2分 =861810310⎛⎝ ⎫⎭⎪⎪⎪.……….4分(2)|4A |=43|A |=64|A |,而|A |=1203401212-=-…….6分所以|4A |=64·(-2)=-128…….8分12.(满分8分)解 把各行都加到第一行上去,得D = 3111131111316666………….2分 提出就第一行的公因子6,然后各行减去第一行,得D = 63111131111311111……….4分 =62000020000201111……….6分 =48 ……….8分 13.(满分7分)解: 由题意,存在可逆矩阵P ,使得1P AP -=Λ ,即 1A P P -=Λ……….2分1A E P P E --=Λ-1()P E P -=Λ- E =Λ- …….5分2001-==2-…………….7分 四、解答题 14.(满分10分)解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛----a 51223111201→⎪⎪⎪⎭⎫ ⎝⎛+---211011101201a →⎪⎪⎪⎭⎫ ⎝⎛+--300011101201a . (1)3-≠a 时,方程组无解,3-=a 时,方程组有解; ………………….5分1.5CM第 2 页 共 3 页(2)3-=a 时,),(b A →⎪⎪⎪⎭⎫ ⎝⎛--000011101201,…………….8分⎪⎩⎪⎨⎧=+=--=333231121x x x x x x , 全部解为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-112011k …………….10分 15.(满分10分)解: 对矩阵A 施行初等行变换A −→−-----⎛⎝⎫⎭⎪⎪⎪⎪12102000620328209632−→−-----⎛⎝ ⎫⎭⎪⎪⎪⎪−→−----⎛⎝ ⎫⎭⎪⎪⎪⎪1210203283000620002171212032830003100000=B . ……………………….4分 (1)秩(B )=3,所以秩(A )=秩(B )=3. ……………………….6分 (2)由于A 与B 的列向量组有相同的线性关系,而B 是阶梯形,B 的第1、2、4列是B 的列向量组的一个最大线性无关组,故A 的第1、2、4列是A 的列向量组的一个最大线性无关组。

2012-2013线性代数(32学时)期末试卷A卷答案 本科

2012-2013线性代数(32学时)期末试卷A卷答案 本科
1 1 1 1 1 1 1 1 1 1 1 1 ~ 0 0 0 0 1 1 1 1 0 0 0 0
所以
2 0 1 1 2 1 B ( A E ) ( A E ) ( A E ) ( A E )( A E ) A E 0 3 0 (6 分) 1 0 2
14、 (10 分)计算行列式 D
0 0 d2 c2
解:在等式两边同时左乘 A1 ,得: X A1 B (2 分) , 因为: A 34 0 ,所以 A 可逆, (4 分)
21 19 4 , 又因为 A 的伴随矩阵是: A 19 35 2 4 2 4
=( a 2 b2 - d 2 c 2) ( a1b1 - d1c1) (10 分)
21 19 4 1 故 A 19 35 2 (7 分) 34 2 4 4
1
21 19 4 1 -3 -29 -21 1 1 所以 X A B 19 35 2 2 -2 57 -15 (10 分) 34 34 12 2 4 4 4 3 -1
0 0 0
1
2 0 0 1 1 3 0 2 2 1 4 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 r3 1 0 0 r4 3 r3 0 2 r2 0 1 0 r4 1 r3 4 0 0 1
0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 2 2 1 1 1 2 6 3 5 1 1 8 24 12
1
五、
阅卷教师 得分
计算题(共 3 题,共 24 分)

大学线性代数期末试卷及答案

大学线性代数期末试卷及答案

大学线性代数期末试题一、填空题(每小题2分,共10分)1. 若022150131=---x ,则=χ__________。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。

3、n 阶方阵A 满足032=--E A A ,则=-1A。

4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。

5.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。

二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。

每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。

( )2. 零向量一定可以表示成任意一组向量的线性组合。

( )3. 向量组m a a a ,,, 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。

( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。

( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。

( ) 三、单项选择题 (每小题仅有一个正确答案。

每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=TA A ( )。

① n2② 12-n③ 12+n ④ 42. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。

① s ααα,,, 21中任意两个向量都线性无关② s ααα,,, 21中存在一个向量不能用其余向量线性表示 ③ s ααα,,, 21中任一个向量都不能用其余向量线性表示④ s ααα,,, 21中不含零向量3. 下列命题中正确的是( )。

① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。

2013级线性代数期末考试题(A卷)答案

2013级线性代数期末考试题(A卷)答案

2013—2014学年第一学期线性代数课程期末考试试卷参考答案(A 卷)一、(每小题2分,共8小题)1 错;2 对;3 对;4 C ;5 B ;6 B ;7 A ;8 B二、行列式计算 (本题共14分,第1小题6分,第2小题8分)1、计算四阶行列式1110110110110111D =.解:根据行列式的性质,原行列式等于:1(234)21311/3414*3/211103333110111012101110110111011111111111110100103*3*21011010001111003*(1)*1*(1)*(1)*(1)32r r r r r r r r r r r D +++---==-==--=----=-分分分2、计算n 阶行列式11111222(2)1233123n n>.解:根据行列式的性质,原行列式等于:12111110111001100011n n r r r r ---==原式6分2分三、矩阵X ,A ,B 满足3AX X B =+,其中 (本题共8分)301050303A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111222369B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求矩阵X 。

