34整式加减-整式的化简求值(1)

合集下载

专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册

专题 整式的化简求值解答题(50题)(解析版)-七年级数学上册

七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.【分析】先化简整式,再代入求值.【解答】解:原式=11a2﹣(a2﹣6a+15a2﹣4a2+8a)=11a2﹣a2+6a﹣15a2+4a2﹣8a=(11a2+4a2﹣15a2)﹣a2﹣8a+6a=﹣a2﹣2a.当a=﹣4时,原式=﹣(﹣4)2﹣2×(﹣4)=﹣16+8=﹣8.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.【分析】先去括号,然后合并同类项,最后将x=﹣4,y=5代入化简结果进行计算即可求解.【解答】解:原式=2x2+2xy﹣3y﹣x2﹣2xy+1=x2﹣3y+1,当x=﹣4,y=5时,原式=(﹣4)2﹣3×5+1=16﹣15+1=2.【点评】本题考查了整式的加减与化简求值,正确的去括号与合并同类项是解题的关键.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.【分析】原式去括号,合并同类项进行化简,然后代入求值.【解答】原式=a2﹣3a2+2b2+3a2﹣3b2=a2﹣b2;当a=﹣2;b=3时,原式=(﹣2)2﹣32=4﹣9=﹣5.【点评】本题考查整式的加减和化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.【分析】先去括号,再合并同类项得到原式=﹣4x2y,然后把x、y的值代入计算即可.【解答】解:原式=3x2y﹣6xy﹣2x2y+6xy﹣5x2y=﹣4x2y,当x=﹣1,y=16时,原式=﹣4×(﹣1)2×16=−23.【点评】本题考查了整式的加减﹣化简求值:先把整式去括号,合并,再把给定字母的值代入计算,得出整式的值.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:5a2+4b﹣(5+3a2)+3b+4﹣a2=5a2+4b﹣5﹣3a2+3b+4﹣a2=a2+7b﹣1.当a=3,b=﹣2时,原式=32+7×(﹣2)﹣1=9﹣14﹣1=﹣6.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.【分析】先去括号,再合并同类项,然后把x=1,y=﹣2代入化简后的结果,即可求解.【解答】解:原式=x2y﹣3xy2+x2y﹣2xy2﹣2x2y=﹣5xy2,当x=1,y=﹣2时,原式=﹣5×1×(﹣2)2=﹣20.【点评】本题主要考查了整式加减中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=﹣3a2+2ab+3a2﹣ab﹣2=ab﹣2,当a=−12,b=4时,原式=﹣2﹣2=﹣4.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.【分析】去括号,合并同类项,将x,y的值代入计算即可.【解答】解:原式=x2﹣y2﹣2xy+3x2﹣4xy+x2+5xy=5x2﹣xy﹣y2,当x=﹣1,y=2时,原式=5×(﹣1)2﹣(﹣1)×2﹣22=5+2﹣4=3.【点评】本题主要考查了整式的加减与求值,正确利用去括号的法则运算是解题的关键.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x2y﹣3xy2+3xy﹣6x2y﹣6xy+6xy2=﹣2x2y+3xy2﹣3xy,当x=34,y=﹣1时,原式=98+94+94=458.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.【分析】先去括号,合并同类项,化简整式,然后将x,y的值代入求值.【解答】解:3(2+122−B)−(2B+32−122),=3x2+32y2﹣3xy﹣2xy﹣3x2+12y2=2y2﹣5xy,当x=1,y=2时,原式=2y2﹣5xy=2×22﹣5×1×2=﹣2.【点评】本题考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=1,b=﹣2时,原式=﹣6﹣4=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=6a﹣8b﹣9a﹣6b+12a﹣8b=9a﹣22b,当a=−13,b=12时,原式=9×(−13)﹣22×12=−3﹣11=﹣14.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3]=3a2b﹣6b3+6ab﹣(6ab+2a2b﹣4b3)=3a2b﹣6b3+6ab﹣6ab﹣2a2b+4b3=a2b﹣2b3.当a=2,b=﹣1时,原式=22×(﹣1)﹣2×(﹣1)3=﹣4+2=﹣2.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.【分析】直接去括号进而合并同类项进而得出答案.【解答】解:原式=﹣3x2+6x+3x2﹣4x﹣1=2x﹣1,把x=﹣4代入得:原式=2×(﹣4)﹣1=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.【分析】先去括号,再合并同类项,然后把x,y的值代入化简后的式子进行计算即可解答.【解答】解:原式=12x﹣2x+232−12+132=﹣2x+y2;当x=﹣2,y=23时,原式=﹣2×(﹣2)+(23)2=4+49=409.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.【分析】先去括号合并同类项,然后将xy=2,x+y=3整体代入即可.【解答】解:原式=3xy+10y+5x﹣2xy﹣2y+3x=xy+8y+8x=8(x+y)+xy,当xy=2,x+y=3时,原式=8×3+2=26.【点评】本题考查了整式的加减﹣﹣化简求值,熟悉合并同类项是解题的关键.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.【分析】去括号、合并同类项,再把已知条件代入即可得到整式的值.【解答】解:(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)=b2﹣a2+a2b﹣3ab2﹣2b2+2ab2=﹣b2﹣a2+a2b﹣ab2=﹣(b2+a2)+(a2b﹣ab2)把a2+b2=20,a2b﹣ab2=﹣3代入,原式=﹣20+(﹣3)=﹣23.【点评】本题主要考查了整式的加减—化简求值,掌握整式的加减运算法则,整体思想是解题的关键.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.【分析】直接去括号,再合并同类项,再把已知数据代入得出答案.【解答】解:原式=6ab2﹣16a+3b﹣6ab2+4a+b=﹣12a+4b,∵3a﹣b=﹣2,∴原式=﹣4(3a﹣b)=﹣4×(﹣2)=8.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵b=2a+2,∴﹣2a+b=2,∴原式=4(﹣2a+b)=4×2=8.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.【分析】(1)把(a﹣b)2看成一个整体,利用合并同类项运算法则进行计算;(2)将原式进行变形,然后利用整体思想代入求值.【解答】解:(1)原式=(3﹣6+7)(a﹣b)2=4(a﹣b)2,故答案为:4(a﹣b)2;(2)原式=﹣3(x2+2y)+2021,当x2+2y=−13时,原式=﹣3×(−13)+2021=1+2021=2022,即原式的值为2022.【点评】本题考查整式的加减运算,理解整体思想解题的应用,掌握合并同类项(系数相加,字母及其指数不变)的运算法则是解题关键.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.【分析】(1)直接利用合并同类项法则计算得出答案;(2)所求式子变形后,将已知等式代入计算即可求出值.【解答】解:(1)3(x+y)2﹣5(x+y)2+7(x+y)2=(3﹣5+7)(x+y)2=5(x+y)2;(2)∵a2+2a+1=0,∴2a2+4a﹣3=2(a2+2a+1)﹣5=0﹣5=﹣5.【点评】此题主要考查了代数式求值,利用了整体代入的思想.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.【分析】(1)把(a﹣b)2看成一个整体,根据合并同类项的法则化简即可;(2)把x2﹣2y=1看成一个整体,整体代入求值即可.【解答】解:(1)原式=(3﹣1+7)(a﹣b)2=9(a﹣b)2,故答案为:9(a﹣b)2;(2)∵x2﹣2y=1,∴原式=﹣3(x2﹣2y)+5=﹣3+5=2.【点评】本题考查了合并同类项,代数式求值,考查整体思想,把x2﹣2y=1看成一个整体,整体代入求值是解题的关键.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)利用“整体思想”和合并同类项法则进行计算即可;(2)先把﹣3x2﹣6y+21化成﹣3(x2+2y)+21,再把x2+2y=5整体代入,计算即可;(3)由a﹣2b=3,2b﹣c=﹣5,c﹣d=10,得出a﹣c=﹣2,2b﹣d=5,再代入计算即可.【解答】解:(1)3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2=﹣2(a﹣b)2;(2)﹣3x2﹣6y+21=﹣3(x2+2y)+21,当x2+2y=5时,原式=﹣3×5+21=6;(3)∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=3+(﹣5)=﹣2,2b﹣d=﹣5+10=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减—化简求值,会把整式正确化简及运用“整体思想”是解决问题的关键.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵6a2﹣[2(a2+ab)﹣4ab]﹣ab=6a2﹣(2a2+2ab﹣4ab)﹣ab=6a2﹣2a2+2ab﹣ab=4a2+ab,∵a,b满足|a+1|+(b﹣2)2=0,∴a+1=0,a=﹣1.b﹣2=0,b=2.