高一数学上试卷及答案

合集下载

福建福州市2023-2024高一上学期期末质量检测数学试卷及答案

福建福州市2023-2024高一上学期期末质量检测数学试卷及答案

2023-2024学年第一学期福州市四校教学联盟1月期末学业联考高一数学试卷考试范围:必修一命题教师:审核教师:考试时间:1月3日完卷时间:120分钟满分:150分一、单项选择题:本大题共8小题,每小题5分,满分40分。

在每小题所给出的四个选项中,只有一个选项是符合题意的。

1.集合A={x∣−2<x≤2},B={−2,−1,0,1},则A∩B=A.{−1,1,2}B.{−2,−1,0,1}C.{−1,0,1}D.{−2,−1,0,1,2}2.若a>b>0,c>d,则下列结论正确的是3.函数y=−|ln(x−1)|的图象大致是A.B.C.D.4.命题p:α是第二象限角或第三象限角,命题q:cosα<0,则p是q的A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件A.110%B.120%C.130%D.140%7.命题“对∀x∈[1,2],ax2−x+a>0”为真命题的一个充分不必要条件可以是8.已知f(x)=ax2−1是定义在R上的函数,若对于任意−3≤x1<x2≤−1,都有f(x1)−f(x2)<2,则实数x1−x2a的取值范围是二、多项选择题:本大题共4小题,每小题5分,满分20分。

在每小题所给出的四个选项中,有多个选项是符合题意的。

9.下列大小关系正确的是A.20.3<20.4B.30.2<40.2C.log23<log48D.log23>log32 10.设正实数x,y满足x+y=2,则下列说法正确的是A.当k>1,有1个零点B.当k>1时,有3个零点C.当k<0时,有9个零点D.当k=−4时,有7个零点三、填空题:本大题共4小题,每小题5分,满分20分。

13.已知扇形的圆心角是2rad,其周长为6cm,则扇形的面积为cm2.四、解答题:本大题共6小题,满分70分。

除第17小题10分以外,每小题12分。

高一数学必修一试题含答案

高一数学必修一试题含答案

高一数学必修一试题含答案一、选择题(每题4分,共48分)1、下列哪个选项正确地表示了直线、平面、体之间的关系?A.直线与平面是平行关系B.平面与平面是垂直关系C.两个平面可能相交也可能平行D.以上说法都不正确2、在下列四个选项中,哪个选项的图形是由旋转得到的?A.圆锥体B.正方体C.球体D.圆柱体3、下列哪个函数在区间[0, 1]上是增函数?A. y = sin(x)B. y = cos(x)C. y = x^2D. y = log(x)4、下列哪个选项能正确表示函数y = x^3在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增5、对于集合A和B,如果A ∪ B = A,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∩ B = ∅D. A = B6、下列哪个选项能正确表示函数y = x^2在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增7、下列哪个选项能正确表示函数y = log(x)在(0, + ∞)上的单调性?A.增函数B.减函数C.先增后减D.先减后增8、对于集合A和B,如果A ∩ B = B,那么下列选项中哪个是正确的?A. A ⊆ BB. B ⊆ AC. A ∪ B = BD. A = B二、填空题(每题4分,共16分)9、在空间四边形ABCD中,E、F分别是AB、AD的中点,则用符号表示空间中下列向量之间的关系:向量____________与____________是共线向量。

高一数学必修一试卷与答案一、选择题1、下列选项中,哪个选项是正确的?A. (1,2)和 (2,3)是同一个集合B. {1,2,3}和 {3,2,1}是同一个集合C. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}是同一个集合D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合答案:D. {x|x = 2n,n属于 Z}和 {x|x = 4n,n属于 Z}不是同一个集合。

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州市扬州中学2024-2025学年高一上学期11月期中数学试题(含答案)

江苏省扬州中学2024-2025学年第一学期期中试题高一数学 2024.11试卷满分:150分,考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码2.将选择题答案填写在答题卡的指定位置上(用2B 铅笔填涂),非选择题一律在答题卡上作答(用0.5mm 黑色签字笔作答),在试卷上答题无效。

3.考试结束后,请将答题卡交监考人员。

一、单项选择题:本大题共8小题,每小题5分,共40分。

在每题给出的四个选项中只有一项是最符合题意的。

1.已知集合,,则( )A. B. C. D. 或2. 已知为常数,集合,集合,且,则的所有取值构成的集合元素个数为( )A. 1B. 2C. 3D.43.设为奇函数,且当时,,则当时,( )A. B. C. D. 4.函数的值域为( )A. B. C. D. 5.已知函数的定义域为,则函数)A. B. C. D. 6. 若不等式的解集为,那么不等式的解集为( ){|02}A x x =<<{|14}B x x =<<A B = {|02}x x <<{|24}x x <<{|04}x x <<{2|x x <4}x >a {}260A x x x =+-=∣{20}B x ax =-=∣B A ⊆a ()f x 0x ≥()2f x x x =+0x <()f x =2x x +2x x -2x x --2x x -+x x y 211-++=(]2,∞-()2,∞-()20,[)∞+,2(2)f x +(3,4)-()g x =(1,6)(1,2)(1,6)-(1,4)20ax bx c ++>{}12x x -<<()()2112a x b x c ax ++-+>A. B. 或C. 或 D. 7.命题在单调增函数,命题在上为增函数,则命题是命题的( )条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要8. 已知,则的最大值为( )A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分。

2024-2025学年上海市西中学高一上学期数学月考试卷及答案(2024.09)

2024-2025学年上海市西中学高一上学期数学月考试卷及答案(2024.09)

1市西中学2024学年第一学期高一年级数学月考2024.09一、填空题(本大题满分36分)只要求直接填写结果,每题填对得3分,否则一律得零分. 1.已知集合{}1,a 与{}2,b 相等,则a b += .2.设全集U R =,集合{}|02A x x x ≤>或,则用区间表示A ,结果是 . 3.设x ,y R ∈,用列举法表示x y xy+所有可能取值组成的集合,结果是 .4.已知集合{}(,)|210A x y x y =+=,{}(,)|35B x y x y =−=,则A B = .5.已知α:素数都是奇数,则α的否定形式是 .6.设x ,y R ∈,已知33:x y β<,则β的一个充分必要条件是 . 7.设U 为全集,A ,B ,C U ⊆,用含有A 、B 、C 的运算式子表示如图的阴影部分,结果是 . 8.已知集合{}|A x y x Z ==∈,{}2|1,B y y x x A ==+∈,则AB = .9.设集合{},,,,,,A a b c d e f g =,{},B a c =,集合M 满足AM B M =,则这样的集合M 共有 个. 10.设集合(,0)(1,)A =−∞+∞,{}|(25)()0B x x x a =+−<,若{}2,1ABZ =−−,则实数a 的取值范围是 .11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________.12.若两个正整数的正公因数只有1,则称这两个正整数互素.将与105互素的所有正整数组成集合{}123,,,,,n a a a a ,且123n a a a a <<<<,则100a = .2二、选择题(本大题满分12分)本大题共4题,每题3分. 13.设x R ∈,则“1x ≠”是“2320x x −+≠”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件14.已知抛物线2y ax =与直线1x =、2x =、1y =、2y =围成的正方形有公共点,那么实数a 的取值范围是( ) A .1,14⎡⎤⎢⎥⎣⎦B .1,24⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,22⎡⎤⎢⎥⎣⎦15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤C .{}|7a a ≤D .∅16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题三、解答题(本大题满分52分).17.(本题满分8分)已知集合{}2|8160,,A x kx x k R x R =−+=∈∈只有一个元素,求k 的值并用列举法表示集合A .318.(本题满分10分,第1小题满分5分,第2小题满分5分) 设a R ∈,已知集合{}|12A x x =−<<,{}22|20B x x ax a =−−=. (1)若{}1A B =,求a 的值;(2)若A B A =,求a 的取值范围.19.(本题满分10分,第1小题满分5分,第2小题满分5分)如图,在直角坐标系xOy 中,过点(0,1)F 的直线与抛物线24x y =相交于点11(,)M x y 、22(,)N x y 自M 、N 引直线l :1y =−的垂线,垂足分别为1M 、1N .(1)用1y 分别表示线段1MM 、MF 的长; (2)证明:11M F N F ⊥.420.(本题满分12分,第1小题满分6分,第2小题满分6分)设a R ∈,已知α:关于x 的一元二次方程220ax x a ++=有两个相异正根;β:对任意实数x ,不等式2(1)(1)10a x a x −−−−<恒成立. (1)若α为真命题,求实数a 的取值范围;(2)判断α⇒β、β⇒α是否成立?给出你的结论,并说明理由.21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=. (1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值.5参考答案一、填空题1.3;2.(](),02,−∞⋃+∞;3.{}2,0,2−;4.(){}3,4;5.存在一个素数不是奇数;6.x y <;7.A C B ⋂⋂;8.{}1,0,1,2−;9.32; 10.(]1,2−; 11.7412.202 11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________. 【答案】74【解析】设2x y =,原方程变为()2540y y k −+−=,设此方程有实根,(0)αβ<α<β,则原方程的四个实根为,(=即9β=α,又5,4k α+β=αβ=−, 由此求得74k =且满足254160Δk =+−>,7.4k ∴=故答案为:74.二、选择题13.B 14.B 15.C 16.B15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤ C .{}|7a a ≤ D .∅【答案】C【解析】由集合{}|135A x a x a =+≤≤−,{}116B x =≤≤当A =∅时,A B ⋂=∅,满足条件A A B ⊆⋂,此时135a a +>−,即26a <,解得3a <; 当A ≠∅时,若A A B ⊆⋂,则135113516a a a a +≤−⎧⎪+≥⎨⎪−≤⎩,等价于260321a a a ≥⎧⎪≥⎨⎪≤⎩,即30,7a a a ≥⎧⎪≥⎨⎪≤⎩解得37a ≤≤;6故a 的取值范围是{}|7a a ≤,综上所述,答案选择:C16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题【答案】B【解析】对于甲:()()A B C A B C B C A ⋂∆=⋂⋃−⋂=⋂()()B C A B C ⋃−⋂⋂()()A B A C =⋂⋃⋂()()()()A B A C A B A C −⋂⋂⋂=⋂∆⋂,故甲是真命题;对于乙,如下图所示:所以,()()()A B C A B A C ⋃∆≠⋃∆⋃,故乙是假命题;.故选:B. 三.解答题17.当0k =时,{}2A =; 当1k =时,{}4A =; 18.(1)1a =−(2)1,12⎛⎫− ⎪⎝⎭19.(1)1MM =11MF y =+ (2)略 20.(1)()1,0− (2)α⇒β21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=.7(1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值. 【答案】(1)见解析 (2)8031【解析】(1)证明:12245,,,,x x x x x 中的每一个数都小于1, 可得122455x x x x x ++++<,这与123455x x x x x ++++=矛盾, 故12245,,,,x x x x x 中至少有一个实数不小于1;(2)集合{}12345A x ,x ,x ,x ,x =的非空子集个数为32131−=,由于()M B 是B 中所有元素之和,可得()()1234516165M B x x x x x =++++=⨯80= 则()M B 的平均值为8031.。

广东省深圳市高一上学期数学试题(答案版)

广东省深圳市高一上学期数学试题(答案版)

确.
【详解】令 a = 4,b = 1, c = −1, d = −2, a2 cd , a − c b − d , ac bd 所以 ABC 选项错误;
a b 0 c d, ad ac bc,bc − ad 0 ,
所以 c − d = bc − ad 0 ,所以 D 选项正确. a b ab
m
C.
x∣x
m或x
1
m
【答案】D
【解析】
【分析】利用一元二次不等式的解法即可求解.
D.
x | m x
1
m
【详解】∵0<m<1,∴ 1 >1>m, m
故原不等式的解集为
x
m
x
1 m

故选:D.
6. 已知 x>0,y>0,且 2x + 8y − xy = 0 ,则 x+y 的最小值是( )
B. 3, +)
C. (−,1)
D. (−,1
【答案】D 【解析】
【分析】先解出集合 A ,然后利用 B A 求解 a 的取值范围.
【详解】集合 A = x x2 − 4x + 3 0 = x x 3或 x 1, B = x x − a 0=x | x a,
若 B A ,则 a 1 .
故选:D
3. 已知 x 是实数,则“ x…6 ”是“ x2 + 4x −12 0 ”的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件 【答案】A 【解析】
D. 既不充分也不必要条件
【分析】由 x2 + 4x −12 0 得 x 2 或 x −6 ,再利用充分不必要条件定义判断得解.

高一数学上学期期末试卷含答案

高一数学上学期期末试卷含答案

高一数学上学期期末试卷含答案一、选择题1.设全集{0,1,2,3,4}U =,集合{21}A x U x =∈-≥‖∣则UA( )A .{13}xx <<∣ B .{13}xx ≤≤∣ C .{2}D .{}1,2,3-2.若函数(1)f x +的定义域为[0 1],,则(lg )f x 的定义域为( ) A .[10 100],B .[1 2],C .[0 1],D .[0 lg2],3.若角β满足条件sin cos 0ββ<,且cos sin 0ββ-<,则β是第( )象限角 A .一B .二C .三D .四4.已知角α的始边与x 轴非负半轴重合,终边过点()1,2P --,则2sin sin 2αα+=( )A .58B .85C D5.已知函数()ln 3f x x x =+-,则()f x 的零点所在的大致区间为( ) A .()0,1B .()1,2C .()2,3D .()3,46.公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图方法,发现了“黄金分割”.“黄金分割”是工艺美术、建筑、摄影等许多艺术门类中审美的要素之一,它0.618≈,这一比值也可以表示为2sin18m =︒,若228m n +==( )A .2B .4C .D .7.若()f x 是奇函数,且在区间(0,)+∞上是增函数,(2)0f =,则2()0xf x ->的解集是( )A .(2,0)(0,2)-B .(,2)(0,2)-∞-⋃C .(,2)(2,)-∞-+∞D .(2,0)(2,)-+∞8.已知函数3cos 2y x ππ⎛⎫=+⎪⎝⎭,55,66x t t ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭既有最小值也有最大值,则实数t 的取值范围是( )A .31326t <≤ B .32t >C .31326t <≤或52t > D .52t >二、填空题9.已知函数()f x 满足(3)()f x f x +=,且(1)2f =,则下列结论正确的是( ) A .()11f -= B .(0)0f = C .(4)2f = D .(10)2f = 10.21x ≤的一个充分不必要条件是( )A .10x -≤<B .1≥xC .01x <≤D .11x -≤≤11.若0a b >>,则下列不等式中一定不成立的是( ) A .11b b a a +>+ B .11a b a b+>+ C .11a b b a+>+ D .22a b aa b b+>+ 12.记函数()sin 23πf x x ⎛⎫=- ⎪⎝⎭的图象为曲线F ,则下列结论正确的是( )A .函数()f x 的最小正周期为πB .函数()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增C .曲线F 关于直线12x π=-对称D .将函数sin 2y x =的图象向右平移3π个单位长度,得到曲线F 三、多选题13.设集合{}260,M xx mx x R =-+=∈∣,且{2,3}M M =,则实数m 的取值范围是____.14.已知实数x 、y ,正数a 、b 满足2x y a b ==,且213x y +=-,则1a b-的最小值为_________.15.已知函数f (x )=2x ,1()()()g x f x f x =-,若1()(2)()(2)h x f x tg x f x =++(t 为实数)在(0,+∞)上有两个不同的零点x 1、x 2,则x 1+x 2的取值范围为_______16.如图,直线l 是函数y x =的图象,曲线C 是函数12log y x =图象,1P 为曲线C 上纵坐标为1的点.过1P 作y 轴的平行线交l 于2,Q 过2Q 作y 轴的垂线交曲线C 于2P ;再过2P 作y 轴的平行线交l 于点Q 3,过Q 3作y 轴的垂线交曲线C 于3P ;…设点123,,,,P P P n P 的横坐标分别为123,,,,.n x x x x 若201812log ,x a =则2020x =_____(用a 表示)四、解答题17.在“①A B =∅,②A B ⋂≠∅”这两个条件中任选一个,补充在下列横线中,求解下列问题:已知集合{|231}A x a x a =-<<+,{|01}B x x =<≤. (Ⅰ)若0a =,求A B ;(Ⅱ)若________(在①,②这两个条件中任选一个),求实数a 的取值范围. 注:如果选择多个条件分别解答,按第一个解答记分.18.设函数()y f x =的表达式为()()2cos cos 3244f x x x x ππωωω⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭,其中常数0>ω.(1)求函数()y f x =的值域; (2)设实数1x ,2x 满足122x x ππω-=<,若对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,求ω的值以及方程1f x 在闭区间[]0,π上的解.19.已知函数3()1f x x =-. (1)画出函数的草图,并用定义证明函数的单调性; (2)若[]2,7x ∈,求函数的最大值和最小值. 20.如图,现有一块半径为2m ,圆心角为3π的扇形木板,按如下方式切割一平行四边形:在弧AB 上任取一点P (异于A 、B ),过点P 分别作PC 、PD 平行于OB 、OA ,交OA 、OB 分别于C 、D 两点,记AOP α∠=.(1)当点P 位于何处时,使得平行四边形OCPD 的周长最大?求出最大值;(2)试问平行四边形OCPD 的面积是否存在最大值?若存在,求出最大值以及相应的α的值;若不存在,请说明理由.21.已知函数()xf x a =(0a >,且1a ≠).(1)证明:()()()1212222f x f x f x x +≥+;(2)若()12f x =,()23f x =,()128f x x =,求a 的值; (3)x ∀∈R ,()212xx f x -+≤恒成立,求a 的取值范围.22.已知{0M x R x =∈≠且}1x ≠,()(1,2)n f x n =是定义在M 上的一系列函数,满足:1()f x x =,()11()i i x f x f i N x ++-⎛⎫=∈ ⎪⎝⎭.(1)求()3f x ,()4f x 的解析式;(2)若()g x 为定义在M 上的函数,且1()1x g x g x x -⎛⎫+=+ ⎪⎝⎭.①求()g x 的解析式;②若方程()22(21)2(1)()318420x m x x g x x x x x ---++++++=有且仅有一个实根,求实数m 的取值范围.【参考答案】一、选择题 1.C 【分析】先求出集合A ,再根据补集定义即可求出. 【详解】{0,1,2,3,4}U =,{}21={1A x U x x U x ∴=∈-≥∈≤或}{}30,1,3,4x ≥=,{}2U A ∴=.故选:C. 2.A 【分析】先根据函数(1)f x +的定义域为[0 1],,求出112x ≤+≤,再令1lg 2x ≤≤即可求求解. 【详解】因为函数(1)f x +的定义域为[0 1],, 所以112x ≤+≤, 所以1lg 2x ≤≤, 解得:10100x ≤≤,所以(lg )f x 的定义域为[10 100],, 故选:A. 3.B 【分析】由sin cos 0ββ<可知sin ,cos ββ的值异号,再由cos sin 0ββ-<可知sin 0,cos 0ββ><,从而可判断其所在的象限 【详解】解:因为sin cos 0ββ<,所以sin ,cos ββ异号, 因为cos sin 0ββ-<,即cos sin ββ<, 所以sin 0,cos 0ββ><, 所以β是第二象限的角, 故选:B 4.B 【分析】先由正弦、余弦函数的定义得到sinαα==,再求值即可. 【详解】由正弦、余弦函数的定义有sin α==,cos α==, 所以2248sin sin 2sin 2sin cos 2((55ααααα+=+=+⨯⨯=. 故选:B.5.C 【分析】首先判断函数的单调性,再根据零点存在性定理判断. 【详解】ln y x =和3y x =-都是增函数,所以()ln 3f x x x =+-是增函数,()120f =-<,()2ln 2230f =+-<,()3ln3330f =+->,()()230f f <,所以函数()f x 的零点在区间()2,3内. 故选:C 6.C 【分析】由题知28cos 18n =,再根据二倍角公式化简整理即可得答案. 【详解】解:因为2sin18m =︒,228m n +=, 所以2228288sin 188cos 18n m =-=-=,2sin1822cos1822sin 3622cos54cos54⨯===故选:C 7.A 【分析】由题意,可知2()0xf x ->等价于2()0xf x <,然后结合函数的单调性与奇偶性分别讨论0x >与0x <的两种情况.【详解】由题意,()f x 是奇函数,所以2()0xf x ->等价于2()0xf x <,当0x >时,()0f x <,此时()f x 在(0,)+∞上是增函数,且(2)0f =,所以解得02x <<;当0x <时,()0f x >,因为()f x 是奇函数,所以解得20x -<<,所以2()0xf x ->的解集为(2,0)(0,2)-.故选:A 8.C 【分析】根据题意得到31326t πππ<≤或52t ππ<,计算得到答案. 【详解】3cos sin 2y x x πππ⎛⎫=+= ⎪⎝⎭,55,66x t t ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭则55,66x t t πππ⎡⎫⎛⎫∈>⎪⎪⎢⎣⎭⎝⎭函数有最小值也有最大值 则3133132626t t πππ<≤∴<≤或5522t t ππ<∴< 故选:C 【点睛】本题考查了三角函数的最值问题,漏解是容易发生的错误.二、填空题9.CD 【分析】根据函数的周期,计算求值. 【详解】由条件()()3f x f x +=,可知函数的周期3T =, 因为()12f =,则()()4102f f ==. 故选:CD 10.AC 【分析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 11.AD 【分析】根据不等式的性质及作差法判断即可. 【详解】解:对于A ,()()()()111111b a a b b b b aa a a a a a +-++--==+++0a b >>,所以0a b ->,所以()01b aa a -<+,所以11b b a a +<+,故选项A 一定不成立;对于B ,不妨取2a =,1b =,则11a b a b +>+,故选项B 可能成立; 对于C ,不妨取2a =,1b =,则11a b b a+>+,故选项C 可能成立; 对于D ,222(2)(2)02(2)(2)a b a a b b a a b b a a b b b a b b a b ++-+--==<+++,故22a b aa b b+<+,故选项D 一定不成立; 故选:AD . 12.ABC 【分析】求出周期即可判断A ;由222232k x k πππππ-+≤-≤+求出单调性可判断B ;求出12f π⎛⎫- ⎪⎝⎭即可判断C ;求出sin 2y x =平移后的解析式即可判断D. 【详解】函数()f x 的最小正周期为22ππ=,故A 选项正确; 由222232k x k πππππ-+≤-≤+,解得()51212k x k k ππππ-+≤≤+∈Z ,所以函数()f x 在区间5,1212ππ⎡⎤-⎢⎥⎣⎦上单调递增,故B 选项正确; 由于sin 2sin 1121232f ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=--=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以直线12x π=-是曲线F 的一条对称轴,故C 选项正确:sin 2y x =向右平移3π个单位长度得到2sin 2sin 233y x x ππ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 选项错误. 故选:ABC.三、多选题13.({}5m ∈-【分析】 由题意{}2,3MM =,可得M 是集合{}2,3的子集,按集合M 中元素的个数,结合根与系数之间的关系,分类讨论即可求解. 【详解】由题意{}2,3MM =,可得M 是集合{}2,3的子集,又{}260,M x x mx x R =-+=∈,当M 是空集时,即方程260x mx -+=无解,则满足()2460m ∆=--⨯<,解得m -<<(m ∈-,此时显然符合题意;当M 中只有一个元素时,即方程260x mx -+=只有一个实数根,此时()2460m ∆=--⨯=,解得m =±x =x ={}2,3的子集中的元素,不符合题意,舍去; 当M 中有两个元素时,则2,3M,此时方程260x mx -+=的解为12x =,23x =,由根与系数之间的关系,可得两根之和为5,故235m =+=;当5m =时,可解得2,3M ,符合题意.综上m 的取值范围为({}5m ∈-.故答案为:({}5m ∈-【点睛】方法点睛:根据集合的运算求参数问题的方法:1、要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解;2、若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性;3、若集合表示的不等式的解集,常依据数轴转化为不等式(组)求解,此时需要注意端点值是否取到.14.132-【分析】利用指数与对数的互化,换底公式以及对数的运算得出218a b =,可得出218a a a b-=-,利用二次函数的基本性质可求得1a b-的最小值.【详解】已知实数x 、y ,正数a 、b 满足2x y a b ==,则log 2a x =,log 2b y =,由换底公式可得()2222212log log log 3a b a b x y +=+==-,可得218a b =,则218a b=,因为0a >,则22111188163232a a a a b ⎛⎫-=-=--≥- ⎪⎝⎭,当且仅当116a =时,等号成立,因此,1a b -的最小值为132-.故答案为:132-. 【点睛】关键点点睛:本题考查代数式最值的求解,解题的关键就是利用指数与对数的互化、换底公式以及对数的运算得出a 、b 所满足的关系式,再结合函数的基本性质来求解.15.(()2log 2,+∞【分析】通过换元将方程转化为一元二次方程的问题,利用韦达定理建立两根的等量关系,再利用基本不等式建立不等式关系求范围. 【详解】令()0h x =,则221122022xx x xt ⎛⎫++-= ⎪⎝⎭,即211222022x x x x t ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,令122x x m =-,则220m tm ++=,因为函数122x x y =-在()0,∞+单调递增,所以m 与x 一一对应,所以220m tm ++=有两个不相等的实数根12,m m ,由韦达定理知122m m =,所以12121122222x x x x ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,整理得1212122112222222x x x x x x x x ++⎛⎫+-+= ⎪⎝⎭,因为12x x ≠,所以122122222x x x x +>,所以121212222x x x x +++->,令1220x x n +=>,则2410n n -+>,解得2n >1222x x +>(122log 2x x +>.故答案为:(()2log 2,+∞. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 16.12a⎛⎫⎪⎝⎭【分析】设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,,所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭,由201812log ,x a =则21log 201912ax a ⎛⎫== ⎪⎝⎭,从而可得答案.【详解】1P 为曲线C 上纵坐标为1的点,则11,12P ⎛⎫⎪⎝⎭ 过1P 作y 轴的平行线交l 于2,Q 则21122Q ⎛⎫⎪⎝⎭,过2Q 作y 轴的垂线交曲线C 于2P ,设2212P x ⎛⎫ ⎪⎝⎭,,则1221log 2x =,则12212x ⎛⎫= ⎪⎝⎭,所以1221122P ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭, 过2P 作y 轴的平行线交l 于3,Q 则112231122Q ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 过3Q 作y 轴的垂线交曲线C 于3P ,设123312P x ⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭,,则121321log 2x ⎛⎫= ⎪⎝⎭,即1212312x ⎛⎫ ⎪⎝⎭⎛⎫= ⎪⎝⎭ 设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,, 所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭由201812log ,x a =则21log 201912ax a ⎛⎫== ⎪⎝⎭所以201920201122a ax ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭故答案为:12a⎛⎫⎪⎝⎭【点睛】关键点睛:本题考查数列的递推公式的推导,解答本题的关键是先计算出点123,,,P P P 的坐标得出一般的处理方法,再设()n n n P x y ,,过n P 作y 轴的平行线交l 于1,n Q +则()1n n n x Q x +,过1n Q +作y 轴的垂线交曲线C 于1n P +,则()11n n n x P x ++,,所以12+1log n n x x =,即+112nx n x ⎛⎫= ⎪⎝⎭,属于中档题.四、解答题17.(1){|31}x x -<≤;(2)若选①,(,1][2,)-∞-+∞;若选②,()1,2- 【分析】(1)由0a =得到{|31}A x x =-<<,然后利用并集运算求解.(2)若选A B =∅,分A =∅和A ≠∅两种情况讨论求解; 若选A B ⋂≠∅,则由23123110a a a a -<+⎧⎪-<⎨⎪+>⎩求解. 【详解】(1)当0a =时,{|31}A x x =-<<,{|01}B x x =<≤; 所以{|31}A B x x =-<≤ (2)若选①,A B =∅,当A =∅时,231a a -≥+,解得4a ≥, 当A ≠∅时,4231a a <⎧⎨-≥⎩或410a a <⎧⎨+≤⎩,解得:24a ≤<或1a ≤-,综上:实数a 的取值范围(,1][2,)-∞-+∞. 若选②,A B ⋂≠∅,则23123110a a a a -<+⎧⎪-<⎨⎪+>⎩,即421a a a <⎧⎪<⎨⎪>-⎩,解得:1a 2-<<, 所以实数a 的取值范围()1,2-. 【点睛】易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)[]2,2-;(2)1ω=,0x =或 3x π=或x π=.【分析】(1)先利用三角函数恒等变换公式对函数化简得()2sin 26f x x πω⎛⎫=+ ⎪⎝⎭,从而可求出函数的值域;(2)对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,可得()12f x =-,()22f x =,从而可得112262x k ππωπ+=-,222262x k ππωπ+=+,12,k k Z ∈,再由122x x ππω-=<可求出1ω=,()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,然后由1sin 262x π⎛⎫+= ⎪⎝⎭解方程使其解在区间[]0,π上即可【详解】 (1)()()()()2sin cos 22cos 22sin 2446f x x x x x x x πππωωωωωω⎛⎫⎛⎫⎛⎫=--+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()[]2sin 22,26f x x πω⎛⎫=+∈- ⎪⎝⎭,所以函数()y f x =的值域[]2,2-;(2)对任意x ∈R ,不等式()()()12f x f x f x ≤≤都成立,()12f x =-,()22f x = 所以112262x k ππωπ+=-,222262x k ππωπ+=+,12,k k Z ∈ 所以()1212122222222k k k k x x πππππππωωω-----===<,可得12222k k -=,1ω=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭因为[]0,x π∈,所以132,666x πππ⎡⎤+∈⎢⎥⎣⎦()2sin 216f x x π⎛⎫=+= ⎪⎝⎭,所以1sin 262x π⎛⎫+= ⎪⎝⎭所以266x ππ+=或 5266x ππ+=或 13266x ππ+=,即0x =或 3x π=或x π=所以方程1f x在闭区间[]0,π上的解为0x =或 3x π=或x π=19.(1)图象见解析,证明见解析;(2)最大值为3,最小值为12. 【分析】(1)画出()f x 图象,利用定义法,证明()()120f x f x ->,结合()f x 的定义域,证得()f x 的单调区间.(2)结合()f x 的单调性来求得()f x 在区间[]2,7上的最大值和最小值. 【详解】(1)()f x 的图象如下图所示:()f x 的定义域为{}|1x x ≠,当1x <时,任取121x x <<,()()()()211212123331111x x f x f x x x x x --=-=⨯----,其中21120,10,10x x x x ->-<-<,所以()()120f x f x ->,所以()f x 在区间(),1-∞上递减. 同理可证得()f x 在区间()1,+∞上递减. (2)由(1)得()f x 在区间[]2,7上递减, 所以2x =时,()f x 取得最大值为3321=-, 当7x =时,()f x 取得最小值为31712=-. 20.(1)点P 位于弧AB 的中点时,使得平行四边形OCPD 83;(223【分析】过P 点作OC 的垂线,垂足为H ,从而可得PH =2sin α,OH =2cos α,43sin PC α=23sin CH α=,得出23sin 2cos OC OH CH αα=-=(1)平行四边形OCPD 的周长为f (α) 83sin 33πα⎛⎫=+ ⎪⎝⎭,利用三角函数的性质即可求解. (2)4323()sin 2363S OC PH παα⎛⎫=⋅=+- ⎪⎝⎭,利用三角函数的性质即可求解. 【详解】过P 点作OC 的垂线,垂足为H ,因为OP =2,∠AOP =α,则PH =2sin α,OH =2cos α,2sin 43sin sin3PC ααπ=,123sin 2CH PC α== 所以23sin 2cos OC OH CH αα=-= (1)设平行四边形OCPD 的周长为f (α), 则43sin 83sin 43sin ()2()4cos 4cos f OC PC αααααα=+=833πα⎛⎫+ ⎪⎝⎭, 因为点P 异于A 、B 两点,所以03πα<<,所以当6πα=,即点P 位于弧AB 的中点时,使得平行四边形OCPD 83. (2)设平行四边形OCPD 的面积为S (α),则23sin ()2cos 2sin S OC PH αααα⎛=⋅=⋅ ⎝⎭243sin 4sin cos ααα=23(1cos 2)2sin 2αα-=432326πα⎛⎫+ ⎪⎝⎭, 由(1)得,03πα<<,所以52666πππα<+<, 所以当262ππα+=,即6πα=,也就是点P 位于弧AB 的中点时,使得平行四边形OCPD21.(1)见详解;(23)(]1,11,28⎡⎫⎪⎢⎣⎭【分析】(1)根据函数解析式,直接作差比较()()1222f x f x +与()122f x x +的大小,即可证明结论成立;(2)根据题中条件,由指数幂运算性质,直接计算,即可得出结果; (3)先由不等式恒成立,得到x ∀∈R ,212x xx a -+≤恒成立;不等式两边同时取对数,得到x ∀∈R ,22log 1x a x x ≤-+恒成立,讨论0x =,0x >,0x <三种情况,分别求出对应的a 的范围,再求交集,即可得出结果.【详解】(1)因为()xf x a =,所以()()()()111222222121222220x x x x x x f x f x f x x a a a a a ++-+=+-=-≥显然恒成立, 所以()()()1212222f x f x f x x +≥+;(2)由()12f x =,()23f x =得1223x x a a ⎧=⎨=⎩,所以()212122x x x x x a a ==,又()1221228x x xf x x a ===,所以23x =,则233x a a ==,因此a =(3)若x ∀∈R ,()212xx f x -+≤恒成立,即x ∀∈R ,212x xx a -+≤恒成立;则x ∀∈R ,2122log log 2x xx a -+≤恒成立,即x ∀∈R ,22log 1x a x x ≤-+恒成立,当0x =时,不等式可化为01<,显然恒成立;所以0a >,且1a ≠;当0x >时,不等式可化为21log 1a x x ≤+-,而1111y x x =+-≥=在0x >上恒成立,当且仅当1x =时,取等号;所以只需2log 1a ≤,解得12a <≤或01a <<; 当0x <时,不等式可化为21log 1a x x≥+-,而()111113y x x x x ⎡⎤⎛⎫=+-=--+--≤-=- ⎪⎢⎥⎝⎭⎣⎦在0x <上恒成立,当且仅当1x =-时,取等号;所以只需2log 3a ≥-,解得118a ≤<或1a >,综上,118a ≤<或12a <≤,即a 的取值范围是(]1,11,28⎡⎫⎪⎢⎣⎭【点睛】关键点点睛:求解本题第三问的关键在于将不等式两边同时取对数,化为22log 1x a x x ≤-+恒成立,再对x 分段讨论,求解a 的范围,即可得解.22.(1)23411),1()(()f x f x x xx x f -=-==。

