高等数学第七章测试题答案(第7版)
高等数学第七章 习题答案
习题7-11. 下列向量的终点各构成什么图形?(1)空间中一切单位向量归结为共同的始点;(2)平行于同一平面的一切单位向量归结为共同的始点;(3)平行于同一直线的所有单位向量归结为同一始点;(4)平行于同一直线的所有向量归结为同一始点。
答:(1)单位球面 (2)单位圆 (3)两个点 (4)直线。
2. 设点O 是正六边形ABCDEF 的中心,在向量,,,,,,,,OA OB OC OD OE OF AB BC ,,,CD DE EF FA 中,哪些向量是相等的? 答:,OA EF =,OB FA =,OC AB =,OD BC =,OE CD =.OF DE =3.平面四边形,ABCD 点,,,K L M N 分别是,,,AB BC CD DA 的中点,证明:.KL NM =当四边形ABCD 是空间四边形时,上等式是否仍然成立?证明:连结AC, 则在∆BAC 中,21AC. 与方向相同;在∆DAC 中,21AC. NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .当四边形ABCD 是空间四边形时,上等式仍然成立。
4. 解下列各题:(1)化简()()()()2332;x y x y -+-+-a b a b(2)已知12312323,322,=+-=-+a e e e b e e e 求,,32+--a b a b a b.解:(1)()()()()2332x y x y -+-+-a b a b()()()()23322332x y x y x y x y =--++-++⎡⎤⎡⎤⎣⎦⎣⎦a b()()55x y x y --+-=a b;(2)()()123123123233225;+=+-+-+=++a b e e e e e e e e e()()12312312323322;-=+---+=-+a b e e e e e e e +e e()()()()123123123123323232322693644-=+---+=+---+a b e e e e e e e e e e e e 235.=+e e5.四边形ABCD 中,2,568AB CD =-=+-a c a b c,对角线,AC BD 的中点分别是,,E F 求.EF 解:()()111156823352222EF CD AB =+=+-+-=+-a b c a c a b c.6. 设ABC ∆的三条边,,AB BC CA 的中点分别为,,,L M N 另O 为任意一点,证明: .OA OB OC OL OM ON ++=++证明:(1)如果O 在ABC ∆内部(如图1),则O 把ABC ∆分成三个三角形OAB,OAC,OBC 。
高等数学习题详解-第7、8章_
⾼等数学习题详解-第7、8章_⾼等数学第七、⼋章练习题1. 指出下列各点所在的坐标轴、坐标⾯或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平⾯上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标⾯的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy ⾯的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz ⾯的对称点的坐标为:(1, 2,3);M 关于zOx ⾯的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三⾓形是⼀个等腰三⾓形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==5、已知向量→a =(0,3,1),→b =(1,2,-1),则→→?b a =_____5___;6、过点A (1,-2,1)且以a →=(1,2,3)为法向量的平⾯⽅程是230x y z ++= 7、过点(1,-2,3)且与平⾯7360x y z -+-=平⾏的平⾯⽅程是_7(1)3(2)(3)0x y z --++-=_;8.已知两点)1,2,4(1M 与)2,0,3(2M ,求21M M ,⽅向余弦,⽅向⾓.解 }1,2,1{21--=M M ,21)2()1(22221=++-=M M ,⽅向余弦为21,22,21--,⽅向⾓为3,43,32πππ. 9.试确定m 于n 的值,使向量},3,2{n a -=与向量}2,6,{-=m b 平⾏.解 2632nm =-=-,得1,4-==n m . 10、已知平⾯1π:11110A x B y C z D +++=与平⾯2π:22220A x B y C z D +++=,则1π||2π的充要条件是__,⽽1π⊥2π的充要条件是__;11、平⾯3210x y z -++=的法向量为)2,1,3(-__;12、过点(1,-2,2)且以向量a →=(1,-2,3)为⽅程向量的直线⽅程是__; 13、指出下列⽅程在平⾯解析⼏何与空间解析⼏何中分别表⽰什么⼏何图形?(1) x -2y =1; (2) x 2+y 2=1;(3) 2x 2+3y 2=1; (4) y =x 2.解:(1)表⽰直线、平⾯。
同济大学《高等数学》第七版上、下册答案(详解),DOC
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.
高等数学第七章习题详细解答
第七章习题答案习题7.01.下列各种情形中,P 为E 的什么点?(1)如果存在点P 的某一邻域()U P ,使得()⊂c U P E (c E 为E 的余集); (2)如果对点P 的任意邻域()U P ,都有, ()(),C U P E U P E φφ≠≠; (3)如果对点P 的任意邻域()U P ,都有. 解 (1)P 为E 的外点;(2)P 为E 的边界点;(3)P 为E 的聚点。
2.判定下列平面点集的特征(说明是开集、闭集、区域、还是有界集、无界集等?)并分别求出它们的导集和边界.(1) (){},0≠x y y ;(2) (){}22,620≤+≤x y x y ; (3) (){}2,≤x y y x ;(4) ()(){}()(){}2222,11,24+-≥⋂+-≤x y x y x y x y .解 (1) 是开集,是半开半闭区域,是无界集,导集为2R ,边界集为(){},0=x y y ;(2)既不是开集也不是闭集,是半开半闭区域,是有界集,导集为(){}22,620≤+≤x y x y ,边界集为(){}2222,=6=20++,x y x y x y ;(3) 是闭集,是半开半闭区域,是无界集,导集为集合本身,边界集为(){}2,=x y y x ;是闭集,是闭区域,是有界集,导集为集合本身,边界集为()()(){}2222,11,24+-=+-=x y x y x y习题7.11. 设求1. 解 令,=-=yu x y v x,解得,11==--u uv x y v v,故()22,11⎛⎫⎛⎫=- ⎪ ⎪--⎝⎭⎝⎭u uv f u v v v ,即()()21+,1=-u v f u v v ,所以,()()21+y ,1=-x f x y y φ≠-}){()(P E P U 22,,y f x y x y x ⎛⎫-=- ⎪⎝⎭(,).f x y2.已知函数()22,cot =+-x f x y x y xy y,试求(),f tx ty .2. 解 因为()22,cot =+-y f x y x y xy x,所以,()2222,cot ,=+-t y f tx ty tx ty txty t x即()()222,cot =+-y f tx ty t x y t xy x.3.求下列各函数的定义域 (1) 25)1(=-+z ln y xy ;(2) =z ;(3) =z(4) )0;=>>u R r(5) =u3. 解 (1)(){}2,510-+>x y yxy ;(2)(){},0->x y x y ;(3)(){}2,≥x y x y ;(4)(){}22222,<++≤x y r x y z R ;(5)(){}222,≤+x y z x y4. 求下列各极限:(1) ()()233,0,31lim →-+x y x yx y ;(2)()(,1,1ln lim→+x x y y e(3)()(,0,0lim→x y(4)()(,0,0lim→x y ;(5)()()(),0,2sin lim→x y xy x ;(6)()()()()222222,0,01cos lim→-++x y x y x y xy e.4. 解 (1)()()2333,0,31101lim 0327→--==++x y x y x y ;(2)()(()1,1,1ln ln 11lim2→+++===x x y y e e e (3)()()()(,0,0,0,0limlim→→=x y x y ()(,0,01lim4→==x y (4)()(()()),0,0,0,01limlim→→=x y x y xy xy()()),0,0=lim1=2→+x y(5)()()()()()(),0,2,0,2sin sin limlim 122→→=⋅=⋅=x y x y xy xy y x xy(6)()()()()()()()()()222222222222222,0,0,0,01cos 1cos limlim→→-+-++=⋅++x y x y x y x y x y x y xy xy eex y()()()()()()()2222222022,0,0,0,01cos 10limlim=02→→-++=⋅⋅=+x y x y x y x y xy e exy5.