则原式=4×(﹣1)2+(﹣1)×2=4﹣2=2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.【分析】直接利用非负数的性质得出a,b的值,再利用整式的加减运算法则计算,进而得出答案.【解答】解:∵|a+1|+(b﹣2)2=0,∴a+1=0,b﹣2=0,解得:a=﹣1,b=2,∵5ab2﹣[3ab﹣2(﹣2ab2+ab)]=5ab2﹣(3ab+4ab2﹣2ab)=5ab2﹣(ab+4ab2)=ab2﹣ab,将a=﹣1,b=2代入原式=ab2﹣ab=﹣1×22﹣(﹣1)×2=﹣4+2=﹣2.【点评】此题主要考查了整式的加减—化简求值,正确掌握相关运算法则是解题关键.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣(2x2﹣15xy+6x2﹣xy)=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.【分析】先化简整式,再根据非负数的和为0求出x、y的值,最后代入求值.【解答】解:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2)=3x2+2xy﹣3y2﹣2x2﹣2xy+2y2=x2﹣y2.∵(x﹣3)2+|+13|=0.又∵(x﹣3)2≥0,|+13|≥0.∴x=3,y=−13.∴原式=32﹣(−13)2=9−19=889.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则,根据非负数的和求出x、y的值是解决本题的关键.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.【分析】先化简整式,再根据非负数的意义确定x、y的值,最后代入化简后的整式求值.【解答】解:4B−[(2−2)−3(2+3B−132)]=4xy﹣(x2﹣y2﹣3x2﹣9xy+y2)=4xy﹣x2+y2+3x2+9xy﹣y2=13xy+2x2.∵(−2)2+|+12|=0,又∵(x﹣2)2≥0,|y+12|≥0,∴x=2,y=−12.当x=2,y=−12时,原式=13×2×(−12)+2×22=﹣13+2×4=﹣13+8=﹣5.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及非负数的意义是解决本题的关键.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=322b﹣2ab2﹣2−32a2b+12ab2﹣2=−32B2−4.∵2(−3)2022+|+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,+23=0,∴a=3,=−23.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.【分析】利用非负数的性质求出x,y的值,去括号合并同类项可得结论.【解答】解:3(2−B+162)−2(2B+2−142)=3x2﹣3xy+12y2﹣4xy﹣2x2+12y2=x2﹣7xy+y2,∵|x﹣1|+(y+5)2=0,∴x=1,y=﹣5,∴原式=12﹣7×1×(﹣5)+(﹣5)2=61.【点评】本题考查整式的加减,非负数的性质等知识,解题的关键是掌握整式的混合运算的法则,属于中考常考题型.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x是最大的负整数,y是绝对值最小的正整数,∴x=﹣1,y=1,∴2(2−2B2)−[(−22+42p−13(6B2−322)]=2x2y﹣4xy2﹣(﹣x2y2+4x2y﹣2xy2+x2y2)=2x2y﹣4xy2+x2y2﹣4x2y+2xy2﹣x2y2=﹣2x2y﹣2xy2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x2y﹣2xy2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).【分析】(1)根据同类项的定义可得结论;(2)先去括号,再合并同类项.【解答】解:(1)∵单项式7x a y与﹣4x2y b是同类项,∴a=2,b=1.(2)5(2a2b﹣ab2)﹣6(−32ab2+2a2b)=10a2b﹣5ab2+9ab2﹣12a2b=4ab2﹣2a2b.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则、有理数的混合运算是解决本题的关键.36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.【分析】原式去括号合并得到最简结果,利用同类项定义求出m与n的值,代入计算即可求出值.【解答】解:原式=2m2﹣2mn﹣6m2+9mn﹣2m2+4m2﹣2mn+2m2﹣1=5mn﹣1,∵2a3m b和﹣2a6b n+2是同类项,∴3m=6,n+2=1,即m=2,n=﹣1,则原式=﹣10﹣1=﹣11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.【分析】将A与B代入A+2B中,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:∵A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,∴A+2B=3a2﹣6ab+b2+2(﹣2a2+3ab﹣5b2)=3a2﹣6ab+b2﹣4a2+6ab﹣10b2=﹣a2﹣9b2,当a=1,b=﹣1时原式=﹣12﹣9×(﹣1)2=﹣10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.【分析】此题需要先去括号,再合并同类项,将原整式化简,然后再将3b﹣a=﹣8代入求解即可.【解答】解:∵A=a−12b+2,B=34−b﹣1,∴A﹣2B=(−12+2)−2(34−−1)=−12+2−32+2+2=−12+32+4把3b﹣a=﹣8代入,原式=−r32+4=−82+4=−4+4=0.【点评】此题考查了整式的混合运算,主要考查了整式的加减法、去括号、合并同类项的知识点.注意运算顺序以及符号的处理.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.【分析】(1)将A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2代入2A﹣3B中,再进行化简即可求解;(2)将a=﹣1,b=2代入(1)中化简的式子即可求解.【解答】解:(1)∵A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2,∴2A﹣3B=2(3b2﹣2a4+5ab)﹣3(4ab+2b2﹣a2)=6b2﹣4a4+10ab﹣12ab﹣6b2+3a2=﹣4a4+3a2﹣2ab;(2)当a=﹣1,b=2时,2A﹣3B=﹣4a4+3a2﹣2ab=﹣4×(﹣1)4+3×(﹣1)2﹣2×(﹣1)×2=﹣4+3+4=3.【点评】本题主要考查了整式的化简,掌握合并同类法则是解题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B ﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=15.当x=2,y=15时,原式=﹣5×2﹣5×15=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.【分析】(1)根据两个非负数的和为0,两个非负数分别为0,再进行化简求值即可求解;(2)根据2A+B的值与x的取值无关,即为含x的式子为0即可求解.【解答】解:(1)由题意得,a﹣3=0,b﹣2=0,∴a=3,b=2,∴A=3x2﹣2x+6,B=6x2﹣4x﹣1,∴2A﹣B=2(3x2﹣2x+6)﹣(6x2﹣4x﹣1)=6x2﹣4x+12﹣6x2+4x+1=13;(2)由题意得,2A+B=2(3x2﹣bx+6)+2ax2﹣4x﹣1,=6x2﹣2bx+12+2ax2﹣4x﹣1=(6+2a)x2﹣(2b+4)x+11∵代数式2A+B的值与x无关,∴6+2a=0,2b+4=0,∴a=﹣3,b=﹣2,∴5a+2b=5×(﹣3)+2×(﹣2)=﹣19.【点评】本题考查了整式的化简求值、非负数的性质,解决本题的关键是与x的值无关即是含x的式子为0.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.【分析】(1)根据整式的减法法则计算即可;(2)根据结果不含x项和x2项可知其系数为0,然后列式计算即可.【解答】解:(1)2B﹣A=2(x2﹣nx+2)﹣(mx2+2x﹣1)=2x2﹣2nx+4﹣mx2﹣2x+1=2x2﹣mx2﹣2nx﹣2x+5;(2)2B﹣A=2x2﹣mx2﹣2nx﹣2x+5=(2﹣m)x2﹣(2n+2)x+5,∵2B﹣A的结果不含x项和x2项,∴2﹣m=0,2n+2=0,解得m=2,n=﹣1.【点评】本题考查了整式的加减运算,关键是注意去括号时符号的变化情况.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.【分析】(1)化简整理整式,令含有x的项的系数为0,求出m、n的值;(2)把m、n的数据代入代数式求值.【解答】解:(1)∵A=32B2−2x﹣1,B=3x2−13mx+4,∴4A−3B=4(32B2−2x﹣1)﹣3(3x2−13mx+4)=6nx2﹣8x﹣4﹣9x2+mx﹣12=(6n﹣9)x2+(m﹣8)x﹣16,∵4A−3B的值与x的取值无关,∴6n﹣9=0,m﹣8=0,∴n=32,m=8;(2)由(1)得n=32,m=8,∴(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)=m2﹣3mn+3n2﹣2nm+mn+4n2=m2﹣4mn+7n2=82﹣4×8×32+7×(32)2=64﹣48+634=16+15.75=31.75.【点评】本题考查了整式的混合运算化简求值,解题的关键是掌握整式的混合运算.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以=25.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−12;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b=3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。

