三角函数高考常见题型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数高考常见题型
三角函数题是高考数学试卷的第一道解答题,试题难度一般不大,但其战略意义重大,所以稳拿该题14分对文理科学生都至关重要。分析近年高考试卷,可以发现,三角解答题多数喜欢和平面向量综合在一起,且向量为辅,三角为主,主要有以下五类:
一、运用同角三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
例题1.(2012全国卷大纲7)已知α为第二象限角,sin cos αα+=
,则cos2α=
(A )3- (B )9- (C )9 (D )3
【答案】A .
例题2.【2012高考真题山东理7】若42ππθ⎡⎤
∈⎢⎥⎣⎦,,sin 2θ,则sin θ=
(A )
35 (B )45 (C )4
(D )34 【答案】D
例题 3.(2011浙江)(6)若02
π
α<<
,02π
β-
<<,1
cos()43
πα+=,
cos()423
πβ-=
cos()2βα+=
(A )
3 (B )3- (C )9 (D )9
- 【答案】C
例4. 已知向量33(cos
,sin ),(cos ,sin ),[,]22222
x x x x x π
π==-∈且a b 。
(1)若||+>a b x 的取值范围;
(2)函数()||f x =⋅++a b a b ,若对任意12,[
,]2
x x π
π∈,恒有12|()()|f x f x t -<,
求t 的取值范围。
解:(1)||||1,cos 2,||22cos 22cos 3x x x ==⋅=∴
+=+=->a b a b a b ,
即3
5cos .[,],226
x x x ππππ<-
∈∴<≤。
(2)2
1
3()||cos 22cos 2(cos )2
2
f x x x x =⋅++=-=--
a b a b 。 max min 1cos 0,()3,()1x f x f x -≤≤∴==-,
又12max min |()()|()()4,4f x f x f x f x t -≤-=∴>
【习题1】
1.【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α=
(A) -1 (B) 22-
(C) 22
(D) 1 【答案】A 2.【2012高考真题江西理4】若tan θ+1
tan θ
=4,则sin2θ= A .
15 B. 14 C. 13 D. 1
2
【答案】D 3.【2012高考重庆文5】
sin 47sin17cos30
cos17
-
(A )32-
(B )12-(C )12 (D )3
2
【答案】C
4.【2012高考真题四川4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,
连接EC 、ED 则sin CED ∠=( )
A 、
31010 B 、1010 C 、510 D 、5
15
【答案】B 5.(2012考江苏11)α为锐角,若4cos 65απ⎛
⎫+= ⎪⎝
⎭,则)122sin(π+a 的值为 ▲ ;
若41-3sin =⎪⎭⎫
⎝⎛απ,则⎪⎭
⎫
⎝⎛+απ23cos 等于 .
6.已知a ∈(2π,π),sin αtan2α= 【答案】34-
二、运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、对称轴及对
称中心。
例题1.【2012高考真题新课标理9】已知0ω>,函数()sin()4
f x x π
ω=+在(,)2π
π上
单调递减.则ω的取值范围是( )
()A 15[,]24 ()B 13[,]24 ()C 1
(0,]2
()D (0,2]
【答案】A
【解析】函数)4
sin()(π
ω+
=x x f 的导数为)4
cos()('π
ωω+
=x x f ,要使函数
)4sin()(πω+
=x x f 在),2(ππ上单调递减,则有0)4
cos()('≤+=π
ωωx x f 恒成立,
则πππωππk x k 223422+≤+≤+, 即ππωππk x k 24524+≤≤+, 所以Z k k x k ∈+≤≤+,ω
πωπωπωπ24524,
当0=k 时,ωπωπ454≤≤x ,又ππ< πωπ≥≤45,24, 解得45,21≤≥ωω,即4 5 21≤≤ω,选A. 例题2.【2012高考新课标文9】已知ω>0,πϕ<<0,直线4π=x 和45π =x 是函数 )(sin )(ϕω+=x x f 图像的两条相邻的对称轴,则=ϕ (A )π4 (B )π3 (C )π 2 (D )3π4 【答案】A 【解析】因为4 π = x 和45π= x 是函数图象中相邻的对称轴,所以2 445T =-ππ,即ππ2,2==T T .又πω π 22==T ,所以1=ω,所以)sin()(ϕ+=x x f ,因为4π=x 是函 数的对称轴所以ππϕπk +=+24,所以ππ ϕk +=4 ,因为πϕ<<0,所以4πϕ=,检 验知此时45π =x 也为对称轴,所以选A. 例题3.函数1 -1 y x =的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和 等于( ) (A )2 (B) 4 (C) 6 (D)8 解:函数1 -1 x y = 和函数)42(-sin 2≤≤=x x y π 的图像有公共的对称中心)(0,1,且函数 )42(-sin 2≤≤=x x y π的周期为2,做出两个函数在 同一坐标系内的图像,在区间)(4,1上有两个交点,根据对称性,在)(1,2-上也有两个交点, 故所有交点横坐标之和为4,选B 。 例题4 若(3sin ,0),(cos ,sin ),0x x x ωωωω==->m n ,在函数 ()()f x t =⋅++m m n 的图象中,对称中心到对称轴的最小距离为4π,且当[0,]3 x π ∈时,()f x 的最大值为1。 (1)求函数()f x 的解析式; (2)若13 (),[0,]2 f x x π+=-∈,求实数x 的值。 解:由题意得(3sin cos ,sin )x x x ωωω+=+-m n , ()()(3sin ,0)(3sin cos ,sin )f x t x x x x t ωωωω=⋅++=⋅+-+m m n