证明下列极限不存在: (1)()(),0,0lim→-+x y x yx y ;(2)()(),0,0lim→+-x y xyxy x y .5. (1) 解 令=y kx ,有()(),0,001limlim 1→→---==+++x y x x y x kx kx y x kx k ,k 取不同值,极限不同,故()(),0,0lim→-+x y x yx y 不存在.(2) 解令=x y()()22,0,00lim lim 1→→==+-x y x xy x xy x yx ;令2=x y()()()()22,0,02,0,0022lim lim lim 0221→→→===+-++x y y y y xy y y xy x y y y y ;01≠,故()(),0,0lim→+-x y xyxy x y不存在.6.函数=y z a 为常数)在何处间断?6. 解 因为=y z 是二元初等函数,且函数只在点集(){,x y y 上无定义,故函数在点集(){,x y y 上间断.7.用 εδ- 语言证明()(,0,0lim0→=x y .7. 证明 对0∀>ε,要使220-=≤=<ε2<ε,取=2δε<δ0-<ε,所以()(,0,0lim 0→=x y习题7.21. 设()(),sin 1arctan ,π==+-xy xz f x y e y x y 试求()1,1x f 及()1,1y f1. 解()221,sin arctan 1=+++xy x x yf x y ye y xx yyπ22=sin arctan+++xy x xy ye y y x y π.()()222,sin cos 11-=++-+xy xyy x y f x y xe y e y x x yπππ 222sin cos -=+++xyxyx x xe y e y x y πππ()()1,1,1,1∴=-=-x y f e f e2.设(),ln 2⎛⎫=+ ⎪⎝⎭y f x y x x ,求()1,0'x f ,()1,0'y f .2. 解()()222122,22--==++x yx y x f x y y x x y x x()2112,22==++y x f x y yx y x x()()11,011,02∴==,x y f f . 3.求下列函数的偏导数(1) 332=++z x y xy ,(2) ()1=+xz xy , (3) ()222ln =+z y x y ,(4) ln tan=y z x, (5) ()222ln =+z x x y ;(6)=z (7) ()sec =z xy ;(8) ()1=+yz xy ;(9) ()arctan =-zy x y ;(10) .⎛⎫=⎪⎝⎭zx u y 3. 解 (1)2232,32z z x y y x x y ∂∂=+=+∂∂(2)因为 ()ln 1,x xy z e+=所以()()()()ln 1ln 11ln 111x x xy z xy xy e xy xy xy x xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭()()22ln 1111x x xy z x x e xy y xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭(3)()2322222222,2ln z xy z y y x y x x y y x y ∂∂==++∂+∂+(4)222222sec sec 111sec ,sec tan tan tantan y yy z y y z y x x y y y y x x x y x x x x x x x x∂∂⎛⎫⎛⎫=-=-== ⎪ ⎪∂∂⎝⎭⎝⎭ (5)()32222222222ln ,z x z x y x x y x x y y x y ∂∂=++=∂+∂+(6)z z x y ∂∂====∂∂(7)()()()()sec tan ,sec tan z z y xy xy x xy xy x y ∂∂==∂∂(8)()()22ln 1111y y xy z y y e xy x xy xy +⎛⎫⎛⎫∂==+ ⎪ ⎪∂++⎝⎭⎝⎭()()()()ln 1ln 11ln 111y y xy z xy xy e xy xy xy y xy xy +⎛⎫⎛⎫∂=++=+++ ⎪ ⎪∂++⎝⎭⎝⎭ (9)()()()()()()()11222ln ,,111z z zz z z z x y z x y x y x y u u u x y z x y x y x y ------∂∂∂==-=∂∂∂+-+-+-(10)因为 ln,x z yu e=所以ln ln ln 21,,ln zzx x x z z z y y y u z x z u z x x z u x e e e x x xy y x y y y y z y y y⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫∂∂∂=⋅==⋅-=-= ⎪ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭⎝⎭4.设ln=z ,求证: 12∂∂+=∂∂z z xy x y . 4.证明 因为ln,z =所以z zx y∂∂====∂∂从而有12 z zx yx y∂∂+=+=+=∂∂5.求下列函数的二阶偏函数:(1)已知33sin sin=+z x y y x,求2∂∂∂zx y;(2)已知ln=xz y,求2∂∂∂zx y;(3)已知(ln=z x,求22∂∂z x和2∂∂∂z x y;(4)arctan=yzx求22222,,∂∂∂∂∂∂∂z z zx y x y和2∂∂∂zy x.5. 解(1)3323sin sin,3sin coszz x y y x x y y xx∂=+∴=+∂从而有223cos3coszx y y xx y∂=+∂∂(2)ln ln1,lnx xzz y y yx x∂⎛⎫=∴= ⎪∂⎝⎭从而有()()()ln1ln1ln11ln ln ln ln1xx xz yxy y y x yx y x y x--⎛⎫∂=+⋅=+⎪∂∂⎝⎭(3)(()1222 ln,zz x x yx-∂=∴===+∂从而有()()3322222222122zx y x x x yx--∂=-+=-+∂()()332222222122z x y y y x y x y --∂=-+=-+∂∂ (4)22221arctan,1y z y y z x xx x y y x ∂⎛⎫=∴=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭ 222111z x yx x y y x ∂⎛⎫=⋅= ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭从而有()()()()2222222222222222222,x y y z xy z y x x x y x y x y x y -++∂∂-===∂∂∂+++ ()()2222222222222222,z xy z x y xy x y y y x x y x y x y ⎛⎫∂-∂+--=== ⎪∂∂∂+⎝⎭++ 6. 设()ln =z y xy ,求2∂∂∂z x y 及22∂∂zy .6. 解 因为()ln ,z y xy =所以()(),ln ln 1z y y z x y xy y xy x xy x y xy∂∂===+=+∂∂从而有22211,.z z x y x y y∂∂==∂∂∂ 习题7.31. 求下列函数的全微分.(1) 2222+=-s t u s t ;(2) ()2222+=+x y xyz x y e;(3) ()arcsin0=>xz y y;(4) ⎛⎫-+ ⎪⎝⎭=y x x y z e ;1.