数学建模-学生成绩问题
数学建模解题方法
数学建模解题方法数学建模解题方法古典文学常见论文一词,谓交谈辞章或交流思想。
当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。
以下是店铺整理的数学建模解题方法,希望能够帮助到大家!数学自诞生起目的就是解决实际问题,随科技日新月异的发展,数学对社会发展的巨大推动力日益凸显,在利用数学服务科技时,数学建模便成了必然选择。
数学建模的思想和方法渗透并应用于经济、生物、航天等社会的方方面面。
1994年起,教育部规定面向全国高校举办每年一次的全国大学生数学建模竞赛,全国高校掀起了数学建模热潮,目前全国大学生数学建模大赛已经成为全国大学生的四大竞赛之一,成为全国高校中规模最大、影响力最广的大学生课外科技活动,大大提高了数学教学中对数学建模思想和能力的培养,同时也促进了大学数学内容和方法的改革,笔者通过新疆地方高校的多年数学学科教学经历和大学生数学建模竞赛指导经历,结合对新疆地方高校的调查分析,对新疆地方高校数学建模教学的发展状况及对策建议进行探讨:一、新疆地方高校数学建模的发展现状(一)低年级大学生对数学建模知识认识欠缺大学数学是理工类院校的重要基础课程,对课程起到了不可或缺的支撑作用,大学数学课程理论性强,新疆地方高校的学生本身起来就比较吃力,教师教学中更是无暇讲述和普及数学建模的思想和方法,所以相当一部分学生感到数学建模既神秘又高不可攀。
(二)新疆地方高校学生数学基础薄弱,大学数学课程的教学和专业学习存在脱节受地域限制,新疆地方高校学生大部分来自于新疆各地州,包括汉、维、哈、柯、蒙等少数民族,数学基础参差不齐,相比较内地高校数学基础水平存在一定差距,学生学习数学兴趣不高,缺乏主动性,疲于应付考试,因此参加数学建模竞赛学生的比例比较低,导致理论知识与专业应用严重脱节,直接影响理工类专业学生的专业能力和培养质量。
(三)数学教学过程中,疏于数学教学建模思想和方法的渗透和培养数学教学中渗透数学建模的思想和方法,要求授课教师不仅要有扎实的数学功底,而且还要有广博的知识面和丰富的数学建模经验。
数学建模习题集及标准答案
3.动态模型:描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段;微分方程建模:模根据函数及其变化率之间的关系确定函数,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程。
4.按照你的观点应从那几个方面来建立传染病模型。
5.叙述Leslie人口模型的特点。并讨论稳定状况下种群的增长规律。
6.试比较连续形式的阻滞增长模型(Logistic模型)和离散形式阻滞增长模型,并讨论离散形式阻滞增长模型平衡点及其稳定性。
第二部分
1.优点:短期预报比较准确;缺点:不适合中长期预报;原因:预报时假设人口增长率为常数,没有考虑环境对人口增长的制约作用。
(4)你能提出其他的方法吗。用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
根据上述分析我们可以看出,该博弈比较明确可以预测的结果有这样几种情况:
(1) ,此时本博弈的结果是乙在第一阶段不愿意借给对方,结束博弈,双方得益
(1,0),不管这时候b的值是多少;(2) ,此时博弈的结果仍然是乙在第一阶段选择不借,结束博弈,双方得益(1,0);(3) ,此时博弈的结果是乙在第一阶段选择借,甲在第二阶段选择不分,乙在第三阶段选择打,最后结果是双方得益
初中数学建模教学应注意的几个问题
数学建模教学涉及多个学科领域,有助于拓宽学生的知识视野,增 强学生的跨学科素养。
初中数学建模教学现状
1 2 3
教师专业素养不足
目前,部分初中数学教师缺乏数学建模教学的专 业素养和实践经验,难以有效地开展数学建模教 学活动。
教学内容与实际问题脱节
一些初中数学建模教学内容过于抽象和理论化, 与实际问题的联系不够紧密,导致学生难以理解 和应用。
教学方法和手段单一
初中数学建模教学方法和手段相对单一,缺乏多 样性和创新性,不利于激发学生的学习兴趣和积 极性。
03
问题一:缺乏实际问题背景
问题表现
建模题目脱离实际
01
一些建模题目过于抽象,缺乏实际背景,难以引起学生的兴趣
。
数据来源不明确
02
建模题目中给出的数据往往缺乏实际来源,导致学生对数据的
04
问题二:过于强调数学模型构建
问题表现
偏重理论
在教学过程中,教师可能过于注重数学模型的理论构建,而忽略 了实际应用和问题解决的能力培养。
脱离实际
建模教学可能过于抽象,缺乏与现实生活的联系,导致学生难以 理解和应用所学知识。
忽视学生差异
教师可能未能充分关注学生的学习基础和需求差异,导致部分学 生在建模过程中感到困难。
受传统教育观念影响,过于追求升学率和考试成绩,导致教师和学 生都过于关注结果而忽视过程。
教师专业素养不足
部分教师缺乏数学建模的专业知识和实践经验,难以对学生的建模 过程进行有效评价和指导。
学生认知水平有限
初中学生认知水平有限,难以全面理解建模过程的复杂性和多元性, 导致评价困难。
解决方法与建议
建立多元化评价标准
2021年高中数学建模(应用)能力展示活动测试题及参考解答
的球体,卫星运行时会产生一闪一闪的效果,易于地面观测,可以用肉眼看见.目前,已经升空 41
年的东方红一号卫星仍在环绕地球飞行.2021 年 1 月 12 日 13:21:02(协调世界时 UTC)时的数据显
示东方红一号卫星的轨道为椭圆,离心率为 0.1054463,近地点高度 428km,远地点高度 2033km,
地球的表面积
R 6400
4R 2
Q
3.