北师大版2024新版七年级数学上册课件:3.2 课时3 整式的加减

北师大版2024新版七年级数学上册课件:3.2 课时3 整式的加减

典型例题
例2 我国出租车收费标准因地而异.甲市为:起步价6元,3 km 后每千米收费为1.5元;乙市为:起步价10元,3 km后每千米收费 为1.2元. (1)试问在甲、乙两市乘坐出租车S(S>3)km的价钱差是多少元?
解:甲:6+1.5(S-3),乙:10+1.2(S-3), 则6+1.5(S-3)-[10+1.2(S-3)] = 6+1.5S-4.5-(10+1.2S-3.6) = 6+1.5S-4.5-10-1.2S+3.6 =0.3S-4.9.
A.a2-5a+6
B.a2-5a-4
C.a2-a-4
D.a2-a+6
(4a2+2a+2)-(3a2+3a-4) = 4a2+2a+2-3a2-3a+4
课堂练习
2.已知一个多项式与4x2+9x的和等于4x2+4x-1,
则这个多项式是( A )
A.-5x-1
B.5x+1
C.-13x-1
D.13x+1
(4x2+4x-1) - (4x2+9x) = 4x2+4x-1-4x2-9x
课堂练习
6. 做大小两个长方体纸盒,尺寸如下(单位:cm):
小纸盒 大纸盒

宽高
a
b
c
1.5a
2b 2c
(1)做这两个纸盒共用料多少平方厘米? (2)做大纸盒比做小纸盒多用料多少平方厘米?
课堂练习
(1)做这两个纸盒共用料多少平方厘米?
交换这个两位数的十位数字和个位数字,得到的数
是___1_0_b_+_a__. 将这两个数相加:(10a+b)+(10b+a) =10a+b+10b+a
利用数字表示两 位数时,十位上 的数要乘以10!