解 (1)()()222232322222222()()22222∂--+⋅---==∂--u s s t s t s s st s t s s s t s t()()222223232222222()()22222u t s t s t t ts t ts s t s t s t ∂--+---==∂-- ()()2322222244u u st t dz ds dt ds dt s t s t s t ∂∂-∴=+=-∂∂--(2)()()()222222222222++++∂=++⋅∂x y x y xyxyx y x y yzxe x y exxy()2222222244222222+++⎛⎫--=++⋅=+ ⎪⎝⎭x y x y x y xyxyxyx y x y xe x y e x e x y x y()()()22222222222-2+++∂=++⋅∂x y x y xy xyy x x y xzye x y eyxy()()2222222222442222+++-+⎛⎫-=+⋅=+ ⎪⎝⎭x y x y x y xyxyxyy x x y y x yeey e xy xy2244442222x y xyz z x y y x dz dx dy x edx y dy x y x y xy +⎛⎫⎛⎫∂∂--∴=+=+++ ⎪ ⎪∂∂⎝⎭⎝⎭ (3)2222211∂=⋅==∂--⎛⎫yzxyyy x y x x22⎛⎫⎛⎫∂=-=-= ⎪ ⎪∂⎝⎭⎝⎭z x x yy y z zdz dx dy x y∂∂∴=+=∂∂(4)22221y x y x x y x y z y y x e e x x y x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-= ⎪∂⎝⎭ 22221y x y x x y x y z x x y e e y x y xy ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫∂-=-+= ⎪∂⎝⎭222222y x y x x y x y z z z y x x y dz dx dy e dx e dy x y y x y xy⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭∂∂∂--∴=+==+∂∂∂ 2. 求函数2arctan1=+xz y 在1,1==x y 处的全微分.2.解()()()()()()()22222222222222222211111111111++∂++=⋅=⋅=∂++++++++y y z y y x xy y x y y xy()()()()()()22222222222222211222111111+∂-⋅--=⋅=⋅=∂++++++++y z x y xy xyx yy y x y y xy()()21,11125111z x ∂+∴==∂++ , ()()21,12125111∂-⋅==-∂++z y ()1,12255dz dx dy ∴=- 3. 求函数22=-xyz x y 当2,1,0.02,0.01==∆=∆=x y x y 时的全微分和全增量,并求两者之差.3.解 ()()()(),, 2.02,1.011,1z z x x y y z x y z z ∆=+∆+∆-=-()()22222.02 1.0121 2.0420.6670.667021 4.08 1.0232.02 1.01⨯⨯=-=-=-=--- ()()()2223222222222--⋅∂--===-∂---y x y xy x z x y y y x x y x y x y ()()()()22322222222--⋅-∂+==∂--x x y xy y z x xy y x y x y ()2,111413z x ∂∴=-=-∂- ,()()22,182110941z y ∂+⨯==∂- ()2,11100.020.010.070.0110.00439dz ∴=-⨯+⨯=-+=00.0040.004z dz ∴∆-=-=-.*4讨论函数()()()()(),0,0,0,,0,0⎧≠⎪=⎨⎪=⎩xy x y f x y x y 在()0,0点的连续性、可导性、可微性以及其偏导函数在()0,0的连续性.4.解()()()()()(),0,0,0,0lim,lim 00,0x y x y f x y xy f →→===(),f x y ∴在()0,0点连续 又()()()00,00,0000,0limlim 0x x x f x f f x x∆→∆→∆--===∆∆ ()()()000,0,0000,0limlim 0y y y f y f f y y∆→∆→∆--===∆∆ ()()0,00,0,00x y f f ∴==.()(()(,0,0,0,0,0,00limlim limx y x y f x yf z dzρρ→∆∆→∆∆→∆∆--∆-==()()()0,0,0x y<∆∆→∆lim0z dzρρ→∆-∴=故函数(),f x y 在()0,0点可微. 由()(),0,0x y ≠时(),=-x f x yy xy()23222sinx yy xy=-+(),=-y f x y x xy ()23222xy x xy=-+()(),0,0lim 0x y y →= ,()()()()23,0,0222lim→=+x y x yy kx xy()()()33323222=lim11→==+⋅+x kx ky kx k xk ,k 不同值不同()()()23,0,0222lim→∴+x y xy xy 不存在,故()()(),0,0lim ,xx y f x y →不存在.(),x f x y ∴在()0,0点不连续,同理可证(),y f x y 在点()0,0不连续.*5.计算()2.050.99的近似值.5.解 令00,1,2,0.01,0.05yz x x y x y ===∆=∆= 则1,ln y y z z yx x x x y-∂∂==∂∂ ()()1,21,22,0z zx y ∂∂∴==∂∂ ()()()2.0521,21,20.991120.0100.0510.02 1.02∂∂∴≈+∆+∆=+⨯+⨯=+=∂∂z zx y x y*6.设有厚度为,内高为,内半径为的无盖圆柱形容器,求容器外壳体积的近似值(设容器的壁和底的厚度相同).6.解 设容器底面积半径为r ,高为h则容器体积2V r h π=22,V Vrh r r hππ∂∂==∂∂ 22∴=+dV rhdr r dh ππ002,10,0.1,0.1r cm h cm r cm h cm ==∆=∆=()()22,102,1020.10.1400.140.1 4.4∴∆≈=⋅+⋅=⨯+⨯=V dV rh r πππππ*7. 测得直角三角形两直角边的长分别为7±0.1cm 和24±0.1cm ,试求利用上述二值来计算斜边长度时的绝对误差和相对误差.0.1cm 10cm 2cm7.解 设直角三角形的直角边长分别为,x y ,则斜边z =,zz xy∂∂==∂∂由题意007,24,0.1,0.1x y x y δδ====z ∴的绝对误差为()()7,247,247240.10.10.242525∂∂=+=⨯+⨯=∂∂z x y z z x y δδδz 的相对误差()7,240.240.009625=≈zz δ 习题7.41.设,,,求. 1.解 ()3222sin 22cos 23cos 6---∂∂=⋅+⋅=⋅-⋅=-∂∂x y x y t t du z dx z dy e t e t e t t dt x dt y dt2.设,而,,求. 2.解2123∂∂=⋅+⋅=+∂∂dz z dy z dV x dx u dx V dx2341-=x3.设,,,求,. 3.解 ()()222cos 2sin ∂∂∂∂∂=⋅+⋅=-+-∂∂∂∂∂z z u z v uv v y u uv y x u x v x()()2222222cos sin sin cos cos 2cos sin sin x y y x y y x y x y y y =-+-()23sin cos cos sin x y y y y =-()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=+=--+-∂∂∂∂∂ ()()()2222222cos sin sin sin cos 2cos sin cos x y y x y x y x y x y y x y =--+-()()3333cos sin 2cos sin sin cos x y y x y y y y =+-+2e x y u -=sin x t =3y t =d d u tarccos()z u v =-34u x =3v x =d d zx22z u v uv =-cos u x y =sin v x y =zx ∂∂z y∂∂4.设,而,,求,. 4.解 222ln 3∂∂∂∂∂⎛⎫=⋅+⋅=⋅+- ⎪∂∂∂∂∂⎝⎭z z u z v u y u v x u x v x v x()()()2322632ln 326ln 3x y y y y x y x y x x x x +⎛⎫=+-=+-- ⎪⎝⎭5.设求5.解 ()()1wf x xy xyz y yz x ∂'=++++∂()()()()1wf x xy xyz x xz x z f x xy xyz y∂''=+++=+++∂ ()()wf x xy xyz xy xyf x xy xyz z ∂''=++=++∂6.求下列函数的一阶偏导数(其中具有一阶连续偏导数):(1);(2);(3);(4).6.