(满分 26 分)每个人都是独特的,人与人千差万别.如果对所有的人用一个维度且区分度良
好的方法去评价,可能只有个别人获得满分,不妨以满分作为优秀,就会导致优秀者寥寥.如果很
多人都去争取优秀,因为机会很小, 就不得不为小小的几分、甚至是为了 1 分的成绩,不惜代价拼
(满分 26 分)对地球半径的第一次估算通常归功于希腊天文学家埃拉托斯特尼(公元前 280195 年)
.埃拉托斯特尼住在位于埃及北部沿海的尼罗河口的亚历山大港,地理位置是北纬 31°12′,
东经 29°15′.塞恩市(即现在的阿斯旺)是埃及南方的一个重要城市,位于尼罗河东岸,地理位置是
北纬 23°35′,东经 32°31′,地球的北回归线几乎穿过这里.埃拉托斯特尼知道塞恩市有一口深井,每
这样的三维数组(a,b,c)对应的几何图形是三维直角坐标系中的直四面体 O-ABC 内部及各面上的
所有整数格点,其中 OA=OB=OC=p,如下图所示.
2021 年高中数学建模(应用)能力展示活动测试题及参考解答
共 6 页 第2页
这样的(a,b,c)个数可以从顶点 A 开始向下计算,在每个整数坐标处做平行
数学建模,如何客观合理的评价学生学习状况
如何客观、合理的评价学生学习状况摘要现行的以考试成绩衡量学生学习状况的方法比较主观,且评价方式单一,忽略了不同基础水平的同学的进步程度,为了激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步,我们需要建立一个客观,合理的评价学生状况的数学模型。
考虑到以上情况,本文通过以下几步来达到目的。
步骤一:通过分析题目所给198名学生的整体成绩情况,包括大一两个学期每个学期的整体平均成绩、及格率、方差、标准差等多项指标有关,通过所给数据,得到图表。
分析数据充分理解学生的学习情况,更有利于以下两个模型的进行,为模型的建立提供参考.步骤二:对于全面、客观、合理的评价学生的学习状况,我们采用了二个模型:模型一:利用黑尔指数法求得的进步分数和层次分析法进行评价:设定适当的权系数,使最终成绩更为合理。
本专业为工科类专业,应更加重视专业学习能力,因此专业课程所占权系数较高,成绩也能更好的选拔专业能力强的学生。
同时为了激励进步学生,进步分也占有部分权限,能够起到很好的鼓励作用。
为此我们设置:最终成绩Y=0。
55*专业课程+0.4*其他课程+0.05*进步分数.模型二:采用成绩标准化模型对成绩进行评价:采用对数变换将负偏态的成绩分布正态化,并用Matlab进行了正态检验。
从而学生成绩的差距分布更为合理,成绩偏低的学生变换后将处于中等位置,得到适当的鼓励,改变了负偏态分布中较多学生成绩集中在高分段或低分段的现象。
然后,将正态分布归一化为标准正态分布,消除每个学期评价考核体系的不稳定性因素,得到每个学生各学期的“有效成绩”。
并基于”有效成绩"提出了等级评定子模型,确定了等级分数线,更清楚的表明了每个学生在整体位置。
关键词:黑尔指数层次分析成绩标准化有效成绩一.问题重述现行的评价方法相对比较局限、主观、有失公允,只能对学习基础好的学生产生激励作用,而不能对所有学生尤其是后进学生起到激励作用,这种评价弊端开始被越来越多的人关注。
浅谈当前高校数学教学考核评价体系存在的问题及改进措施
浅谈当前高校数学教学考核评价体系存在的问题及改进措施1. 引言1.1 背景介绍当前高校数学教学考核评价体系存在的问题及改进措施引言:在当前的高校数学教学考核评价体系中,存在诸多问题,如缺乏客观性的评价标准、过分注重笔试形式的考核、缺乏对学生综合能力的考核等。
这些问题不仅影响了教学质量的提升,也制约了学生的综合素质的培养。
本文将深入探讨当前高校数学教学考核评价体系存在的问题,并提出相应的改进措施,希望为高校数学教学的改革与发展提供一些参考和借鉴。
1.2 研究意义研究当前高校数学教学考核评价体系存在的问题及改进措施的意义在于提升和优化高校数学教学质量,促进学生综合能力的发展。
数学作为一门基础课程,在培养学生的逻辑思维能力、分析问题的能力和解决问题的能力方面具有重要作用。
然而,当前高校数学教学考核评价体系存在诸多问题,如缺乏客观性的评价标准、过分注重笔试形式的考核以及缺乏对学生综合能力的考核。
这些问题严重影响了教学质量和学生成绩的客观反映,也未能有效激发学生学习的积极性和创造性。
因此,通过研究和改进高校数学教学考核评价体系,可以提高教学效果,激发学生学习的动力,培养学生的综合能力,促进教育教学质量的全面提升。
展望未来,我们期待通过不断改进和创新,构建更加科学合理且符合实际需求的高校数学教学考核评价体系,为培养优秀数学人才和服务国家经济发展作出更大贡献。
2. 正文2.1 当前高校数学教学考核评价体系存在的问题1. 缺乏客观性的评价标准。