七年级上册数学 整式加减法 先化简再求值100题

七年级上册数学 整式加减法 先化简再求值100题

1.先化简,再求值:5(a²-2b)+3(a²-2b)–4( a²-2b),其中|a+12|+(b−1)2=02.先化简,再求值:当x=-1时,求代数式:2x-2[x-(2x²-3x+2)]-3x²的值.3.先化简再求值:5(3x²y-xy²)-(xy²+3x²y²),其中x=12,y=−1.4.先化简12x−2(x+13y2)+(−32x−13y2)再求值,其中x−2,y=23.5.已知A=2x²+3xy-2x,B=x²-xy+1,(1)求3A-6B;(2)若34-6B的值与x的取值无关,求y的值.6.先化简,再求值:4(x2y+12xy2)−3(x2y−x)−2xy2+1,其中x=-2,y=3.7.(1) 3x−y2+x+y2(2) 4( 3x²y-x¹²) -3( -x¹²+4x²y) ;(3)先化简,再求值:35(75a2b−29ab2−1)−2(35a2b−92ab2)+53,其中a=2,b=-1.8.先化简,再求值:3x²y-[6xy-(6xy-2x²y)],其中x=-1,y=2022.9.设A=3a²b-ab²,B=-ab²+2a²b.(1)化简2A-3B;(2)若|a-2|+( b+3)²=0,求A-B的值.10.先化简,再求值:13x3−2x2+23x3+3x2+5x−4x+7,其中x=0.111.已知: A=3a²+b²-5ab,(1)化简:-B+2A;(2)当a=−12,b=2时,求-B+2A的值12.先化简,再求值(1)(3a²-7a)+2(a²-3a+2),其中a=1(2)3xy²+(3x²y-2xy²)-4(xy²-x²y²),其中x=-4,y=113.先化简,再求值:2(x²y-2xy) -3(x²y-3xy)+x²,其中x=−1,y=1514.先化简,再求值(1)-( x² -3)-( 7-5x²),其中x=-2..(2)(3a2b-ab²)-2(-ab²+3a²b),其中a=−2,b=−1215.先化简,再求值:5(3a²b-ab²)-4(-ab²+3a²) ,|=0其中a,b满足|b−2)2+|b−1216.先化简,再求值:x²+(2xy-3y²)-2(x²+xy-2y²)-2y²,其中x=-1,y=2.17.已知· A=4x²-4xy+5y²,B=x²-xy+y².(1)化简:A-3B;(2)当x=-3,y=-2时,求A-3B的值..18.化简求值: 3a²b-[2ab²-2(-a2b+4ab²)]-5ab², 其中a=−2,b=1219.先化简下式,再求值:5(3a2b-ab²) -(ab²+3a²b),其中a=-1,b=120.先化简,再求值:3xy-7y+[-5x²-3(xy+y-2x²)],其中x=-2,y=3.(9ab2−3)+a2b+3−2(ab2+1),其中a=-2,b=3.21.先化简,再求值:1322.先化简,再求值:4x²y-[6xy-3(4xy-2)-x²y]+6,其中x=−1,y=2.2x−3)+2x2],其中x=-2.23.先化简,再求值:3x2−[5x−(1224.(1)化简:2x²-5x-x²+3x(2)求值: (6a²-2ab)-2(3a²+ab) ,其中a=-2,b=1.25.先化简,再求值(1)2x²-5x+x2+4x-3x²-2,其中x=12.(2)若2a²-3a-5=1,求2(3a²-7a)-2(a²-4a+2)的值.26.先化简,后求值.(1)a+(5a-3b)-( a-2b)(2)-3(2x²-xy)+4(x²+xy-6),其中x=1,y=227.先化简,再求值:(5x-3y-2xy) -2(6x+5y-xy) ,其中x=-2,y=1.28.先化简,再求值:-2x²- [3y²-3(x²-y²)+6],其中x、y满足 |x+1|+(y-1)²=0 .29.先化简,再求值:5(3m²n-nm²)-4(-mn²+3m²n) ,其中m=13,n=−2. 30.先化简,再求值:[(x-2y)²+(x-2y)(2y+x)-2x( 2x-y)]÷2x,其中x=−1,y=112.31.(1)化简:x+(5x-3y)-(x-2y) ;(2)先化简,再求值:13a−(12a−4b−6c)+3(2b−2c),其中a=6,b=12.32.化简:(1)−4ab+23b2−9ab−12b2;(2)2a+(3a-b)-(a+2b) ;(3)先化简,再求值:ab²+5(3a²b-ab²)-4(-ab²+3a²b) ,其中a=-3,b=3.33.化简求值:2x³+4x-2x²-(x+3x²-2x³) ,其中x=-234.先化简,再求值:5x²-2(3y²+2x²)+3(2y²-xy),其中x=−12,y=−1.35.先化简,再求值:12x2−2(x2−13y)+(−32x2+13y),其中x=−2,y=23.36.先化简,再求值:12x−2(x−13y2)+(−12x+13y2),其中x=−2,y=23.37.化简求值:(1)已知: a²-2a-1=0,求(4a²+a-5)-3( a+a²)的值;(2)已知:求3a²b-[2a²-(ab²-3a²b)-4ab²] .38.先化简,再求值.(1)已知|a-2|+( b-3)²-0,求多项式 3[2(a+b)-ab]-[2(a+b)-ab] 的值;(2)已知A=32nx2−2x−1,B=2x2−13mx+4,当2A-3B的值与x的取值无关时,求多项式(m²-3mn+2n²)-(2m²+mm-4n²)的值.39.先化简,再求值:(3a2b-ab²) -2(ab²-3a²b) ,其中a=13,b=−3.40.(1)化简,再求值[4x²y-[6xy-2(4xy-2-x²y)]+1,其中x=-2,y= 1.(2)已知|a|=1,|b|=2,|c| = 4,且a>b>c,求a-b+c的值.41.先化简,再求值(1)4x²y+6xy-2(4xy-2)-x²y,其中x=−12,y=1.(2)已知:x²+3x-2=0,求4x2−y2−2(x2−3x−12y2)的值.42.先化简,再求值:5x2y−2xy+2(x2y−12xy),其中x=-1,y⁻².43.先化简,再求值:5x²-2(y²+4xy)+(2y²-5x²) ,其中x=−18,y−1.44.(1)先化简,再求值: 2(a2+ab)−3(23a2−ab),其中a=2,b=-3.(2)已知2x+y=3,求代数式3(x-2y)+5(x+2y-1)-2的值.45.先化简,再求值:2(x²y+xy)-3(x²y-xy)-4x²y,x=2,y=-2.46.先化简,再求值:(x-2y)-2(x³-y)+(3x³-4y²-x) ,x=-1,y=-2.47.先化简,再求值:(2a2−3a+1)+3(a−2a2−13),其中a=-148.先化简,再求值:12x+(−32x+13y2)−(2x−23y2),其中x=−2,y=2349.先化简,再求值:(3a²b-ab²)-2(ab²-3a²b) ,其中a=−13,b=−3.50.先化简,再求值: (3x²y-7xy)-2(x²y-3xy),其中x=−2,y=1251.先化简,再求值:4xy-[(x²+5xy-y²)-(x²+3xy-2y²)],其中x=−14,y=1252.先化简,再求值:(2a²b-ab²)-3(a²b-1)+(ab²+1),其中a=-1,b=253.先化简,再求值:−3(x2−2x)+2(32x2−2x−12),其中x=4.54.先化简,再求值:其中x=2,y=-1.55.先化简,再求值:3( a³-3a²+5b)-( a²+7b) ,其中a=-1,b=-2.56.计算(1)(2a-3b)+(2b-3a)(2)先化简再求值:2(x²y-2xy)-3(x²y-3xy)+x²y,其中x=−1,y=15 57.先化简,后求值.求2(a2b+ab²)-5(2ab²-1+a²b)-2的值,其中a=1,b=-258.先化简,再求值: x²- (6x²-5y)+4(x²-y) ,其中x=-1,y=2.59.先化简,再求值:2(ab²-a2b)-(1-2a²b-ab²),其中a=4,b=−12.60.先化简,后求值:(1)已知:-2(mn-3m²)-[m²-5(mn-m²)+2min,其中m=1,n=-2;(2)已知|a-2|+(b+1)²=0,求5ab²-[2a²b-(4ab²-2a²b)] 的值.61.先化简,再求值(5x2y+5xy−7x)−12(4x2y+10xy−14x),其中x=13,y=−262.先化简,再求值:3(4a²+2a)-(2a²+3a-5) ,其中a=-263.化简求值:求多项式3(x²-x+1) -2( 3x²-x-3) 的值,其中x=-1.64.先化简,后求值:x²y+2(2xy²-3x²y)-3(xy²-2x²y+1) ,其中x=-2,y=1.65.先化简,再求值:(−2x2+x−4y)−2(−32x2+2x−12y),其中x=-2,y=1.66.先化简,再求值:3a²-2(2a²+a)+2(a²-3a),其中a=-2.67.先化简,再求值:2(a²b+ab²)-2(a²b-1)-ab²-2,其中a=−2,b=12.68.先化简再求值:(1) ab-2a²-2b²-5ab+3a²+4ab,其中a=2,b=-1;(2)4x2y−(2x2+3x2y−xy2)+12(4x2−2x2y),其中x=1,y=-2.69.先化简再求值:( -4a²-2ab+7)-2(5ab-4a²+7),其中a=2,b=1.70.已知A=b²-a²+5ab,B=3ab+2b²-a².(1)化简:2A-B;(2)当a=1,b=2时,求2A-B的值.71.先化简,再求值.(1)5(3a²b-ab²) -( ab²+3a²b) ,其中a=12,b=13.(2)3(2x2+xy+13)−(3x2+4xy−y2),其中x=-2,y=-1.72.先化简,再求值:x²+( 2xy-3y²) -2(x²+xy-2y²) ,其中x=-1,y=-2.73.先化简,再求值.(1)2a²-5a+a²+4a-3a²-2,其中a=12;(2)12x−2(x−13y2)+(−32x+13y2),其中x=−2,y=32.74.先化简,再求值:( -12x²-4xy)-2(5xy-8x²) ,其中 x= -1,y= 0.475.先化简,再求值:1 2x−2(x−13y2)+(−32x+13y2),其中x,y满足 (x+2)²+|y-3|=0.76.先化简,再求值:12a2b+5ac+2(3a2c+12a2b)−(3ac−4a2c),其中a=-1,b=2,c=-2.77.先化简,再求值:-3a2b+(4ab²-a2b)-2(2ab²-a²b) ,其中a=1,b=1.78.先化简,再求值:(1)3(x²-2x²) -[3x²-2y+2(xy+y)],其中x=−12,y=−3.(2)23y−12(−x+13y2)+6(−32x+23y2),其中 (x+1)²+|3-2y|= 0 .79.先化简,再求值2(x2y+xy)-3(x²y-xy)-5x²y,其中x=-2,y=1.80.先化简,再求值:若 (x-3)²+|y+2|=0,求代数式3x²y-[xy²-2(2xy²-3x²y)+x²y]+4xy²的值.81.先化简再求值:-a²+( -4a+3a²) -(5a²+2a-1),其中a=−23.82.先化简再求值:5(3a2b-ab²)-4( -ab²+3a²b) ,其中a=-1,b=2.83.化简(1)12a-3(4a+5b)+2(3a-4b)(2)3x2y−[2xy2−2(xy−32x2y)+xy]+3xy2.(3)先化简,再求值:x²-3(2x²-4y)+2(x²-y),其中x=−2,y=15.84.先化简再求值:2(x²y+xy²) -2(x²y-x) -2xy²-2y,其中x=-2,y=285.先化简,再求值:23(3m−9mn)−(n2−6mn),其中m=-1,n=-3.86.先化简,再求值:3x 2−4(12x 2+x)−3x, 其中x=-4.87.先化简,再求值:2(2x −y )−2(3x −12y), 其中x=-1,y=2.88.已知 A=2x ²-3xy-y ²+2x+2y ,B=4x ²+6xy-2y ²-3x+4y. (1)化简B-2A;(2)若 |x −5|+(y +15)2=0, 求B-2A 的值.89.先化简,再求值:其中 x =53,y =4390.先化简,再求值:已知A=3a ²+b ²-5ab ,B=2ab-3b ²+4a ², 当a=-1,b=2时,求-B+2A 的值.91.先化简,再求值:(4a+3a ²-3-3a ³)-( -a+4a ³) ,其中a=-1.92.先化简,再求值:(1)3(a ²-2a)-2(2a ²-3a),其中a=-3.(2)-x ²-y-[7xy-2(4xy-2)-x ²y]+1,其中x ,y 满足 |x-2015|+(y+1)²=0.93.先化简,再求值: 其中a =2,b =−12.94.先化简,再求值:2(3a2b-ab ²)-3(-ab ²+a ²b-1), 其中a 、b 满足|a-1|+( b+2)²=0.95.先化简,再求值:2(mn-4m ²-1)-(3m ²-2mn) ,其中m=1,n=-2.96.先化简,再求值:a −2(14a −13b 2)+(−32a +13b 2),其中a =32,b =−1297.先化简再求值:-7a ²+3ab-2(ab-4a ²) , 其中a=-1,b=2.98.先化简,再求值:(1)5x ²+4-3x ²-5x-2x ²-5+6x ,其中x=3(2) 12x−2(x−13y2)+(−32x+13y2),其中x=−2,y=2399.先化简,再求值:(1)(2a²b+2ab²)-[2(a²b-1)+3ab²+2],其中a=2,b=-2.(2)12a−2(a−13b2)+(−32a+13b2),其中a=-1,b=-3.100.先化简,再求值:2a²+(3ab-5b²)-3(a²+ab-2b²),其中 |a+1|+(b-2)²=0.。