解 (1)()()222222∂''=-⋅=-∂z f x y x xf x y x()()()222222∂''=-⋅-=--∂zf x y y yf x y y(2)121110∂'''=+⋅=∂u f f f x y y12122211u x x f f f f y y z y z ⎛⎫∂⎛⎫''''=-+=-+ ⎪ ⎪∂⎝⎭⎝⎭122220∂⎛⎫'''=⋅+-=- ⎪∂⎝⎭u y y f f f z z z (3)1231231∂''''''=⋅+⋅+⋅=++∂uf f y f yz f yf yzf x123230∂'''''=⋅+⋅+⋅=+∂uf f x f xz xf xzf y2ln z u v =32u x y =+y v x =zx ∂∂z y∂∂(),w f x xy xyz =++,,.w w wx y z∂∂∂∂∂∂f 22()z f x y =-,x y u f y z ⎛⎫= ⎪⎝⎭(,,)u f x xy xyz =22(,e ,ln )xy u f x y x =-123300∂''''=⋅+⋅+⋅=∂uf f f xy xyf z (4)1231231122∂''''''=⋅+⋅⋅+⋅=++∂xy xyu f x f e y f xf ye f f x x x()12312202∂'''''=⋅-+⋅+⋅=-+∂xy xy uf y f e x f yf xe f y7.求下列函数的二阶偏导数,,(其中具有二阶连续偏导数):(1),(2). 7.解(1)22121222∂''''=⋅+⋅=+∂zf xy f y xyf y f x22121222∂''''=⋅+⋅=+∂zf x f xy x f xyf y()()222211112212222222∂'''''''''∴=+⋅+⋅+⋅+⋅∂zyf xy f xy f y y f xy f y x233341111221222422yf x y f xy f xy f y f '''''''''=++++ 23341111222244yf x y f xy f y f '''''''=+++()()2222111122212222222∂''''''''''=+⋅+⋅++⋅+⋅∂∂zxf xy f x f xy yf y f x f xy x y322223111122212222422xf x yf x y f yf x y f xy f ''''''''''=+++++ 32231111222222522xf x yf x y f yf xy f ''''''''=++++()2222211122212222222∂'''''''''=+++⋅+⋅∂zx f x x f xy xf xy f x f xy y43221112222424x f x yf xf x y f '''''''=+++(2)()()222222∂''=+⋅=+∂zf x y x xf x y x()()222222∂''=+⋅=+∂zf x y y yf x y y22zx∂∂2z x y ∂∂∂22z y ∂∂f 22(,)z f x y xy =22()z f x y =+()()()()2222222222222224∂''''''∴=+++⋅=+++∂zf x y xf x y x f x y x f x y x()()22222224∂'''=+⋅=+∂∂z xf x y y xyf x y x y()()()()2222222222222224∂''''''=+++⋅=+++∂zf x y yf x y y f x y y f x y y8.设其中F 是可微函数,证明8.解()()()cos sin sin cos cos cos sin sin ux F y x x x xF y x x∂''=+--=--∂ ()sin sin cos uF y x y y∂'=-∂ ()()cos cos cos cos sin sin cos cos sin sin cos u uy x x xF y x y yF y x x x y∂∂''∴+=--+-⎡⎤⎣⎦∂∂ ()()cos cos cos cos sin sin cos cos sin sin cos cos x y x yF y x x yF y x x y ''=--+-=.习题7.51.设,φ⎛⎫= ⎪⎝⎭x y z z 其中为可微函数,求∂∂+∂∂z z x y x y . 1.解 z是,x y函数由方程xx z y φ⎛⎫= ⎪⎝⎭确定。
工科类本科《高等数学》第7-9章自测题参考答案
工科类本科《高等数学》第7,8,9章自测题参考答案一、填空题:1.极限00x y →→12- ;20tan()lim x y xy y →→= 2;0x y →→= -2 .解:利用等价无穷小量替换或根式有理化及重要极限求待定型的极限:00000111lim sin()2x x x y y y xy xy xy →→→→→→-+==-=-或 0000112lim 2x x y y xy xy →→→→-==-;222000tan()limlim lim 2x x x y y y xy xy x y y →→→→→→===;)()))00000111limlim lim 2121xyxyx x x x y y y y xyxyxye xye →→→→→→→→====-----或()000002limlim2112x x x x xy y y y y xy xyxy e →→→→→→→→====---.2.若22(,)22f x y x xy ax y =+++在点)1,1(-处取得极值,则a = -2 . 解:依题意,有(1,1)0,(1,1)0x y f f ''-=-=.而(,)42x f x y x xy a '=++, 于是,有(1,1)420x f a '-=-+=,解得 2.a =-3.函数2sin()z x xy =的全微分dz = 22222sin()cos()2cos()xy xy xy dx x y xy dy ⎡⎤++⎣⎦. 解:z zdz dx dy x y∂∂=+∂∂,而222222sin()cos()sin()cos(),z xy x xy y xy xy xy x ∂=+⋅=+∂222cos()22cos()z x xy xy x y xy y∂=⋅=∂.故22222sin()cos()2cos()dz xy xy xy dx x y xy dy ⎡⎤=++⎣⎦. 4. 设函数44224z x y x y =+-,则此函数在点(1,1)处的全微分(1,1)dz = ()4dx dy -+ .解:(1,1)(1,1)(1,1)x y dz z dx z dy ''=+,而()3211(1,1)484x x y z x xy=='=-=-,()3211(1,1)484y x y z y x y =='=-=-,故()(1,1)4dz dx dy =-+.5.设22()z f x y =+,且()f u 可导,则z x ∂=∂()222xf x y '+,22z x∂=∂()()2222224f x y x f x y '''+++.解:()()222222zf x y x xf x y x∂''=+⋅=+∂, ()()()()2222222222222224zf x y xf x y x f x y x f x y x∂''''''=+++⋅=+++∂. 6. 设方程1xy xz yz ++=确定隐函数(,)z f x y =, 则z x ∂=∂ y z x y +-+ , z y ∂=∂ x zx y+-+ . 解:令(,,)1F x y z xy xz yz =++-,则(,,)(,,),(,,)(,,)y x z z F x y z F x y z z y z z x zx F x y z x y y F x y z x y''∂+∂+=-=-=-=-''∂+∂+. 二、单项选择题:1.设有直线⎩⎨⎧=+--=+++031020133:z y x z y x L 和平面0224:=-+-∏z y x ,则L 与∏( D )A. 垂直B. 平行C.L 在 ∏ 上D. 斜交解:直线L 有方向向量()()33210133271672110i j ks i j k i j k i j k =++⨯--==-+---,平面∏有法向量()4,2,1n =-,因为0,(s n n ks k ⋅≠≠为非零常数), 所以s n 与既不垂直也不平行,故L 与∏斜交.2.已知k j i b k j i a+-=++=2,32,那么a 与b ( A )A. 垂直B. 平行C. 夹角为030D. 夹角为060 解:因为()1122310a b ⋅=⨯+⨯-+⨯=,所以a b ⊥. 3. 已知函数22f x+y,x -y =x -y (),则(,)(,)f x y f x y x y∂∂+=∂∂( C ). (A )22x y - (B) 22x y + (C) x y + (D) x y -解:因为()()22f x+y,x -y =x -y x+y x -y =(),所以(,)f x y xy =, 故(,)(,).f x y f x y y x x y∂∂+=+∂∂ 4. 设yz x =, 则dz =( A ).(注意分清对幂函数还是指数函数求导) (A)1ln y y yxdx x xdy -+ (B)11y y yx dx yx dy --+(C)1ln y y x xdx yxdy -+ (D)ln ln y y x xdx x xdy +5.曲线 t a x cos =,t a y sin =,amt z =,在 4π=t 处的切向量是 ( D ).A .)2,1,1( B.)2,1,1(- C.)2,1,1(m D.)2,1,1(m -解:曲线在4π=t 处有切向量()())44,,sin ,cos ,t t t t t s x y z a t a t am a a am ππ==⎛⎫'''==-=-=- ⎪ ⎪⎝⎭. 