目前的数学教学考核评价体系缺乏客观性和科学性,评价标准主要是基于教师主观判断和个人喜好,缺乏客观性和公正性,容易导致评价结果的主观性和不公平性。
2. 过分注重笔试形式的考核。
当前的数学教学考核评价体系主要以传统的笔试形式为主,注重学生对知识点的记忆和应用能力,忽视了综合能力的培养和发展,导致学生只注重应试技巧,而忽略了对数学思维和创新能力的培养。
3. 缺乏对学生综合能力的考核。
学生成绩分析数学建模
2012年暑期培训数学建模第二次模拟承诺书我们仔细阅读了数学建模联赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其它公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。
我们的参赛报名号为:参赛队员(签名) :队员1:队员2:队员3:2012年暑期培训数学建模第二次模拟编号专用页参赛队伍的参赛号码:(请各个参赛队提前填写好):竞赛统一编号(由竞赛组委会送至评委团前编号):竞赛评阅编号(由竞赛评委团评阅前进行编号):2012年暑期培训数学建模第二次模拟题目学生成绩的分析问题摘要本文针对大学高数和线代,概率论成绩进行建模分析,主要用到统计分析的知识及SPSS软件,建立了方差分析、单因素分析、相关性分析等相关模型,从而分析两个专业、四门课程成绩的显著性,以及课程之间的相关性。
最后利用分析结论表明了我们对大学数学学习的看法。
问题一:每门课程两个专业的差异性需要进行多个平均数间的差异显著性检验,首先应该对数据进行正态分布检验,结论是各个专业的分数都服从正态分布,之后可以根据Kolmogorov-Smirnov 检验(K-S检验)原理,利用SPSS软件进行单因素方差分析,得出方差分析表,进行显著性检验,最后得出的结论是高数1、高数2、线代和概率这四科成绩在两个专业中没有显著性差异。
问题二:对于甲乙两个专业分别分析,应用问题一的模型,以每个专业不同班级的高数一、高数二、线代和概率平均数为自变量,同第一问相同的做法,得到两个专业中不同学科之间没有显著差异。
问题三:我们通过对样本数据进行Spss的“双变量相关检验”得出相关系数值r、影响程度的P值,从而来分析出高数1、高数2与概率论、现代的相关性。
数学建模竞赛b题
学期四的平 均成绩:
74.9
10.29
学期一
学期二
学期三
学期四
各个学期的成绩波动由大到小的顺序是:第二学期>第四学期>第一学期>第三学期。 而且有表格二也证实了这个波动的顺序。这说明第三学期不同学生的成绩之间的差距最小, 第二学期不同学生的成绩之间的差距最大。 1.可以看到各个学生之间的差异是不同的,说明不同的学生的基础条件是有所不 同。基础较好的学生在取得更加优异的成绩上是本身具有优势的。 2.样本标准差呈折线变化,但整体来说,是有逐渐减小的趋势的。这说明虽然基 础条件不同,但是,学生成绩之间的差距是逐渐变小的。即基础条件不太好的学 生取得了进步的。
通过对学生的各学期的成绩的统计处理分析,并针对题目的三个 问题建立了数学模型,在模型的求解过程中,利用统计学软件 Excel计算工具,编写相应的函数,对建立的模型进行求解,得出 相应的结论。 问题一:我们假设第i个学期学生的平均成绩为Xi,则可利用excel 软件来求得Xi的平均值,用所得的平均值来分析说明所给出的学 生的整体情况 问题二:由于现在需要采用适当的方法来评价学生的学习情况, 为此我们把这目的转化为求学生的各学期Xi的变化规律及所能反 映学生成绩波动的方差变化。利用Excel软件编写相应函数关系式, 进行绘图,结合数据和图形,评价学生的学习情况。 问题三:其模型问题二相似,不同之处在于要收集数据,对数据 走向进行预测。为此我们将四个学期的成绩当成一个总体进行分 析。当总体数据n越大,则总体近似服从正态分布,故后两个学期 也近似服从正态分布。因此,可以选择不同的置信区间来估算得 出后两个学期学生的成绩的大致范围。
基于BP神经网络的学生成绩预测方法研究
基于BP神经网络的学生成绩预测方法研究周剑薛景韩崇肖甫孙力娟摘要:利用已有成绩对未来成绩进行准确预测,对提高教学质量有重大意义。
文章提出了基于BP神经网络的学生成绩预测方法,并将其应用于南京邮电大学C语言课程的期末成绩预测,以及某高中高考成绩预测。
通过对比分析,说明该方法的应用条件,验证该方法的有效性。
最后分析该方法应用于教学的具体方式。