北京市海淀区2023-2024学年高一上学期期末考试 数学 Word版含答案

北京市海淀区2023-2024学年高一上学期期末考试 数学 Word版含答案

海淀区高一年级练习数 学考生须知:1.本试卷共6页,共三道大题,26道小题,满分150分,考试时间120分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在答题卡上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.一、选择题:共14小题,每小题4分,共56分.在每小题列出的四个选项中,选出符合题目要求的一项1.已知全集{}2,1,0,1,2U =--,集合{}2,1,0A =--,则U A = ( )A .{}1,2,3B .{}1,2C .()0,2D .()1,22.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查,已知在初中学生中随机抽取了100人,则在高中学生中抽取了( )A .150人B .200人C .250人D .300人3.命题“,20x x ∃∈+≤R ”的否定是( )A .,20x x ∃∈+>RB .,20x x ∃∈+<RC .,20x x ∀∈+>RD .,20x x ∀∈+<R 4.方程组202x y x x +=⎧⎨+=⎩解集是( )A .()(){}1,1,1,1--B .()(){}1,1,2,2-C .()(){}1,1,2,2--D .()(){}2,2,2,2-- 5.某部门调查了200名学生每周的课外活动时间(单位:h ),制成了如图所示的频率分布直方图,其中课外活动时间的范围是[]10,20,并分成[)[)[)[)[]10,12,12,14,14,16,16,18,18,20五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h 的人数是( )A .56B .80C .144D .1846.若实数a ,b 满足a b >,则下列不等式成立的是( )A .a b >B .a c b c +>+C .22a b >D .22ac bc >7.函数()22x f x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,28.在同一个坐标系中,函数()()()log ,,x a a f x x g x a h x x -===的部分图象可能是( )A .B .C .D .9.下列函数中,既是奇函数,又在()0,+∞上单调递减的是( )A .()f x x =B .()f x x x =-C .()11f x x 2=+ D .()3f x x = 10.已知0.1232,log 3,log 2a b c ===,则实数a ,b ,c 的大小关系是( )A .c a b >>B .c b a >>C .a c b >>D .a b c >>11.已知函数()1212x f x a =-+,则“1a =”是()f x 为奇函数的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件12.已知函数()()2log 12f x x x =++-,则不等式()0f x <的解集为A .(),1-∞B .()1,1-C .()0,1D .()1,+∞13.科赫(Koch )曲线是几何中最简单的分形,科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N 个与它的上一级图形相似,且相似比为r 的部分组成.若1D r N=,则称D 为该图形的分形维数.那么科赫曲线的分形气维数是( )A .2log 3B .3log 2C .1D .32log 2 14.已知函数()2,,x a x a f x x x a +≤⎧=⎨>⎩,若存在非零实数0x ,使得()()00f x f x -=-成立,则实数a 的取值范围是( )A .(],0-∞B .1,4⎛-∞⎤ ⎥⎝⎦ C .[]4,0 D .12,4⎡-⎤⎢⎥⎣⎦ 二、填空题:共6小题,每小题5分,共30分15.函数()()lg 1f x x =-的定义域是__________.16.已知幂函数()f x 经过点()2,8,则函数()f x =___________.17.农科院作物所为了解某种农作物的幼苗质量,分别从该农作物在甲、乙两个不同环境下培育的幼苗中各随机抽取了15株幼苗进行检测,量出它们的高度如下图(单位:cm ):记该样本中甲、乙两种环境下幼苗高度的中位数分别为a ,b ,则a b -=___________.若以样本估计总体,记甲、乙两种环境下幼苗高度的标准差分别为12,s s ,则1s ____2s (用“<,>或=”连接).18.已知函数()4f x x a x=+-没有零点,则a 的一个取值为_______;a 的取值范围是___________.19.已知函数()22,0,0x x x f x x ⎧≥⎪=⎨-<⎪⎩,则()f x 的单调递增区间为________;满足()4410f x <⨯的整数解的个数为____________(参考数据:lg 20.30≈)20.共享单车已经逐渐成为人们在日常生活中必不可少的交通工具.通过调查发现人们在单车选择时,可以使用“Tullock 竞争函数”进行近似估计,其解析式为()()[],0,1,01aa a x S x x a x x =∈>+-(其中参数a 表示市场外部性强度,a 越大表示外部性越强).给出下列四个结论:①()S x 过定点11,22⎛⎫ ⎪⎝⎭; ②()S x 在[]0,1上单调递增;③()S x 关于12x =对称; ④取定x ,外部性强度a 越大,()S x 越小.其中所有正确结论的序号是______________.三、解答题:共64分,解答应写出文字说明,演算步骤或证明过程.21.(本小题12分)化简求值:(I )()10.530.204640.13π927-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭ (II )5log 333325log 2log 59-+ 22.(本小题12分)已知一元二次方程22320x x +-=的两个实数根为12,x x求值:(I )2212x x +;(II )1211x x + 23.(本小题9分)国务院正式公布的《第一批全国重点文物保护单位名单》中把重点文物保护单位(下述简称为“第一批文保单位”)分为六大类.其中“A :革命遗址及革命纪念建筑物”、“B :石窟寺”、“C :古建筑及历史纪念建筑物”、“D :石刻及其他”、“E :古遗址”、“F :古墓葬”,北京的18个“第一批文保单位”所在区分布如下表:(I )某个研学小组随机选择北京市“第一批文保单位”中的一个进行参观,求选中的参观单位恰好为“C :古建筑及历史纪念建筑物”的概率;(II )小王同学随机选择北京市“第一批文保单位”中的“A :革命遗址及革命纪念建筑物”中的一个进行参观:小张同学随机选择北京市“第一批文保单位”中的“C :古建筑及历史纪念建筑物”中的一个进行参观.两人选择参观单位互不影响,求两人选择的参观单位恰好在同一个区的概率;(III )现在拟从北京市“第一批文保单位”中的“C :古建筑及历史纪念建筑物”中随机抽取2个单位进行常规检查,记抽到海淀区的概率为1P ,抽不到海淀区的概率记为2P ,试判断1P 和2P 的大小(直接写出结论).24.(本小题9分)已知集合{}25320,22|A x x x B x x ⎧⎫=--<=-≥⎨⎬⎩⎭(I )求,R A B A B ;(II )记关于x 的不等式()222440x m x m m -+++≤的解集为M ,若B M R =,求实数m 的取值范围.25.(本小题11分)已知函数()()()ln 1ln 1f x x k x =-++,请从条件①、条件②这两个条件中选择一个作为已知,解答下面的问题:条件①:()()0f x f x +-=条件②:()()0f x f x --=注:如果选择条件①和条件②分别解答,按第一个解答记分.(I )求实数k 的值;(II )设函数()()()11k F x x x =-+,判断函数()F x 在区间上()0,1的单调性,并给出证明;(III )设函数()()2k g x f x x k =++,指出函数()g x 在区间()1,0-上的零点的个数,并说明理由.26.(本小题11分)已知函数()()(),,f x g x h x 的定义域均为R ,给出下面两个定义:①若存在唯一的x ∈R ,使得()()()()f g x h f x =,则称()g x 与()h x 关于()f x 唯一交换;②若对任意的x ∈R ,均有()()()()f g x h f x =,则称()g x 与()h x 关于()f x 任意交换.(I )请判断函数()1g x x =+与()1h x x =-关于()2f x x =是唯一交换还是任意交换,并说明理由;(II )设()()()22()20,1f x a x a g x x bx =+≠=+-,若存在函数()h x ,使得()g x 与()h x 关于()f x 任意交换,求b 的值;(III )在(II )的条件下,若()g x 与()f x 关于()11x x e x e ω-=+唯一交换,求a 的值.。

(完整版)高一数学必修一试卷及答案

(完整版)高一数学必修一试卷及答案

高一数学必修一试卷及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1.已知全集{}{}{}()====N M C 。

N M U U 则3,2,2.1,0,4,3,2,1,0A. B. C. D. {}2{}3{}432。

{}43210。

2.下列各组两个集合A 和B,表示同一集合的是A.A=,B=B. A=,B={}π{}14159.3{}3,2{})32(。

C. A=,B=D. A=,B={}π,3,1{}3,1,-π{}N x x x ∈≤<-,11{}13. 函数的单调递增区间为2x y -=A . B . C .D .]0,(-∞),0[+∞),0(+∞),(+∞-∞4. 下列函数是偶函数的是A. B.C.D. x y =322-=x y 21-=xy ]1,0[,2∈=x x y 5.已知函数f(2) =()则。

x x x x x f ⎩⎨⎧>+-≤+=1,31,1A.3B,2C.1D.06.当时,在同一坐标系中,函数的图象是10<<a x y a y a xlog ==-与 A BCD7.如果二次函数有两个不同的零点,则m 的取值范围是)3(2+++=m mx x y A.(-2,6)B.[-2,6]C. D.{}6,2-()()∞+-∞-.62, 8. 若函数 在区间上的最大值是最小值的2倍,则的值为(()log (01)a f x x a =<<[],2a a a )A B C 、D 、14129.三个数之间的大小关系是3.0222,3.0log ,3.0===c b a A . B. C. D.b c a <<c b a <<c a b <<a c b <<10. 已知奇函数在时的图象如图所示,则不等式的解集为()f x 0x ≥()0xf x <A. B.(1,2)(2,1)--C. D.(2,1)(1,2)-- (1,1)-11.设,用二分法求方程内近似解的过程中得()833-+=x x f x()2,10833∈=-+x x x在则方程的根落在区间()()(),025.1,05.1,01<><f f f A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定12.计算机成本不断降低,若每隔三年计算机价格降低,则现在价格为8100元的计算机9年31后价格可降为A.2400元B.900元C.300元D.3600元二、填空题(每小题4分,共16分.)13.若幂函数y =的图象经过点(9,), 则f(25)的值是_________-()x f 1314. 函数的定义域是()()1log 143++--=x x xx f 15. 给出下列结论(1)2)2(44±=-(2)331log 12log 22-=21 (3) 函数y=2x-1, x [1,4]的反函数的定义域为[1,7 ]∈(4)函数y=的值域为(0,+)x12∞其中正确的命题序号为16. 定义运算 则函数的最大值为.()() ,.a ab a b b a b ≤⎧⎪*=⎨>⎪⎩()12x f x =*三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤)17. (12分)已知集合,, 全集,求:{|240}A x x =-<{|05}B x x =<<U R =(Ⅰ);(Ⅱ).A B ()U C A B 18. 计算:(每小题6分,共12分)(1) 36231232⨯⨯19.(12分)已知函数,(Ⅰ) 证明在上是增函数;1()f x x x=+()f x [1,)+∞(Ⅱ) 求在上的最大值及最小值.()f x [1,4]20. 已知A 、B 两地相距150千米,某人开车以60千米/小时的速度从A 地到B 地,在B 地停留一小时后,再以50千米/小时的速度返回A 地.把汽车与A 地的距离y (千米)表示为时间t (小时)的函数(从A 地出发时开始),并画出函数图象. (14分).18lg 7lg 37lg 214lg )2(-+-21.(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.22.已知函数对一切实数都有成立,且()f x ,x y R ∈()()f x y f y +-=(21)x x y ++. (Ⅰ)求的值;(Ⅱ)求的解析式;(1)0f =(0)f ()f x (Ⅲ)已知,设:当时,不等式 恒成立;a R ∈P 102x <<()32f x x a +<+Q :当时,是单调函数。

2023-2024学年北京市朝阳区高一(上)期末数学试卷【答案版】

2023-2024学年北京市朝阳区高一(上)期末数学试卷【答案版】

2023-2024学年北京市朝阳区高一(上)期末数学试卷一、选择题(本大题共10小题,每小题5分,共50分。

在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合A ={﹣2,1,2,3},B ={x |x =2k ,k ∈Z },则A ∩B =( ) A .{﹣2,1}B .{﹣2,2}C .{1,2}D .{2,3}2.命题“∀x ∈R ,都有|x |+x ≥0”的否定为( ) A .∃x ∈R ,使得|x |+x <0 B .∃x ∈R ,使得|x |+x ≥0 C .∀x ∈R ,都有|x |+x ≤0D .∀x ∈R ,都有|x |+x <03.若a ,b ,c 是任意实数,且a >b ,则下列不等式一定成立的是( ) A .a 2>b 2B .1a <1bC .ac >bcD .2a >2b4.设x ∈R ,则“x >1”是“x 2>1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件5.已知x 0是函数f (x )=e x +x 3的一个零点,且a ∈(﹣∞,x 0),b ∈(x 0,0),则( ) A .f (a )<0,f (b )<0 B .f (a )>0,f (b )>0C .f (a )>0,f (b )<0D .f (a )<0,f (b )>06.已知a =(23)12,b =(13)12,c =log 2312,则( )A .a <b <cB .c <a <bC .b <a <cD .c <b <a7.已知函数f (x )=2sin (ωx +φ)(ω>0,−π2<φ<π2)的部分图象如图所示,则( )A .ω=1,φ=−π4B .ω=1,φ=π4C .ω=2,φ=−π4D .ω=2,φ=π48.函数f (x )=|sin x |+cos x 是( ) A .奇函数,且最小值为−√2 B .奇函数,且最大值为√2 C .偶函数,且最小值为−√2D .偶函数,且最大值为√29.已知函数f (x )的图象是在R 上连续不断的曲线,f (x )在区间[1,+∞)上单调递增,且满足f (2﹣x )+f (x )=0,f (2)=3,则不等式﹣3<f (x +1)<3的解集为( ) A .(﹣2,2)B .(﹣1,1)C .(0,2)D .(1,3)10.在一定通风条件下,某会议室内的二氧化碳浓度c 随时间t (单位:min )的变化规律可以用函数模型c =c 0+λe−tδ近似表达.在该通风条件下测得当t =0,t =5,t =10时此会议室内的二氧化碳浓度,如下表所示,用该模型推算当t =15时c 的值约为( )A .0.04%B .0.05%C .0.06%D .0.07%二、填空题(本大题共6小题,每小题5分,共30分) 11.函数f (x )=lg (x +1)的定义域是 . 12.已知x >1,则x +1x−1的最小值为 . 13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,若角α的终边经过点P(−45,35),角β的终边与角α的终边关于原点对称,则sin α= ,cos β= .14.已知函数f (x )=a •2x ﹣1的图象过原点,则a = ;若对∀x ∈R ,都有f (x )>m ,则m 的最大值为 .15.将函数f (x )=sin2x 的图象向左平移φ(φ>0)个单位长度,得到函数g (x )的图象.若函数g (x )的图象关于y 轴对称,则φ的一个取值为 .16.已知函数f (x )=2x +b ,g (x )为偶函数,且当x ≥0时,g (x )=x 2﹣4x .记函数T (x )={f(x),f(x)≥g(x),g(x),f(x)<g(x),给出下列四个结论:①当b =0时,T (x )在区间[﹣2,+∞)上单调递增; ②当b =﹣8时,T (x )是偶函数; ③当b <0时,T (x )有3个零点;④当b ≥8时,对任意x ∈R ,都有T (x )>0. 其中所有正确结论的序号是 .三、解答题(本大题共5小题,共70分。

2023-2024学年上海建平中学高一上学期数学月考试卷及答案(2023.12)

2023-2024学年上海建平中学高一上学期数学月考试卷及答案(2023.12)