6. 函数(,,)f x y z xy z =+在点(1,1,1)-处沿方向(2,1,2)l =-的方向导数为( C ) A. 1; B.23; C. 13; D. 0. 解:所求的方向导数(1,1,1)(1,1,1)cos (1,1,1)cos (1,1,1)cos x y z l f f f f αβγ''''-=-+-+-. 而11(1,1,1)1,(1,1,1)1,(1,1,1) 1.x y z y x f y f x f =='''-==-==-= 又2213l =+=,从而212cos ,cos ,cos 333αβγ===-.故2121(1,1,1)1113333l f ⎛⎫'-=⨯+⨯+⨯-= ⎪⎝⎭.7.二元函数ln()z xy =的全微分为( A ).A.dx dy x y +; B. dx dy xy +; C. dx dy y x+; D. dxdyxy . 解:全微分z z dz dx dy x y ∂∂=+∂∂,而1111,z z y x x xy x y xy y ∂∂=⋅==⋅=∂∂.故dx dydz x y=+ 三、证明题:1.设()F u z xy x =+,y u x =,()F u 为可导函数. 求证:z zx y z xy x y∂∂+=+∂∂. 证 因为2()()()()z y y y F u xF u y F u F u x x x ∂⎛⎫''=++⋅-=+- ⎪∂⎝⎭;1()()z x xF u x F u y x ∂''=+⋅=+∂. 所以 ()()()()()z z y xy x y F u F u y x F u xy xF u xy z xy x y x ∂∂⎛⎫''+=+-++=++=+ ⎪∂∂⎝⎭. 2. 设22()y f x y z -=, ()f u 为可导函数. 求证:211z z zx x y y y ∂∂+=∂∂. 证 因为2222222222222222()()2()()()()x z y y xyf x y f x y xf x y x f x y f x y f x y '∂-''⎡⎤=-⋅-=-⋅-=-⎣⎦∂---, ()222222222222222()()2()2()()()f x y y f x y y z f x y y f x y y f x y f x y '--⋅-⋅-'∂-+-==∂--.故22222222222222221112()1()2()1()()()z z xyf x y f x y y f x y z x x y y x f x y y f x y yf x y y ''∂∂--+-+=-⋅+⋅==∂∂---. 四、计算题:1.设2(,)x z f x y y =,其中f 具有连续的二阶偏导数,求222,,,z z z z x y x x y∂∂∂∂∂∂∂∂∂. 解:22121211(,)(,)22,z x x f x y f x y xy f xyf x y y y y∂''''=⋅+⋅=+∂2222121222(,)(,),z x x x xf x y f x y x f x f y y y y y ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭212122211222f f z z f xyf yf xy x x x x y y xx ''⎛⎫∂∂∂∂∂∂⎛⎫'''==+=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 221112221221112222211112222442f xyf yf xy f xyf f xf x y f yf y y y y⎛⎫⎛⎫''''''''''''''''=++++=+++ ⎪ ⎪⎝⎭⎝⎭, 21212122111222f f z z f xyf f xf xy x y y x y y y y y y ''⎛⎫∂∂∂∂∂∂⎛⎫''''==+=-+++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭2211112221222221122x x f f x f xf xy f x f y y y y ⎛⎫⎛⎫''''''''''=-+-+++-+ ⎪ ⎪⎝⎭⎝⎭231211122223122x xf xf f f x yf y y y''''''''=-+--+.注:因为f 具有连续的二阶偏导数,所以1221f f ''''=.2.设22220x y z z ++-=,求22,z zx y∂∂∂∂.解:令222(,,)2F x y z x y z z =++-,则(,,)2(,,)221x z F x y z z x xx F x y z z z '∂=-=-='∂--,(,,)2(,,)221y z F x y z z y y yF x y z z z '∂=-=-='∂--, 2222223(1)(1)(1)11(1)(1)(1)z y z y z y y z z y z y z y y y y z z z z ⎛⎫∂--⋅- ⎪-+⋅∂⎛⎫∂∂∂∂-+⎛⎫⎝⎭-===== ⎪ ⎪∂∂∂∂----⎝⎭⎝⎭. 注意:z 是关于,x y 的二元函数.3.设方程组22222x y uv xy u v ⎧++=⎪⎨--=⎪⎩确定隐函数组(,),(,)u u x y v v x y ==,求 u x ∂∂,v x ∂∂.解法一:分别对两方程两边分别对x 求偏导,得20220u v x v u x x u v y u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪--=⎪∂∂⎩ 即 222uv v u x x x u v u v yxx ∂∂⎧+=-⎪⎪∂∂⎨∂∂⎪+=⎪∂∂⎩当222()022v uJ u v u v==--≠时,有222114(4)22()x u u xv yuxv yu y v x J J u v -∂+==--=∂- , 222114(4)22()v x v xu yvyv xu u y x J J u v -∂+==+=-∂- . 解法二:令2222(,,,)0(,,,)20F x y u v x y uvG x y u v xy u v ⎧=-+=⎪⎨=---=⎪⎩,则22(,)2()22(,)uv v u F G J u v u v u v ∂===---∂2(,)42(,)xv x u F G J xv yu y v x v ∂===---∂ , 2(,)42(,)ux v x F G J yv xu u yu x ∂===+-∂ 故2242()xv uv J u xv yu x J u v ∂+=-=∂- ,2242()ux uv J v xu yvx J u v ∂+=-=-∂-. 4.求函数3322(,)339f x y x y x y y =+-+-的极值.解:解方程组223603690f x x xf y y y∂⎧=-=⎪∂⎪⎨∂⎪=+-=∂⎪⎩,得四个驻点1234(0,3),(0,1),(2,3),(2,1)P P P P --. 又66,0,66xx xy yy f x f f y ''''''=-==+.记(),(),()(1,2,3,4)xx i xy i yy i A f P B f PC f P i ''''''====对21(0,3),6(12)00,P AC B --=-⨯-->且60A =-<,则1(0,3)P-是函数的极大值点,极大值(0,3)27f -=;对22(0,1),61200P AC B -=-⨯-<,则2(0,1)P 不是极值点; 对()23(2,3),61200P AC B --=⨯--<,则3(2,3)P -不是极值点;对24(2,1),61200P AC B -=⨯->,且60A =>,则4(2,1)P 是函数的极小值点,极小值(2,1)9f =-. 5.求曲面222327xy z +-=在点(3,1,1)P 处的切平面方程和法线方程.解:令 222(,,)327F x y z x y z =+--,则曲面在点(3,1,1)P 处的法向量为()(3,1,1)(3,1,1)(,,)(6,2,2)(18,2,2)29,1,1x y z n F F F x y z '''==-=-=-于是,所求的切平面方程为 9(3)(1)(1)0x y z -+---=,即 9180x y z +--=.法线方程为311911x y z ---==-. 6.求曲面z=在点(3,4,5)P 处的切平面方程和法线方程.解:曲面在点(3,4,5)P 处的法向量为()(3,4,5)(3,4,5)341(,,1)1),,13,4,5555x y n z z ⎛⎫''=-=-=-=- ⎪⎝⎭. 于是,所求的切平面方程为 3(3)4(4)5(5)0x y z -+---=,即 3450x y z +-=.法线方程为345345x y z ---==-. 7.求函数23(,,)f x y z xy yz =+在点0(1,1,2)P 处沿从0(1,1,2)P 到(3,1,3)P -方向的方向导数0P fl∂∂.解:记()02,2,1l P P ==-,(223l =+=,从而221cos ,cos ,cos 333αβγ==-=.又()23211(1,1,2)2(1,1,2)1,(1,1,2)210,(1,1,2)312.y x y z y z f yf xy z f yz ==='''===+===故所求的方向导数P f l∂∂(1,1,2)cos (1,1,2)cos (1,1,2)cos x y z f f f αβγ'''=++221110122333⎛⎫=⨯+⨯-+⨯=- ⎪⎝⎭.。