关键词:成绩预测; BP神经网络; 大学课程成绩; 高中高考成绩; 教学质量G642 文献标志码:A :1006-8228(2018)12-71-04Abstract: It is of great significance to improve the teaching quality by accurately predicting future performance with existing performance. The student performance prediction method based on BP neural network is proposed in this paper. And the proposed method is applied to the final performance prediction of C programming language course in Nanjing University of Posts and Telecommunications, and the performance prediction of college entrance examination in a high school. Through comparison and analysis, the application condition of the proposed method is illustrated, and the effectiveness of the proposed method is verified. Finally, the specific application of the proposed method in teaching is analyzed.Key words: performance prediction; BP neural network; college courses performance; college entrance examination performance; teaching quality0 引言学生成绩是评价教学质量的重要依据。
数学建模评价类问题如何确定评价系统的指标权重?
数学建模评价类问题如何确定评价系统的指标权重?之前小编发过一篇系统介绍综合评价类问题的文章【数学建模之综合评价问题】,文中总结了综合评价模型一般步骤:1. 明确评价目的;2. 确定被评价对象;3. 建立评价指标体系(包括评价指标的原始值、评价指标的若干预处理等);4. 确定与各项评价指标相对应的权重系数;5. 选择或构造综合评价模型;6. 计算各系统的综合评价值,并给出综合评价结果。
今天,小编继续和大家聊聊——如何确定评价系统的指标权重?0、前言对于多指标的评价系统,各指标之间的相对重要性是互不相同的,单纯将所有指标的重要性假设为无差别并不是一种可取的方法。
指标间相对重要性的量化过程也就是不同指标的权重确定过程,不同的权重确定方法必然导致不同的评价结果。
而指标权重的确定不仅在综合评价系统中应用广泛,同时在多目标决策中也有很多应用(当然,综合评价问题也可视为多目标决策问题),在进行数学规划时,实际问题中往往存在多个目标,而且很难证,可行域内存在某一个解使得所有目标函数都取得最优值。
在这种情况下,就需要对多个目标进行综合加权,将多目标问题转化为单目标问题再进行求解。
1、权重确定方法分类现有的指标权重方法主要可以分为两类,一类是相对主观的方法,专家通过经验确定不同指标之间的相对重要程度,通过多个专家的打分,取其平均值作为权重。
这类方法中,非常具有代表性的就是层次分析法。
另一类相对客观的权重确定方法是根据不同评价对象在该指标上得分的离散程度来确定权重。
评价系统的最终目的是将所有的评价对象区分开,如果某一个指标的数据离散程度越大,其对评价对象的区分度也就越好,所以其权重也应该较大一些。
在这类方法中,应用比较广泛的有变异系数法和熵值法。
2、主观赋权法——层次分析法本文中,我们以层次分析法为例来看一看主观赋权法。
在确定指标之间的权重时,如果指标数量较多,我们很难直接凭经验给出一组权重。
比如通过语文、数学和英语3门功课来评价一个学生的文化课水平,我们无法给出一个3维向量,可以同时衡量不同功课间的相对重要程度。
数学建模中的学生成绩预测分析
数学建模中的学生成绩预测分析在现代教育中,学生成绩的预测和分析变得越来越重要,因为它可以帮助教育工作者做出更好的决策,以提高学生的学习成绩。
为了解决这个问题,近年来,许多研究人员和教育工作者开始采用数学建模技术,以预测和分析学生成绩。
数学建模是通过构建数学模型来描述实际情境中的问题,并通过分析模型来寻找最优解决方案的一种技术。
在学生成绩预测和分析中,数学建模的主要方式是使用统计模型和机器学习算法,它们可以根据学生的历史成绩、考试成绩、学生的个人信息等一系列因素,预测和分析其未来学习成绩。
首先,统计模型是一种常用的数学建模技术,可以帮助我们预测和分析学生成绩。
其中,线性回归模型是最为常用的一种统计模型。