解:由 3AX X B =+ 可得:(3)A E X B -= 2分又因为 0010203003A E ⎛⎫⎪⎪ ⎪⎝⎭-= 且它是可逆矩阵 1分所以 1(3)X A E B -=- 1分通过计算可得:1001/301/20100(3)A E -⎛⎫⎪= ⎪ ⎪⎝⎭- 2分所以 123111111X ⎛⎫⎪-- ⎪ ⎪-⎝⎭= 2分四、当a 取何值时,线性方程组:1232312343133(1)0x x x ax x x x a x ---+==+++=⎧⎪⎨⎪⎩无解,有惟一解,有无穷多解?并在方程组有无穷多解时求其通解。

(本题14分) 解:方程组的增广矩阵为:⎪⎪⎪⎭⎫ ⎝⎛+---01313301141a a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽师范大学2012-2013学年第一学期
化材学院专业基础课2012级《线性代数》课程期末考试试卷
(A 卷 闭卷 120分钟)
1. 设α, β, γ1, γ2均为3维列向量,3阶方阵A =(α, γ1, γ
2), B =(β, γ1, γ2),且已知行列式
3=A , 2=B ,则行列式=+B A ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )
(A) 5 (B) 10 (C) 20 (D) 40
2. 设A , B 均为n 阶方阵,则
(A +B )(A -B )=A 2
-B 2
成立的充分必要条件是⋅⋅⋅⋅⋅⋅⋅⋅ ( )
(A) A =O (B)
B =E (C) A =B (D) AB =BA
3. 下列矩阵中为初等矩阵的是⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )
(A) ⎪⎪
⎪⎪




⎛0001001001001000
(B) ⎪⎪⎪⎭⎫ ⎝⎛001010100 (C) ⎪⎪⎪⎭⎫
⎝⎛-001010100 (D) ⎪⎪⎪⎭

⎝⎛-100010021 3. 已知⎪⎪⎪⎭⎫ ⎝⎛=0021α,⎪⎪⎪


⎝⎛-=3002α,则下列向量中可以用α1, α2线性表示的是⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )
(A) ⎪⎪⎪


⎝⎛-403 (B)
⎪⎪⎪
⎭⎫ ⎝⎛010 (C) ⎪⎪⎪
⎭⎫ ⎝⎛011 (D) ⎪⎪⎪⎭
⎫ ⎝⎛-110 5. 若矩阵A 与B 相似,则⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )
(A) 存在正交矩阵P ,使得P -1AP =B (B) 存在正交矩阵P ,使得P T AP =B (C) 存在可逆矩阵P 和Q ,使得A =PBQ (D) 存在可逆矩阵P ,使得A =P -1BP
1. 已知3阶方阵A 中的元素全部为1,则A 2013 = .
2. 已知矩阵()4 ,0 ,30201⎪⎪⎪⎪
⎪⎭

⎝⎛=A ,则矩阵A 的秩等于 .
3. 已知n 阶方阵A 的秩为n -1,且A 的各行元素之和均为零,则齐次线性方程组Ax =0 的通解是 .
4. 已知2阶方阵A 的特征值是1和2,则伴随矩阵A * 的特征值是 和 .
5. 二次型f (x 1,x 2,x 3)= x 12-2x 1x 2+x 22的矩阵是 .
一、单项选择题(每小题4分,共20分)
二、填空题(每小题4分,共20分)
1. 已知⎪⎪⎪

⎫ ⎝⎛=200120112A ,求矩阵B ,使得A +B =AB
2. 已知向量组⎪⎪⎪⎭⎫ ⎝⎛=λ211α,⎪⎪⎪⎭⎫ ⎝⎛=202λα,⎪⎪⎪


⎝⎛-=1113α线性相关,求参数λ 的值.
3. 设三维向量⎪⎪⎪⎭⎫ ⎝⎛=111λα,⎪⎪⎪⎭⎫ ⎝⎛=112λα,⎪⎪⎪⎭⎫ ⎝⎛=λ113α,⎪⎪⎪


⎝⎛-=112β,已知β 不能由α1, α2, α3线性表示, 求
参数λ 的值.
4. 已知⎪⎪⎪⎭⎫ ⎝⎛-=111ξ是矩阵⎪⎪⎪


⎝⎛---=2135
212b a A 的一个特征向量. 求:① 参数a , b 的值;② 特征向量ξ 所对应的特征值.
三、计算题(每小题7分,共35分)
5. 用施密特正交化方法,将向量组⎪⎪⎪⎭⎫ ⎝⎛=1101α,⎪⎪⎪⎭⎫ ⎝⎛=1112α,⎪⎪⎪

⎫ ⎝⎛=0213α规范正交化
1. 已知A 是n 阶方阵,B 是n ⨯s 矩阵(n ≤s ),并且B 是行满秩矩阵. ① 证明:R (AB )=R (A ); ②
证明:如果AB =B ,则A =E .
2. 已知向量组(I): α1, α2, α3与向量组(II): β1, β2, β3满足关系式⎪⎩⎪
⎨⎧++=+=++=3211
2113211 2 3 α
ααβααβαααβ.
证明:向量组(I)和(II)等价.
四、证明题(每小题8分,共16分)
设3阶矩阵⎪⎪⎪

⎫ ⎝⎛=00000111a A .
① 求矩阵A 的特征值;
② 参数a
取何值时,矩阵A 可对角化,说明理由;
③ 当A 可对角化时,求可逆矩阵P 和对角阵Λ,使得P -1AP =Λ.
五、解答题(9分)。

相关文档
最新文档