(完整版)高等数学第七章向量
第七章 空间解析几何与向量代数§7.1 空间直角坐标系§7.2 向量及其加减法、向量与数的乘法一、判断题。
1. 点(-1,-2,-3)是在第八卦限。
( ) 2. 任何向量都有确定的方向。
( ) 3. 任二向量b a ,=.则a =b 同向。
( ) 4. 若二向量b a ,+,则b a ,同向。
( )5. 若二向量b a ,满足关系b a -=a +b,则b a ,反向。
( )6. 若ca b a +=+,则c b =( ) 7. 向量ba ,满足=,则ba ,同向。
( ) 二、填空题。
1. 点(2,1,-3)关于坐标原点对称的点是2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。
4. 设向量a 与b 有共同的始点,则与b a ,共面且平分a 与b 的夹角的向量为 5. 已知向量a 与b 方向相反,且||2||a b =,则b 由a 表示为b = 。
6.设b a ,有共同的始点,则以b a ,为邻边的平行四边形的两条对角线的向量分别为 。
三、选择题。
1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B )225)3(+-(C )22)3(4-+ (D )2254+ 2.已知梯形OABC 、CB //OA 且21a ,OC =b ,则AB = (A )21b a - (B )b a 21- (C )a b -21 (D )a b 21-3.设有非零向量b a ,,若a ⊥ b ,则必有(A+(B+-(C+<-(D+>-三、试证明以三点A(4,1,9)、B(10,-1,6)、C(2,4,3)为顶点的三角形为等腰直角三角形。
四、在yoz平面上求与三个已知点A(3,1,2)、B(4,-2,-2)、C(0,5,1)等距离的点D。
六、用向量方法证明:三角形两边中点的连线平行与第三边,且长度为第三边的一半。
同济大学数学系《高等数学》(第7版)(上册)-课后习题(含考研真题)详解-第七章 微分方程【圣才出品
台
则
所以 y=3sinx-4cosx 是所给微分方程的解. (3)根据 y=x2ex,得
进而得
则
所以 y=x2ex 不是所给微分方程的解.
(4)根据
,得
,进而得
则
所以
是所给微分方程的解.
3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解:
2 / 126
圣才电子书
十万种考研考证电子书、题库视频学习平
台
解:(1)在方程 x2-xy+y2=C 两端对 x 求导,得
即
所以所给二元方程所确定的函数是微分方程的解.
(2)在方程 y=ln(xy)两端对 x 求导,得
即(xy-x)y′-y=0,再在上式两端对 x 求导,得
即 给微分方程的解.
.所以所给二元方程所确定的函数是所
,即 tany·tanx=±C1,所以原方程的通解为
tany·tanx=C
(6)原方程分离变量,得 10-ydy=10xdx,两端积分得
可写成 (7)原方程为
. 分离变量得
两端积分得
或写成
,即
,
所以原方程的通解为
(ex+1)(ey-1)=C
(8)原方程分离变量,得
两端积分得
即 ln|sinysinx|=lnC1,或写成 sinysinx=±C1,所以原方程的通解为 sinysinx=C. (9)原方程分离变量,得(y+1)2dy=-x3dx.两端积分得
圣才电子书
十万种考研考证电子书、题库视频学习平 台
第七章 微分方程
7.2 课后习题详解
习题 7-1 微分方程的基本概念
1.试说出下列各微分方程的阶数:
解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶. 2.指出下列各题中的函数是否为所给微分方程的解:
高等数学第七章测试题答案
高等数学第七章测试题答案(第7版)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第七章测试题答案一、填空(20分)1、5322x y x y x y x =+'+'''是 3 阶微分方程; 2、与积分方程⎰=xx dx y x f y 0),(等价的微分方程初值问题是⎪⎩⎪⎨⎧=='=0),(0x x y y x f y ; 3、已知微分方程02=+'-''y y y ,则函数x e x y 2=不是 (填“是”或“不是”)该微分方程的解;4、设1y 和2y 是二阶齐次线性方程0)()(=+'+''y x q y x p y 的两个特解,21,C C 为任意常数,则2211y C y C y +=一定是该方程的 解 (填“通解”或“解”);5、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该方程的通解为:1)1()1(221+-+-=x C x C y ;6、方程054=+'-''y y y 的通解为)sin cos (212x C x C e y x +=.7、微分方程x y y cos 4=+''的特解可设为x B x A y sin cos *+=;8、以221==x x 为特征值的阶数最低的常系数线性齐次微分方程是: 044=+'-''y y y ;9、微分方程1+=-''x e y y 的特解*y 形式为:b axe y x += ;10、微分方程044=-'+''-'''y y y y 的通解:x C x C C x 2sin 2cos e 221++。
二、(10分)求x xy y =+'的通解. 解:由一阶线性微分方程的求解公式)(11C xdx e e y x dx x +⎰⎰=⎰-,xC x C dx x x +=+=⎰2231)(1 三、(10分)求解初值问题2)0(,0==+'y xy y .解:0=+'xy y 分离变量x x y yd d 1-=, 两边同时积分 C x y ln 2ln 2+-=,22e x C y -=, 又由2)0(=y ,得2=C ,故222x e y -=四、(15分)曲线的方程为)(x f y =,已知在曲线上任意点),(y x 处满足x y 6='',且在曲线上的)2,0(-点处的曲线的切线方程为632=-y x ,求此曲线方程。
高等数学同济第7版上册习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
高等数学同济第7版习题答案
同济大学高等数学第七版上下册答案详解
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)
↘
17/5
极小值
↗
6/5
拐点
↗
2
拐点
↗
x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点
↗
极大值
↘
拐点
↘
x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)
↗
拐点
↗
1
极大值
↘
拐点
↘
x
( 1)
-1
高等数学教材第七章答案
高等数学教材第七章答案第七章:多元函数微分学1. 习题一答案:1.1 题目:求函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数$\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$。
解答:首先计算 $\frac{\partial z}{\partial x}$。
根据偏导数的定义,我们将 $y$ 视为常数,对 $z$ 对 $x$ 进行求偏导数:$$\frac{\partial z}{\partial x} = 6x^2 - 6y$$接下来计算 $\frac{\partial z}{\partial y}$。
同样,我们将 $x$ 视为常数,对 $z$ 对 $y$ 进行求偏导数:$$\frac{\partial z}{\partial y} = 6y - 6x$$所以,函数 $z = 2x^3 + 3y^2 - 6xy$ 在点 $(1, 2)$ 处的偏导数为$\frac{\partial z}{\partial x} = 6x^2 - 6y$ 和 $\frac{\partial z}{\partial y} = 6y - 6x$。
1.2 题目:计算函数 $f(x, y) = x^3 + y^3$ 在点 $(1, 1)$ 处的全微分。
解答:根据全微分的定义,我们有:$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$首先计算 $\frac{\partial f}{\partial x}$ 和 $\frac{\partial f}{\partial y}$。