这种模型是基于一个关键假设:学生的未来成绩可以由其历史成绩和其他一些学生信息来预测。
具体来说,线性回归模型需要收集一些学生的历史成绩信息和个人信息,比如课程成绩、半期考试成绩、期末考试成绩等,并将这些信息作为自变量输入到模型中。
然后,根据这些自变量,线性回归模型会生成一个关于学生成绩的预测方程。
但是,线性回归模型虽然在许多情况下可以很好地预测学生成绩,但它也存在一些问题。
其中最大的一个问题是多元共线性:当两个或多个自变量之间具有高度相关性时,线性回归模型计算的结果可能会出现偏差,从而导致误差增加。
为了解决这个问题,我们需要采用其他一些统计模型。
比如,逻辑回归模型可以预测离散型变量,比如学生考试是否及格。
而岭回归和lasso回归等正则化技术,可以控制和减少多元共线性,从而提高模型预测准确性。
除了统计模型,机器学习算法也是一种流行的学生成绩预测和分析方法。
机器学习算法是一种基于数据模式识别的自动化方法,它考虑了多种因素,包括学生个人信息、历史成绩和考试成绩。
其中,最常用的机器学习算法包括决策树、支持向量机和人工神经网络。
这些算法可以帮助我们将学生的历史成绩和个人信息映射到一个高维空间中,并从中找到一个最优的决策边界,以预测未来的学习成绩。
数学建模习题及答案
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)2.1节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。
数学建模试题(带答案)大全
(14 分)
得分
四、(满分 10 分) 雨滴的速度 v 与空气密度 、粘滞系数 和重力加速度 g 有关,其中粘
滞系数的量纲[ ]= L1MT 1 1,用量纲分析方法给出速度 v 的表达式.
解:设 v , , , g 的关系为 f ( v , , , g ) =0.其量纲表达式为
[ v ]=LM0T-1,
学分 5 4 4
4
数据结构
3
5
应用统计
4
6
计算机模拟 3
7
计算机编程 2
8
预测理论
2
9
数学实验
3
所属类别 数学 数学 数学;运筹学
数学;计算机 数学;运筹学
计算机;运筹学 计算机 运筹学 运筹学;计算机
先修课要求
微积分;线性代 数 计算机编程 微积分;线性代 数 计算机编程
应用统计 微积分;线性代 数
由 U 0, U 0 可得到最优价格:
p1
p2
1
T
1
3T
p1 2b [a b(q0
)] 4
P2 2b [a b(q0 4 )]
前期销售量
T、(2 a
0
bp1
)dt
后期销售量
T
T /2 (a p2 )dt
总销售量
Q0
=
aT
bT 2
(
p1
p2 )
在销售量约束条件下 U 的最大值点为
~p1
a b
Q0 bT
T 8
,
P~2
a b
Q0 bT
T 8
7. (1)雨水淋遍全身, s 2(ab bc ac) 2*(1.5*0.5 0.5*0.2 1.5*0.2) 2.2m2
学生成绩综合评价模型(数学建模)
对于每名学生基于其四个学期成绩及成绩变化做单因素评价:
首先我们确定优良中差的比例固定为1:4:4:1,这样就能使学生评价处于平均,增强学生的学习动力。
1、对于平均分
因为不同基础的同学对某一得分同学的评价不同,所以当一名学生得60分时,得分大于80分的同学会认为其基础差。所以对学生的分数进行优良中差的比例分类:
预测成绩表
学生序号1 2 3 4 5 6 7 8 9 10
第5学期74.64 81.1866.6477.4878.7276.3467.7859.0367.4370.71
第6学期77.97 78.9669.7176.6777.8275.6168.3760.0671.9270.11
最后,我们对我们所建立的模型进行了客观的比较,并对其应用前景进行了展望。
4符号的说明
:学期
:学生序号
D:总评价得分
:第i个学生的第j学期的原始成绩。
:第 个决策单元
:因素集
:评语集
其他主要符号将在模型建立的时候详细说明。
5模型的建立
5.1数据标准化
为了避免现行评价方式中仅根据“绝对分数”评价学生学习状况,设计出一种新型的发展性目标分析法,必须考虑到户律基础条件的差异,学生原有的学习基础,也注意到学生学习的进步因素。
在本题中,附件给出了 名学生连续四个学期的综合成绩。要求我们做到以下三点:
1.根据附件数据,对这些学生的整体情况进行分析说明;
2.根据附件数据,采用两种及以上方法,全面、客观、合理的评价这些学生的学习状况;
3.根据不同的评价方法,预测这些学生后两个学期的学习情况。
初中数学建模教学实践研究
初中数学建模教学实践研究一、简述数学建模教学作为现代教育理念指导下的一种重要教学方式,旨在培养学生的数学素养和问题解决能力。