1建平中学2026届第一学期高一年级12月数学月考2023.12一、填空题(本大题共有12题,满分54分,第题每题4分,第7-12题每题5分)1.已知集合{}{}21,0,1,2,1,,A B x x x =−=−,且B A ⊆,则x =______. 2.已知一个扇形的圆心角大小为3π,弧长为23π,则其面积为______. 3.已知幂函数()()212222m m f x mm x+=−−在[)0,+∞上是增函数,则m =______.4.已知角α的终边经过点()1,0P −,则角α的余弦值为______. 5.设全集{}0,1,2,3,4,5U =,集合{}{}22320,A x xx Bx xx =−+===,则A B = ______. 6.若函数()f x =+为偶函数且非奇函数,则实数a 的取值范围为______.7.定义在()1,2−上的函数()y lg x a =+不存在反函数,则实数a 的取值范围是______. 8.若"23""2"x x a −<<−<<是的充分不必要条件,则a 的取值范围是______. 9.如果关于x 的一元三次方程3232100a x a x a x a +++=(,0,1,2,3i a R i ∈=且30a ≠)有三个实数根123,,x x x ,则12233112x x x x x x x x +++=______(用0123,,,a a a a 表示)10.已知定义在R 上的函数()2224x x x f a x e ae −−=,其中0a >,如果函数()f x 与函数()()f f x 的值域相同,则a 的取值范围是______.11.已知函数()21,02,0x a x x f x x ax x ++−>= −+≤的最小值为1a +,则实数a 的取值范围为______. 12.已知函数()()2,f x x g x ax x ==−,其中0a >,若对任意的[]11,3x ∈,总存在[]21,4x ∈,使得()()()()1212f x f x g x g x =成立,则实数a 的取值范围是______. 二、选择题(本大题共有4题,满分20分,每题5分)13.用反证法证明命题“设,a b N ∈,如果ab 能被5整除,那么,a b 中至少有一个能被5整2除”,假设应该是( ) A .,a b 都能被5整除 B .,a b 至多有一个能被5整除 C .a 或b 不能被5整除D .,a b 都不能被5整除14.在平面直角坐标系中,给出下列命题:①小于2π的角一定是锐角,②钝角一定是第二象限的角,③第一象限的角一定不是负角,④第二象限角一定大于第一象限角,其中假命题的个数是( ) A .1个 B .2个C .3个D .4个15.已知函数()2,,x x f x x x =为无理数为有理数,有下列两个命题: ①()f x 的值域为R ;②对任意正有理数a ,函数()()g x f x a =−存在奇数个零点;则下列判断正确的是( ) A .①②均为真命题B .①②均为假命题C .①为真命题②为假命题D .①为假命题②为真命题16.已知函数()2f x x ax b =++,若不等式()2f x ≤在[]1,5x ∈上恒成立,则满足要求的有序数对(),a b 有( ) A .0个B .1个C .2个D .无数个三、解答题(共5道大题,其中17题14分,18题14分,19题14分,20题16分,21题18分,共计76分)17.(8分)求下列关于x 的方程的解集. (1)()31lgx lg x ++=;(2)()()2295134x x log log +=++.318.(10分)已知函数()f x 是定义在R 上的奇函数,且当(),0x ∈−∞时,()x f x e −=. (1)求证:()f x 在定义域内是严格减函数:(2)若()()2610f tx f tx +−−≥对[]1,4x ∈恒成立,求实数t 的取值范围.19.(10分)近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格()P x (单位:元)与时间x (单位:天)的函数关系近似满足()110P x x =+,日销售量....()Q x (单位:件)与时间x (单位:天)的部分数据如下表所示: x10 15 20 25 30 ()Q x5055605550(1)给出以下四个函数模型:①()Q x ax b =+;②()Q x a x m b =−+;③()Q x a bx =−;④()b Q x a log x =⋅.请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量()Q x 与时间x 的变化关系,并求出该函数的解析式及定义域...; (2)设该工艺品的日销售收入为()f x (单位:元),求()f x 的最小值.420.(12分)已知函数()(](),,123,1,22x x x f x x x ∈−∞= +∈−(1)写出()f x 的单调区间以及在每个单调区间上的单调性(无需证明): (2)解不等式()20ff x +<;(3)若()12,,2x x ∈−∞满足()()12f x f x =,且12x x ≠,求证:122x x +<.521.(12分)设函数()f x 定义域为D ,如果存在常数K 满足:任取12,x x D ∈,都有()()1212f x f x K x x −≤−,则称()f x 是L 型函数,K 是这个L 型函数的L 常数.(1)判断函数()[]2,1,2f x x x =∈−是不是L 型函数,并说明理由;如果是,给出一个L 常数; (2)设函数()y f x =是定义在区间[],m n 上的L 型函数,a 是一个常数,求证:函数()yf x a =+也是L 型函数;(3)设函数()f x 是定义在[]0,1上的L 型函数,其L 常数(]0,1K ∈,且()f x 的值域也是[]0,1,求()f x 的解析式.6参考答案一、填空题 1.1−; 2.23π; 3. 1−; 4. 1−; 5.{}1; 6.1a >; 7. 12a −<<; 8.()3,+∞; 9.103a a a −; 10.1,2 +∞;11. {[]211,−−∪−; 12.;5443,11. 已知函数()21,02,0x a x x f x x ax x ++−>= −+≤ 的最小值为1a +,则实数a 的取值范围为______.{[]211,−−∪−(1)若0…a −,即0…a 时,()21,0121,1,2,0……a x f x x a x x ax x +< =+−> −+()f x ∴在(]0,−∞上单调递减,最小值为()02f =,在()0,+∞上最小值为1a +,故只需21…a +即可,解得01剟a ;(2)若01…a <−,即10…a −<时,则()221,01,121,12,0………x a x aa a x f x x a x x ax x −−+<− +−<<=+− −+ ()f x ∴在(]0,−∞上先减后增,最小值为2224a a f=−,在()0,+∞上最小值为1a +, 故只需2214…a a −+即可,解得22a −−−+又10,10剟a a −<∴−<, (3)若1a −>,即1a <−时,()221,011,1,21,2,0………x a x a x a f x x a x a x ax x −−+< −−<<−= +−− −+()f x ∴在(]0,−∞上先减后增,最小值为2224a a f=−,()f x 在()0,+∞上的最小值为10a −−>7而()f x 的最小值为10a +<,故只需令2214a a −=+即可,解得2a =−−2a =−+舍),综上,a的取值范围是{[]211,−−∪−.故答案为:{[]211,−−∪−.12. 已知函数()()2,f x x g x ax x ==−,其中0a >,若对任意的[]11,3x ∈,总存在[]21,4x ∈,使得()()()()1212f x f x g x g x =成立,则实数a 的取值范围是______.5443,依题意,()()()()1212f x f x g x g x =,可等价于()()()()1212f x g x g x f x =,令()()221,11x ax xh x m x ax ax x ax x −====−−−则问题等价于对任意的[]113x ,∈,总存在[]214x ,∈,使得()()1h x m x =成立,其中0a >, 所以()h x 的值域是()m x 的值域的子集,又当[]0,1,3a x >∈时,()[]()110131311h x ,a ,a a a ∈∉−− −−当[]0,1,4a x >∈时,()[]141m x a ,a ∈−−,所以11311411a a a a ≥− − ≤− −(1),依题意可知,1a −与31a −同号,当1a >时,解(1)式可得,5443a ,∈;当103a <<时,此时(1)式无解.综上,5443a , ∈ ;故答案为:5443,.二、选择题13.D ; 14.A ; 15. D ; 16. B 15. 已知函数()2,,x x f x x x = 为无理数为有理数,有下列两个命题:8①()f x 的值域为R ;②对任意正有理数a ,函数()()g x f x a =−存在奇数个零点;则下列判断正确的是( ) A .①②均为真命题B .①②均为假命题C .①为真命题②为假命题D .①为假命题②为真命题D由于()f x 的值域为R ,故(1)为假命题;当0…a 时,()()0g x f x a =−=,即()f x a =,此时方程无解,所以()g x 没有零点;当0a >时,()()0g x f x a =−=,即()f x a =,此时方程有2个解,即()g x 有2个零点,故(2)为假命题.16. 已知函数()2f x x ax b =++,若不等式()2f x ≤在[]1,5x ∈上恒成立,则满足要求的有序数对(),a b 有( )A .0个B .1个C .2个D .无数个B若不等式()2…f x 在[]1,5x ∈上恒成立,则必须满足()()()()()()212212,1232,2932,2,25222552,3f a b f a b f a b −≤≤−≤++≤−≤≤−≤++≤−≤≤−≤++≤ 即由()()212,12932,2a b a b −≤−−−≤ −≤++≤ ,两式相加,得482462,剟剟a a −+⇒−−(4), 再由()()5232932,2252,a b a b −≤−−−≤ −≤++≤ 两式相加,得41624106剟剟a a −+⇒−−(5), 结合(4),(5)两式可知,6a =−,代入不等式得()()()252,292,25213,2b b b −≤−+≤−≤−+≤−≤−+≤ 解得7b =,经检验,当6,7a b =−=时,()()226732f x x x x −+−−,9则()()()()()152,32max min f x f f f x f =====−满足()2…f x 在[]15x ,∈上恒成立,综上,满足要求的有序数对()a,b 为()67,−,共一个. 故选:B . 三、解答题17.(1)2x = (2)1x =18.(1)证明略 (2)13t ≥19.(1)()2060Q x x =−−+ (2)441 20. 已知函数()(](),,123,1,22x x x f x x x ∈−∞= +∈−(1)写出()f x 的单调区间以及在每个单调区间上的单调性(无需证明): (2)解不等式()20ff x +<;(3)若()12,,2x x ∈−∞满足()()12f x f x =,且12x x ≠,求证:122x x +<.见解析(1)递增区间(],1−∞;递减区间[)1,2和[)2,+∞;(2) 由题意210,11厔?x x −−, ①[]10x ,∈−,不等式()20f f x +<,即22120x x −−<,解得x <x >,所以1x , ∈−− ; ②(]01x ,∈,不等式()20ff x +<,即22120x x −+<,解得x ∈∅;综上,1x , ∈−− ;10(3)证明:函数()(](),123,122x x x ,f x x ,x ∈−∞= +∈ −的大致图象如图, 当(]1x ,∈−∞时,函数单调递增,当()12x ,∈时,函数单调递减,所以若()12,2x x ,∈−∞满足()()12f x f x =,则1212x x <<<,由图象知, ①若10…x ,则显然122x x +<;②若10x >,要证明122x x +<,则要证212x x <−,注意到21,21x x −>,且()f x 在()12,递减,则可证明()()212f x f x >−, 因为()()12f x f x =,则可证明()()112f x f x >−, 构造函数()()()2F x f x f x −−,()01x ,∈,则()223F x x x=−−,任取12,x x ,使1201x x <<<,则 ()()()()()()()2112121212121212121222222,2x x F x F x x x x x x x x x x x x x x x x x −−=+−−=+−+=−+−1201x x <<<因为所以12120,02x x x x −<<+<()121212222,0x x x x x x >+−< 所以()()12121220,x x x x x x−+−<即()()()()12120,F x F x F x F x −<<所以()F x 在()0,1上单调递减,又因为()()()1110,F f f =−=所以当()01x ,∈时,()()10F x F >=, 即()()2f x f x >−,所以()()212f x f x >−,从而122x x +<,得证.21.(12分)设函数()f x 定义域为D ,如果存在常数K 满足:任取12,x x D ∈,都有()()1212f x f x K x x −≤−,则称()f x 是L 型函数,K 是这个L型函数的L 常数.11 (1)判断函数()[]2,1,2f x x x =∈−是不是L 型函数,并说明理由;如果是,给出一个L 常数;(2)设函数()y f x =是定义在区间[],m n 上的L 型函数,a 是一个常数,求证:函数()y f x a =+也是L 型函数;(3)设函数()f x 是定义在[]0,1上的L 型函数,其L 常数(]0,1K ∈,且()f x 的值域也是[]0,1,求()f x 的解析式.(1)是,4K ≥;(2)见解析;(3)(),01f x x x =≤≤或()1,01f x x x =−≤≤;(1)定义域内任取12,x x ,221212x x K x x −≤−。

2023-2024学年佛山市石门中学高一数学上学期11月考试卷附答案解析

2023-2024学年佛山市石门中学高一数学上学期11月考试卷附答案解析

2023-2024学年佛山市石门中学高一数学上学期11月考试卷2023.10(考试满分:150分考试时间:120分钟)第I 卷(选择题)一、单选题(本大题共10小题,共50.在每小题列出的选项中,选出符合题目的一项)1.已知集合{}2|230A x x x =--≤,{}|24B x y x ==-,则()RA B ⋂=ð()A.()3,+∞ B.[)2,+∞ C.[)2,3 D.(],2-∞2.设a ,R b ∈,则“0a b <<”是11a b>的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知正数a ,b 满足1a b +=,则63a ab b++最小值为()A.25B.1926+ C.26D.194.已知0t >,则函数241t t y t-+=的最小值为A.2- B.12C.1D.25.不等式20x ax b --<的解集为{}23x x <<,则210bx ax -->的解集为()A.1123x x ⎧⎫-<<-⎨⎬⎩⎭B.1132x x ⎧⎫<<⎨⎬⎩⎭C.{}32x x -<<- D.{}23x x <<6.已知不等式2201x m x ++>-对一切(1)x ∈+∞,恒成立,则实数m 的取值范围是A.6m >- B.6m <- C.8m >- D.8m <-7.十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“>”和“<”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.已知,a b 为非零实数,且a b >;则下列结论正确的是()A.b aa b> B.22ab a b > C.22a b > D.2211ab a b>8.已知函数()21f x -的定义域为[]1,4,则函数()f x 的定义域为()A.[]1,4 B.()1,4 C.[]1,7 D.()1,79.下列四组函数中,表示同一函数的是()A.()f x x =,()2g x x = B.()2f x x =,()2(1)g x x =+C.()2f x x =()g x x = D.()11f x x x =+-,()21g x x =-10.函数2(5)2,2()2(1)3,2a x x f x x a x a x --≥⎧=⎨-++<⎩,若对任意12,x x R ∈,且12x x ≠都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为()A.[1,4]B.(1,5)C.[1,5)D.[1,4)二、多选题(本大题共5小题,共25.在每小题有多项符合题目要求)11.已知集合()(){}221110A x a x a x =-+++=中有且仅有一个元素,那么a 的值为()A.1-B.1C.53D.012.若0a b >>,则下列不等式成立的是()A.11a b< B.11b b a a +>+ C.11a b b a+>+ D.11a b a b+>+13.下列说法正确的有()A.命题“()3,x ∃∈-+∞,29x ≤”的否定是“()3,x ∀∈-+∞,29x >”B.“21x >”是“1x >”的充分不必要条件C.“0m <”是“关于x 的方程220x x m -+=有一正根和一负根”的充要条件D.已知正数x ,y 满足11x y +=,则14y x+的最小值为914.已知()32f x x =-,()22g x x x =-,设()()()()()()(),,g x f x g x F x f x f x g x ⎧⎪=⎨<⎪⎩ ,则关于()F x 的说法正确的是()A.最大值为3,最小值为1-B.最大值为727-,无最小值C.单调递增区间为(,27-∞和(3,单调递减区间为()27,1和)3,+∞D.单调递增区间为(),0∞-和(3,单调递减区间为()0,1和)3,+∞15.函数()2121f x ax x =++的定义域为R ,则实数a 的可能取值为()A.0B.1C.2D.3第Ⅱ卷(非选择题)三、填空题(本大题共6小题,共30)16.已知命题[]:1,4,4ap x x x∃∈+>是假命题,则实数a 的取值范围是___________.17.已知0x >,0y >,且280x y xy +-=,则x y +的最小值为______.18.设,0,5a b a b >+=,1++3a b +________.19.若函数()f x ,()g x 满足14()22f x f x x x ⎛⎫-=-⎪⎝⎭,且()()6f x g x x +=+,则(1)(1)f g +-=________.20.函数223y x x =--的单调递增区间为_______________.21.已知()f x 是一次函数,且满足3(1)()29f x f x x +-=+,则函数()f x 的解析式为______四、解答题(本大题共4小题,共45.解答应写出文字说明,证明过程或演算步骤)22.已知集合{|522}A x x x x =-<<-,集合{|231}B x m x m =+≤≤+.(1)当4m =-时,求()R A B ⋃ð;(2)当B 为非空集合时,若x B ∈是x A ∈的充分不必要条件,求实数m 的取值范围.23.某农业合作社生产了一种绿色蔬菜共14吨,如果在市场上直接销售,每吨可获利0.2万元;如果进行精加工后销售,每吨可获利0.6万元,但需另外支付一定的加工费,总的加工P (万元)与精加工的蔬菜量x (吨)有如下关系:21,082038,81410x x P x x ⎧≤≤⎪⎪=⎨+⎪<≤⎪⎩设该农业合作社将x (吨)蔬菜进行精加工后销售,其余在市场上直接销售,所得总利润(扣除加工费)为y (万元).(1)写出y 关于x 的函数表达式;(2)当精加工蔬菜多少吨时,总利润最大,并求出最大利润.24.已知函数()4()11f x x x =>-(1)判断函数()f x 在()1+∞,上的单调性,并用定义证明;(2)若(2)(21)f a f a -+>+,求实数a 的取值范围.25.已知函数2()32,()f x ax x a =++∈R .(1)若函数()0f x >的解集为{}1x b x <<,其中1b <,求实数a ,b 的值;(2)当3a <时,求关于x 的不等式()(6)1f x a x >+-的解集.【答案】1.A【分析】利用一元二次不等式的解法、函数定义域的求法以及集合的补集、交集运算进行求解.【详解】因为{}2|230A x x x =--≤,所以{}|13A x x =-≤≤,所以{R |1A x x =<-ð或}3x >,因为{|24B x y x ==-,所以{}|2B x x =≥,所以(){}R |3A B x x => ð,故B ,C ,D 错误.故选:A.2.A【分析】利用不等式的性质,充分条件、必要条件的定义判断作答.【详解】因为11b a a b ab--=,所以当0a b <<时,0,0ab b a >->,所以110b a a b ab --=>即11a b>,当11a b >时,取1,1a b ==-,得不到0a b <<,所以0a b <<是11a b>充分不必要条件,故选:A.3.A【分析】先进行化简得3964ab b aa b =+++,再利用乘“1”法即可得到答案.【详解】因为正数a ,b 满足1a b +=,所以()63349349946a b a b a b a b a ab ab ab b b a a b ++++++⎛⎫===+=++ ⎪⎝⎭94941313225b a b aa b a b =++≥+⋅=,当且仅当94b a a b =,联立1a b +=,即32,55a b ==时等号成立,故选:A.4.A【分析】先分离,再根据基本不等式求最值,即得结果.【详解】2411142·42t t y t t t t t-+==+-≥-=-,当且仅当1t t =,即1t =时,等号成立.选A.【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属基础题.5.A【分析】分析可知关于x 的方程20x ax b --=的两根分别为2、3,利用韦达定理可求得a 、b 的值,然后利用二次不等式的解法解所求不等式,即可得解.【详解】由题意可知,关于x 的方程20x ax b --=的两根分别为2、3,则2323a b +=⎧⎨⨯=-⎩,可得56a b =⎧⎨=-⎩,故所求不等式为26510x x --->,即()()31210x x ++<,解得1123x -<<-.故选:A.6.A【详解】不等式即:21221111m x x x x ⎛⎫>--=--++ ⎪--⎝⎭恒成立,则max 221m x x ⎛⎫>-- ⎪-⎝⎭结合1x >可得:10x ->,由均值不等式的结论有:()11211211611x x x x ⎛⎫⎛⎫--++≤--⨯+=- ⎪ ⎪ ⎪--⎝⎭⎝⎭,当且仅当2x =时等号成立,据此可得实数m 的取值范围是6m >-.本题选择A 选项.点睛:对于恒成立问题,常用到以下两个结论:(1)a ≥f (x )恒成立⇔a ≥f (x )max ;(2)a ≤f (x )恒成立⇔a ≤f (x )min .7.D【分析】根据各项不等式,利用作差法、特殊值,结合不等式性质判断正误即可.【详解】A :22b a b a a b ab--=,若0a b >>有220,0b a ab -<>,故b a a b <,A 错误;B :22()ab a b ab b a -=-,若0a b >>有0b a -<,又0ab >,故22ab a b <,B 错误;C :若1-2a b =>=,则22a b <,C 错误;D :222111110()a b ab a b ab b a ab -⎛⎫-=-=> ⎪⎝⎭,故2211ab a b>,D 正确.故选:D 8.C【分析】已知抽象复合函数定义域求原函数定义域.【详解】令21t x =-,则1[1,4]2t x +=∈,故17t ≤≤,所以()f x 的定义域为[]1,7.故选:C 9.C【分析】逐一判断四个选项中两个函数的定义域和对应关系是否相同即可得正确选项.【详解】对于A :()f x x =定义域为R ,()2g x x =的定义域为{}|0x x ≥,定义域不同不是同一函数,故选项A 不正确;对于B :()2f x x =与()2(1)g x x =+对应关系不一致,不是同一函数,故选项B 不正确;对于C :()2f x x x ==定义域为R ,()g x x =定义域为R ,两个函数的定义域和对应关系都相同,所以是同一函数,故选项C 正确;对于D :由1010x x +≥⎧⎨-≥⎩可得1x ≥,所以()11f x x x =+-{}|1x x ≥,由210x -≥可得1x ≥或1x ≤-,所以()21g x x =-定义域为{|1x x ≤-或}1x ≥,定义域不同不是同一函数,故选项D 不正确;故选:C.10.A【分析】若对任意12,x x R ∈,且12x x ≠都有1212()()0f x f x x x -<-成立,则可判断函数()f x 在R 上单调递减,进而根据分段函数的单调性列出不等式组,求解可得答案.【详解】 对任意12,x x R ∈,且12x x ≠都有1212()()0f x f x x x -<-成立,∴函数()f x 在R 上单调递减,则()()50124413252a a a a a ⎧-<⎪+≥⎨⎪-++≥--⎩,解得:14a ≤≤.故选:A【点睛】本题主要考查了函数单调性的定义,分段函数的单调性求参数范围,解题的关键是能够由定义判断出函数()f x 在R 上为减函数.11.BC【分析】根据题意分类讨论求解即可.【详解】因为集合()(){}221110A x a x a x =-+++=中有且仅有一个元素,所以当210a -=,即1a =±时,若1a =,则{}12102A x x ⎧⎫=+==-⎨⎬⎩⎭符合题意,若1a =-,则{}10A x ===∅不符合题意;当210a -≠,即1a ≠±时,则()()2221413250a a a a ∆=+--=-++=,解得1a =-(舍)或53a =.所以a 的值可能为1,53.故选:BC 12.AC【分析】根据不等式的性质判断A ,C ;利用作差法比较大小判断B ,D.【详解】解:对于A ,因为0a b >>,所以11a b<,故A 正确;对于B ,()()()()111111b a a b b b b a a a a a a a +-++--==+++,由于0a b >>,所以()0,10b a a a -<+>,则101b b a a +-<+,即11b b a a +<+,故B 错误;对于C ,因为0a b >>,所以11b a >,所以11a b b a+>+,故C 正确;对于D ,()()()11111b a ab a b a b a b a b a b a b ab ab --⎛⎫⎛⎫⎛⎫+-+=-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于0a b >>,则0,0a b ab ->>,但ab 与1的大小不确定,故D 错误.故选:AC .13.ACD 【解析】【分析】由存在性命题的否定判断A ;由211x x >⇔<-或1x >可判断B ;由一元二次方程的根的分布判断C ;由均值不等式及1的变形确定D 选项.【详解】由含量词命题的否定知,“()3,x ∃∈-+∞,29x ≤”的否定是“()3,x ∀∈-+∞,29x >”,故A 正确;因为21x >成立推不出1x >,所以“21x >”是“1x >”的充分不必要条件错误,故B 错误;因为方程220x x m -+=有一正根和一负根等价于20200m -⨯+<,即0m <,故C 正确;因为11x y +=,所以1111144545·49y x y xy xy x y x xy xy ⎛⎫⎛⎫+=++=++≥+= ⎪⎪⎝⎭⎝⎭,当且仅当=14xy xy ,即当==13,32x y 时,等号成立,故D 正确.故选:ACD 14.【答案】BC 【解析】【分析】在同一坐标系中由()f x 与()g x 的图象得出函数()F x 的图象,结合图象即可得出()F x 的性质,判断各选项.【详解】在同一坐标系中先画出()f x 与()g x 的图象,当()()f x g x <时,()()F x f x =,表示()f x 的图象在()g x 的图象下方就留下()f x 的图象,当()()f x g x 时,()()F x g x =,表示()g x 的图象在()f x 的图象下方就留下()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,故A 错误,当0x <时,由2322x x x +=-,得27x =+舍)或27x =,此时()F x 的最大值为:77-,无最小值,故B 正确,0x >时,由2322x x x -=-,解得:3x=3舍去),故F ()x 在(27-∞,,(3,递增,在()27,和)3,+∞递减故C 正确,D 错误,故选:BC .15.CD 【解析】【分析】由题设有2210ax x ++≠在x ∈R 上恒成立,列不等式组求参数范围.【详解】由题设2210ax x ++≠在x ∈R 上恒成立,所以01Δ440a a a ≠⎧⇒>⎨=-<⎩,故A 、B 不符合,C 、D 符合.故选:CD第Ⅱ卷(非选择题)三、填空题(本大题共6小题,共30)16.(,0]-∞【分析】将问题等价转化为[1,4]x ∀∈,4ax x+≤恒成立,利用二次函数的性质即可求解.【详解】命题[]:1,4,4ap x x x∃∈+>是假命题,即命题[1,4]x ∀∈,4ax x+≤是真命题,也即24a x x ≤-+在[1,4]上恒成立,令22()4(2)4f x x x x =-+=--+,因为[1,4]x ∈,所以当4x =时函数取最小值,即min ()(4)0f x f ==,所以0a ≤,故答案为:(,0]-∞.17.18【解析】【分析】等式280x y xy +-=变形为281y x +=,则28()(x y x y y x+=++根据基本不等式即可得到答案.【详解】解:已知0x >,0y >,且280x y xy +-=.28x y xy +=,即:281y x +=.则282828()(101018x y x yx y x y y x y x y x+=++=++⋅= ,当且仅当28x yy x=,212x y ==时取等号,所以x y +的最小值为18.故答案为:18.18.32【详解】由222ab a b ≤+两边同时加上22a b +得222()2()a b a b +≤+两边同时开方即得:222()a b a b ++(0,0a b >>且当且仅当a b =时取“=”),1++3a b +2(13)2932a b ≤+++=⨯=(当且仅当13a b +=+,即73,22a b ==时,“=”成立)故填:.考点:基本不等式.【名师点睛】本题考查应用基本不等式求最值,先将基本不等式222ab a b ≤+转化为222()a b a b +≤+(a>0,b>0且当且仅当a=b 时取“=”)再利用此不等式来求解.本题属于中档题,注意等号成立的条件.19.9【分析】根据方程组法求解函数()f x 的解析式,代入求出(1)f ,(1)f -,再利用(1)f -代入求出(1)g -.【详解】由14()22f x f x x x ⎛⎫-=-⎪⎝⎭,可知()1()242f f x x x x -=-,联立可得()2f x x =,所以(1)2f =,(1)2f -=-又因为(1)(1)165f g -+-=-+=,所以(1)527g -=+=,所以(1)(1)9f g +-=.故答案为:9【点睛】求函数解析式常用方法:(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;(2)换元法:已知复合函数(())f g x 的解析式,可用换元法,此时要注意新元的取值范围;(3)方程法:已知关于()f x 与1f x ⎛⎫⎪⎝⎭与()f x -的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出()f x .20.()1,1-和()3,+∞【分析】作出函数223y x x =--的图象,利用数形结合可得结果.【详解】作出函数223y x x =--的图象如下图所示,由图象可知,函数223y x x =--的单调递增区间为()1,1-和()3,+∞.【点睛】判断函数单调性的一般方法:1.利用基本初等函数的单调性与图象:只需作出函数的图象便可判断函数在相应区间上的单调性;2.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反;(3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).2.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.4.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函21.()3f x x =+【分析】由题意设(),,R f x ax b a b =+∈,根据3(1)()29f x f x x +-=+,可得到方程组,求得a,b ,即得答案.【详解】根据题意,设(),,R f x ax b a b =+∈,且0a ≠,()()11f x a x b ∴+=++,()()()()3131f x f x a x b ax b ⎡⎤∴+-=++-+⎣⎦()23229ax a b x =++=+,22329a a b =⎧∴⎨+=⎩,解得()1,3,3a b f x x ==∴=+,故答案为:()3f x x =+.22.(1)()R {|5A B x x ⋃=<-ð或2}x -≥(2){|43}m m <-<-【解析】【分析】(1)分别求出集合,A B ,然后计算A B ⋃,最后()R A B ⋃ð;(2)由题意知集合B 是集合A 的真子集,建立不等式组求解即可.【小问1详解】∵{|522}A x x x x =-<<-,∴{|52}A x x =-<<-.当4m =-时,{|53}B x x =-≤≤-.∴{|52}A B x x =-≤<- ,所以,()R {|5A B x x ⋃=<-ð或2}x -≥.【小问2详解】∵B 为非空集合,x B ∈是x A ∈的充分不必要条件,则集合B 是集合A 的真子集,∴23123512m m m m +≤+⎧⎪+>-⎨⎪+<-⎩,解得:243m m m ≤-⎧⎪>-⎨⎪<-⎩,∴m 的取值范围是{|43}m m <-<-.23.(1)212140820551281410x x x y x x ⎧-++≤≤⎪⎪=⎨⎪+≤⎪⎩,,<;(2)精加工4吨时,总利润最大为185万元.【解析】【分析】(1)利用已知条件求出函数的解析式;(2)利用二次函数的性质,转化求解函数的最值.【详解】解:(1)由题意知,当0≤x ≤8时,y =0.6x +0.2(14-x )-120x 2=-120x 2+25x +145,当8<x ≤14时,y =0.6x +0.2(14-x )-3810x +=110x +2,即y =212140820551281410x x x x x ,,<⎧-++≤≤⎪⎪⎨⎪+≤⎪⎩(2)当0≤x ≤8时,y =-120x 2+25x +145=-120(x -4)2+185,所以当x =4时,y max =185.当8<x ≤14时,y =110x +2,所以当x =14时,y max =175.因为185>175,所以当x =4时,y max =185.答:当精加工蔬菜4吨时,总利润最大,最大利润为185万元.【点睛】本题考查实际问题的应用,二次函数的简单性质的应用,考查转化思想以及计算能力.24.(1)函数f (x )在()1+∞,上为减函数,证明见解析;(2)1,13⎛⎫⎪⎝⎭.【分析】(1)根据定义法证明函数单调性的步骤:取值,作差,变形,定号,下结论,即可证明;(2)利用(1)问函数单调性即可求解.【详解】解:(1)任取()12,1x x ∈+∞,,且12x x <,则121244()()11f x f x x x -=---()()()()2112414111x x x x ---=--()()()2112411x x x x -=--121x x << ,21120,10,10x x x x ∴->->->,12()()0,f x f x ∴->即12()()f x f x >,所以函数f (x )在()1+∞,上为减函数;(2)由(1)得21211221a a a a -+>⎧⎪+>⎨⎪-+<+⎩1101313a a a a ⎧⎪<⎪⇒>⇒<<⎨⎪⎪>⎩,所以实数a 的取值范围1,13⎛⎫⎪⎝⎭.25.(1)5a =-,25b =-(2)当0a =时,不等式的解集为{|1}<x x ;当3a =时,不等式的解集为{|1}x x ≠;当0<<3a 时,不等式的解集为3{|x x a >或1}x <;当a<0时,不等式的解集为3{|1}x x a<<.【解析】【分析】(1)根据一元二次不等式的解集确定一元二次方程的根,结合韦达定理列方程求解实数a ,b 的值即可;(2)化简不等式()()310ax x -->,由3a <再分类讨论求不等式的解集即可.【小问1详解】解:根据题意,2320ax x ++>的解集为{|1}x b x <<,则1,b 是方程2320ax x ++=的解,且a<0,则有3121b a b a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得:5a =-,25b =-;【小问2详解】解:不等式()(6)1f x a x >+-,即()2330ax a x -++>,则有()()310ax x -->,其中3a <,①当0a =时,不等式为()310x -->,则不等式的解集为{|1}<x x ;②当3a =时,不等式为()2310x ->,则不等式的解集为{|1}x x ≠,③当0<<3a 时,则31a<,不等式的解集为3{|x x a >或1}x <,④当a<0时,则31a <,不等式的解集为3{|1}x x a<<.综上,当0a =时,不等式的解集为{|1}<x x ;当3a =时,不等式的解集为{|1}x x ≠;当0<<3a 时,不等式的解集为3{|x x a >或1}x <;当a<0时,不等式的解集为3{|1}x x a<<.。