对 $f(x, y) = x^3 + y^3$ 分别对 $x$ 和 $y$ 求偏导数:$$\frac{\partial f}{\partial x} = 3x^2, \quad \frac{\partial f}{\partial y} =3y^2$$代入点 $(1, 1)$,得到 $\frac{\partial f}{\partial x} = 3$ 和$\frac{\partial f}{\partial y} = 3$。
同济大学数学系《高等数学》第7版上册配套题库【课后习题(第7章)】【圣才出品】
3 / 100
圣才电子书 十万种考研考证电子书、题库视频学习平台
此为曲线方程所满足的微分方程. (2)假设曲线方程为 y=y(x),因它在点 P(x,y)处的切线斜率为 y′,所以该点处
法线斜率为 . 由条件知 PQ 之中点位于 y 轴上,所以点 Q 的坐标是(-x,0),则有
2 / 100
圣才电子书 十万种考研考证电子书、题库视频学习平台
4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初值条件:
解:(1)根据 y|x=0=5,将 x=0,y=5 代入函数关系中,得 C=-25,即 x2-y2=-25
(2)根据
,得
将 x=0,y=0 及 y′=1 代入以上两式,得
所以 C1=0,C2=1,y=xe2x. (3)根据 y=C1sin(x-C2),得
将 x=π,y=1 及 y′=0 代入以上两式,得
根据①2+②2 得
,不妨取 C1=1,根据①式得
,所以
5.写出由下列条件确定的曲线所满足的微分方程: (1)曲线在点(x,y)处的切线的斜率等于该点横坐标的平方; (2)曲线上点 P(x,y)处的法线与 x 轴的交点为 Q,且线段 PQ 被 y 轴平分. 解:(1)假设曲线方程为 y=y(x),它在点(x,y)处的切线斜率为 y′,依条件有
即微分方程为 yy′+2x=0.
6.用微分方程表示一物理命题:某种气体的气压 P 对于温度 T 的变化率与气压成正比, 与温度的平方成反比.
解:因为 与 P 成正比,与 T2 成反比,如果比例系数为 k,则有
7.一个半球体形状的雪堆,其体积融化率与半球面面积 A 成正比,比例系数 k>0.假
设在融化过程中雪堆始终保持半球体形状,已知半径为 r0 的雪堆在开始融化的 3 小时内,
高等数学第七章微分方程试题及答案汇编
第七章 常微分方程一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式:()()()()0≠=y Q y Q x P dxdy通解()()⎰⎰+=C dx x P y Q dy(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:()()()()02211=+dy y N x M dx y N x M通解()()()()C dy y N y N dx x M x M =+⎰⎰1221()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程⎪⎭⎫⎝⎛=x y f dx dy 令u x y =, 则()u f dxdux u dx dy =+= ()c x c xdxu u f du +=+=-⎰⎰||ln二.一阶线性方程及其推广1.一阶线性齐次方程()0=+y x P dxdy 它也是变量可分离方程,通解()⎰-=dxx P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程()()x Q y x P dxdy=+ 用常数变易法可求出通解公式 令()()⎰-=dxx P ex C y 代入方程求出()x C 则得()()()[]⎰+=⎰⎰-C dx e x Q e y dx x P dx x P3.伯努利方程()()()1,0≠=+ααy x Q y x P dxdy令α-=1y z 把原方程化为()()()()x Q z x P dxdz αα-=-+11 再按照一阶线性非齐次方程求解。
4.方程:()()x y P y Q dx dy -=1可化为()()y Q x y P dydx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。
四.线性微分方程解的性质与结构我们讨论二阶线性微分方程解的性质与结构,其结论很容易地推广到更高阶的线性微分方程。
二阶齐次线性方程 ()()0=+'+''y x q y x p y (1) 二阶非齐次线性方程 ()()()x f y x q y x p y =+'+'' (2) 1.若()x y 1,()x y 2为二阶齐次线性方程的两个特解,则它们的线性组合()()x y C x y C 2211+(1C ,2C 为任意常数)仍为同方程的解,特别地,当()()x y x y 21λ≠(λ为常数),也即()x y 1与()x y 2线性无关时,则方程的通解为()()x y C x y C y 2211+=2.若()x y 1,()x y 2为二阶非齐次线性方程的两个特解,则()()x y x y 21-为对应的二阶齐次线性方程的一个特解。
同济大学数学系《高等数学》第7版上册课后习题(微分方程)【圣才出品】
同济大学数学系《高等数学》第7版上册课后习题第七章微分方程习题7-1微分方程的基本概念1.试说出下列各微分方程的阶数:解:(1)一阶;(2)二阶;(3)三阶;(4)一阶;(5)二阶;(6)一阶.2.指出下列各题中的函数是否为所给微分方程的解:解:(1)根据y=5x2,得y′=10x,xy′=10x2=2y,所以y=5x2是所给微分方程的解.(2)根据y=3sinx-4cosx,得y′=3cosx+4sinx,进而得y″=-3sinx+4cosx则所以y=3sinx-4cosx是所给微分方程的解.(3)根据y=x2e x,得进而得则所以y=x2e x不是所给微分方程的解.(4)根据,得,进而得则所以是所给微分方程的解.3.在下列各题中,验证所给二元方程所确定的函数为所给微分方程的解:解:(1)在方程x2-xy+y2=C两端对x求导,得即所以所给二元方程所确定的函数是微分方程的解.(2)在方程y=ln(xy)两端对x求导,得即(xy-x)y′-y=0,再在上式两端对x求导,得即.所以所给二元方程所确定的函数是所给微分方程的解.4.在下列各题中,确定函数关系式中所含的参数,使函数满足所给的初值条件:解:(1)根据y|x=0=5,将x=0,y=5代入函数关系中,得C=-25,即x2-y2=-25(2)根据,得将x=0,y=0及y′=1代入以上两式,得所以C1=0,C2=1,y=xe2x.(3)根据y=C1sin(x-C2),得将x=π,y=1及y′=0代入以上两式,得根据①2+②2得,不妨取C1=1,根据①式得,所以5.写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x,y)处的切线的斜率等于该点横坐标的平方;(2)曲线上点P(x,y)处的法线与x轴的交点为Q,且线段PQ被y轴平分.解:(1)假设曲线方程为y=y(x),它在点(x,y)处的切线斜率为y′,依条件有y′=x2此为曲线方程所满足的微分方程.(2)假设曲线方程为y=y(x),因它在点P(x,y)处的切线斜率为y′,所以该点处法线斜率为.由条件知PQ之中点位于y轴上,所以点Q的坐标是(-x,0),则有即微分方程为yy′+2x=0.6.用微分方程表示一物理命题:某种气体的气压P对于温度T的变化率与气压成正比,与温度的平方成反比.解:因为与P成正比,与T2成反比,如果比例系数为k,则有7.一个半球体形状的雪堆,其体积融化率与半球面面积A成正比,比例系数k>0.假设在融化过程中雪堆始终保持半球体形状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的;问雪堆全部融化需要多少时间?解:假设雪堆在时刻t的体积为,侧面积S=2πr2.根据题设知则积分得r=-kt+C根据r|t=0=r0,得C=r0,r=r0-kt.又,即得,从而因雪堆全部融化时,r=0,所以得t=6,即雪堆全部融化需6小时.习题7-2可分离变量的微分方程1.求下列微分方程的通解:解:(1)原方程为,分离变量得两端积分得即lny=±C1x,所以通解为lny=Cx,即y=e Cx.(2)原方程可写成5y′=3x2+5x,积分得,即通解为(3)原方程为,分离变量得两端积分得arcsiny=arcsinx+C,即为原方程的通解.(4)原方程可写成,分离变量得两端积分得即是原方程的通解.(5)原方程分离变量,得两端积分得可写成,即tany·tanx=±C1,所以原方程的通解为tany·tanx=C(6)原方程分离变量,得10-y dy=10x dx,两端积分得可写成.(7)原方程为分离变量得。
高等数学课后答案 第七章 习题详细解答
习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。
高等数学课后习题答案--第七章
−( x+ y )
;
x2 − y2 (6) 2 ; x + y2
(8)
(7)
1 − cos( x 2 + y 2 ) ; x2 + y2
x2 . x2 + y2 − x
【答案】 (1) 0; (2) 2; (3) 0; (4) 不存在; (5) 0 ; (6) 不存在; (7) 0; (8) 不存在.