整式的化简求值

整式的化简求值

整式的化简求值1.先化简,再求值:3(4a 2+2a )﹣(2a 2+3a ﹣5),其中a =﹣2.2.先化简,再求值:4xy ﹣(2x 2+5xy ﹣y 2)+2(x 2+3xy ),其中x =1,y =﹣2.3.先化简后求值:,其中x =﹣2,y =﹣32.4.先化简,再求值:2(x 2﹣xy )﹣3(x 2﹣2xy ),其中x =1,y =﹣1.5.先化简,再求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中x =﹣1,y =1.6.先化简,再求值:﹣3(x 2y ﹣xy 2)﹣(﹣3x 2y +2xy 2)+xy ,其中x =2,y =﹣21.7.先化简,再求值:4xy ﹣(2x 2+5xy ﹣y 2)+2(x 2+3xy ),其中x =1,y =﹣2.8.先化简,再求值:5x 2﹣2(3y 2+6xy )+(2y 2﹣5x 2),其中x =,y =21-.9.先化简再求值:21xy ﹣2(xy +41y 2)+(xy ﹣21y 2),其中x =﹣3,y =.10.先化简,再求值:(﹣x 2+3xy ﹣2y )﹣2(﹣21x 2+4xy ﹣23y 2),其中x =3,y =﹣211.先化简,再求值:2(ab ﹣3a 2)+[5a 2﹣(3ab ﹣a 2)],其中a =,b =1.12.先化简,再求值:3(a 2+ab )﹣2(a 2+2ab ),其中a =﹣2,b =3.13.先化简,再求值:3(x 2﹣2xy )﹣[3x 2﹣2y +2(xy +y )],其中x =﹣4,y =2.14.先化简,再求值:6(x 2y +32xy 2﹣x )﹣23(4x 2y +2xy 2+8x ),其中x =,y =1.15.先化简,再求值:2(x ﹣31y 2)﹣(﹣23x +31y 2)﹣x ,其中x =﹣1,y =23.16.先化简再求值:,其中x =﹣2,y =32.17.化简求值:3(x 2y ﹣31xy 2)﹣(xy 2﹣x 2y )﹣2x 2y ,其中,x =21,y =﹣2.18.化简求值:5(3x 2y ﹣xy 2)﹣(xy 2+3x 2y ),其中x =1,y =﹣2119.化简下式,求值:4a 2b ﹣2(a 2b ﹣3ab 2)+(﹣4ab 2﹣2a 2b ).其中a =﹣3.b =﹣2.20.先化简,再求值:4x 2﹣2xy +y 2﹣2(x 2﹣xy +5y 2),其中x =3,y =﹣1.21.先化简,再求值:,其中x =﹣1,y =2.22.先化简下式,再求值:5(3ba 2﹣b 2a )﹣(ab 2+3a 2b ),其中a =,b =.23.先化简,再求值3(x 2y ﹣xy 2)﹣2(﹣23xy 2﹣2+x 2y )﹣3其中x =﹣,y =﹣2.24.先化简,再求值:3(2a 2b ﹣ab 2)﹣3(﹣ab 2+3a 2b ),其中a =﹣1,b =2.25.先化简,再求值:3x 2+(2xy ﹣3y 2)﹣2(x 2+xy ﹣y 2),其中x =﹣1,y =2.26.先化简,再求值:2x 2﹣(4x 2﹣3xy +y 2)+2(x 2﹣3xy +2y 2),其中x =31,y =﹣2.27.先化简,再求值:2(3x 2y +xy 2)﹣3(2x 2y ﹣xy )﹣2xy 2+1,其中x =31,y =1.28.先化简,再求值:2(4x 2﹣3xy ﹣6y 2)﹣3(2x 2﹣3xy ﹣4y 2),其中x =﹣2,y =1.29.先化简,再求值﹣3(2x 2y ﹣xy 2)﹣(xy 2+x 2y ),其中x =2,y =﹣21.30.先化简后求值:2(x 2y +xy )﹣3(x 2y ﹣xy )﹣5xy ,其中(x +2)2+|y-1=031.先化简再求值:3x 2y ﹣[2x 2y ﹣3(2xy ﹣x 2y )﹣xy ],其中x =21,y =2.32.先化简,再求值:(7x 2﹣6xy ﹣1)﹣2(﹣3x 3﹣4xy )﹣5,其中x =﹣2,y =﹣21.33.化简求值:2(x 2y ﹣xy 2﹣1)﹣3(2x 2y ﹣3xy 2﹣3),其中x =﹣21,y =1.34.先化简,再求值:2(x 2+3xy )﹣(x 2﹣xy ),其中x =2,y =3.35.先化简,再求值:(3a 2b ﹣ab 2)﹣2(ab 2+3a 2b ),其中a =﹣21,b =2.36.先化简,再求值:4(3a 2b ﹣ab 2)﹣3(﹣ab 2+3a 2b ).其中a =﹣1,b =﹣2.37.先化简,再求值:2(2xy 2﹣x 2y )﹣(x 2y +6xy 2)+3x 2y ,其中x =2,y =﹣1.38.已知:A =﹣4x 2+2x ﹣8,B =121 x ,求41A ﹣B 的值,其中x =21;39.先化简,再求值:3(xy ﹣35x 3)﹣2(1﹣3x 3)﹣2xy ,其中,x =y =﹣2.40.先化简,再求值:,其中x =5,y =﹣3.41.先化简,再求值:x 2+(2xy ﹣y 2)﹣2(x 2+xy ﹣2y 2),其中x =﹣1,y =2.42.先化简,再求值:(2x 2y ﹣4xy 2)﹣2(﹣xy 2+x 2y );其中x =﹣1,y =2.43.先化简,再求值:3(x ﹣)﹣(6x ﹣2y 2),其中x =2,y =﹣32.44.先化简,再求值:6y 3+4(x 3﹣2xy )﹣2(3y 3﹣xy ),其中x =﹣2,y =3.45.先化简,再求值:2(x 3﹣2y )﹣(x ﹣2y )﹣(x ﹣3y +2x 3),其中x =﹣3,y =﹣2.46.已知代数式A =x 2+3xy +x ﹣12,B =2x 2﹣xy +4y ﹣1(1)当x =y =﹣2时,求2A ﹣B 的值;(2)若2A ﹣B 的值与y 的取值无关,求x 的值.47.已知A =4x 2y ﹣5xy 2,B =3x 2y ﹣4y 2,当x =﹣2,y =1时,求2A ﹣B 的值.48.已知A =4x 2y ﹣5xy 2,B =3x 2y ﹣4xy 2,当x =﹣2,y =1时,求2A ﹣B 的值.49.已知A =x 2﹣3xy +y 2,B =2x 2﹣2y 2(1)求2A ﹣B ;(2)当x =3,y =﹣1时,求2A ﹣B 的值.50.已知:A =2x 2+3xy ﹣5x +1,B =x 2-xy +2.求A -2B .。

整式化简求值(1)

整式化简求值(1)