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析(经典,通用)

高一数学上册期末考试试卷及答案解析一、单选题 1.设全集2,1,0,1,2U,集合{}{}0,1,21,2A =-,B=,则()U A B =( )A .{}01, B .{}0,1,2 C .{}1,1,2- D .{}0,1,1,2-2.“5x >”是“3x >”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3.下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2}; ④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对 4.下列命题中,既是全称量词命题又是真命题的是( ) A .矩形的两条对角线垂直 B .对任意a ,b ∈R ,都有a 2 + b 2≥ 2(a ﹣b ﹣1) C .∃x ∈R , |x | + x = 0 D .至少有一个x ∈Z ,使得x 2 ≤2成立5.已知02x <<,则y = )A .2B .4C .5D .66.若110a b <<,则下列结论不正确的是( ) A .22a b <B .1ba <C .2b aa b +>D .2ab b <7.命题p :“2R,240x ax ax ∃∈+-≥”为假命题的一个充分不必要条件是( ) A .40aB .40a -≤<C .30a -≤≤D .40a -≤≤8.集合{1,2,4}A =,{}2B x x A =∈,将集合A ,B 分别用如图中的两个圆表示,则圆中阴影部分表示的集合中元素个数恰好为4的是( ) A .B .C .D .二、多选题9.已知集合222{2,1,4},{0,2}A a a a B a a =+-=--,5A ∈,则a 为( ) A .2B .2-C .5D .1-10.若正实数,a b 满足1a b +=,则下列说法正确的是( ) A .ab 有最小值14 B C .1122a b a b +++有最小值43D .22a b +有最小值1211.下列命题为真命题的是( ). A .若a b >,则11b a >B .若0a b >>,0c d <<,则abd c < C .若0a b >>,且0c <,则22cc a b > D .若a b >,且11a b>,则0ab < 12.若“x M x x ∀∈>,”为真命题,“3x M x ∃∈>,”为假命题,则集合M 可以是( )A .()5-∞-,B .(]31--,C .()3+∞,D .[]03,三、填空题13.若命题2:0,30p x x ax ∀≥-+>,则其否定为p ⌝:__________________.14.已知:282p x -≤-≤,:1q x >,:2r a x a <<.若r 是p 的必要不充分条件,且r 是q 的充分不必要条件,则实数a 的取值范围为______. 15.设集合{}{}21,2,R (1)0A B x x a x a ==∈-++=,若集合C = A B ,且C 的子集有4个,则实数a 的取值集合为______________. 16.若a ∈R ,0b >,3a b +=,则当=a ______时,1||3||a a b +取得最小值.四、解答题17.求解下列问题:(1)已知0b a <<,比较1a 与1b 的大小; (2)比较()()37x x ++和()()46x x ++的大小.18.已知集合{|15}A x x =<≤,{}|04B x x =<<,{}|121C x m x m =+<<-. (1)求A B ,R ()A B ⋃: (2)若BC C =,求实数m 的取值范围.19.已知不等式20x ax b -+<的解集为{}17x x <<. (1)求实数,a b 的值.(2)求不等式101ax bx +>-的解集.20.已知0,0x y >>,且280x y xy +-=,求(1)xy 的最小值; (2)x y +的最小值. 21.22.“绿水青山就是金山银山”,为了保护环境,某工厂在政府部门的鼓励下进行技术改进,把二氧化碳化为某种化工产品,经测算,该处理成本y (单位:万元)与处理量x (单位:吨)之间的函数关系可近似表示为2401600y x x =-+,3050x ≤≤,已知每处理一吨二氧化碳可获得价值20万元的某种化工产品.(1)当处理量为多少吨时,每吨的平均处理成本最少?(2)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元该工厂才不会亏损?参考答案:1.A 【分析】先求出UB ,再根据交集的定义可求()U A B ∩.【详解】{}2,0,1UB =-,故(){}0,1UAB =,故选:A.2.A 【分析】根据集合与充分必要条件的关系,判断选项. 【详解】{}5x x > {}3x x >,所以“5x >”是“3x >”的充分不必要条件. 故选:A3.C 【分析】由集合的表示方法判断①,④;由集合中元素的特点判断②,③.【详解】①{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确; ③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示. 故选:C .4.B 【分析】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误.C,D 选项是特称量词命题,故错误. B 选项是全称量词命题,用反证法证明, 因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确.故选:B. 5.【答案】A 【分析】设直角三角形的两个直角边为x ,y ,由此可得2225x y +=,又面积1=2S xy ,利用基本不等式可求面积的最大值. 【详解】设直角三角形的两个直角边为x ,y ,则2225x y +=, 又1=2S xy由基本不等式可得221125=2224x y S xy ⎛⎫+≤= ⎪⎝⎭(当且仅当x =y 立) 故选:A.6.B 【分析】由110a b <<得出0b a <<,再利用不等式的基本性质和基本不等式来判断各选项中不等式的正误. 【详解】110a b<<,0b a ∴<<,0b a ∴->->,22a b ∴<,A 选项正确;1b b a a-=>-,B 选项错误;由基本不等式可得2baa b +≥=,当且仅当1b a =时等号成立,1b a >,则等号不成立,所以2baa b +>,C 选项正确;0b a <<,2b ab ∴>,D选项正确.故选:B.【点睛】本题考查不等式正误的判断,涉及不等式的基本性质和基本不等式,考查推理能力,属于基础题.7.C 【分析】由题意,p ⌝为真命题,进而可得p ⌝为真命题时的充要条件,再根据充分与必要条件的性质判断选项即可. 【详解】命题2:R,240p x ax ax ∃∈+-≥为假命题,即命题2:R,240p x ax ax ⌝∀∈+-<为真命题.首先,0a =时,40-<恒成立,符合题意; 其次0a ≠时,则0a <且2(2)160a a ∆=+<,即40a ,综上可知,40a .结合选项可得,{}{}3040a a a a -≤≤⊆-<≤,即:30a -≤≤是40a 的一个充分不必要条件. 故选:C8.C 【分析】记U A B =⋃,然后分析每个选项对应的集合的运算并求解出结果进行判断即可.【详解】因为{}1,2,4A =,{}2B x x A=∈,所以{}2,B =--,记{}2,U AB ==--,对于A 选项,其表示(){}4U A B =,不满足;对于B 选项,其表示(){}2,U A B =--,不满足;对于C 选项,其表示(){2,U A B =--,满足;对于D 选项,其表示{}1,2A B =,不满足;故选:C.9.BC 【分析】结合元素与集合的关系,集合元素的互异性来求得a 的值.【详解】依题意5A ∈,当215a+=时,2a =或2a =-,若2a =-,则{}{}2,5,12,0,4A B ==,符合题意;若2a =,则220a a --=,对于集合B ,不满足集合元素的互异性,所以2a =不符合.当245a a -=时,1a =-或5a =,若1a =-,则212a +=,对于集合A ,不满足集合元素的互异性,所以1a =-不符合.若5a =,则{}{}2,26,5,0,18A B ==,符合题意. 综上所述,a 的值为2-或5. 故选:BC10.BCD 【分析】由已知结合基本不等式及其变形形式分别检验各选项即可判断.【详解】由正实数,a b 满足1a b +=,则2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以ab 的最大值为14,故A 选项错误;由()222a b a b =+++=12a b ==时,,故B 选项正确;由11111(33)22322a b a b a b a b a b ⎛⎫+=++ ⎪++++⎝⎭111[(2)(2)]3221222322a b a b a b a b a b a b a b a b ⎛⎫=++++ ⎪++⎝⎭++⎛⎫=++ ⎪++⎝⎭14233⎛≥+= ⎝,当且仅当12a b ==时,等号成立,所以1122a b a b +++有最小值43,故C 选项正确;由222222()1()2()2222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭,当且仅当12a b ==时,等号成立,所以22a b +有最小值12,故D 选项正确. 故选:BCD.11.BCD 【解析】举反例说明选项A 错误;利用不等式的性质证明出选项B ,C 正确;利用作差法证明出选项D 正确.【详解】选项A :当取1a =,1b =-时,11b a <,∴本命题是假命题. 选项B :已知0a b >>,0cd <<,所以110dc->->,∴abd c ->-,故abd c <,∴本命题是真命题. 选项C :222211000a b a b a b >>⇒>>⇒<<,∵0c <,∴22cca b >,∴本命题是真命题. 选项D :111100b aa b a b ab->⇒->⇒>, ∵a b >,∴0b a -<,∴0ab <,∴本命题是真命题. 故选:BCD【点睛】本题考查不等式的性质,考查命题的真假,属于基础题. 12.AB 【解析】根据假命题的否定为真命题可知3x M x ∀∈≤,,又x M x x ∀∈>,,求出命题成立的条件,求交集即可知M 满足的条件.【详解】3x M x ∃∈>,为假命题,3x M x ∴∀∈≤,为真命题,可得(,3]M ⊆-∞,又x M x x ∀∈>,为真命题, 可得(,0)M ⊆-∞, 所以(,0)M ⊆-∞,故选:AB【点睛】本题主要考查了含量词命题的真假,集合的包含关系,属于中档题.13.20,30x x ax ∃≥-+≤【分析】直接利用存在量词写出其否定即可. 【详解】因为命题2:0,30p x x ax ∀≥-+>, 所以其否定p ⌝:20,30x x ax ∃≥-+≤.故答案为:20,30x x ax ∃≥-+≤.14.()5,6【分析】根据充分与必要条件,可得p ,q ,r 中集合的包含关系,再根据区间端点列式求解即可.【详解】易得:610p x ≤≤.记p ,q ,r 中x 的取值构成的集合分别为A ,B ,C ,由于r 是p 的必要不充分条件,r 是q 的充分不必要条件,则AC ,CB ,则016210a a a >⎧⎪≤<⎨⎪>⎩,解得56a <<,即实数a 的取值范围是()5,6.故答案为:()5,615.{}1,2【分析】先求出集合B 中的元素,再由C 的子集有4个,可知集合C 中只有2个元素,然后分1,2a a ==和1a ≠且2a ≠三种情况求解即可.【详解】由2(1)0x a x a -++=,得1x =或x a =, 因为集合C = A B ,且C 的子集有4个, 所以集合C 中只有2个元素, ①当1a =时,{}1B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以1a =满足题意,②当2a =时,{}1,2B =,因为{}1,2A =,所以{}1,2A B ⋃=,即{}1,2C =,所以2a =满足题意, ③当1a ≠且2a ≠时,{}1,B a =, 因为{}1,2A =,所以{}1,2,A B a =,即{}1,2,C a =,不合题意,综上,1a =或2a =,所以实数a 的取值集合为{}1,2, 故答案为:{}1,216.32-【分析】由题知3a <,进而分0<<3a 和0a <两种情况,结合基本不等式求解即可.【详解】解:因为3a b +=,0b >,所以30b a =->,即3a <.当0<<3a 时,11173||99999a ab a b a a b a b a b ++=+=++≥+, 当且仅当34a =时取等号,所以当34a =时,13a a b+取得最小值79;当0a <时,11139999a a b a b a a ba b a b ++=--=---≥-+59=, 当且仅当32a =-时取等号,所以当32a =-时,13a a b+取得最小值59.综上所述,当32a =-时,13a a b+取得最小值.故答案为:32-17.(1)11a b <(2)()()()()3746x x x x ++<++【分析】(1)利用差比较法比较大小. (2)利用差比较法比较大小.(1)11110,0,0,0,b a b a ab b a a b ab a b-<<>-<-=<<.(2)()()()()()()()()4630,737634x x x x x x x x ++=-<-+<+++++.18.(1){|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或;(2)52m ≤. 【分析】(1)由并集的定义及补集的定义进行计算即可; (2)BC C =等价于C B ⊆,按B =∅和B ≠∅讨论,分别列出不等式,解出实数m 的取值范围. (1)∵集合{|15}A x x =<≤,{}|04B x x =<<, ∴{|05}A B x x ⋃=<≤;R(){05}A B x x x ⋃=≤>∣或.(2) 因为BC C =,所以C B ⊆,当B =∅时,则121m m +≥-,即2m ≤;当B ≠∅时,则12110214m m m m +<-⎧⎪+≥⎨⎪-≤⎩,解得522m <≤;综上,实数m 的取值范围为52m ≤.19.(1)8,7a b ==;(2)11(,)(,)87-∞-⋃+∞【分析】(1)由解集得到方程20x ax b -+=的根,利用韦达定理可求,a b .(2)利用(1)中的结果并把分式不等式转化为一元二次不等式可求解集.【详解】(1)因为不等式20x ax b -+<的解集是{}17x x <<. 所以20x ax b -+=的解是1和7.故1771ab +=⎧⎨⨯=⎩,解得 87a b =⎧⎨=⎩. (2)由101ax bx +>-得81071x x +>-,即()()81710x x +->, 解得18x <-或17x >,故原不等式的解集为11(,)(,)87-∞-⋃+∞. 20.(1)64;(2)18.【解析】(1)由280x y xy +-=,得到821x y +=,利用基本不等式,即可求解. (2)由280x y xy +-=,得821x y +=,根据8282()()10y xx y x y x y x y +=++=++,结合不等式,即可求解.【详解】(1)由280x y xy +-=,可得821x y +=,又由0,0x y >>,可得821x y =+≥,当且仅当82x y =,即4x y =时,等号成立,即64xy ≥, 所以xy 的最小值为64. (2)由280x y xy +-=,得821x y +=,因为0,0x y >>,可得8282()()101018y x x y x y x y x y +=++=++≥+, 当且仅当82y xx y =,即12,6x y ==时等号成立,所以x y +的最小值为18.【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”:(1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 21.(1)[0,254] (2){}|2a a <【分析】(1)首先求解集合A ,再求二次函数的值域;(2)首先将不等式,参变分离得2452x x a x -+-<-,转化为求函数的最值,即可求解. (1)2230x x --≤等价于()()2310x x -⋅+≤,.解得312x -≤≤所以3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭. ∴二次函数223253424y x x x ⎛⎫=-++=--+ ⎪⎝⎭, 函数在区间31,2⎡⎤-⎢⎥⎣⎦单调递增,所以当32x =时,y 取最大值为254, 当1x =-时,y 取最小值为0,所以二次函数234y x x =-++.x A ∈的值域是[0,254]. (2)由(1)知3|12A x x ⎧⎫=-≤≤⎨⎬⎩⎭ ∵()24520x a x a +-+->恒成立. 即24520x ax x a +-+->恒成立.∴()2245x a x x -⋅>-+-恒成立. .∵312x -≤≤.∴20x -<.()()222214545122222x x x x x a x x x x x-+-+--+∴<===-+----∵20x ->,∴()1222x x-+≥-.. 当且仅当122x x -=-且312x -≤≤时,即1x =时,等号成立,. ∴2a <,故a 的取值范围为{}|2a a < 22.(1)31a b ==, (2)32a -≤<-或45a <≤ (3)53a ≥-【分析】(1)根据二次函数与对应不等式和方程的关系,利用根与系数的关系,即可求出a 、b 的值;(2)由()1f x b <-得()23220x a x a -+++<,令()()2322h x x a x a =-+++,求出()0h x <解集中恰有3个整数时a 的取值范围即可.(3)由()f x b ≥在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立,化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,,()2111t t g t t t t+-==-+,求出()g t 的最大值,进一步求出实数a 的取值范围;(1)解:因为函数()()2321f x x a x a b =-++++,a ,b R ∈,又()0f x >的解集为{2|x x <或4}x >,所以2,4方程()23210x a x a b -++++=的两根,由()2432421a a b ⎧+=+⎨⨯=++⎩, 解得31;a b ==, (2)由()1f x b <-得()23220x a x a -+++<, 令()()2322h x x a x a =-+++,则()()()()12h x x a x =-+-,知()20h =,故()0h x <解集中的3个整数只能是3,4,5或1-,0,1;①若解集中的3个整数是3,4,5,则516a <+≤,得45a <≤;②解集中的3个整数是1-,0,1;则211a -≤+<-,得32a -≤<-;综上,由①②知,实数a 的取值范围为32a -≤<-或45a <≤. (3)因为函数()()2321f x x a x a b =-++++,a ,b R ∈,由()f x b 在[]31x ∈--,上恒成立,知()23210x a x a -+++在[]31x ∈--,上恒成立, 化简得()()222213122x x x x a x x -+---+=--,设[]253t x =-∈--,, 设()2111t t g t t t t +-==-+,因为在()g t 在[]53--,上单调递增, 即()153133g t --+=--,所以53a ≥-. 23.(1)40吨(2)不会获利,700万元【分析】(1)根据已知条件,结合基本不等式的公式,即可求解.(2)当3050x ≤≤时,该工厂获利S ,则()2220401600(30)700S x x x x =--+=---,再结合二次函数的性质,即可求解. (1)由题意可得,二氧化碳的平均处理成本1600()40yP x x x x==+-,3050x ≤≤,当3050x ≤≤时,1600()404040P x x x =+-≥=, 当且仅当1600x x=,即40x =等号成立, 故()P x 取得最小值为(40)40P =,故当处理量为40吨时,每吨的平均处理成本最少. (2)当3050x ≤≤时,该工厂获利S , 则()2220401600(30)700S x xx x =--+=---,当3050x ≤≤时,max 7000S =-<,故该工厂不会获利,国家至少需要补贴700万元,该工厂不会亏损.。