(2) z ′ x = −
y 1 + , x2 y
z ′y =
1 y , z ′y = , (4) y y y y 2 x cos sin x sin cos x x x x xy xy +1 ′ z′ ln x . x = x y (ln x + 1) , z y = x
1 x − ,(3) z ′ x = − x y2
14. 计算下列映射的导数: ⎛x+ y ⎞ ⎟ (1) f ( x, y ) = ⎜ ⎜ x 2 + y 2 ⎟; ⎝ ⎠
⎛ u cos v ⎞ ⎟ ⎜ (2) g (u , v) = ⎜ u sin v ⎟. ⎟ ⎜v ⎠ ⎝
⎛ dx ⎞ ⎛ dx + dy ⎞ ⎛1 1⎞ ⎜ ⎟ ⎟ df = J , 【解】 (1) J = ⎜ ⎜ dy ⎟ ⎟=⎜ ⎜ ⎜ 2x 2 y ⎟ ⎟; ⎝ ⎠ ⎝ 2 xdx + 2 ydy ⎠ ⎝ ⎠
⎡ (4) u = sin 2 x + sin ⎢( y − 1) ln tan ⎣
【解】(1)
x ⎤ ⎛π ⎞ ⎥ 在 ⎜ , 1⎟ 处的 u ′ x。 y⎦ ⎝4 ⎠
6 1 12 6 6 ,− ; ; (2) − ,− , 12 36 18 36 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章测试题答案
一、填空(20分)
1、5322x y x y x y x =+'+'''是 3 阶微分方程;
2、与积分方程⎰=x
x dx y x f y 0),(等价的微分方程初值问题是⎪⎩⎪⎨⎧=='=0),(0
x x y y x f y ; 3、已知微分方程02=+'-''y y y ,则函数x e x y 2=不是 (填“是”或“不
是”)该微分方程的解;
4、设1y 和2y 是二阶齐次线性方程0)()(=+'+''y x q y x p y 的两个特解,
21,C C 为任意常数,则2211y C y C y +=一定是该方程的
解 (填“通解”或“解”);
5、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该
方程的通解为:1)1()1(221+-+-=x C x C y ;
6、方程054=+'-''y y y 的通解为)sin cos (212x C x C e y x +=.
7、微分方程x y y cos 4=+''的特解可设为x B x A y sin cos *+=;
8、以221==x x 为特征值的阶数最低的常系数线性齐次微分方程是: 044=+'-''y y y ;
9、微分方程1+=-''x e y y 的特解*y 形式为:b axe y x += ;
10、微分方程044=-'+''-'''y y y y 的通解:x C x C C x 2sin 2cos e 221++。
二、(10分)求x x
y y =+'的通解. 解:由一阶线性微分方程的求解公式
)(11C xdx e e
y x dx x +⎰⎰=⎰-, x
C x C dx x x +=+=⎰2231)(1 三、(10分)求解初值问题2)0(,0==+'y xy y .
解:0=+'xy y 分离变量x x y y
d d 1-=, 两边同时积分 C x y ln 2
ln 2
+-=,22e x C y -=, 又由2)0(=y ,得2=C ,故22
2x e y -=
四、(15分)曲线的方程为)(x f y =,已知在曲线上任意点),(y x 处满足x y 6='',且在曲线上的)2,0(-点处的曲线的切线方程为632=-y x ,求此曲线方程。
解:x y 6=''得123C x y +=',213C x C x y ++=, 又由32)0(,2)0(='-=y y 知,2,3
221-==C C , 故曲线方程为23
23-+=x x y 五、(15分)求齐次方程0)1(2)21(=-++dy y
x e dx e y x y x
的通解. 解:原方程可化为y x y x e y x e dy
dx 21)1(2+--=, 令y x u =,则yu x =,dy
du y u dy dx +=. 原方程变为:u u e u e dy du y u 21)1(2+--=+即u u e
u e dy du y 212++-=. 分离变量,得y dy du u
e e u u -=++212 两边积分得:C y u e u ln ln )2ln(+-=+ 即y
C u e u =+2.
以y
x 代入上式中的u ,化简得方程的通解为: C x ye y x =+2.
六、(15分)求解初值问题:⎪⎩⎪⎨⎧='==+''==0,10
1311
x x y y y y . 解:设p y =',则dy
dp p y ='',代入方程得: 013
=+dy dp p y ,分离变量并积分,得: C y p 2
1212122+=-,即C y p +±=-2. 当1=x 时,,1=y 0=p ,得1-=C . 则12-±==-y dx
dy p . 分离变量并积分,得:211y C x --=+± 由11==x y ,得11 =C . 则21)1(y x --=-± 即22x x y -±= .
七、(15分)求方程x y y y 2344-=+'+''的通解. 解:该方程对应的齐次方程的特征方程为
0452=++r r ,解得1,421-=-=r r
则x x e C e C Y --+=2
41. 由于0=λ不是特征根,所以设*y 为b ax y +=*, 代入原方程,得:8
11,21=-=b a .
所以8
1121*+-=x y . 该二阶常系数非齐次线性方程的通解为 8
1121241*+-+=+=--x e C e C y Y y x x .。