整式化简求值专项训练1.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中3x =-,2y =-2.先化简,再求值:()222222245a b a b a b ab ab ⎡⎤---+-⎣⎦,其中2a =-,12b =3先化简,再求值:22113122323m m n m n ⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭,其中2m =,3n =-.4先化简,再求值:2(5a 2-6ab +9b 2)-3(4a 2-2ab +3b 2),其中a =-1,b =-23.5.先化简,再求值:3(2x 2-xy )-2(3x 2-2xy ),其中x =-2,y =-3;6.先化简,再求值:2x 2+3x +5+[4x 2-(5x 2-x +1)],其中x =3.7.先化简,再求值:()()()2332x y x y x y x +-+-⎤⎦÷⎡⎣,其中2x =,12y =-.8.先化简,再求值:22211()2(2)(361)33x x x x x x x --++-+-,其中x=-3.9.先化简,再求值:22222(3)22(2)x xy y x xy y -+--+,其中x =1,y =32-10关于,x y 的多项式22224mx nxy x xy x y +++-++不含二次项,求6212m n --的值.11.已知整式2122A x xy y =++-,2221B x xy x =-+-,求:2A B -12.已知A =3x 2-x +2,B =x +1,C =14x 2-49,求3A +2B -36C 的值,其中x =-6.13.先化简,再求值:()()222234x y xyz x y xyz x y +---,已知x 、y 满足:2302|()|y x ++-=,z 是最大的负整数,14.已知7a b +=-,10ab =,求代数式(364)(22)ab a b a ab ++--的值.15.先化简,再求值.3x 2y-[2xy-2(xy-32x 2y)-xy],其中3x -+(y+13)2=016.先化简,再求值:()()222253431a b ab ab a b ---++,其中a 、b 满足2(2)|3|0a b ++-=.17.先化简,再求值:3(﹣5xy +x 2)﹣[5x 2﹣4(3xy ﹣x 2)﹣xy ],其中x ,y 满足|x ﹣2|+|y +3|=0.18.已知x +y =﹣2,xy =﹣1,求代数式﹣6(x +y )+(x ﹣2y )+(xy +3y )的值.19.已知A =x 2﹣3xy ﹣y ,B =﹣x 2+xy ﹣3y .(1)求A ﹣B ;(2)当x =﹣2,y =﹣1时,求5A ﹣(2A ﹣6B )的值.20.先化简,再求值:4a 2﹣4ab +2b 2﹣2(a 2﹣ab +3b 2),其中a 2+ab =5,b 2+ab =3.21.已知3a =,225b =,且0a b +<,求-a b 的值.22.先化简,再求值:()2237432x x x x ⎡⎤----⎣⎦,其中12x =-.23.已知a ,b ,x ,y 满足3a b x y +=+=,7ax by +=,求()()2222a b xy ab x y +++的值.24.已知210x x +-=,求322002200120032007x x x +--的值.25.先化简,再求值:()()()22225x y x y x y xy +--+-,其中x=2024,y=—1.26.先化简,再求值:14(﹣4x 2+2x ﹣8)﹣(12x ﹣2),其中x =12.27.先化简,再求值:已知a 2﹣a ﹣4=0,求a 2﹣2(a 2﹣a+3)﹣12(a 2﹣a ﹣4)﹣a 的值.28.先化简,再求值:2222223276543x y xy xy y xy xy ⎡⎤⎛⎫--+-- ⎪⎢⎥⎝⎭⎣⎦,其中x=2,y=-1.29.如果关于x 、y 的代数式(2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 所取的值无关,求代数式3232122(3)4a b a b ---的值.30.先化简,再求值:7a 2b +(-4a 2b +5ab 2)-2(2a 2b -3ab 2),其中(a -2)2+|b +12|=0.31.先化简,再求值:()2222153a b 2ab 2ab a b 2⎛⎫--- ⎪⎝⎭,其中:1a 2=-,1b 3=.32.先化简再求值:(2a 2-2b 2)-3(a 2b 2+a 2)+3(a 2b 2+b 2),其中,a=-1,b=233.先化简再求值:3W −[−4B +B²−(6W −5B²)]+8B ,其中a 是最大的负整数,b 的相反数是-3.34.已知()2210m n -++=,求()22225322mn m n mn m n ⎡⎤---⎣⎦的值.35.先化简,再求值:(3a 2+2ab-2b 2)-(-a 2+2b 2+2ab)+(2a 2-3ab-b 2),其中a=-12,b=15.36.先化简,再求值:2263(31)(93)x x x x -+---+,其中13x =-.37.已知222322A x xy y x y =-+++,224623B x xy y x y =-+--,当2x =,15y =-时,求2B A -的值.38.关于x ,y 的多项式6mx 2+4nxy +2x +2xy -x 2+y +4不含二次项,求多项式2m 2n +10m -4n +2-2m 2n -4m +2n 的值.39.已知32253A x xy y =-+,322247B x y xy =+-,求1233A A A ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦的值,其中2x =,1y =-.40.先化简,再求值:5(3a 2b-ab 2)-3(ab 2+5a 2b ),其中a=13,b=-12;41.已知代数式2x 2+ax-y+6-2bx 2+3x-5y-1的值与x 的取值无关,请求出代数式13a 3-2b 2-19a 2+3b 2的值.42.已知m 、x 、y 满足:(1)﹣2ab m 与4ab 3是同类项;(2)(x ﹣5)2+|y ﹣23|=0.求代数式:2(x 2﹣3y 2)﹣3(2223x y m --)的值.43.先化简再求值:(5x+y )﹣2(3x ﹣4y ),其中X=1,y=3.44.先化简,再求值:2211312[(2)()]2323x x x y x y --++-+,其中(2x +4)2+|4﹣6y |=0.45.先化简,再求值:3(2x 2y -xy 2)-(5x 2y +2xy 2),其中|x +5|+(y -2)2=0.46.求多项式[[8X −6W −3−W +X +2B +5]+−5X −−3W −6B 的值,其中m=1,n=2,有一位同学把m=1抄成了m=2,把n=2抄成了n=1,但是结果也是正确的,为什么?47.若2(24)40a b -++=,求多项式22222232(42)3(2)2a b ab a b ab ab a b ⎛⎫+---- ⎪⎝⎭的值.48.先化简再求值:已知:()()32223232y xy x y xy y -+---,其中1x =,2y =-.49.先化简,再求值:-2(xy -y 2-[5y 2-(3xy +x 2)+2xy ],其中x =-2,y =12.50.先化简,再求值:﹣3(x 2﹣2x )+2(231x -2x-22),其中x=451.若|a+2|+(b ﹣3)2=0,求5a 2b ﹣[3ab 2﹣2(ab ﹣2.5a 2b )+ab]+4ab 2的值.52.若“ω”是新规定的某种运算符号,设aωb=3a ﹣2b ,(1)计算:(x2+y )ω(x2﹣y )(2)若x=﹣2,y=2,求出(x2+y )ω(x2﹣y )的值.53.已知|a ﹣2|+(b +1)2=0,求5ab 2﹣|2a 2b ﹣(4ab 2﹣2a 2b )|的值.54.先化简,再求值:351112()()33x y x y --+-+,其中x =﹣23,y =﹣1.55.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2.56.先化简,再求值:2(a 2b+ab 2)-2(a 2b-1)-3(ab 2+1),其中a=-2,b=2.57.先化简,再求值:22222222(22)[(33)(33)]x y xy x y x y x y xy ---++-,其中1,2x y =-=58.先化简,再求值:当x =-52,y =25时,求22xy y ++()()22232x xy y x xy ----的值;59.已知:关于x 、y 的多项式2x ax y b +-+与多项式2363bx x y -+-的和的值与字母x 的取值无关,求代数式22222133(2)42()22a ab b a a ab b ⎡⎤-+--+-⎢⎥⎣⎦的值.60.小明同学在写作业时,不小心将一滴墨水滴在卷子上,遮住了数轴上134-和94之间的数据(如图),设遮住的最大整数是a ,最小整数是b .(1)求23b a -的值.(2)若211132m a a =--,211423n b b =-++,求()()2222352mn m m mn m mn ⎡⎤-----+⎣⎦的值.61.若=W −B +2s =B²+4−8+9,若多项式2A+B 的值与字母x 的取值无关,求多项式32W −5B +W −5B +3+1的值.62.已知化简式子X +B²−1−2B³−W +的结果中不含a²和a³项.(1)求m,n 的值;(2)先化简,再求值:22−B +1−32−2mn+4).63.(中考新考法·过程纠错)小琪在学了整式化简求值后,给同桌小马出了这样一道题“已知W−W=23,求出整式6B+W−W−W−W+6B的值.”下面是小马做这道题的过程:解:6B+W−W−W−W+6B=6B+W−W−W+W−6B①=2W−W②=2×23③=46④(1)上述过程中步骤①的依据是;(2)老师告诉小马的解题过程有误,请指出是从第步开始出现了错误,错误的原因是,请在右边方框中写出正确的解题过程;(3)请根据平时的学习经验就整式化简的注意事项提出一条建议。

部编数学七年级上册培优专题04整式的化简求值的五种类型解析版含答案

部编数学七年级上册培优专题04整式的化简求值的五种类型解析版含答案

培优专题04 整式的化简求值的五种类型【专题精讲】整式的化简常与求值相结合,体现了特殊与一般的辩证关系.解决这类问题的大体步骤可以简化为“一化、二代、三计算”,但有时也可根据题目的特征和已知条件灵活选择解题方法.根据代入方法的不同,可将整式的化简求值题划分为以下几种类型:(1)利用直接代入法求值;(2)利用整体代入法求值(3)利用拆项或添项法求值(4)利用降次消元法求值;(5)利用赋值法求值◎类型一:利用直接代入法求值解题方法:整式的化简求值一般分为三步:一是利用整式加减的运算法则将整式化简;二是把已知字母或某个整式的值代入化简后的式子;三是依据有理数的运算法则进行计算1.(黑龙江省大庆市庆新中学2021-2022学年六年级(五四学制)下学期期末考试数学试题)先化简,再求值213((1)322----+xy y xy x,其中54,33x y==()()23343334a a a a a +----+,其中a =﹣1.【答案】327353a a a -++-,2【分析】首先去括号,合并同类项,把代数式化简,然后再代入a 的值,进而可得答案.【详解】解:()()23343334a a a a a +----+23343334a a a a a =+--+-327353a a a =-++-当a =﹣1时,原式()()()3271315132=-´-+´-+´--=【点睛】此题主要考查了整式的化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.3.(2020·天津市红桥区教师发展中心七年级期中)已知2223A x xy y =+-,2223B x xy y =-+(1)求32A B +;(2)当21,==x y ,求32A B +的值.【答案】(1)2277x y -(2)21【分析】(1)把A 和B 代入,去括号,然后合并同类项即可求解;(2)把x 和y 的值代入求解即可.(1)解:32A B+()()2222323223x xy y x xy y =+++﹣﹣2222369462x xy y x xy y -+++-=2277x y =-(2)解:当2x =,y =1时,原式=()227x y -()22721=´-()741=´-=21【点睛】本题主要考查整式的加减-化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键.4.(2021·福建·福州十八中七年级期中)先化简,再求值:(1)()()2232223,a a a a ---其中3a =-.(2)()2272421,x y xy xy x y éù-----+ëû其中x ,y 满足()2201510x y -++=.◎类型二:利用整体代入法求值解题方法:解答此类题目,先将原式化简,再将已知条件(或变形后的条件)整体代入求值。