2024-2025学年福州市一中高一数学上学期10月考试卷及答案解析

2024-2025学年福州市一中高一数学上学期10月考试卷及答案解析

2024-2025学年第一学期福州第一中学第一次月考高一数学(完卷时间:120分钟;满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.1. 已知全集(](]0,4,2,4U U A B A C B =⋃=⋂=,则集合B =( )A. (],2∞- B. (),2∞- C. (]0,2 D. ()0,2【答案】C【解析】【分析】集合运算可得()=I U U B C A C B ,即可求出结果【详解】(0,4]A B = ,(2,4]=I U A C B 所以()(0,2]==I U U B C A C B 故选:C2. 某城新冠疫情封城前,某商品的市场需求量y 1(万件),市场供应量y 2(万件)与市场价格x (百元/件)分别近似地满足下列关系:150y x =-+,2210y x =-,当12y y =时的需求量称为平衡需求量,解封后,政府为尽快恢复经济,刺激消费,若要使平衡需求量增加6万件,政府对每件商品应给予消费者发放的消费券补贴金额是( )A. 6百元B. 8百元C. 9百元D. 18百元【答案】C【解析】【分析】求出封城前平衡需求量,可计算出解封后的需求量,利用需求量计算价格差距即为补贴金额.【详解】封城前平衡需求量时的市场价格x 为5021020x x x -+=-⇒=,平衡需求量为30,平衡价格为20,解封后若要使平衡需求量增加6万件,则11365014x x =-+⇒=,223621023x x =-⇒=,则补贴金额为23149-=.故选:C.3. 设[]x 表示不超过x 的最大整数,对任意实数x ,下面式子正确的是( )A. []x = |x|B. []xC. []x >-xD. []x > 1x -【答案】D 的【解析】【详解】分析:[]x 表示不超过x 最大整数,表示向下取整,带特殊值逐一排除.详解:设 1.5x =,[]1x =, 1.5x =1.5=,10.5x -=,排除A 、B ,设 1.5x =-,[]2x =-, 1.5x -=,排除C .故选D点睛:比较大小,采用特殊值法是常见方法之一.4. 已知函数2943,0()2log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数(())y f f x =的零点所在区间为( )A. (1,0)- B. 73,2⎛⎫ ⎪⎝⎭ C. 7,42⎛⎫ ⎪⎝⎭ D. (4,5)【答案】B【解析】【分析】当0x …时,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,根据()f x 为增函数,且(3)0f =可得函数(())y f f x =的零点为3()2log 12x g x x =+-的零点,根据零点存在性定理可得结果.【详解】当0x …时,()430x f x =+>,()43(())43430x f x f f x +=+=+=无解,此时,(())y f f x =无零点;当0x >时,293()2log 92log 9x x f x x x =+-=+-为增函数,且(3)0f =.令(())0(3)f f x f ==,得3()2log 93x f x x =+-=,即32log 120x x +-=,令3()2log 12x g x x =+-,则函数(())y f f x =的零点就是3()2log 12x g x x =+-的零点,因为()3332log 31230g =+-=-<,72377()2log 1222g =+-37log 1202=+->,所以函数(())y f f x =的零点所在区间为73,2⎛⎫ ⎪⎝⎭.故选:B.【点睛】本题考查了分段函数的零点问题,考查了根据零点存在性定理判断零点所在的区间,考查了根据的解析式判断函数的单调性,属于中档题.5. 设函数()2,11,1x a x f x x x -⎧≤⎪=⎨+>⎪⎩,若()1f 是f(x)的最小值,则实数a 的取值范围为( )A [)1,2- B. []1,0- C. []1,2 D. [)1,+∞【答案】C【解析】【分析】由1x >,求得()f x 的范围;再求得||()2x a f x -=的单调性,讨论1a <,1a …时函数()f x 在1x …的最小值,即可得到所求范围.【详解】解:函数2,1()1,1x a x f x x x -⎧⎪=⎨+>⎪⎩…,若1x >,可得()12f x x =+>,由()1f 是()f x 的最小值,由于||()2x a f x -=可得在x a >单调递增,在x a <单调递减,若1a <,1x …,则()f x 在x a =处取得最小值,不符题意;若1a …,1x …,则()f x 在1x =处取得最小值,且122a -…,解得12a ……,综上可得a 的范围是[1,2].故选:C .【点睛】本题考查分段函数的最值的求法,注意运用分类讨论思想方法,以及指数函数的单调性,考查运算能力,属于中档题.6. 已知函数()f x 的定义域为R ,且()()()()0f x y f x y f x f y ++--=,()11f -=,则( )A. ()00f = B. ()f x 为奇函数C. ()81f =- D. ()f x 的周期为3【答案】C【解析】【分析】令 0x y ==,则得(0)2f =,再令0x =即可得到奇偶性,再令1y =-则得到其周期性,最后根.据其周期性和奇偶性则得到()8f 的值.【详解】令 0x y ==, 得()()22000f f -=得 (0)0f = 或 (0)2f =,当 (0)0f = 时,令0y =得 ()0f x = 不合题意, 故 (0)2f =, 所以 A 错误 ;令 0x = 得 ()()f y f y =-, 且()f x 的定义域为R ,故 ()f x 为偶函数, 所以B 错误 ;令 1y =-, 得 (1)(1)()f x f x f x -++=, 所以 ()(2)(1)f x f x f x ++=+,所以 (2)(1)f x f x +=--, 则(3)()f x f x +=-,则()(6)(3)f x f x f x +=-+=,所以 ()f x 的周期为 6 , 所以 D 错误 ;令 1x y ==, 得 2(2)(0)(1)f f f +=, 因为()()111f f -==所以 (2)1f =-,所以 ()(8)21f f ==-, 故C 正确.故选:C 【点睛】关键点点睛:本题的关键是利用赋值法得到其奇偶性和周期性,并依此性质求出函数值即可.7. 函数()(),f x g x 的定义域均为R ,且()()()()4488f x g x g x f x +-=--=,,()g x 关于4x =对称,()48g =,则()1812m f m =∑的值为( )A. 24- B. 32- C. 34- D. 40-【答案】C【解析】【分析】利用已知、方程、函数的对称性、周期性进行计算求解.【详解】因为()()44f xg x +-=①, ()()88g x f x --=②,对于②式有:()()88g x f x +-=③,由①+③有:()()8412g x g x ++-=,即()()1212g x g x +-=④,又()g x 关于4x =对称,所以()()8g x g x =-⑤,由④⑤有:()()81212g x g x -+-=,即()()81212g x g x +++=,()()4812g x g x +++=,两式相减得:()()1240g x g x +-+=,即()()124g x g x +=+,即()()8g x g x +=,因为函数()g x 的定义域为R ,所以()g x 的周期为8,又()48g =,所以()()()412208g g g ==== ,由④式()()1212g x g x +-=有:()66g =,.所以()()()614226g g g ==== ,由()48g =,()()1212g x g x +-=有:()84g =,所以()()()816244g g g ==== ,由⑤式()()8g x g x =-有:()()266g g ==,又()()8g x g x +=,所以()()1026g g ==,由②式()()88g x f x --=有:()()88f x g x =+-,所以()()()()()()()18122436101244818m f m f f f g g g ==+++=+++-⨯∑ ()686446881834=+++⨯++-⨯=-,故A ,B ,D 错误.故选:C.8. 已知函数()()()lg 2240f x x a x a a =+--+>,若有且仅有两个整数1x 、2x 使得()10f x >,()20f x >,则a 的取值范围是( )A. (]0,2lg 3- B. (]2lg 3,2lg 2--C. (]2lg 2,2- D. (]2lg 3,2-【答案】A【解析】【分析】由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,然后利用数形结合思想得出()20lg 33224a a a ->⎧⎨≤-+-⎩以及0a >,由此可得出实数a 的取值范围.【详解】由()()lg 2240f x x a x a =+--+>,得()lg 224x a x a >-+-.由题意可知,满足不等式()lg 224x a x a >-+-的解中有且只有两个整数,即函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点.如下图所示:由图象可知,由于()()()22422y a x a a x =-+-=--,该直线过定点()2,0.要使得函数lg y x =在直线()224y a x a =-+-上方的图象中有且只有两个横坐标为整数的点,则有()20lg 33224a a a ->⎧⎨≤-+-⎩,即22lg 3a a <⎧⎨-≥⎩,解得2lg 3a ≤-,又0a >,所以,02lg 3a <≤-,因此,实数a 的取值范围是(]0,2lg 3-.故选A.【点睛】本题考查函数不等式的求解,解题的关键利用数形结合思想找到一些关键点来得出不等关系,考查数形结合思想的应用,属于难题.二、多项选择题:本题共3小题,每小题6分,共18分.9. 下列命题正确的是( )A. “1a >”是“21a >”的充分不必要条件B. “M N >”是“lgM lgN >”的必要不充分条件C. 命题“2,10x R x ∀∈+<”的否定是“x R ∃∈,使得210x +<”D. 设函数()f x 的导数为()f x ',则“0()0f x '=”是“()f x 在0x x =处取得极值”的充要条件【答案】AB【解析】【分析】根据定义法判断是否为充分、必要条件,由全称命题的否定是∀→∃,否定结论,即可知正确的选项.【详解】A 选项中,211a a >⇒>,但211a a >⇒>或1a <-,故A 正确;B 选项中,当0M N >>时有lgM lgN >,而lgM lgN >必有0M N >>,故B 正确;C 选项中,否定命题为“x R ∃∈,使得210x +≥”,故C 错误;D 选项中,0()0f x '=不一定有()f x 在0x x =处取得极值,而()f x 在0x x =处取得极值则0()0f x '=,故D 错误;故选:AB【点睛】本题考查了充分、必要条件的判断以及含特称量词命题的否定,属于简单题.10. 若函数()f x 的定义域为R ,且()()2()()f x y f x y f x f y ++-=,(2)1f =-,则( )A. (0)0f =B. ()f x 为偶函数C. ()f x 的图象关于点(1)0,对称 D. 301()1i f i ==-∑【答案】BCD【解析】【分析】对于A ,令2,0x y ==,可得(0)1f =;对于B ,令0,x y x ==,可得()()f x f x =-,即可判断;对于C ,令1x y ==得f (1)=0,再令1,x y x ==即可判断;对于D ,根据条件可得()()2f x f x =--,继而()()2f x f x =-+,进一步分析可得函数周期为4,分析求值即可.【详解】对于A ,令2,0x y ==,则()()()22220f f f =⋅,因为(2)1f =-,所以()220f -=-,则(0)1f =,故A 错误;对于B ,令0,x y x ==,则()()()2(0)()2f x f x f f x f x +-==,则()()f x f x =-,故B 正确;对于C ,令1x y ==得,()()()220210f f f +==,所以f (1)=0,令1,x y x ==得,(1)(1)2(1)()0f x f x f f x ++-==,则()f x 的图象关于点(1)0,对称,故C 正确;对于D ,由(1)(1)0f x f x ++-=得()()2f x f x =--,又()()f x f x =-,所以()()2f x f x -=--,则()()2f x f x =-+,()()24f x f x +=-+,所以()()4f x f x =+,则函数()f x 的周期为4,又f (1)=0,(2)1f =-,则()()()3310f f f =-==,()()401f f ==,则f (1)+f (2)+f (3)+f (4)=0,所以()()301()12701i f i f f ==++⨯=-∑,故D 正确,故选:BCD.11. 已知函数()y f x =是R 上的奇函数,对于任意x R ∈,都有(4)()(2)f x f x f +=+成立,当[)0,2x ∈时,()21=-x f x ,给出下列结论,其中正确的是( )A. (2)0f =B. 点(4,0)是函数()y f x =的图象的一个对称中心C. 函数()y f x =在[6,2]--上单调递增D. 函数()y f x =在[6,6]-上有3个零点【答案】AB【解析】【分析】由(4)()(2)f x f x f +=+,赋值2x =-,可得(4)()f x f x +=,故A 正确;进而可得(4,0)是对称中心,故B 正确;作出函数图象,可得CD 不正确.【详解】在(4)()(2)f x f x f +=+中,令2x =-,得(2)0f -=,又函数()y f x =是R 上的奇函数,所以(2)(2)0f f =-=,(4)()f x f x +=,故()y f x =是一个周期为4的奇函数,因(0,0)是()f x 的对称中心,所以(4,0)也是函数()y f x =的图象的一个对称中心,故A 、B 正确;作出函数()f x 的部分图象如图所示,易知函数()y f x =在[6,2]--上不具单调性,故C 不正确;函数()y f x =在[6,6]-上有7个零点,故D 不正确.故选:AB【点睛】本题考查了函数的性质,考查了逻辑推理能力,属于基础题目.三、填空题:本大题共3小题,每小题5分,共15分12. 设函数()()x x f x e ae a R -=+∈,若()f x 为奇函数,则a =______.【答案】-1【解析】【分析】利用函数为奇函数,由奇函数的定义即可求解.【详解】若函数()x xf x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-.故答案为:-1【点睛】本题主要考查函数奇偶性的应用,需掌握奇偶性的定义,属于基础题.13. 422log 30.532314964log 3log 2225627--⎛⎫⎛⎫⎛⎫⋅-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=______【答案】1-【解析】【分析】利用指数幂的运算性质和对数的运算性质计算即可求解.【详解】原式=4123232log 3494122563-⨯⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=42log 379121616-++131=-+1=-.故答案为:1-.14. 设m 为实数,若{}22250()|{30()|250x y x y x x y x y mx y -+≥⎧⎫⎪⎪-≥⊆+≤⎨⎬⎪⎪+≥⎩⎭,,,则m 的取值范围是 .【答案】403m ≤≤【解析】【详解】如图可得440033m m -≤-≤∴≤≤四、解答题:本题共5小题,共77分.15. 阅读下面题目及其解答过程.已知函数23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)求f (-2)与f (2)的值;(2)求f(x)的最大值.解:(1)因为-2<0,所以f (-2)= ① .因为2>0,所以f (2)= ② .(2)因为x≤0时,有f(x)=x +3≤3,而且f (0)=3,所以f(x)在(,0]-∞上的最大值为 ③ .又因为x >0时,有22()2(1)11f x x x x =-+=--+…,而且 ④ ,所以f(x)在(0,+∞)上最大值为1.综上,f(x)的最大值为 ⑤ .以上题目的解答过程中,设置了①~⑤五个空格,如下的表格中为每个空格给出了两个选项,其中只有一个正确,请选出你认为正确的选项,并填写在答题卡的指定位置(只需填写“A”或“B”).空格序号选项①A .(-2)+3=1 B .2(2)2(2)8--+⨯-=-②A.2+3=5 B .22220-+⨯=③A.3B.0④A .f (1)=1 B .f (1)=0的⑤ A.1 B.3【答案】(1)①A ; ②B ;(2)③A ; ④A ; ⑤B .【解析】【分析】依题意按照步骤写出完整的解答步骤,即可得解;【详解】解:因为23,0()2,0x x f x x x x +⎧=⎨-+>⎩…,(1)因为20-<,所以()2231f -=-+=,因为20>,所以()222220f =-+⨯=(2)因为0x ≤时,有()33f x x =+≤,而且()03f =,所以()f x 在(,0]-∞上的最大值为3.又因为0x >时,有22()2(1)11f x x x x =-+=--+…,而且()11f =,所以()f x 在(0,+∞)上的最大值为1.综上,()f x 的最大值为3.16. 如图,某小区要在一个直角边长为30m 的等腰直角三角形空地上修建一个矩形花园.记空地为ABC V ,花园为矩形DEFG .根据规划需要,花园的顶点F 在三角形的斜边BC 上,边DG 在三角形的直角边AC 上,顶点G 到点C 的距离是顶点D 到点A 的距离的2倍.(1)设花园的面积为S (单位:2m ),AD 的长为x (单位:m ),写出S 关于x 的函数解析式;(2)当AD 的长为多少时,花园的面积最大?并求出这个最大面积.【答案】(1)()()2303,010S x x x =-<<(2)当AD 的长为5m 时,花园的面积最大,最大面积为1502m .【解析】【分析】(1)根据矩形面积即可求解,(2)根据基本不等式即可求解.【小问1详解】,AD x =则2CG GF x ==,302303GD x x x =--=-,所以()()2303,010S GD GF x x x =⋅=-<<【小问2详解】()()()233032223033303150332x x S x x x x +-⎡⎤=-=⋅-≤=⎢⎥⎣⎦,当且仅当3303x x =-,即5x =时等号成立,故当AD 的长为5m 时,花园的面积最大,最大面积为1502m .17. 已知定义在R 上的奇函数f (x )满足:0x ≥时,21()21x x f x -=+.(1)求()f x 的表达式;(2)若关于x 的不等式()2(23)10f ax f ax ++->恒成立,求a 的取值范围.【答案】(1)21()21x x f x -=+ (2)(]4,0-【解析】【分析】(1)根据函数的奇偶性求得当0x <时的解析式,即可得到结果;(2)根据定义证明函数()f x 在R 上单调递增,然后再结合()f x 是定义在R 上的奇函数,化简不等式,求解即可得到结果.【小问1详解】设0x <,则0x ->,因为0x ≥时,21()21x x f x -=+,所以()21122112x xx xf x -----==++又因为()f x 是定义在R 上的奇函数,即()()12211221x x x x f x f x --=--=-=++所以当0x <时,21()21x x f x -=+综上,()f x 的表达式为21()21x x f x -=+【小问2详解】由(1)可知,212()12121x x x f x -==-++,设在R 上任取两个自变量12,x x ,令12x x <则()()121222112121⎛⎫⎛⎫-=--- ⎪ ⎪++⎝⎭⎝⎭x x f x f x ()()()1221212222221212121x x x x x x -=-=++++因为12x x <,则12220x x -<,所以()()()()12120f x f x f x f x -<⇒<所以函数()f x 在R 上单调递增.即()()22(23)10(23)1f ax f ax f ax f ax ++->⇒+>--,由()f x 是定义在R 上的奇函数,可得()()2211f ax f ax ---=即()21(23)f ax f ax >-+,由函数()f x 在R 上单调递增,可得22231240ax ax ax ax +>-⇒--<恒成立,当0a =时,即40-<,满足;当0a ≠时,即20Δ4160a a a <⎧⎨=+<⎩,解得40a -<<综上,a 的取值范围为(]4,0-18. 已知0,a b a c d >≥≥≥,且ab cd ≥.(1)请给出,,,a b c d 的一组值,使得2()a b c d ++≥成立;(2)证明不等式a b c d ++≥恒成立.【答案】(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明见解析【解析】【分析】(1)找到一组符合条件的值即可;(2)由a c d ≥≥可得()()0a c a d --≥,整理可得2()a cd c d a ++≥,两边同除a 可得cd a c d a ++≥,再由ab cd ≥可得cd b a ≥,两边同时加a 可得cd a b a a+≥+,即可得证.【详解】解析:(1)2,1,1,1a b c d ====-(答案不唯一)(2)证明:由题意可知,0a ≠,因为a c d ≥≥,所以()()0a c a d --≥.所以2()0a c d a cd -++≥,即2()a cd c d a ++≥.因为0a b >≥,所以cd a c d a++≥,因为ab cd ≥,所以cd b a≥,所以cd a b a c d a +++≥≥.【点睛】考查不等式的证明,考查不等式的性质的应用.19. 对于非负整数集合S (非空),若对任意,x y S ∈,或者x y S +∈,或者x y S -∈,则称S 为一个好集合.以下记S 为S 的元素个数.(1)给出所有的元素均小于3的好集合.(给出结论即可)(2)求出所有满足4S =的好集合.(同时说明理由)(3)若好集合S 满足2019S =,求证:S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【答案】(1){0},{0,1},{0,2},{0,1,2}.(2){0,,,}b c b c +;证明见解析.(3)证明见解析.【解析】【分析】(1)根据好集合的定义列举即可得到结果;(2)设{},,,S a b c d =,其中a b c d <<<,由0S ∈知0a =;由0d c S <-∈可知d c c -=或d c b -=,分别讨论两种情况可的结果;(3)记1009n =,则21S n =+,设{}1220,,,,n S x x x =⋅⋅⋅,由归纳推理可求得()1i x im i n =≤≤,从而得到22n M x nm ==,从而得到S ,可知存在元素m 满足题意.【详解】(1){}0,{}0,1,{}0,2,{}0,1,2.(2)设{},,,S a b c d =,其中a b c d <<<,则由题意:d d S +∉,故0S ∈,即0a =,考虑,c d ,可知:0d c S <-∈,d c c ∴-=或d c b -=,若d c c -=,则考虑,b c ,2c b c c d <+<= ,c b S ∴-∈,则c b b -=,{},,2,4S a b b b ∴=,但此时3b ,5b S ∉,不满足题意;若d c b -=,此时{}0,,,S b c b c =+,满足题意,{0,,,}S b c b c ∴=+,其中,b c 为相异正整数.(3)记1009n =,则21S n =+,首先,0S ∈,设{}1220,,,,n S x x x =⋅⋅⋅,其中1220n x m x x M <=<<⋅⋅⋅<=,分别考虑M 和其他任一元素i x ,由题意可得:i M x -也在S 中,而212210,n n M x M x M x M --<-<-<⋅⋅⋅<-<,()21i n i M x x i n -∴-=≤≤,2n M x ∴=,对于1i j n ≤<≤,考虑2n i x -,2n j x -,其和大于M ,故其差22n i n j j i x x x x S ---=-∈,特别的,21x x S -∈,2122x x m ∴==,由31x x S -∈,且1313x x x x <-<,3213x x x m ∴=+=,以此类推:()1i x im i n =≤≤,22n M x nm ∴==,此时(){}0,,2,,,1,,2S n m nm n m nm =⋅⋅⋅+⋅⋅⋅,故S 中存在元素m ,使得S 中所有元素均为m 的整数倍.【点睛】本题考查集合中的新定义问题的求解,关键是明确已知中所给的新定义的具体要求,根据集合元素的要求进行推理说明,对于学生分析和解决问题能力、逻辑推理能力有较高的要求,属于较难题.。

2023-2024学年北京市东城区高一(上)期末数学试卷【答案版】

2023-2024学年北京市东城区高一(上)期末数学试卷【答案版】

2023-2024学年北京市东城区高一(上)期末数学试卷一、选择题:共10小题,每小题3分,共30分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A=N,B={x|﹣2<x<2},则A∩B=()A.{1}B.{0,1}C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2}2.下列函数中,与y=x﹣1是同一函数的是()A.y=√x33−1B.y=√(x−1)2C.y=x 2−1x+1D.y=√x2−13.下列函数在定义域内既是奇函数又是增函数的是()A.f(x)=x3B.f(x)=2x C.f(x)=−1xD.f(x)=tan x 4.下列命题中正确的是()A.若a>b,则1a<1bB.若a<b,则ac2<bc2C.若a2>b2,则a>b D.若ac2>bc2,则a>b5.若sinα=12,α∈(π2,π),则cos(π﹣α)的值为()A.−√32B.−12C.√32D.126.下列函数中,满足对任意的x1,x2∈(0,+∞),都有f(x1x2)=f(x1)f(x2)的是()A.f(x)=2x2B.f(x)=lnxC.f(x)=x−12D.f(x)=﹣x37.已知a=3﹣0.1,b=−log135,c=log√32,则()A.a<b<c B.b<c<a C.c<b<a D.a<c<b8.“角α与β的终边关于直线y=x对称”是“sin(α+β)=1”的()A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件9.某品牌可降解塑料袋经自然降解后残留量y与时间t(单位:年)之间的关系为y=y0•e kt,其中y0为初始量,k为降解系数.已知该品牌塑料袋2年后残留量为初始量的75%.若该品牌塑料袋需要经过n年,使其残留量为初始量的10%,则n的值约为(参考数据:lg2≈0.301,lg3≈0.477)()A.20B.16C.12D.710.已知f (x )是定义在[﹣5,5]上的偶函数,当﹣5≤x ≤0时,f (x )的图象如图所示,则不等式f(x)sinx>0的解集为( )A .(﹣π,﹣2)∪(0,2)∪(π,5]B .(﹣π,﹣2)∪(π,5]C .[﹣5,﹣π)∪(﹣2,0)∪(2,π)D .[﹣5,﹣2)∪(π,5] 二、填空题:共6小题,每小题4分,共24分。

(完整版)高一数学必修一试卷及答案

(完整版)高一数学必修一试卷及答案

高一数学必修一试卷及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填入答题卡中)1.已知全集{}{}{}()====N M C ,N M U U I 则3,2,2.1,0,4,3,2,1,0 A. {}2 B. {}3 C. {}432,,D. {}43210,,,。

2.下列各组两个集合A 和B,表示同一集合的是A. A={}π,B={}14159.3 B. A={}3,2,B={})32(, C. A={}π,3,1,B={}3,1,-π D. A={}N x x x ∈≤<-,11,B={}1 3. 函数2x y -=的单调递增区间为A .]0,(-∞B .),0[+∞C .),0(+∞D .),(+∞-∞ 4. 下列函数是偶函数的是A. x y =B. 322-=x y C. 21-=xy D. ]1,0[,2∈=x x y5.已知函数()则,x x x x x f ⎩⎨⎧>+-≤+=1,31,1f(2) =A.3 B,2 C.1 D.06.当10<<a 时,在同一坐标系中,函数x y a y a xlog ==-与的图象是.A B C D 7.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是A.(-2,6)B.[-2,6]C. {}6,2-D.()()∞+-∞-.62,Y 8. 若函数 ()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )A 、4 B 、2 C 、14 D 、129.三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是A b c a <<. B. c b a << C. c a b << D.a c b << 10. 已知奇函数()f x 在0x ≥时的图象如图所示,则不等式()0xf x <的解集为A.(1,2) B.(2,1)-- C.(2,1)(1,2)--U D.(1,1)-11.设()833-+=x x f x,用二分法求方程()2,10833∈=-+x x x在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定 12.计算机成本不断降低,若每隔三年计算机价格降低31,则现在价格为8100元的计算机9年后价格可降为A.2400元B.900元C.300元D.3600元二、填空题(每小题4分,共16分.)13.若幂函数y =()x f 的图象经过点(9,13), 则f(25)的值是_________- 14. 函数()()1log 143++--=x x xx f 的定义域是 15. 给出下列结论(1)2)2(44±=-(2)331log 12log 22-=21 (3) 函数y=2x-1, x ∈ [1,4]的反函数的定义域为[1,7 ](4)函数y=x12的值域为(0,+∞) 其中正确的命题序号为16. 定义运算()() ,.a ab a b b a b ≤⎧⎪*=⎨>⎪⎩ 则函数()12x f x =*的最大值为 .三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤) 17. (12分)已知集合{|240}A x x =-<,{|05}B x x =<<, 全集U R =,求:(Ⅰ)A B I ; (Ⅱ)()U C A B I .18. 计算:(每小题6分,共12分)(1) 36231232⨯⨯19.(12分)已知函数1()f x x x=+,(Ⅰ) 证明()f x 在[1,)+∞上是增函数;(Ⅱ) 求()f x 在[1,4]上的最大值及最小值.20. 已知A 、B 两地相距150千米,某人开车以60千米/小时的速度从A 地到B 地,在B 地停留一小时后,再以50千米/小时的速度返回A 地.把汽车与A 地的距离y (千米)表示为时间t (小时)的函数(从A 地出发时开始),并画出函数图象. (14分).18lg 7lg 37lg214lg )2(-+-21.(本小题满分12分)二次函数f (x )满足且f (0)=1.(1) 求f (x )的解析式;(2) 在区间上,y=f(x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.22.已知函数()f x 对一切实数,x y R ∈都有()()f x y f y +-=(21)x x y ++成立,且(1)0f =. (Ⅰ)求(0)f 的值; (Ⅱ)求()f x 的解析式;(Ⅲ)已知a R ∈,设P :当102x <<时,不等式()32f x x a +<+ 恒成立; Q :当[2,2]x ∈-时,()()g x f x ax =-是单调函数。

(完整版)高一上学期期末数学试卷(含答案)

(完整版)高一上学期期末数学试卷(含答案)