本文将围绕初中数学建模教学进行深入探讨,通过实践案例分析,阐述建模教学的意义、实施策略及其在提高学生数学成绩和创新能力方面的积极作用。
随着教育改革的不断深化,传统的应试教育逐渐向素质教育转变。
在这个过程中,数学作为一门基础学科,其重要性愈发凸显。
传统的数学教学模式往往过于注重概念、定义与定理的精确背诵与套用,而忽视了学生的实际问题解决能力。
数学建模教学应运而生,并逐渐成为教育界的热门话题。
建模教学强调将数学知识与实际问题相结合,让学生在解决实际问题的过程中自然地学习和掌握数学知识。
这种教学方式不仅有助于培养学生的数学兴趣,更能激发他们的创新思维和实践能力。
建模教学在提高学生数学成绩、培养学生创新能力等方面具有显著的效果。
当前初中数学建模教学仍面临诸多挑战。
如何制定合适的建模教学目标、选择合适的建模题目、设计有效的教学过程以及评价学生的建模成果等,都是值得我们深入研究与探讨的问题。
本文旨在通过对这些问题的研究与实践,为初中数学建模教学提供有益的参考和借鉴。
1. 数学建模的重要性与意义数学建模,作为数学与现实世界紧密相连的桥梁,不仅是一种重要的数学思想方法,更是一种革命性的教育理念。
在信息化、人工智能等高新技术迅猛发展的今天,数学建模的重要性与意义愈发彰显。
数学建模能够培养学生的创新思维和问题解决能力。
它鼓励学生从实际问题出发,用数学的语言和方法来描述、分析和解决,从而不仅提高了学生的数学素养,还激发了他们的创新意识和探究精神。
数学建模有助于培养学生的科学思维和理性精神。
建模过程中,学生需要运用科学的语言和方法进行假设、推导和验证,这有助于他们形成科学的态度和理性的思维方式。
数学建模对于培养学生的综合素质和社会责任感也具有重要意义。
通过参与建模活动,学生可以学会与他人合作、沟通和交流,培养团队精神和协作能力。
数学建模训练习题(含代码程序)
5组 于金龙 王超 焦艳彬快速评卷策略摘要本文研究的是快速评卷问题,在保证准确率和公平公正的原则下,使每位评卷人评阅的试卷总数最小,即满足总的工作量最小。
为解决该问题,在考虑系统误差的前提下,本文建立了多目标优化模型和圆桌评卷模型,利用计算机仿真,建立了以下两种方案,并验证了方案的合理性。
对于方案一,采取了截至分数线淘汰制,每一轮我们将试卷尽可能的平均分成8份,根据该轮试卷的期望值设定一个截至分数线,淘汰分数线以下的所有试卷,剩下的试卷带编号进入下一轮。
当最后的试卷数在2W 附近时,停止进行下一轮仿真,将2W 左右份试卷分给每一位评卷老师进行评阅打分,然后各试卷取平均分进行排名,取前三名为最终优胜者,并记录这三份试卷的编号进行对应。
最后我们通过对上述批卷次数进行统计,一组仿真结果如下:总阅卷次数平均阅卷次数准确率 2182797.1%对于方案二,采用了圆桌评卷模型,将所有试卷尽可能平均分成8份(对应8位带有标号的评卷老师),以第一份试卷为例,首先由第一位老师进行评分,淘汰60%,将余下试卷(含试卷标号)交给右手边的第二位老师进行评分,然后将评分与第一位老师的评分取平均值进行排名,淘汰40%,传给右手边的第三位老师进行评分,按照上一回合的排名制继续淘汰,直至该份试卷只剩下一个则不再淘汰。
将这个试卷依次交给右手边未评过此卷的老师,进行平均打分,最后得出此份中的最优试卷分数及标号。
同样方法,得到剩余7份试卷各自的最优试卷份数及标号,最后对所得8份试卷进行排名,取成绩较高者前三名为优胜试卷,并记录这三份试卷的标号,统计评卷总次数,一组仿真结果如下:总阅卷次数平均阅卷次数准确率 21226.598.3%最后对方案进行分析和改进,对于三种变量:试卷数量、评卷人数和优胜者数量,当其中两种变量不变,调整第三变量时,观察各方案准确率的浮动,得出三者变动规律,寻求出最优评卷策略。
关键字关键字::计算机仿真 圆桌模型 系统误差 多目标优化1.问题重述在确定像数学建模竞赛这种形式比赛的优胜者时,常常要评阅大量的答卷,比如说,有P=100份答卷。
学生的综合成绩排名问题数学建模
三、问题的分析3.1问题一我们考察班级学生的综合成绩(包括考试课和考查课)排名问题,只需要对学生的平均绩点进行比较,其中考虑到每个学校计算平均绩点的方法不统一,为了认证我们的结果,我们利用Excel层次分析法对排名的公平性进行认证。
(是否有不考虑因素)3.2问题二3.3问题三3.4问题四对于奖学金的评定各院系或班级评定标准都或多或少的遇到了一些问题,造成学生参评热情不高,高校奖学金的评定一般存在以下问题四、模型的建立及求解4.1问题一模型的建立及求解4.1.1基本方法-绩点法绩点成绩与绩点对应表(表1)名称内容百分制90-100 80-89 70-79 60-69 60以下等级评价优秀良好中等及格不及格绩点 4 3 2 1 0每名同学的平均绩点的计算(公式1):每名同学平均绩点分 =()定的总学分数每学期专业教学计划规课程绩分数课程学分课程系数∑⨯⨯符号化公式:J平均=()MGXK∑••4.1.2问题一的改进优化-Excel 层次分析法问题简化:我们只计算班级前5排名情况,这样可以利用在平均绩点中前9名得成绩进行比较,足以保证前5名得公平性。
1-15阶正互反矩阵计算1000次得到的平均随机一致性指标(表二)层次分析图求出目标层的权数估计 用和积法计算判断矩阵将判断矩阵的每一列元素作归一化处理,其元素的一般项为∑=nijijij bb b 1()n j i ,2,1,=将每一列经归一化处理后的判断矩阵按行相加为:()n i ,2,1=求得Wi={1.2,0.8}t对向量W=( W 1, W 2…… W n )t 归一化处理:∑=niji b w 1∑=njii ww w 1()n i ,2,1=()tn w w w w ,,21=即为所求的特征向量的近似解。
W={0.6,0.4} tN<3不用考察判断矩阵一致性标准求出方案层对准则层的最大特征向量(同上),求得考试课之间绩点的层次表bij={18.5,5.285,7.4,3.363,5.285,7.4}Wi={0.324,1.135,0.810,1.783,1.135,0.810} W={0.054,0.189,0.135,0.297,0.189,0.135} 考察判断矩阵层次单排列的一致性标准 计算判断矩阵最大特征根λmax()∑=niinW BW 1max λBW={0.075,0.927,0.472,2.289,0.927,0.472}λmax =(0.138)/(6*0.054)+(1.691)/(6*0.189)+(0.863)/(6*0.135)+(4.175*0.297) /(6*0.297)+(1.691) /(6*0.189)+(0.863) /(6*0.135)=6.234判断矩阵一致性指标C.I.(Consistency Index)1..max --=n nI C λC.I.=(6.234-6)/(6-1)=0.0468随机一致性比率C.R.(Consistency Ratio)......I R I C R C =C.R.=0.0468/1.24=0.038<0.1考察判断矩阵层次单排列的一致性标准考查课之间绩点的层次表 bij={20,5,5,10,10,2.857}Wi={0.3,1.2,1.2,0.6,0.5,0.5}W={0.069,0.279,0.279,0.139,0.116,0.116} 考察判断矩阵一致性标准BW=max=(20*0.069)/(6*0.069)+(5*0.279)/(6*0.279)+(5*0.279)/(6*0.279)+(10*0.139)/(6*0. 139)+(10*0.116)/(6*0.116)+(2.857*0.116)/(6*0.116)求出方案层对指标层的最大特征向量(同上),求得每名同学考试课1的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课2的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课3的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课4的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课5的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考试课6的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课1的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课2的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课3的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课4的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课5的绩点层次表Wi=W=考察判断矩阵一致性标准每名同学考查课6的绩点层次表Wi=W=考察判断矩阵一致性标准利用层次单排序的计算结果,进一步综合出对更上一层次的优劣顺序,就是层次总排序的任务。
数学建模,如何客观合理的评价学生学习状况
如何客观、合理的评价学生学习状况摘要现行的以考试成绩衡量学生学习状况的方法比较主观,且评价方式单一,忽略了不同基础水平的同学的进步程度,为了激励优秀学生努力学习取得更好的成绩,同时鼓励基础相对薄弱的学生树立信心,不断进步,我们需要建立一个客观,合理的评价学生状况的数学模型。