高一上学期期末数学试卷一、选择题(每小题5分,共50分)1.(5分)设集合A={x|﹣4<x<3},B={x|x≤2},则A∪B=()A.(﹣4,3)B.(﹣4,2]C.(﹣∞,2]D.(﹣∞,3)2.(5分)设,则tan(π+x)等于()A.0B.C.1D.3.(5分)函数y=log3(x﹣1)+的定义域为()A.(1,2]B.(1,+∞)C.(2,+∞)D.(﹣∞,0)4.(5分)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表x123456y124.435﹣7414.5﹣56.7﹣123.6则函数y=f(x)在区间上的零点至少有()A.2个B.3个C.4个D.5个5.(5分)角α满足条件sinα•cosα>0,sinα+cosα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限6.(5分)如图所示,在菱形ABCD中,∠BAD=120°,则下列说法中错误说法的个数是()①图中所标出的向量中与相等的向量只有1个(不含本身)②图中所标出的向量与的模相等的向量有4个(不含本身)③的长度恰为长度的倍④与不共线.A.4B.3C.1D.07.(5分)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)=()A.﹣x﹣1B.﹣x+1C.x+1D.x﹣18.(5分)把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象正好关于y轴对称,则φ的最小值为()A .πB .πC.D .π9.(5分)函数y=a x ﹣(a>0,a≠1)的图象可能是()A.B.C.D.10.(5分)已知函数f(x)=,若对任意x x≠x2,都有<0成立,则a的取值范围是()A.(0,]B .(,1)C.(1,2)D.(﹣1,2)二、填空题(每小题4分,共20分)11.(4分)已知函数f(x)=,则f(0)+f(1)=.12.(4分)如果角α的终边过点(2sin30°,﹣2cos30°),则sinα的值等于.13.(4分)设a=log33,b=log43,c=,则a,b,c之间的大小关系是.14.(4分)已知表示“向东方向航行1km”,表示“向南方向航行1km”,则﹣表示“”15.(4分)当0<x <时,函数f(x)=的最大值是.三、解答题16.(8分)已知集合A={x|﹣2≤x≤5},B={x|m﹣1≤x≤m+1}(1)若m=5,求A∩B(2)若B⊆A,求实数m的取值范围.17.(8分)已知=(6,1),=(x,8),=(﹣2,﹣3)(1)若,求x的值(2)若x=﹣5,求证:.18.(10分)某桶装水经营部每天的房租、员工工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如表所示:销售价格/元6789101112日均销售量/桶480440400360320280240(1)设经营部在进价基础上增加x元进行销售,则此时的日均销售量为多少桶?(2)在(1)中,设日均销售净利润(除去固定成本)为y元,试求y的最大值及其对应的销售单价.19.(10分)设=(1,),=(cos2x,sin2x),f(x)=2(1)求函数f(x)的单调递增区间(2)若x,求函数f(x)的最大值、最小值及其对应的x的值.20.(14分)若函数f(x)在定义域D内某区间1上是增函数,而F(x)=在1上是减函数,则称寒素y=f(x)在1上是“弱增函数”(1)请分析判断函数f(x)=x﹣4,g(x)=﹣x2+4x在区间(1,2)上是否是“弱增函数”,并简要说明理由(2)若函数h(x)=x2﹣(sinθ﹣)x﹣b(θ,b是常数),在(0,1]上是“弱增函数”,请求出θ及b应满足的条件.高一上学期期末数学试卷一、选择题(每小题5分,共50分)1.(5分)设集合A={x|﹣4<x<3},B={x|x≤2},则A∪B=()A.(﹣4,3)B.(﹣4,2]C.(﹣∞,2]D.(﹣∞,3)考点:并集及其运算.专题:集合.分析:直接利用并集的运算法则求解即可.解答:解:集合A={x|﹣4<x<3},B={x|x≤2},则A∪B={x|﹣4<x<3}∪{x|x≤2}={x|x<3},故选:D.点评:本题考查集合的并集的求法,考查并集的定义以及计算能力.2.(5分)设,则tan(π+x)等于()A.0B.C.1D.考点:运用诱导公式化简求值.专题:计算题.分析:先利用诱导公式化简tan(π+x),将x的值代入,求出正切值.解答:解:∵tan(π+x)=tanx∴时,tan(π+x)=tan=故选B.点评:给角的值求三角函数值时,应该先利用诱导公式化简三角函数,在将x的值代入求出值.3.(5分)函数y=log3(x﹣1)+的定义域为()A.(1,2]B.(1,+∞)C.(2,+∞)D.(﹣∞,0)考点:函数的定义域及其求法.专题:函数的性质及应用.分析:由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组,求解x的取值集合得答案.解答:解:由,解得:1<x≤2.∴函数y=log3(x﹣1)+的定义域为(1,2].故选:A.点评:本题考查了函数的定义域及其求法,考查了不等式组的解法,是基础题.4.(5分)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表x123456y124.435﹣7414.5﹣56.7﹣123.6则函数y=f(x)在区间上的零点至少有()A.2个B.3个C.4个D.5个考点:函数的零点.专题:函数的性质及应用.分析:根据根的存在定理,判断函数值的符号,然后判断函数零点个数即可.解答:解:依题意,∵f(2)>0,f(3)<0,f(4)>0,f(5)<0,∴根据根的存在性定理可知,在区间(2,3)和(3,4)及(4,5)内至少含有一个零点,故函数在区间上的零点至少有3个,故选B.点评:本题主要考查函数零点个数的判断,用二分法判断函数的零点的方法,比较基础.5.(5分)角α满足条件sinα•cosα>0,sinα+cosα<0,则α在()A.第一象限B.第二象限C.第三象限D.第四象限考点:三角函数值的符号.专题:三角函数的图像与性质.分析:sinα•cosα>0得到sinα和cosα同号;再结合sinα+cosα<0即可得到sinα<0,cosα<0;进而得到结论.解答:解:因为sinα•cosα>0∴sinα和cosα同号.又∵sinα+cosα<0∴sinα<0,cosα<0.即α的正弦和余弦值均为负值.故α的终边在第三象限.故选:C.点评:本题主要考查三角函数值的符号和象限角.是对基础知识的考查,要想做对,需要熟练掌握三角函数值的符号的分布规律.6.(5分)如图所示,在菱形ABCD中,∠BAD=120°,则下列说法中错误说法的个数是()①图中所标出的向量中与相等的向量只有1个(不含本身)②图中所标出的向量与的模相等的向量有4个(不含本身)③的长度恰为长度的倍④与不共线.A.4B.3C.1D.0考点:命题的真假判断与应用.专题:平面向量及应用;简易逻辑.分析:①利用向量相等与菱形的性质即可判断出正误;②利用菱形的性质、模相等的定义即可判断出正误;③利用菱形的性质、直角三角形的边角关系即可判断出正误.④利用向量共线定理即可判断出与共线,即可判断出正误.解答:解:①图中所标出的向量中与相等的向量只有1个,(不含本身),正确;②图中所标出的向量与的模相等的向量有4个,,,(不含本身),正确;③利用菱形的性质、直角三角形的边角关系可得:的长度恰为长度的倍,正确.④与共线,因此不正确.因此说法中错误说法的个数是1.故选:C.点评:本题考查了向量相等、菱形的性质、模相等的定义、直角三角形的边角关系、向量共线定理、简易逻辑的判定,考查了推理能力,属于基础题.7.(5分)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)=()A.﹣x﹣1B.﹣x+1C.x+1D.x﹣1考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:根据题意,x<0时,﹣x>0,求出f(﹣x)的表达式,再利用奇函数求出f(x)的表达式.解答:解:∵函数f(x)是定义域为R的奇函数,且x>0时,f(x)=﹣x+1,∴当x<0时,﹣x>0,∴f(﹣x)=﹣(﹣x)+1=x+1;又f(﹣x)=﹣f(x),∴﹣f(x)=x+1,∴f(x)=﹣x﹣1.故选:A.点评:本题考查了利用函数的奇偶性求函数解析式的应用问题,是基础题目.8.(5分)把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象正好关于y轴对称,则φ的最小值为()A .πB.πC.D .π考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.解答:解:把函数y=cos(x+π)的图象向右平移φ(φ>0)个单位,所得到的函数图象对应的函数的解析式为y=cos(x﹣φ+),由于所得图象正好关于y轴对称,则﹣φ+=kπ,k∈z,即φ=﹣kπ,故φ的最小值为,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.9.(5分)函数y=a x ﹣(a>0,a≠1)的图象可能是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:讨论a与1的大小,根据函数的单调性,以及函数恒过的定点进行判定即可.解答:解:函数y=a x ﹣(a>0,a≠1)的图象可以看成把函数y=a x 的图象向下平移个单位得到的.当a>1时,函数y=a x ﹣在R上是增函数,且图象过点(﹣1,0),故排除A,B.当1>a>0时,函数y=a x ﹣在R上是减函数,且图象过点(﹣1,0),故排除C,故选D.点评:本题主要考查了指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于基础题.10.(5分)已知函数f(x)=,若对任意x x≠x2,都有<0成立,则a的取值范围是()A.(0,]B.(,1)C.(1,2)D.(﹣1,2)考点:函数单调性的性质.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:由条件可得,f(x)在R上是单调递减函数,则0<a<1①,a﹣2<0,即a<2②,a0≥(a﹣2)×0+2a③,求出它们的交集即可.解答:解:由于对任意x1≠x2,都有<0成立,则f(x)在R上是单调递减函数,当x<0时,y=a x为减,则0<a<1;①当x≥0时,y=(a﹣2)x+5a为减,则a﹣2<0,即a<2;②由于f(x)在R上是单调递减函数,则a0≥(a﹣2)×0+2a,解得a ≤.③由①②③得,0<a ≤.故选A.点评:本题考查分段函数及运用,考查分段函数的单调性,注意各段的单调性,以及分界点的情况,属于中档题和易错题.二、填空题(每小题4分,共20分)11.(4分)已知函数f(x)=,则f(0)+f(1)=1.考点:函数的值.专题:函数的性质及应用.分析:直接利用分段函数,化简求解函数值即可.解答:解:函数f(x)=,则f(0)+f(1)=(0﹣1)+(1+1)=1;故答案为:1.点评:本题考查分段函数以及函数值的求法,考查计算能力.12.(4分)如果角α的终边过点(2sin30°,﹣2cos30°),则sinα的值等于.考点:三角函数的化简求值.专题:计算题.分析:先利用角α的终边求得tanα的值,进而利用点(2sin30°,﹣2cos30°)判断出α的范围,进而利用同角三角函数的基本关系求得sinα的值.解答:解:依题意可知tanα==﹣∵,﹣2cos30°<0,2sin30°>0∴α属于第四象限角∴sinα=﹣=﹣故答案为:﹣点评:本题主要考查了同角三角函数的基本关系的运用.解题的关键是利用α的范围确定sinα的正负.13.(4分)设a=log33,b=log43,c=,则a,b,c之间的大小关系是c<b<a.考点:对数值大小的比较.专题:函数的性质及应用.分析:根据对数函数的性质进行计算即可.解答:解:∵=<<1=;∴c<b<a,故答案为:c<b<a.点评:本题考查了对数函数的性质,是一道基础题.14.(4分)已知表示“向东方向航行1km”,表示“向南方向航行1km”,则﹣表示“向东北方向航行km;”考点:向量的几何表示.专题:平面向量及应用.分析:根据平面向量表示的几何意义,画出图形,进行解答即可.解答:解:∵表示“向东方向航行1km”,表示“向南方向航行1km”,∴﹣表示“向北方向航行1km”,∴﹣表示“向东北方向航行km”如图所示.故答案为:向东北方向航行km.点评:本题考查了平面向量的几何意义,是基础题目.15.(4分)当0<x <时,函数f(x)=的最大值是﹣.考点:函数最值的应用.专题:函数的性质及应用.分析:根据1的代换,利用换元法将函数进行转化,利用一元二次函数的性质进行求解.解答:解:f(x)===tanx﹣(tanx)2﹣1,设t=tanx,∵0<x <,∴0<tanx<1,即0<t<1,则函数f(x)等价为y=﹣t2+t﹣1=﹣(t ﹣)2﹣,∴当t=时,函数取得最大﹣,故答案为:﹣点评:本题主要考查函数最值的求解,根据条件利用换元法结合一元二次函数的单调性的性质是解决本题的关键.三、解答题16.(8分)已知集合A={x|﹣2≤x≤5},B={x|m﹣1≤x≤m+1}(1)若m=5,求A∩B(2)若B⊆A,求实数m的取值范围.考点:交集及其运算;集合的包含关系判断及应用.专题:集合.分析:(1)若m=5,求出集合B,即可求A∩B(2)若B⊆A,根据集合关系即可求实数m的取值范围.解答:解:(1)因为m=5,所以B={x|4≤x≤6}.…(1分)所以A∩B={x|4≤x≤6}…(3分)(2)易知B≠∅,…(4分)所以由B⊆A 得…(7分)得﹣1≤m≤4…(8分)点评:本题主要考查集合的基本运算和集合关系的应用,要求熟练掌握集合的交并补运算,比较基础.17.(8分)已知=(6,1),=(x,8),=(﹣2,﹣3)(1)若,求x的值(2)若x=﹣5,求证:.考点:数量积判断两个平面向量的垂直关系;平行向量与共线向量.专题:平面向量及应用.分析:(1)由可得﹣3x=﹣2×8,解方程可得;(2)当x=﹣5时,可得的坐标,可得=0,可判垂直.解答:解:(1)∵=(x,8),=(﹣2,﹣3)又∵,∴﹣3x=﹣2×8,解得x=(2)当x=﹣5时,=++=(4+x,6)=(﹣1,6),∵=(6,1),∴=﹣1×6+6×1=0∴.点评:本题考查数量积与向量的垂直关系和平行关系,属基础题.18.(10分)某桶装水经营部每天的房租、员工工资等固定成本为200元,每桶水的进价为5元,销售单价与日均销售量的关系如表所示:销售价格/元6789101112日均销售量/桶480440400360320280240(1)设经营部在进价基础上增加x元进行销售,则此时的日均销售量为多少桶?(2)在(1)中,设日均销售净利润(除去固定成本)为y元,试求y的最大值及其对应的销售单价.考点:根据实际问题选择函数类型.专题:函数的性质及应用.分析:(1)利用表格的特征变化规律,推出关系式,即可在经营部在进价基础上增加x元进行销售,求出此时的日均销售量的桶数.(2)在(1)中,设日均销售净利润(除去固定成本)为y元,求出函数的解析式,利用二次函数的最值求解最大值及其对应的销售单价.解答:解:(1)由表可以看出,当销售单价每增加1元时,日均销售量将减少40桶.…(2分)当经营部在进价基础上增加x元进行销售时,此时的日均销售量为:480﹣40(x﹣1)=520﹣40x(桶)…(5分)(2)因为x>0,且520﹣40x>0,所以0<x<13…(6分)所以y=(520﹣40x)x﹣200=﹣40x2+520x﹣200,0<x<13.…(8分)易知,当x=6.5时,y有最大值1490元.即只需将销售单价定为11.5元,就可获得最大净利润1490元.…(10分)(本题改编自教科书104页例5)点评:本题考查函数的最值,实际问题的应用,考查分析问题解决问题的能力.19.(10分)设=(1,),=(cos2x,sin2x),f(x)=2(1)求函数f(x)的单调递增区间(2)若x,求函数f(x)的最大值、最小值及其对应的x的值.考点:两角和与差的正弦函数;三角函数的最值.专题:计算题;三角函数的图像与性质.分析:(1)由两角和与差的正弦函数公式化简可得f(x)=4sin(2x+),由2k≤2x+≤2k(k∈Z)可解得函数f(x)的单调递增区间.(2)由x,可得2x+∈,由正弦函数的图象和性质即可求函数f(x)的最大值、最小值及其对应的x的值.解答:解:(1)f(x)=2(cos2x+sin2x)=4(cos2x+sin2x)=4sin(2x+)…(3分)由2k≤2x+≤2k(k∈Z)可解得:kπ﹣≤x≤k π(k∈Z)故函数f(x)的单调递增区间是:(k∈Z)…(5分)(2)∵x,∴2x+∈,…(6分)∴当x=时,函数f(x)的最大值为4…(8分)当x=时,函数f(x)的最大值为﹣2…(10分)点评:本题主要考查了两角和与差的正弦函数公式的应用,考查了正弦函数的图象和性质,属于基本知识的考查.20.(14分)若函数f(x)在定义域D内某区间1上是增函数,而F(x)=在1上是减函数,则称寒素y=f(x)在1上是“弱增函数”(1)请分析判断函数f(x)=x﹣4,g(x)=﹣x2+4x在区间(1,2)上是否是“弱增函数”,并简要说明理由(2)若函数h(x)=x2﹣(sinθ﹣)x﹣b(θ,b是常数),在(0,1]上是“弱增函数”,请求出θ及b应满足的条件.考点:利用导数研究函数的单调性.专题:函数的性质及应用;导数的综合应用;三角函数的图像与性质.分析:(1)根据“弱增函数”的定义,判断f(x)、g(x)在(1,2)上是否满足条件即可;(2)根据“弱增函数”的定义,得出①h(x)在(0,1)上是增函数,在(0,1)上是减函数,列出不等式组,求出b与θ的取值范围.解答:解:(1)由于f(x)=x﹣4在(1,2)上是增函数,且F(x)==1﹣在(1,2)上也是增函数,所以f(x)=x﹣4在(1,2)上不是“弱增函数”…(2分)g(x)=﹣x2+4x在(1,2)上是增函数,但=﹣x+4在(1,2)上是减函数,所以g(x)=﹣x2+4x在(1,2)上是“弱增函数”…(4分)(2)设h(x)=x2﹣(sinθ﹣)x﹣b(θ、b是常数)在(0,1)上是“弱增函数”,则①h(x)=x2﹣(sinθ﹣)x﹣b在(0,1)上是增函数,由h(x)=x2﹣(sinθ﹣)x﹣b在(0,1)上是增函数得≤0,…(6分)∴sin θ≤,θ∈(k∈Z);…(8分)②H(x)==x ﹣+﹣sinθ在(0,1)上是减函数,记G(x)=x﹣,在(0,1)上任取0<x1<x2≤1,则G(x1)﹣G(x2)=(x1x2+b)>0恒成立,…(11分)又∵<0,∴x1x2+b<0恒成立,而当0<x1<x2≤1时,0<x1x2<1,∴b≤﹣1;(如果直接利用双沟函数的结论扣2分)∴b≤﹣1;且θ∈(k∈Z)时,h (x)在(0,1]上是“弱增函数”.…(14分)点评:本题考查了三角函数的图象与性质的应用问题,也考查了函数与导数的应用问题,考查了新定义的应用问题,考查了分析与解决问题的能力,是综合性题目.。