考虑到以上情况,本文通过以下几步来达到目的。
步骤一:通过分析题目所给198名学生的整体成绩情况,包括大一两个学期每个学期的整体平均成绩、及格率、方差、标准差等多项指标有关,通过所给数据,得到图表。
分析数据充分理解学生的学习情况,更有利于以下两个模型的进行,为模型的建立提供参考.步骤二:对于全面、客观、合理的评价学生的学习状况,我们采用了二个模型:模型一:利用黑尔指数法求得的进步分数和层次分析法进行评价:设定适当的权系数,使最终成绩更为合理。
本专业为工科类专业,应更加重视专业学习能力,因此专业课程所占权系数较高,成绩也能更好的选拔专业能力强的学生。
同时为了激励进步学生,进步分也占有部分权限,能够起到很好的鼓励作用。
为此我们设置:最终成绩Y=0。
55*专业课程+0.4*其他课程+0.05*进步分数.模型二:采用成绩标准化模型对成绩进行评价:采用对数变换将负偏态的成绩分布正态化,并用Matlab进行了正态检验。
从而学生成绩的差距分布更为合理,成绩偏低的学生变换后将处于中等位置,得到适当的鼓励,改变了负偏态分布中较多学生成绩集中在高分段或低分段的现象。
然后,将正态分布归一化为标准正态分布,消除每个学期评价考核体系的不稳定性因素,得到每个学生各学期的“有效成绩”。
并基于”有效成绩"提出了等级评定子模型,确定了等级分数线,更清楚的表明了每个学生在整体位置。
关键词:黑尔指数层次分析成绩标准化有效成绩一.问题重述现行的评价方法相对比较局限、主观、有失公允,只能对学习基础好的学生产生激励作用,而不能对所有学生尤其是后进学生起到激励作用,这种评价弊端开始被越来越多的人关注。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目1
1.某校60名学生的一次考试成绩如下:
93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55
(1)计算均值、标准差、极差、偏度、峰度,画出直方图;
(2)检验分布的正态性;
(3)若检验符合正态分布,估计正态分布的参数并检验参数。
一、模型假设
1、假设60名同学的成绩记录准确。
2、假设60名同学的成绩服从正态分布。
二、模型的分析、建立与求解
第(1)小题是求60名同学成绩的均值、标准差、极差、偏度、峰度,并画出直方图。
根据题目已给的数据用matlab求解,命令分别为:均值:mean(x)
中位数:median(x)
标准差:std(x)
方差:var(x)
偏度:skewness(x)
峰度:kurtosis(x)
matlab求解过程如下:
1、数据的输入
x=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55];
2、用相应的命令求解
均值:mean(x) ans =80.1000
标准差:std(x) ans = 9.7106
极差:range(x) ans = 44
偏度:skewness(x) ans =-0.4682 峰度:kurtosis(x) ans = 3.1529
画出直方图为:hist(x(:),6)
第(2)题为检验分布的正态性,根据matlab中的命令h = normplot(x)画出数据的概率分布图,此命令显示数据矩阵x的正态概率图.如果数据来自于正态分布,则图形显示出直线性形态.而其它概率分布函数显示出曲线形态。
图形如下:
由图可以看出这60名同学的成绩符合正态分布。
第(2)题已经验证这60名同学的成绩符合正态分布,第(3)题估计正态分布的参数并检验参数,用matlab 求解过程如下:
1、参数估计
[muhat,sigmahat,muci,sigmaci]=normfit(x(:))
muhat =80.1000
sigmahat =9.7106
muci =
77.5915
82.6085
估计出这60名同学成绩正态分布的均值为80.1,标准差为9.7106, 95%置信区间为[ 77.5915,82.6085]
2、假设检验
已知这60名同学成绩服从正态分布,现在方差未知的情况下,检验其均值 m 是否等于80.1,用t 检验的过程如下:
原假设 00:μμ=h
备择假设 00:μμ≠h
过程如下:[h,sig,ci]=ttest(x(:),80.1,0.05)
h = 0
sig = 1
ci =
77.5915
82.6085
检验结果: 1. 布尔变量h=0, 表示不拒绝零假设,说明提出的假设寿命均值594是合理的.
2. 95%的置信区间为[77.5915,82.6085], 它完全包括80.1, 且精度比较高。
3. sig值为1, 远超过0.5, 不能拒绝零假设.。
高远才刘宏伟李苏文
2014年6月30日。