2024-2025学年上海交大附中高一数学上学期9月考试卷附答案解析

2024-2025学年上海交大附中高一数学上学期9月考试卷附答案解析

2024-2025学年上海交大附中高一数学上学期9月考试卷2024.09一.填空题1.方程组213y x y x =+⎧⎨=-+⎩的解集为_________.2.已知全集{|4}U x x =≤,集合{|23}A x x =-<<,{|32}B x x =-≤≤,则A B = ________3.已知集合{|12}A x x =≤≤,集合{|}B x x a =≤,若A B ≠∅ ,则实数a 的取值范围是________4.若集合{}2|10,A x ax x x =++=∈R,且A 中只有一个元素,则a =________;5.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.6.若集合()1,12y A x y x ⎧⎫-==⎨⎬-⎩⎭,(){}2,21B x y y xx ==-+,则A B = ____.7.若“12x a x a >⎧⎨>⎩”是“122122x x ax x a+>⎧⎨>⎩”的必要不充分条件,则实数a 的取值范围是________.8.设集合2{|30,R}A x x mx x =-+=∈且{}1,3A A = ,则实数m 的取值范围是______.9.若集合{}2|2,,A x x ax b a b R=++=∈中有且只有3个元素,且这3个元素恰为直角三角形的三边,则4a b +=________.10.设集合ππ,24k M x x k ⎧⎫==±∈⎨⎬⎩⎭Z ,π,4k N x x k ⎧⎫==∈⎨⎬⎩⎭Z ,则M 、N 之间的关系为M _________N .11.设集合{}1,2,3,,6M = ,现对M 的任一非空子集A ,令A x 为A 中最大数与最小数之和,则所有这样的Ax 的算术平均值为________.12.对于数集{}1231,,,,,n X x x x x =- ,其中1230,2n x x x x n <<<<<≥ ,定义点集(){},|,Y s t s X t X =∈∈,若对于任意()11,s t Y ∈,存在()22,s t Y ∈,使得12120s s t t +=,则称集合X具有性质P .则下列命题中为真命题的是___________.①{}1,1,2X =-具有性质P ;②若集合X 具有性质P ,则1X ∈;③集合X 具有性质P ,若112x =,则1n x =.二.选择题13.数集{|21,}A x x k k ==-∈Z ,{|2,}B x x k k ==∈Z ,{|41,Z}C x x k k ==-∈,若a A ∈,b B ∈,则a b +∈()A.AB.BC.CD.A ,B ,C 都有可能14.若A 、B 是全集I 的真子集,则下列四个命题:①A B A = ;②A B A = ;③()A B ⋂=∅;④A B I ⋂=;⑤x B ∈是x A ∈的必要不充分条件.其中与命题A B ⊆等价的有()A .1个B.2个C.3个D.4个15.已知1a ,2a ,1b ,2b ,1c ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为集合M 和N ,且R M ∅⊂⊂,R N ∅⊂⊂.那么“111222a b c a b c ==”是“M N =”的().A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.当一个非空数集G 满足“如果,a b G ∈,则a b +,a b -,ab G ∈,且0b ≠时,aG b∈”时,我们称G 就是一个数域,以下四个关于数域的命题:①0是任何数域的元素;②若数域G 有非零元素,则2023G ∈;③集合{}2,Z P x x k k ==∈是一个数域;④有理数集是一个数域.其中假命题的个数是().A .B.1C.2D.3三.解答题17.用适当的方法表示下列集合,并判断它是有限集还是无限集.(1)不等式230x ->的解集;(2)二元二次方程组2y xy x=⎧⎨=⎩的解集;(3)由大于3-且小于9的偶数组成的集合.18.已知A 为方程2210ax x ++=的所有实数解构成的集合,其中a 为实数.(1)若A 是空集,求a 的范围;(2)若A 是单元素集合,求a 的范围:(3)若A 中至多有一个元素,求a 的取值范围.19.下列命题中,判断条件p 是条件q 的什么条件.(1):||||p x y =,:q x y =;(2):p ABC V 是直角三角形,:q ABC V 是等腰三角形;(3):p 四边形的对角线互相平分,:q 四边形是矩形;(4):1p x =,:1q x -=(5):0p m >,:q 关于x 的方程20x x m +-=有实根.20.设集合{}()(){}222320,2150A x x x B x x a x a =-+==+++-=;(1)若{}2A B = ,求实数a 的值;(2)若B 集合中有两个元素12,x x ,求12x x -;(3)若,U B A =⋂=∅R ,求实数a 的取值范围;附加题:21.集合{}66,11,23,10,911,1,18,100,0,πM =---有10个元素,设M 的所有非空子集为i M ()1,2,,1023i = 每一个i M 中所有元素乘积为i m ()1,2,,1023i = ,则1231023m m m m ++++= ___________.22.设R x ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为“取整函数”,如:[]1.61=,[]1.62-=-.现有关于“取整函数”的两个命题:①集合[]{}2|10,12A x x x x =--=-<<是单元素集:②对于任意R x ∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦成立,则以下说法正确的是()A.①②都是真命题B.①是真命题②是假命题C.①是假命题②是真命题D.①②都是假命题2024-2025学年上海交大附中高一数学上学期9月考试卷2024.09一.填空题1.方程组213y x y x =+⎧⎨=-+⎩的解集为_________.【答案】()(){}2,1,1,2--【解析】【分析】通过解方程组求得正确答案.【详解】依题意,213y x y x =+⎧⎨=-+⎩,则()()2213,2210x x x x x x +=-++-=+-=,解得2x =-或1x =,所以方程组213y x y x =+⎧⎨=-+⎩的解为21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩,所以方程组213y x y x =+⎧⎨=-+⎩的解集为()(){}2,1,1,2--.故答案为:()(){}2,1,1,2--2.已知全集{|4}U x x =≤,集合{|23}A x x =-<<,{|32}B x x =-≤≤,则A B = ________【答案】(,2][3,4]-∞ 【解析】【分析】根据补集和并集的概念得到集合.【详解】{2A x x =≤-或}34x ≤≤,A B = {2x x ≤-或}34x ≤≤(,2][3,4]{|32}x x -≤=-∞≤ .故答案为:(,2][3,4]-∞ 3.已知集合{|12}A x x =≤≤,集合{|}B x x a =≤,若A B ≠∅ ,则实数a 的取值范围是________【答案】1a ≥【解析】【分析】由A B ≠∅ ,画出数轴,表示出集合,即可求解【详解】因为A B ≠∅ ,则画出数轴,并表示出集合,如下:可得1a ≥,故答案为:1a ≥【点睛】本题考查已知交集结果求参数范围,属于基础题4.若集合{}2|10,A x ax x x =++=∈R ,且A 中只有一个元素,则a =________;【答案】0或14【解析】【分析】分0a =和0a ≠两种情况讨论,当0a ≠时0∆=求出a 的值.【详解】因为{}2|10,A x ax x x =++=∈R ,表示关于x 的方程210ax x ++=的解集,当0a =时,由10x +=,解得1x =-,所以{}1A =-,符合题意;当0a ≠时,要使A 中只有一个元素,则2140a ∆=-=,解得14a =,此时方程21104x x +=+,解得122x x ==-,所以{}2A =-,符合题意;综上可得0a =或14a =.故答案为:0或145.用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为_______.【答案】a ,b ,c 中至少有两个偶数【解析】【分析】用反证法证明某命题是,应先假设命题的否定成立,所以找出命题的否定是解题的关键.【详解】用反证法证明某命题是,应先假设命题的否定成立.因为“自然数a ,b ,c 中至多有一个偶数”的否定是:“a ,b ,c 中至少有两个偶数”,所以用反证法证明“自然数a ,b ,c 中至多有一个偶数”时,假设应为“a ,b ,c 中至少有两个偶数”,故答案为:a ,b ,c 中至少有两个偶数.6.若集合()1,12y A x y x ⎧⎫-==⎨⎬-⎩⎭,(){}2,21B x y y xx ==-+,则A B = ____.【答案】(){}1,0【解析】【分析】集合A 表示直线去掉一个点,集合B 表示二次函数上的点,联立方程判断根即得交集.【详解】依题意,集合B 表示221y xx =-+上的点,集合A 表示直线()12y x x =-≠上的点,故集合A B ⋂中元素表示直线与二次函数的交点,联立2211y x x y x ⎧=-+⎨=-⎩得2123201,2x x x x -+===,(舍),故直线与二次函数有1个交点()1,0,故集合A B ⋂中有1个元素,(){}=1,0A B .故答案为:(){}1,0.7.若“12x a x a >⎧⎨>⎩”是“122122x x a x x a+>⎧⎨>⎩”的必要不充分条件,则实数a 的取值范围是________.【答案】(),0-∞【解析】【分析】根据题意,分0a ≥与0a <讨论,结合必要不充分条件即可得到结果.【详解】由题意可得,122122x x a x x a +>⎧⎨>⎩可以推出12x a x a >⎧⎨>⎩,则0a ≥不符合题意,比如当121,5,2x x a ===时,不符合题意;当0a =时,则12x a x a >⎧⎨>⎩是122122x x ax x a +>⎧⎨>⎩的充要条件,不符合题意;当0a <时,122122x x a x x a +>⎧⎨>⎩等价于()()122120x a x a x x a⎧-+->⎨>⎩,则12x ax a >⎧⎨>⎩,所以0a <,即实数a 的取值范围是(),0-∞.故答案为:(),0-∞8.设集合2{|30,R}A x x mx x =-+=∈且{}1,3A A = ,则实数m 的取值范围是______.【答案】({4}-⋃【解析】【分析】由题意可得{}1,3A ⊆,分A =∅、{1}A =、{3}=A 、{1,3}A =分别求解即可.【详解】解:因为{}1,3A A = ,所以{}1,3A ⊆,当A =∅时,2120m ∆=-<,解得m -<<当{1}A =时,2Δ120130m m ⎧=-=⎨-+=⎩,解得m ∈∅;当{3}=A 时,2Δ1209330m m ⎧=-=⎨-+=⎩,解得m ∈∅;当{1,3}A =时,2Δ120134m m ⎧=->⎨=+=⎩,解得4m =;综上所述,实数m 的取值范围是:({4}-⋃.故答案为:({4}-⋃9.若集合{}2|2,,A x x ax b a b R =++=∈中有且只有3个元素,且这3个元素恰为直角三角形的三边,则4a b +=________.【答案】2-【解析】【分析】先22x ax b ++=得22x ax b ++=或22x ax b ++=-,根据判别式,以及集合中元素个数,确定方程220x ax b ++-=有两个根,方程220x ax b +++=有一个根;求出2124b a =-,以及三个元素,再由三个元素恰为直角三角形的三边,求出a ,得出b ,即可得出结果.【详解】由22x ax b ++=得22x ax b ++=或22x ax b ++=-,方程220x ax b ++-=的判别式为()2212448a b a b ∆==---+,方程220x ax b +++=的判别式为()2222448a b a b ∆==-+--,显然12∆>∆,又集合{}2|2,,A x x ax b a b R =++=∈中有且只有3个元素,所以方程220x ax b ++-=和220x ax b +++=共三个根,且只能方程220x ax b ++-=有两个根,方程220x ax b +++=有一个根;即22480480a b a b ⎧-+>⎨--=⎩,即2124b a =-;所以方程220x ax b ++-=可化为221440x ax a +-+=,解得22a x =-或22ax =--,方程220x ax b +++=可化为22140x ax a ++=,解得2a x =-,则22222a a a ->->--,又这三个元素恰为直角三角形的三边,所以2222222202202202a a a a a a ⎧⎛⎫⎛⎫⎛⎫-=-+--⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪->⎪⎪⎨⎪->⎪⎪⎪-->⎪⎩,解得16a =-,则212624a b =-=,因此42a b +=-.故答案为:2-.【点睛】本题主要考查由集合中元素个数求参数的问题,属于常考题型.10.设集合ππ,24k M x x k ⎧⎫==±∈⎨⎬⎩⎭Z ,π,4k N x x k ⎧⎫==∈⎨⎬⎩⎭Z ,则M 、N 之间的关系为M _________N .【答案】【解析】【分析】()πππ21,244k x k k =±=⨯±∈Z 表示π4的奇数倍,而,4πk x k =∈Z 表示π4的整数倍,故得解.【详解】因为()πππ21,244k x k k =±=⨯±∈Z ,所以集合ππ|,24k M x x k ⎧⎫==±∈⎨⎬⎩⎭Z 中的元素是π4的奇数倍,又因为集合π|,4k N x x k ⎧⎫==∈⎨⎬⎩⎭Z 中的元素是π4的整数倍,所以MN .故答案为:.11.设集合{}1,2,3,,6M = ,现对M 的任一非空子集A ,令A x 为A 中最大数与最小数之和,则所有这样的A x 的算术平均值为________.【答案】7【解析】【分析】根据集合的子集和并集的概念求解.【详解】集合M 的任一非空子集共有621-个,其中最小值为1的子集可视为{}2,3,,6 的子集与集合{}1的并集,共有52个,同上可知,最小值为2的子集共有42个,最小值为3的子集共有32个,最小值为4的子集共有22个,最小值为5的子集共有12个,最小值为6的子集共有02个,同上可知,最大值为6的子集共有52个,最大值为5的子集共有42个,最大值为4的子集共有32个,最大值为3的子集共有22个,最大值为2的子集共有12个,最大值为1的子集共有02个,所以M 的所有非空子集中最小值之和为543210122232425262⨯+⨯+⨯+⨯+⨯+⨯,最大值之和为543210625242322212⨯+⨯+⨯+⨯+⨯+⨯,所以543210543210612223242526262524232221221A x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=-54321067(222222)721⨯+++++==-,故答案为:7.12.对于数集{}1231,,,,,n X x x x x =- ,其中1230,2n x x x x n <<<<<≥ ,定义点集(){},|,Y s t s X t X =∈∈,若对于任意()11,s t Y ∈,存在()22,s t Y ∈,使得12120s s t t +=,则称集合X具有性质P .则下列命题中为真命题的是___________.①{}1,1,2X =-具有性质P ;②若集合X 具有性质P ,则1X ∈;③集合X 具有性质P ,若112x =,则1n x =.【答案】①②③【解析】【分析】根据已知条件及集合X 具有性质P 的定义,结合反证法即可求解.【详解】因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,2,2,1,1,1,2,1,1,1,2,2,1,2,1Y =------,根据集合X 具有性质P 的定义,对于任意(),s t Y ∈,若0,0s t >>,则s t =或()(),1,2s t =,或()(),2,1s t =,若s t =,取221,1s t =-=-,则220ss tt +=;若()(),1,2s t =,取222,1s t ==-,则220ss tt +=;若()(),2,1s t =,取221,2s t =-=,则220ss tt +=;若,s t 有一个为负数,则1s =-或1t =-,若1s =-,则取22,1s t t ==,则220ss tt +=;若1t =-,则取221,s t s ==,则220ss tt +=;故①正确;对于任意()11,s t Y ∈,存在()22,s t Y ∈,使得12120s s t t +=取11(,)x x Y ∈,存在(,)p q x x 使得110p q x x x x +=,所以0p q x x +=,不妨设1,1p q x x ==-,所以若集合X 具有性质P ,则1X ∈,故②正确;③假设1n x >,令111,2n s t x ==,则存在,s t X ∈使得102n s tx +=,同②得,s t 中必有一个数为1-,若1s =-,则12n tx =,于是11122n t x x =<=,矛盾,若1t =-,则()112n s x ⋅-=,于是2n n s x x =>,也矛盾,所以1n x ≤,又由②得1X ∈,所以1n x ≥,所以1n x =,故③正确,故真命题是①②③正确.故答案为:①②③.【点睛】解决此题的关键是抓住集合X 具有性质P 的定义,结合反证法即可.二.选择题13.数集{|21,}A x x k k ==-∈Z ,{|2,}B x x k k ==∈Z ,{|41,Z}C x x k k ==-∈,若a A ∈,b B ∈,则a b +∈()A.A B.BC.CD.A ,B ,C 都有可能【答案】A 【解析】【分析】根据可知:集合A 为奇数集,结合B 为偶数集,结合元素与集合之间的关系分析判断.【详解】由题意可知:集合A 为奇数集,集合B 为偶数集,即a 为奇数,b 为偶数,则a b +为奇数,所以BD 错误,A 正确;例如1,0a b ==,令41a b k +=-,即141k =-,解得12k =∉Z ,所以a b C +∉,故C 错误;故选:A.14.若A 、B 是全集I 的真子集,则下列四个命题:①A B A = ;②A B A = ;③()A B ⋂=∅;④A B I ⋂=;⑤x B ∈是x A ∈的必要不充分条件.其中与命题A B ⊆等价的有()A.1个B.2个C.3个D.4个【答案】B 【解析】【分析】根据韦恩图和集合的交、并、补运算的定义逐一判断可得选项.【详解】解:由A B ⊆得韦恩图:对于①A B A = 等价于A B ⊆,故①正确;对于②A B A = 等价于B A ⊆,故②不正确;对于③()A B ⋂=∅等价于A B ⊆,故③正确;对于④A B I ⋂=与A 、B 是全集I 的真子集相矛盾,故④不正确;对于⑤x B ∈是x A ∈的必要不充分条件等价于A B ,故⑤不正确,所以与命题A B ⊆等价的有①③,共2个,故选:B .15.已知1a ,2a ,1b ,2b ,1c ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为集合M 和N ,且R M ∅⊂⊂,R N ∅⊂⊂.那么“111222a b c a b c ==”是“M N =”的().A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【答案】B 【解析】【分析】利用充分条件和必要条件的定义判断.【详解】解:因为R M ∅⊂⊂,R N ∅⊂⊂,所以,M N ≠∅≠∅,当1112220a b c a b c ==<时,21110a x b x c ++>等价于22220a x b x c ++<,所以M N =不成立,故不充分;当M N =≠∅时,111222a b c a b c ==,故必要,故选:B .16.当一个非空数集G 满足“如果,a b G ∈,则a b +,a b -,ab G ∈,且0b ≠时,aG b∈”时,我们称G 就是一个数域,以下四个关于数域的命题:①0是任何数域的元素;②若数域G 有非零元素,则2023G ∈;③集合{}2,Z P x x k k ==∈是一个数域;④有理数集是一个数域.其中假命题的个数是().A.0 B.1C.2D.3【答案】B 【解析】【分析】根据任意相同元素之差是0,可判断①;根据当0a ≠时,1a a=,利用定义依次推导2023G ∈,可判断②,举反例判断③,根据有理数的运算结果判断④.【详解】对于①,根据当a G ∈,则a a G -∈,即0G ∈,所以0是任何数域的元素,故①正确;对于②,根据当0b ≠时,b G ∈,则bG b∈,即1G ∈,进而112G +=∈,213G +=∈,L ,202212023G +=∈,故②正确;对于③,对2P ∈,4P ∈,但2142P =∉,不满足题意,所以集合{}2,Z P x x k k ==∈不是一个数域,故③不正确;对于④,若a ,b 是有理数,则a b +,a b -,ab ,ab()0b ≠都是有理数,故有理数集是一个数域,所以④正确;所以其中假命题的个数是1个.故选:B.三.解答题17.用适当的方法表示下列集合,并判断它是有限集还是无限集.(1)不等式230x ->的解集;(2)二元二次方程组2y xy x =⎧⎨=⎩的解集;(3)由大于3-且小于9的偶数组成的集合.【答案】(1)32x x ⎧⎫>⎨⎬⎩⎭,无限集(2)()(){}0,0,1,1,有限集(3){}2,0,2,4,6,8-,有限集【解析】【分析】(1)直接解不等式即可,解集为无限,用描述法表示;(2)解方程组,解集为有限,用列举法表示;(3)元素有限个,所以用列举法表示.【小问1详解】因为32302x x ->⇒>,所以解集为32x x ⎧⎫>⎨⎬⎩⎭,为无限集;【小问2详解】二元二次方程组2y x y x =⎧⎨=⎩,所以2x x =,解得00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,所以解集为()(){}0,0,1,1,为有限集;【小问3详解】大于3-且小于9的偶数有2,0,2,4,6,8-,所以解集为{}2,0,2,4,6,8-,为有限集.18.已知A 为方程2210ax x ++=的所有实数解构成的集合,其中a 为实数.(1)若A 是空集,求a 的范围;(2)若A 是单元素集合,求a 的范围:(3)若A 中至多有一个元素,求a 的取值范围.【答案】(1)1a >;(2)0a =或1a =;(3)0a =或1a ≥.【解析】【分析】(1)讨论a ,根据0∆<可得结果;(2)讨论a ,根据0∆=可得结果;(3)转化为方程2210ax x ++=至多有一个解,由(1)(2)可得结果.【小问1详解】若A 是空集,则方程2210ax x ++=无解,当0a =时,方程210x +=有解,不符合题意;当0a ≠时,440∆=-<a ,得1a >.综上所述:1a >.【小问2详解】若A 是单元素集合,则方程2210ax x ++=有唯一实根,当0a =时,方程210x +=有唯一解12x =-,符合题意;当0a ≠时,440a ∆=-=,得1a =.综上所述:0a =或1a =.【小问3详解】若A 中至多有一个元素,则方程2210ax x ++=至多有一个解,当方程2210ax x ++=无解时,由(1)知,1a >;方程2210ax x ++=有唯一实根时,由(2)知,0a =或1a =.综上所述:0a =或1a ≥.19.下列命题中,判断条件p 是条件q 的什么条件.(1):||||p x y =,:q x y =;(2):p ABC V 是直角三角形,:q ABC V 是等腰三角形;(3):p 四边形的对角线互相平分,:q 四边形是矩形;(4):1p x =,:1q x -=(5):0p m >,:q 关于x 的方程20x x m +-=有实根.【答案】(1)必要不充分;(2)既不充分也不必要;(3)必要不充分;(4)充分不必要;(5)充分不必要【解析】【分析】根据充分不必要条件、必要不充分条件及充要条件的定义逐一判断即可.【小问1详解】解:由||||x y =可得x y =或x y =-,即由p 推不出q ,但由q 可以推出p ,所以条件p 是条件q 的必要不充分条件;【小问2详解】解:由ABC V 是直角三角形推不出ABC V 是等腰三角形,由ABC V 是等腰三角形推不出ABC V 是直角三角形,所以条件p 是条件q 的既不充分也不必要条件;【小问3详解】解:由四边形的对角线互相平分推不出四边形是矩形(如菱形的对角线互相平分,但菱形不是矩形),由四边形是矩形可以推出四边形的对角线互相平分,所以条件p 是条件q 的必要不充分条件;【小问4详解】解:由1x =可得10x -==,即有1x -=,但由1x -=只能得1x ≥,即由p 可以推出q ,但由q 不可以推出p ,所以条件p 是条件q 的充分不必要不条件;【小问5详解】解:由0m >,可得140m +>,从而得方程20x x m +-=有实根,但由方程20x x m +-=有实根,可得140m +≥,即14m ≥-,即由p 可以推出q ,但由q 不可以推出p ,所以条件p 是条件q 的充分不必要不条件.20.设集合{}()(){}222320,2150A x x x B x x a x a =-+==+++-=;(1)若{}2A B = ,求实数a 的值;(2)若B 集合中有两个元素12,x x ,求12x x -;(3)若,U B A =⋂=∅R ,求实数a 的取值范围;【答案】(1)1-或3-(2(3)3a ≤-【解析】【分析】(1)由2B ∈,代入后解方程并检验是否满足题意;(2)根据韦达定理和完全差的平方公式化简求值即可;(3)根据集合B 元素情况分类求解即可.【小问1详解】由题意得{}{}23201,2A x x x =-+==,因为{}2A B = ,所以2B ∈,所以2224(1)50a a +++-=即244450a a +++-=,化简得2430a a ++=,即(3)(1)0a a ++=,解得3a =-或1a =-,检验:当3a =-时,{}{}24402B x x x =-+==,满足{}2A B = ,当1a =-时,{}{}2402,2B x x =-==-,满足{}2A B = ,所以3a =-或1a =-.【小问2详解】因为B 集合中有两个元素12,x x ,所以方程()()222150x a x a +++-=有两个根,所以()22Δ4(1)458240a a a =+--=+>且122(1)x x a +=-+,2125x x a =-,所以12x x -===.【小问3详解】因为{}1,2A =,且,U B A =⋂=∅R ,当B =∅时,()22Δ4(1)458240a a a =+--=+<,解得3a <-,符合题意;当{}1B =时,则()()()()2222Δ4145824012150a a a a a ⎧=+--=+=⎪⎨+++-=⎪⎩,无解;当{}2B =时,则()()()2222Δ4145824024150a a a a a ⎧=+--=+=⎪⎨+++-=⎪⎩,所以3a =-;当{}1,2B =时,则()()()222Δ41458240122125a a a a a ⎧=+--=+>⎪⎪+=-+⎨⎪=-⎪⎩,无解;综上,3a ≤-.附加题:21.集合{}66,11,23,10,911,1,18,100,0,πM =---有10个元素,设M 的所有非空子集为i M ()1,2,,1023i = 每一个i M 中所有元素乘积为i m ()1,2,,1023i = ,则1231023m m m m ++++= ___________.【答案】-1【解析】【分析】分析可得M 的所有非空子集为i M 可分为4类,分别分析4类子集中,所有元素乘积i m ,综合即可得答案.【详解】集合M 的所有非空子集为i M ()1,2,,1023i = 可以分成以下几种情况①含元素0的子集共有92512=个,这些子集中所有元素乘积0i m =;②不含元素0,含元素-1且含有其他元素的子集有821255-=个③不含元素0,不含元素-1,但含其他元素的子集有821255-=个其中②③中元素是一一对应的,且为相反数,则i m 的和为0,④只含元素-1的子集1个,满足1i m =-,综上:所有子集中元素乘积12310231m m m m ++++=- .故答案为:-122.设R x ∈,用[]x 表示不超过x 的最大整数,则[]y x =称为“取整函数”,如:[]1.61=,[]1.62-=-.现有关于“取整函数”的两个命题:①集合[]{}2|10,12A x x x x =--=-<<是单元素集:②对于任意R x ∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦成立,则以下说法正确的是()A.①②都是真命题B.①是真命题②是假命题C.①是假命题②是真命题D.①②都是假命题【答案】A 【解析】【分析】对于①,分类讨论0x =、1x =、10x -<<、01x <<和12x <<五种情况分别求解即可判断;对于②,分类讨论x 为整数和不为整数时原式是否成立,对于x 不为整数时,进一步分类讨论其小数部分即可.【详解】对于①:当0x =时,[]2100110x x --=--=-≠,不符合题意;当1x =时,[]2111110x x --=--=-≠,不符合题意;当10x -<<时,[]()2221110x x x x --=---==,则()01,0x =∉-,不符合题意;当01x <<时,[]22210110x x x x --=--=-=,则()10,1x =±∉,不符合题意;当12x <<时,[]22211120x x x x --=--=-=;则()1,2x =符合题意,()1,2x =不符合题意;综上,[]{}2|10,12A x x x x =--=-<<=是单元素集,故①正确.对于②:当x 为整数时,[][]1222x x x x x x ⎡⎤++=+==⎢⎥⎣⎦成立;当x 不为整数时,设x a b =+(a 为整数,01b <<),当102b <<时,[]122x x a a a ⎡⎤++=+=⎢⎥⎣⎦,[][]2222x a b a =+=,此时,[][]122x x x ⎡⎤++=⎢⎥⎣⎦成立;当12b =时,12x a =+,则[]11212x x a a a ⎡⎤++=++=+⎢⎥⎣⎦,[][]22121x a a =+=+,此时,[][]122x x x ⎡⎤++=⎢⎥⎣⎦成立;当112b <<时,[]11212x x a a a ⎡⎤++=++=+⎢⎥⎣⎦,[][]22221x a b a =+=+,此时,[][]122x x x ⎡⎤++=⎢⎥⎣⎦成立;综上,对于任意R x ∈,[][]122x x x ⎡⎤++=⎢⎥⎣⎦成立,故②正确.故选:A【点睛】方法点睛:针对一般的函数新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.。

广东省湛江市2023-2024学年高一上学期期末考试 数学(含答案)

广东省湛江市2023-2024学年高一上学期期末考试 数学(含答案)

湛江市2023—2024学年度第一学期期末高中调研测试高一数学试卷(答案在最后)(满分:150分,考试时间:120分钟)2024年1月注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号、考场号和座位号填写在答题卡上,并将考号条形码粘贴在答题卡上的指定位置.2.阅读答题卡上面的注意事项,所有题目答案均答在答题卡上,写在本试卷上无效.3.作答选择题时,如需改动,用橡皮擦干净后,再选涂其他答案.非选择题如需改动,先划掉原来的答案,然后再写上新的答案.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“(),0x ∀∈-∞,有20x x -=”的否定为()A.(),0x ∃∈-∞,使20x x -≠ B.[)0,x ∃∈+∞,使20x x -≠C .(),0x ∀∈-∞,有2x x -≠ D.[)0,x ∞∀∈+,有2x x -≠2.若集合{}1,3,5,6,7A =,{}Z 19B x x =∈≤≤,则图中阴影部分表示的集合中的元素个数为()A.3B.4C.5D.63.sin 300cos 0︒︒的值为()A .B.12C.12-D.24.已知函数()()2sin f x x ωϕ=+(0ω>,0πϕ<<)的图象如图所示,则ϕ=()A.π6B.π3C.2π3D.5π65.函数()3ln f x x x=-的零点所在的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,46.角的度量除了有角度制和弧度制之外,在军事上还有密位制(gradient system ).密位制的单位是密位,1密位等于周角的16000.密位的记法很特别,高位与低两位之间用一条短线隔开,例如1密位写成0-01,1000密位写成10–00.若一扇形的弧长为4π,圆心角为40-00密位,则该扇形的半径为()A .4B.3C.2D.17.已知函数()22e4(2)x f x x -=--,则()f x 的图象大致为()A. B.C. D.8.在R 上定义新运算a b ad bc c d =-,若存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤成立,则m 的最小值为()A.83-B.23-C.0D.83二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合{}1143,A x x k k ==-∈Z ,{}2221,B x x k k ==+∈Z ,则()A.7A B∈∩ B.13A B∈ C. A B⋃ D.A B B= 10.已知0c b a <<<,则()A.ac b bc a+<+ B.3232a c b c +>+C.a c ab c b+<+ D.<11.下列函数在()1,∞+上单调递增的为()A.()4f x x x=+B.()ln 2f x x =+C.()225f x x x =-+ D.()2,23,2x x f x x x ⎧>=⎨+≤⎩12.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭,满足()π6f x f x ⎛⎫=-- ⎪⎝⎭,5π012f ⎛⎫= ⎪⎝⎭,且在π2π,189⎛⎫⎪⎝⎭上单调,则ω的取值可能为()A.1B.3C.5D.7三、填空题:本题共4小题,每小题5分,共20分.13.函数()2lg1xxf x -=+的定义域为______________.14.已知120πx x ≤<≤,满足12sin sin x x =,则12cos 2x x +=______________.15.德国数学家高斯在证明“二次互反律”的过程中首次定义了取整函数[]y x =,其中[]x 表示“不超过x的最大整数”,如[]3.143=,[]0.6180=,[]2.718283-=-,则23251lg lg8lg 7log 10⎡⎤-++=⎢⎥⎣⎦________.16.已知函数()214,0222,0x x x x f x x ⎧--+≤⎪=⎨⎪->⎩,若存在实数a ,b ,c 满足a b c <<,且()()()f a f b f c ==,则()()a b f c +的取值范围是______________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)若α的终边经过点()2,4P -,求πtan 4α⎛⎫+ ⎪⎝⎭的值;(2)若π0,2α⎛⎫∈ ⎪⎝⎭,且π3sin 45α⎛⎫-= ⎪⎝⎭,求sin α的值.18.已知幂函数()mf x x =的图象过点()25,5.(1)求()8f 的值;(2)若()()132f a f a +>-,求实数a 的取值范围.19.已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.20.随着时代的发展以及社会就业压力的增大,大学生自主创业的人数逐年增加.大学生小明和几个志同道合的同学一起创办了一个饲料加工厂.已知该工厂每年的固定成本为10万元,此外每生产1斤饲料的成本为1元,记该工厂每年可以生产x 万斤司料.当046x <<时,年收入为4001004x ⎛⎫-⎪+⎝⎭万元;当46x ≥时,年收入为92万元.记该工厂的年利润为()f x 万元(年利润=年收入-固定成本-生产成本).(1)写出年利润()f x 与生产饲料数量x 的函数关系式;(2)求年利润的最大值.21.已知函数()2sin cos sin f x x x x =+.(1)求()f x 的最小值及相应x 的取值;(2)若把()f x 的图象向左平移π3个单位长度得到()g x 的图象,求()g x 在[]0,π上的单调递增区间.22.已知函数()42x xf x a =-⋅.(1)当2a =时,求()f x 在[]1,2-上的最值;(2)设函数()()()g x f x f x =+-,若()g x 存在最小值11-,求实数a 的值.湛江市2023—2024学年度第一学期期末高中调研测试高一数学试卷(满分:150分,考试时间:120分钟)2024年1月注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、考号、考场号和座位号填写在答题卡上,并将考号条形码粘贴在答题卡上的指定位置.2.阅读答题卡上面的注意事项,所有题目答案均答在答题卡上,写在本试卷上无效.3.作答选择题时,如需改动,用橡皮擦干净后,再选涂其他答案.非选择题如需改动,先划掉原来的答案,然后再写上新的答案.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“(),0x ∀∈-∞,有20x x -=”的否定为()A.(),0x ∃∈-∞,使20x x -≠ B.[)0,x ∃∈+∞,使20x x -≠C.(),0x ∀∈-∞,有2x x -≠ D.[)0,x ∞∀∈+,有2x x -≠【答案】A 【解析】【分析】根据全称命题否定为特称命题即可.【详解】根据将全称命题否定为特称命题即可.可得“(),0x ∞∀∈-,有20x x -=”的否定为“(),0x ∞∃∈-,使20x x -≠”,故选:A .2.若集合{}1,3,5,6,7A =,{}Z 19B x x =∈≤≤,则图中阴影部分表示的集合中的元素个数为()A.3B.4C.5D.6【答案】B 【解析】【分析】利用集合运算求解阴影部分即可.【详解】易知{}1,2,3,4,5,6,7,8,9B =,故图中阴影部分表示的集合为{}2,4,8,9,共4个元素,故选:B .3.sin 300cos 0︒︒的值为()A.0B.12C.12-D.【答案】D 【解析】【分析】利用诱导公式和特殊角的三角函数值求出答案.【详解】()()sin 300cos 0sin 300360sin 60sin 602︒︒=︒-︒=-︒=-︒=-.故选:D .4.已知函数()()2sin f x x ωϕ=+(0ω>,0πϕ<<)的图象如图所示,则ϕ=()A.π6B.π3C.2π3D.5π6【答案】D 【解析】【分析】根据题意,利用()01f =,得到1sin 2ϕ=,结合题意,即可求解.【详解】由函数()f x 的图象知,()02sin 1f ϕ==,则1sin 2ϕ=,因为0ω>,且0x =处在函数()f x 的递减区间,所以5π2π,Z 6k k ϕ=+∈,又因为0πϕ<<,所以5π6ϕ=.故选:D .5.函数()3ln f x x x=-的零点所在的区间是()A.()0,1 B.()1,2 C.()2,3 D.()3,4【答案】C 【解析】【分析】根据零点存在性定理即可求解.【详解】由于3ln ,==-y x y x均为定义域(0,+∞)内的单调递增函数,所以函数()f x 在()0,∞+上单调递增,()f x 至多只有一个零点,且()32ln 202f =-<,()3ln 310f =->,故()()230f f ⋅<,所以该函数的零点所在的区间是()2,3.故选:C .6.角的度量除了有角度制和弧度制之外,在军事上还有密位制(gradient system ).密位制的单位是密位,1密位等于周角的16000.密位的记法很特别,高位与低两位之间用一条短线隔开,例如1密位写成0-01,1000密位写成10–00.若一扇形的弧长为4π,圆心角为40-00密位,则该扇形的半径为()A.4B.3C.2D.1【答案】B 【解析】【分析】根据题意可得40-00密位的圆心角的弧度为4π3,进而根据扇形的弧长公式即可求解.【详解】40-00密位的圆心角的弧度为2π4π400060003⨯=,设该扇形的半径为r ,由4π4π3r ⨯=,解得3r =,故选:B .7.已知函数()22e4(2)x f x x -=--,则()f x 的图象大致为()A. B.C. D.【答案】A 【解析】【分析】由特值法,函数的对称性对选项一一判断即可得出答案.【详解】因为()0222e e 0440(02)4f -=-=-<-,故C 错误;又因为()()4222222e e e4444(42)(2)(2)x x x f x f x x x x -+--+--+=-=-==-+--+-,故函数()f x 的图象关于2x =对称,故B 错误;当x 趋近2时,2e x -趋近1,2(2)x -趋近0,所以()22e 4(2)xf x x -=--趋近正无穷,故D 错误.故选:A .8.在R 上定义新运算a b ad bc c d =-,若存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤成立,则m 的最小值为()A.83-B.23-C.0D.83【答案】A 【解析】【分析】根据题意,转化为2min 41x m x ⎛⎫≥ ⎪-⎝⎭,令函数()241x f x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦,结合函数的奇偶性和单调性,求得()min 83f x =-,即可求解.【详解】由a b ad bc c d=-,可得()4401mx m x mx m x-=--≤,因为存在实数11,22x ⎡⎤∈-⎢⎥⎣⎦,使得401mx m x -≤,即2min 41x m x ⎛⎫≥ ⎪-⎝⎭,令函数()241x f x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦,由()()f x f x -=-,可得()f x 是奇函数,且()00f =,当102x <≤时,()41f x x x=-,所以()f x 在10,2⎛⎤⎥⎝⎦上单调递减,所以()803f x -≤<,同理可得,当102x -≤<时,()803f x <≤,故()min 83f x =-,即83m ≥-,所以实数m 的最小值为83-.故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知集合{}1143,A x x k k ==-∈Z ,{}2221,B x x k k ==+∈Z ,则()A.7A B ∈∩B.13A B∈ C. A B⋃ D.A B B= 【答案】BC 【解析】【分析】依题意列举A 、B 中的元素,观察可得答案【详解】依题意,{},3,1,5,9,13,17,21,A =- ,{},3,1,1,3,5,7,9,11,13,15,17,19,21,B =-- ,观察可知A ,D 错误,B ,C 正确,故选:BC .10.已知0c b a <<<,则()A.ac b bc a+<+ B.3232a c b c +>+C.a c ab c b+<+ D.<【答案】AB 【解析】【分析】根据不等式的性质判断A 、B 、D ,利用赋值法判断C.【详解】因为0c b a <<<,所以ac bc <,且b a <,故ac b bc a +<+,故A 正确;因为0b a <<,所以33a b >,故3232a c b c +>+,故B 正确;取4a =,1b =,12c =-,则7a cb c +=+,4a b =,故C 错误;因为0c <<,则>,故D 错误,故选:AB .11.下列函数在()1,∞+上单调递增的为()A.()4f x x x=+B.()ln 2f x x =+ C.()225f x x x =-+ D.()2,23,2x x f x x x ⎧>=⎨+≤⎩【答案】BC 【解析】【分析】A 选项,由对勾函数性质得到A 错误;B 选项,根据对数函数性质直接得到B 正确;C 选项,配方后得到函数的单调性;D 选项,求出()()2.12f f <,故D 错误.【详解】A 选项,由对勾函数性质可知()4f x x x=+在()1,2上单调递减,在()2,∞+上单调递增,故A 错误;B 选项,()ln 2f x x =+在()0,∞+上单调递增,故B 正确;C 选项,()()222514f x x x x =-+=-+在()1,∞+上单调递增,故C 正确;D 选项,因为()25f =,()()22log 5log 552f f ===,故D 错误.故选:BC .12.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,满足()π6f x f x ⎛⎫=-- ⎪⎝⎭,5π012f ⎛⎫= ⎪⎝⎭,且在π2π,189⎛⎫⎪⎝⎭上单调,则ω的取值可能为()A.1B.3C.5D.7【答案】AB 【解析】【分析】由()π6f x f x ⎛⎫=-- ⎪⎝⎭,知函数()f x 的图象关于直线π12x =-对称,结合5π012f ⎛⎫= ⎪⎝⎭可知5π12是函数()f x 的零点,进而得到=2+1n ω,Z n ∈,由()f x 在π2π,189⎛⎫⎪⎝⎭上单调,可得6ω≤,进而1,3,5ω=,分类讨论验证单调性即可判断.【详解】由()π6f x f x ⎛⎫=-- ⎪⎝⎭,知函数()f x 的图象关于直线π12x =-对称,又5π012f ⎛⎫= ⎪⎝⎭,即5π12是函数()f x 的零点,则()()5ππ112π2121121244n T n ω+=+⋅=+⋅⋅,Z n ∈,即=2+1n ω,Z n ∈.由()f x 在π2π,189⎛⎫⎪⎝⎭上单调,则12π2πππ29186ω⋅≥-=,即6ω≤,所以1,3,5ω=.当1ω=时,由5ππ12k ϕ+=,Z k ∈,得5ππ12k ϕ=-+,Z k ∈,又π2ϕ<,所以5π12ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,5π13π7π,123636x ⎛⎫-∈-- ⎪⎝⎭,所以()5πsin 12f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上单调递增,故1ω=符合题意;当3ω=时,由5π3π12k ϕ⨯+=,Z k ∈,得5ππ4k ϕ=-+,Z k ∈,又π2ϕ<,所以π4ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,ππ5π3,41212x ⎛⎫-∈- ⎪⎝⎭,所以()πsin 34f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上单调递增,故3ω=符合题意;当5ω=时,由5π5π12k ϕ⨯+=,Z k ∈,得25ππ12k ϕ=-+,Z k ∈,又π2ϕ<,所以π12ϕ=-,此时当π2π,189x ⎛⎫∈ ⎪⎝⎭时,π7π37π5,123636x ⎛⎫-∈ ⎪⎝⎭,所以()πsin 512f x x ⎛⎫=-⎪⎝⎭在π2π,189⎛⎫ ⎪⎝⎭上不单调,故5ω=不符合题意.综上所述,1ω=或3.故选:AB.三、填空题:本题共4小题,每小题5分,共20分.13.函数()2lg 1x xf x -=+的定义域为______________.【答案】{}12x x -<<【解析】【分析】根据对数真数必须大于零可得不等式,求解得到定义域【详解】依题意,201x x->+,得()()202101x x x x -<⇔-+<+,则12x -<<,故所求定义域为{}12x x -<<.故答案为:{}12x x -<<14.已知120πx x ≤<≤,满足12sin sin x x =,则12cos 2x x +=______________.【答案】0【解析】【分析】根据三角函数的对称性可得12πx x +=,即可代入求解.【详解】因为120πx x ≤<≤,由12sin sin x x =,得12πx x +=,所以12cos02x x +=.故答案为:015.德国数学家高斯在证明“二次互反律”的过程中首次定义了取整函数[]y x =,其中[]x 表示“不超过x的最大整数”,如[]3.143=,[]0.6180=,[]2.718283-=-,则2325421lg lg8lg 7log 10⎡⎤-++=⎢⎥⎣⎦________.【答案】1【解析】【分析】通过已知条件确定取整函数[]y x =的取值法则,即[]=x a ,1a x a ≤<+;利用对数运算法则计算2325421lg lg8lg 7log 10-++,进而确定23251lg lg8lg 7log 10⎡⎤-++⎢⎥⎣⎦的值.【详解】232511lg lg8lg lg lg 252lg 57lg 10742⎛-+=⨯+=+ ⨯⎝,因为()lg 0y x x =>为增函数,所以0lg1lg 5lg101=<<=,112lg 522<+<,故23251lg lg8lg 17log 10⎡⎤-+=⎢⎥⎣⎦.故答案为:116.已知函数()214,0222,0x x x x f x x ⎧--+≤⎪=⎨⎪->⎩,若存在实数a ,b ,c 满足a b c <<,且()()()f a f b f c ==,则()()a b f c +的取值范围是______________.【答案】(]18,2--【解析】【分析】画出分段函数图像,数形结合,找到三根的关系,利用图像交点求出最后结果.【详解】作出函数()f x 的图象,知4a b +=-,()1922f c ≤<,故()()182a b f c -<+≤-,即()()a b f c +的取值范围是(]18,2--.故答案为:(]18,2--四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(1)若α的终边经过点()2,4P -,求πtan 4α⎛⎫+ ⎪⎝⎭的值;(2)若π0,2α⎛⎫∈ ⎪⎝⎭,且π3sin 45α⎛⎫-= ⎪⎝⎭,求sin α的值.【答案】(1)13-;(2)7210【解析】【分析】(1)首先根据正切定义求出tan 2α=-,再利用两角和的正切公式计算即可;(2)根据同角三角函数关系求出π4cos 45α⎛⎫-= ⎪⎝⎭,再利用两角和的正弦公式计算即可.【详解】(1)因为α的终边经过点()2,4P -,所以4tan 22α==--,所以()πtan 1211tan 41tan 123ααα+-+⎛⎫+===- ⎪---⎝⎭.(2)因为π0,2α⎛⎫∈ ⎪⎝⎭,则πππ,444α⎛⎫-∈- ⎪⎝⎭,且π3sin 045α⎛⎫-=> ⎪⎝⎭,所以π4cos 45α⎛⎫-= ⎪⎝⎭,所以sin sin sin cos cos sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦34525210=⨯+⨯=.18.已知幂函数()mf x x =的图象过点()25,5.(1)求()8f 的值;(2)若()()132f a f a +>-,求实数a 的取值范围.【答案】(1)()8f =(2)23,32⎛⎤ ⎥⎝⎦【解析】【分析】(1)代入点到函数中即可求解解析式,进而可求解值,(2)根据函数的单调性,即可求解.【小问1详解】依题意,255m=,解得12m =,故()12f x x =(0x ≥),则()1288f ==.【小问2详解】易知()12f x x =在[)0,∞+上是增函数,依题意,10320132a a a a +≥⎧⎪-≥⎨⎪+>-⎩,解得2332a <≤,故实数a 的取值范围为23,32⎛⎤ ⎥⎝⎦.19.已知集合()(){}230A x x x =-+≤,{}11B x a x a =-<<+,定义两个集合P ,Q 的差运算:{},P Q x x P x Q -=∈∉且.(1)当1a =时,求A B -与B A -;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.【答案】(1){}30,2A B x x x -=-≤≤=或,B A -=∅.(2)[]2,1-【解析】【分析】(1)用集合的新定义求解即可;(2)由“x A ∈”是“x B ∈”的必要条件得到B A ⊆,再利用范围求出即可.【小问1详解】()(){}{}23032A x x x x x =-+≤=-≤≤,当1a =时,{}02B x x =<<,所以{}30,2A B x x x -=-≤≤=或,B A -=∅.【小问2详解】因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆,故1312a a -≥-⎧⎨+≤⎩,解得21a -≤≤,即实数a 的取值范围是[]2,1-.20.随着时代的发展以及社会就业压力的增大,大学生自主创业的人数逐年增加.大学生小明和几个志同道合的同学一起创办了一个饲料加工厂.已知该工厂每年的固定成本为10万元,此外每生产1斤饲料的成本为1元,记该工厂每年可以生产x 万斤司料.当046x <<时,年收入为4001004x ⎛⎫- ⎪+⎝⎭万元;当46x ≥时,年收入为92万元.记该工厂的年利润为()f x 万元(年利润=年收入-固定成本-生产成本).(1)写出年利润()f x 与生产饲料数量x 的函数关系式;(2)求年利润的最大值.【答案】(1)()40090,046482,46x x f x x x x ⎧--<<⎪=+⎨⎪-≥⎩(2)54【解析】【分析】(1)根据年利润公式列分段函数解析式即可;(2)结合基本不等式和一元二次函数性质分别求分段函数的最值,比较即可得最大值.【小问1详解】由题意,当046x <<时,()f x =400400100109044x x x x ⎛⎫---=-- ⎪++⎝⎭;当46x ≥时,()f x =921082x x --=-;所以()40090,046482,46x x f x x x x ⎧--<<⎪=+⎨⎪-≥⎩;【小问2详解】当046x <<时,()f x ()40040090944945444x x x x ⎡⎤=--=-++≤-⎢⎥++⎣⎦,当且仅当40044x x =++即16x =时等号成立;当46x ≥时,()f x 82824636x =-≤-=;因为5436>,所以当16x =时,年利润()f x 有最大值为54万元.21.已知函数()2sin cos sin f x x x x =+.(1)求()f x 的最小值及相应x 的取值;(2)若把()f x 的图象向左平移π3个单位长度得到()g x 的图象,求()g x 在[]0,π上的单调递增区间.【答案】(1)7π,Z 8x k k π=+∈时,()fx 取得最小值12.(2)π0,24⎡⎤⎢⎥⎣⎦,13π,π24⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)化简得到()π1sin 2242f x x ⎛⎫=-+ ⎪⎝⎭,根据正弦型函数的性质,即可求解;(2)化简得到()5π1sin 22122g x x ⎛⎫=++ ⎪⎝⎭,结合题意,利用正弦型函数的性质,即可求解.【小问1详解】因为()211cos 2π1sin cos sin sin 2sin 222242x f x x x x x x -⎛⎫=+=+=-+ ⎪⎝⎭,所以当π3π22π,Z 42x k k -=+∈,即7ππ,Z 8x k k =+∈时,()f x 取得最小值12.【小问2详解】由函数()ππ15π1sin 2sin 2323422122g x f x x x π⎡⎤⎛⎫⎛⎫⎛⎫=+=+-+=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,由π5ππ222π,Z 2122k x k k π-≤+≤+∈,可得11ππππ,Z 2424k x k k -≤≤+∈,又[]0,πx ∈,取0k =时,可得π024x ≤≤;取1k =时,可得13ππ24x ≤≤;所以()g x 在[]0,π上的单调递增区间为π0,24⎡⎤⎢⎥⎣⎦,13π,π24⎡⎤⎢⎥⎣⎦.22.已知函数()42x x f x a =-⋅.(1)当2a =时,求()f x 在[]1,2-上的最值;(2)设函数()()()g x f x f x =+-,若()g x 存在最小值11-,求实数a 的值.【答案】(1)()f x 最小值为1-;()f x 最大值8(2)6a =【解析】【分析】(1)换元后结合二次函数单调性得到最值;(2)令22x x m -=+,求出2m ≥,转化为()22h m m am =--在区间[)2,+∞上存在最小值11-,分22a ≤和22a >两种情况,结合函数单调性,得到方程,求出实数a 的值.【小问1详解】当2a =时,()()2422222x x x x f x ==-⨯-⨯,令2x t =,因为[]1,2x ∈-,所以1,42t ⎡⎤∈⎢⎥⎣⎦.所以()22211y t t t =-=--,1,42t ⎡⎤∈⎢⎥⎣⎦.故当1t =时,min 1y =-;当4t =时,max 8y =,即当0x =时,()f x 取得最小值1-;当2x =时,()f x 取得最大值8.【小问2详解】()()()2424222222x x x x x x x x g a a x a ----=-⋅+-⋅=+-⋅+-,令22x x m -=+,则2m =≥,当且仅当22-=x x ,即0x =时,等号成立,于是问题等价转化为()22h m m am =--在区间[)2,+∞上存在最小值11-,二次函数()h m 的对称轴方程为2a m =,当22a ≤,即4a ≤时,()h m 在区间[)2,+∞上单调递增,此时存在最小值()222h a =-,令2211a -=-,解得132a =,不符合题意,舍去;当22a >,即4a >,()h m 在区间2,2a ⎡⎫⎪⎢⎣⎭上单调递减,在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以存在最小值222222424a a a a h ⎛⎫=--=-- ⎪⎝⎭,令22114a --=-,解得6a =(负值舍去).综上得,6a =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007学年度第一学期期末考试高一数学试卷本试卷分第一部分(选择题)和第二部分(非选择题)两部分,满分150分,考试时间120分钟。

第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题的四个选项中,有一项是符合题目要求的. 1.若{{}|0,|12A x x B x x =<<=≤<,则A B ⋃=( )A . {}|0x x ≤B . {}|2x x ≥C .{0x ≤≤ D . {}|02x x <<2.下列三视图所表示的几何体是( )A . 正方体B . 圆锥体C . 正四棱台D . 长方体 3.下列各组函数中,表示同一函数的是( ) A . xx y y ==,1 B .x y x y lg 2,lg 2== C .33,x y x y == D .()2,x y x y ==4.函数22(13)y x x x =--≤≤的值域是( )A .[1,1]-B .[1,3]-C . [1,15]-D . [1,3]5.函数2,02,0x x x y x -⎧⎪⎨⎪⎩≥=< 的图像为()6.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林()俯视图侧视图正视图A .14400亩B .172800亩C .17280亩D .20736亩7.圆柱体的底面半径是R ,高是2R ,半球体的半径是R ,则圆柱体的全面积与半球体的全面积的比是( )A .2:1B .3:1C .3:2D .4:38.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A .0 B .8- C .2 D .10 9.设0x 是方程ln 4x x +=的解,则0x 在下列哪个区间内( )A .(3,4)B .(2,3)C .(1,2)D .(0,1)10.圆:012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A . 2B .221+C .221+D .21+ 第二部分 非选择题(共100分)二、填空题:本大题共4小题,每题5分,共20分 11.函数21)(--=x x x f 的定义域为__________________ 12.已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x =_____________13.若三点)0)(,0(),0,(),2,2(≠ab b C a B A 共线,则ba 11+的值等于______ . 14.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行; (3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行. 其中正确的个数有____________个。

三、解答题:本大题共6小题,共80分;解答应写出文字说明、证明过程或演算步骤. 15(本题满分12分)给出四个多面体 A ,B ,C ,D ,将它们的面数、顶点数和棱数分别记作M 、N 、L ,DC B A(1)观察图形,将面数、顶点数、棱数填入下表:(2)仔细研究你完成的表格,会发现每一列的数据都和某一个常数有着某种等量关系,请写出用M 、N 、L 表示的这个关系式。

16(本题满分12分)已知三角形的三个顶点是A (4,0),B (6,7),C (0,3). (1)求BC 边上的高所在的直线方程 (2)求BC 边上的中线所在的直线方程17(本题满分14分)如图,长方体1111D C B A ABCD -中,1==AD AB ,21=AA ,点P 为1DD 的中点。

(1)求证:直线1BD ∥平面PAC (2)求证:平面PAC ⊥平面1BDD (3)求证:直线1PB ⊥平面PAC18(本题满分14分)若函数bx x a x f 1)1()(2++=,且3)1(=f ,29)2(=f(1)求b a ,的值,写出)(x f 的表达式 (2)求证)(x f 在),1[+∞上是增函数 19(本题满分14分)已知21()log .1xf x x+=- (1)求)(x f 的定义域 (2)判断)(x f 的奇偶性并予以证明 (3)求使)(x f >0的x 取值范围20(本题满分14分)已知圆b x y l y x y x C +==---+:,0342:22直线.(1)若直线l 与圆C 相切,求实数b 的值(2)是否存在直线l 与圆C 交于A 、B 两点,且OB OA ⊥(O 为坐标原点);如果存在,求出直线l 的方程,如果不存在,请说明理由PD 1C 1B 1A1D CBADC B A 棱数(L )顶点数(N )面数(M )数目多面体2007学年度第一学期期末考试 高一数学参考答案及评分标准一.选择题(每小题5分,共50分)二、填空题(每小题5分,共20分) 11.[1,2)∪(2,+∞) 12. 3 13. 1214.2 三.解答题(共80分) 15.(16分(2)仔细研究你完成的表格,会发现每一列的数据都和某一个常数有着某种等量关系,请写出用M 、N 、L 表示的这个关系式。

解:这个关系式是 2M N L +-= 12分16.解:(1)320637=--=BC k 3分 所以BC 边上的高所在直线的斜率为23- 5分所以BC 边上的高所在直线方程是01223)4(23=-+--=y x x y ,即 7分(2)BC 的中点坐标为(3,5) 9分所以BC 边上的中线所在直线方程是4354-=-x y 11分 即0205=-+y x 12分17.解:(1)设AC 和BD 交于点O ,连PO ,由P ,O 分别是1DD ,BD 的中点,故PO//1BD ,所以直线1BD ∥平面PAC 4分(2)长方体1111D C B A ABCD -中,1==AD AB ,底面ABCD 是正方形,则AC ⊥BD 又1DD ⊥面ABCD ,则1DD ⊥AC ,所以AC ⊥面1BDD ,则平面PAC ⊥平面1BDD 9分(3)PC 2=2,PB 12=3,B 1C 2=5,所以△PB 1C 是直角三角形。

1PB ⊥PC ,同理1PB ⊥PA ,所以直线1PB ⊥平面PAC 。

14分18.解 (1)∵3)1(=f ∴23a b+= ① 又 ∵29)2(=f ∴4(1)1922a b ++= ②由①、②=解得 a=1,b=1 ∴221()x f x x+= 8分(2)设211x x >≥,,则222121212121()()x x f x f x x x ++-=-=22211221(21)(21)x x x x x x +-+⋅=211221()(21)x x x x x x --⋅∵x 1≥1,x 2>1,∴2x 1x 2-1>0., x 1x 2>0.,又∵x 1<x 2,∴x 2-x 1>0.∴21()()f x f x ->0即21()()f x f x >故函数f (x )在区间[1,+∞)上是增函数. 14分 19:解(1)由对数函数的定义域知011>-+x x故)(x f 的定义域为(-1,1) 4分 (2)2211()log log (),11x xf x f x x x-+-==-=-+-)(x f ∴为奇函数 9分(3)211log 01,11x xx x++>>--等价于(i ) 而从(1)知,01>-x 故(i )等价于x x ->+11又等价于0>x故对(0,1)x ∈当时有)(x f >0 14分 20.解:(1)圆的方程化为8)2()1(22=-+-y x 1分所以圆心为(1,2),半径为22 3分 22221=+-=∴bd 5分35-=∴或b 6分 或将034)3(2222=--+-++=b b x b x b x y 代入圆方程得 2分)34(24)3(422--⨯⨯--=∆∴b b b 4分060842=++-=b b 5分35-=∴或b 6分(2)设),(),,(2211y x B y x A 1,2211-=⋅∴⊥x y x y OB OA ,即02121=+y y x x 8分 0))((,,21212211=+++∴+=+=b x b x x x b x y b x y0)(222121=+++∴b x x b x x 9分将b x y +=代入圆方程得:034)3(2222=--+-+b b x b x 10分234,322121--=-=+∴b b x x b x x 11分 03,0)3(34222=--=+-+--∴b b b b b b b2131±=b 13分 所以所求直线方程为2131±+=x y 14分预测全市平均分为80分左右 命题人:荔城中学 陈广智。

相关文档
最新文档