数学人教版(2024)七年级上册4.2.3整式的加减 课件(共18张PPT)

数学人教版(2024)七年级上册4.2.3整式的加减  课件(共18张PPT)

4.一名同学在计算3A+B时,误将“3A+B”看成了“3A-B”,求得的结果 是6x2-5x+8,已知B=3x2+7x+3,则3A+B的正确答案为 12x2+9x+14 .
5.已知x+2y=5,3a-4b=7,则代数式(9a-4y)-2(6b+x)的值为 11 .
6.多项式36x2-3x+5与3x3+12mx2-5x+7相加后,不含二次项,则m= -3 .
高/cm c 2c
类型 小纸盒 大纸盒
长/cm a
1.5a
宽/cm b 2b
(2)做大纸盒比做小纸盒多用纸多少平方厘米?
高/cm c 2c
解:(6ab+8bc +6ca)-(2ab+2bc +2ca) =6ab+8bc+6ca-2ab-2bc-2ca =4ab+6bc+4ca. 答:做大纸盒比做小纸盒多用纸(4ab+6bc+4ca) cm².
9
2
解:x²-5xy-3x²-2(1-2xy-x²)
=x²-5xy-3x²-2+4xy+2x²
=-xy-2.
当x 1,y 9 时,
9
2
原式 ( 1) 9 2 1 2 3 .
92
2
2
获取新知
探究点3 整式加减的实际应用
利用整式的加减来解决实际问题的步骤: 1.明确已知条件和需要求解的目标; 2.用字母表示问题中的未知数; 3.用代数式表示各个量之间的关系; 4.对所列代数式进行加减运算; 5.通过计算得到最终结果; 6.检查结果是否合理; 7.写出问题的解答和结论.

六年级数学上册知识讲义-3.4先化简后求值(附练习及答案)-鲁教版(五四学制)

六年级数学上册知识讲义-3.4先化简后求值(附练习及答案)-鲁教版(五四学制)

一、考点突破整式的求值是一类非常常见的题型,这类题型同时考查两点,一是整式的运算,二是数的运算。

这类题型考查知识全面,是一类中考重点题型,本讲的化简求值是最基础的,但其反映的解题方法和数学思想却是非常重要的。

二、重难点提示重点:能把整式合并同类项化简,代入求值。

难点:化简和代入过程中的符号问题。

考点精讲解答化简求值问题的一般步骤:应用整式的加减进行化简求值,一般是先化简,即先去括号,合并同类项,直到结果中没有同类项后,再代值计算结果。

注意事项(1)在化简求值时,要注意去括号时是否变号;(2)在代入时,要注意若所给的值是负数,代入时要添上括号,若所给的值是分数或有乘方运算的,代入时也要添上括号;(3)在计算时,应按代数式指明的运算顺序进行计算。

典例精讲例题1若x+y=3,xy=1,则-5x-5y+3xy的值为()A. -12B. -14C. 12D. 18思路分析:本题可对-5x-5y+3xy进行转换,可转换为-5(x+y)+3xy,题中已知x+y=3,xy=1,代入即可。

答案:由分析可得:-5x-5y+3xy=-5(x+y)+3xy,已知x+y=3,xy=1,代入可得-5x-5y+3xy=-12.故答案为A。

技巧点拨:本题考查整式的加减及化简求值,看清题中所给条件。

例题2化简并求值:(1)(2-a2+4a)-(5a2-a-1),其中a=-2;(2)2(x-y2)+(-x+y2),其中x=,y=-2。

思路分析:(1)原式去括号合并得到最简结果,将a的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值。

答案:(1)原式=2-a2+4a-5a2+a+1=-6a2+5a+3,当a=-2时,原式=-24-10+3=-31;(2)原式=x-y2-x+y2=-x-y2,当x=,y=-2时,原式=--=-。

技巧点拨:本题考查了整式的加减-化简求值,熟练掌握运算法则是解题的关键。

整式加减的化简求值

整式加减的化简求值

− [5x − x
− (2x
− x)]
,其中x =
1 2

【注意】化简时,一定要注意去括号和合并同类项的正确.
3
.整体代入求值
在单个字母取值不确定的情况下,某些代数式的求值要借助于“整体代入法”,即把某个代数式看作一个整体. 用“整体代入法”求值的关键是确定“整体”. (1)观察法 通过观察就可确定代换的“整体”,这类题目较简单. 若a + b = 2005 ,c + d = −5 ,则代数式a + c + b + d = . (2)拼凑法 需将要求式进行转化,“凑”出与已知式相同的式子再代入求值,这种构造“整体”的技巧,平时要注意总结. ,代数式(a − 2c) − (2d − b) =
2
+ 32b
2
− c
2
+ 3
的值.
2 2
+ ab + 3b
的值.
③代数式中省去的“× ”号或“⋅ ”号,代人具体数后应恢复原来的“× ”号,遇到字母取值是分数或者负数时,应 根据实际情况添上括号. ④代入时一定要书写规范,如当a = −3 时,a 反映出代数式所隐含的运算顺序.
2 2

改变.


②代人时,除按已知给定的数值,将相应的字母换成相应的数字外,其他的运算符号,运算顺序,原来的数值都不

例如:通过m
= m
⋅ m

3
2
将三次降为有些题目中会出现高次的整式,这样的式子我们一般很难直接进行求值.常用方法为降次.
4
18
/0
6/
12
6
.逐步降次代入求值

整式的加减ppt课件

整式的加减ppt课件
例3
添加标题
某商店原有5袋大 米,每袋大米为x 千克.
添加标题
上午卖出3袋,下 午又购进同样包装 的大米4袋.
添加标题
进货后这个商店有 大米多少千克?
添加标题
例3(2)某商店原有5袋大米, 每袋大米为x千克.
添加标题
上午卖出3袋,下午又购进同 样包装的大米4袋.
添加标题
进货后这个商店有大米多少千 克?
这个式子的结果 是多少?
你是怎样得到的?
类比探究,学习 新知
(1)运用有理数的运算律计算.
100×2+252×2= ;
100×(-2)+252×(-2)=
.
2.类比探究, 学习新知
(1)运用有理数的运算律计算
100×2+252×2 =(100+252)×2=352×2=704; 100×(-2)+252×(-2) =(100+252)×(-2)=352×(-2)=-704.
多项式3x3-2x-5的常数项是____,一次项是 ____, 三次项的系数是_____.二次项的系数是 _____.每项的系数分别是____,每项的次 数分别是____,多项式的次数是___
用多项式__表示奇 数,三个连续奇数 可表示成____ ____
一.用单项式n表示整数,三个连续整数可表示 成________
(4)按同一个字母的降幂(或升幂排列).
例1 合并下列各式的同类项:
(1)xy 2 315.学xy 2以致用,应用新 (2) 3 x 2y 2 x 2y 3 x 知y2 2 x y2
(3)4 a 2 3 b 2 2 a b 4 a 2 4 b 2
练习1 判断下列说法是否正确,正确的

第2章 整式加减-整式的化简求值 课件 2022--2023学年沪科版数学七年级上册

第2章 整式加减-整式的化简求值 课件 2022--2023学年沪科版数学七年级上册

变形后整体代入求值 例:已知当x=2时,多项式ax3-bx+1的值是-17,那么当x=-1时,多项式12ax-3bx3-5的值 是多少?
解: 当x=2时, ax3-bx+1
=8a-2b+1 =-17
8a-2b =2(4a-b)=-18 得4a-b=-9
当x=-1时, 12ax-3bx3-5 = -12a+3b-5 =-3(4a-b)-5 =-3×(-9)-5 =27-5 =22
例:若a2+2b2=5,求多项式(3a2-2ab+b2)-(a2-2ab-3b2)的 值.
解:
原式 =3a2-2ab+b2-a2+2ab+
注意符号变化
3b2 =(3-1)a2+(-2+2)ab+(1+3)b² =2a2+4b2.
当a2+2b2=5 原时式,=2(a2+2b2)=10
总结: 1.去括号注意括号里的各项符号变化, 合并同类项注意系数的符号 2.本题需要有整体思想,将(a2+
当a=-1,b=
1 2
时,
4(A-B)+3(B-A)
总结:
= -4a2+2ab-5b2
= 4 12 2 1 1 5 ( 1)2
= 25
2
2
4
1.根据代数式的值与字母x的取值无关求出a,b的值
2.对原式进行化简,然后代入计算
总结
整式的化简求值
直接代入求 值
整体代入求 值
直接代入 化简后直接代入
2b2)看做一个整体
化简后整体代入求值
例:已知 m n 2 mn 32 0 ,求2(m+n)-2[mn+(m+n)]-3[2(m+n)-3mn]的
值 分析:

2024年秋新人教版七年级上册数学课件 4.2 整式的加减(第3课时)整式的加减

2024年秋新人教版七年级上册数学课件 4.2 整式的加减(第3课时)整式的加减

= 3xy+10y+5x-2xy-2y+3x =8x+8y+xy
=8(x+y)+xy.
注意整体思想的 运用
把xy=-2,x+y=3代入,原式=8×3+(-2)=24-2=22.
6.若(x2+ax-2y&的取值无
关,求a,b的值.
解: (x2+ax-2y+7)-(bx2-2x+9y-1) = x2+ax-2y+7-bx2+2x-9y+1 = (1-b)x2+(a+2)x-11y+8.
如果有括号,一般先去括号
例1 计算:
(1) (2x-3y)+(5x+4y) ; (2) (8a-7b)-(4a-5b).
分析:第(1)题是计算多项式2x -3y和5x+4y的和; 第(2)题是计算多项式8a-7b和4a-5b的差.
解: (1)(2x-3y)+(5x+4y) = 2x-3y +5x+4y = 7x+y;
2r1+2r2+2r3=2R
整式加减的运算法则: 几个整式相加减,如果有括号就先去括号,然后
再合并同类项. 注意: (1)整式加减运算的过程中,一般把多项式用括号括 起来; (2)整式加减的最后结果中不能含有同类项,即要合 并到不能再合并为止.
一化:利用整式加减的运算法则将整式化简;
整式化简求 值的方法
(2) 5a2-[a2+(5a2-2a)] =5a2-(a2+5a2-2a) =5a2-(6a2-2a) =5a2-6a2+2a =-a2+2a.

整式的加减化简求值专项练习100题

整式的加减化简求值专项练习100题

整式的加减化简求值专项练习100题1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.先化简,再求值:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],其中.7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.9.先化简,再求值,其中a=﹣2.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x3﹣xyz)﹣2(x3﹣y3+xyz)﹣(xyz+2y3),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.222260.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.91.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.92.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=93.已知ab2=-6,求-ab(a2b5-ab3-b)的值.94.已知a+b=1,a(a 2+2b)+b(-3a+b 2)=0.5,求ab 的值.95.96.已知(x-1)(x+1)(x-2)(x-4)≡(x 2-3x)2+a(x 2-3x)+b ,求a ,b 的值.97.多项式x 4+mx 2+3x+4中含有一个因式x 2-x+4,试求m 的值,并求另一个因式.98.若x 3-6x 2+11x-6≡(x-1)(x 2+mx+n),求m ,n 的值.99、计算,当a 6 = 64时, 该式的值100.化简求值:22)2()2()2)(12(+---+-x x x x ,其中211-=x。

2019-2020学年第一学期北师大版七年级数学3.4整式加减计算专题(含答案)

2019-2020学年第一学期北师大版七年级数学3.4整式加减计算专题(含答案)

2019-2020整式加减计算专题(含答案)1.先化简,再求值(1)2229x 6x 3x x 3⎛⎫+--⎪⎝⎭,其中x 2=-;(2)()()()22222a b ab2a b 12ab1+---+,其中a 2=-,b 2=.2.化简求值:5xy 2-[2x 2y -(2x 2y -3xy 2)],其中(x -2)2+|y +1|=0.3.计算题(1)()()22223y x 2x y x 3y-+--+ ()()()32322x y xy 2x y 2xy +--4.化简(1)5x 2+x+3+4x ﹣8x 2﹣2(2)(2x 3﹣3x 2﹣3)﹣(﹣x 3+4x 2)(3)3(x 2﹣5x+1)﹣2(3x ﹣6+x 2)5.已知32253A x xy y =-+,322247B x y xy =+-,求1233A A A B ⎡⎤⎛⎫---⎪⎢⎥⎝⎭⎣⎦的值,其中2x =,1y =-.6.先去括号,再合并同类项(1)(4x 2y ﹣3xy 2)﹣(1+4x 2y ﹣3xy 2)(2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].7.(1)计算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣12)3; (2)先化简,再求值:3(a 2b ﹣2ab 2)﹣(3a 2b ﹣2ab 2),其中|a ﹣1|+(b+12)2=0.8.化简:﹣(3a 2﹣4ab )+[a 2﹣2(2a 2+2ab )].9.化简①3x-4x 2+7-3x+2x 2+1; ②22244323a b ab ab a b ab ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦.10.已知(x+2)2+|y ﹣12|=0,求5x 2y ﹣[2x 2y ﹣(xy 2﹣2x 2y )﹣4]﹣2xy 2的值.11.先化简,再求值:(1)4a +3a 2-3-3a 3-(-a +4a 3),其中a =-2;(2)2x 2y -2xy 2-[(-3x 2y 2+3x 2y)+(3x 2y 2-3xy 2)],其中x =-1,y =2.12.课堂上老师给大家出了这样一道题,“当x 2016=时,求代数式的值”,小明一看()()()322323323 2x 3x y 2xy x 2xy y 2017x 3x y y ----+-+-++“x 的值太大了,又没有y 的值,怎么算呢?”你能帮小明解决这个问题吗?请写出具体过程.13.在对多项式(23x 2y+5xy 2+5)﹣[(3x 2y 2+23x 2y )﹣(3x 2y 2﹣5xy 2﹣2)]代入计算时,小明发现不论将x 、y 任意取值代入时,结果总是同一个定值,为什么?14.先化简,再求值:2211312[(2)()]2323x x x y x y --++-+,其中(2x +4)2+|4﹣6y |=0.15.化简:(1)2a -(5a -3b)+3(2a -b); (2)2a -[a +2(a -b)]+b.16.先化简,再求值:2(3a 2b ﹣2ab 2)﹣3(﹣ab 2+3a 2b ),其中|a ﹣1|+(b+2)2=0.17.先化简,再求值:(1) 224263(25)a a a a -----,其中1a =-.(2)(﹣x 2+5x+6)﹣(3x+4﹣2x 2)+2(4x ﹣1),其中x=﹣2.18.先化简,再求值()22252322x y x y xy x y xy ⎡⎤----+⎣⎦其中1x =-,2y =-;19.先化简,再求值:4a 2b-[9ab 2-(-2ab 2+5a 2b)]-2(3a 2b-ab 2),其中a=-1,b=-23.20.若|a+2|+(b ﹣3)2=0,求5a 2b ﹣[3ab 2﹣2(ab ﹣2.5a 2b )+ab]+4ab 2的值. 21.已知()2210m n -++=,求()22225322mn m n mn m n ⎡⎤---⎣⎦的值.参考答案1.(1)26x 8x +;20;(2)0;0; 【解析】 【分析】(1)把所给的整式去括号后合并同类项化为最简后,再代入求值即可;(2)把所给的整式去括号后合并同类项化为最简后,再代入求值即可. 【详解】()1原式229x 6x 3x 2x =+-+26x 8x =+,当x 2=-时,原式()2628(2)=⨯-+⨯-1232=-+ 20=;()2解:原式22222a b 2ab 2a b 22ab 2=+-+--()()()22222a b 2a b 2ab 2ab 22=-+-+-0=,当a 2=-,b 2=时,原式0=. 【点睛】本题考查了整式的化简求值,利用整式的加减运算法则把整式化为最简是解决问题的关键. 2.4. 【解析】原式利用去括号后去括号法则,合并同类项得到最简结果,由非负数之和为0两非负数分别为0求出x 与y 的值,代入计算即可求出值. 【详解】原式=2222252232.xy x y x y xy xy -+-=2(2)1021x y x y ∴-++=,=,=-,则原式=4.【点睛】本题考查的知识点是整式的加减-化简求值,解题的关键是注意合并同类项. 3.(1)22x 2x y -+-;(2)235xy x y -; 【解析】 【分析】(1)去括号后合并同类项即可求解;(2)去括号后合并同类项即可求解. 【详解】()1原式22223y x 2x y x 3y =-+---22223y 3y x x 2x y =---+- 22x 2x y =-+-;()2原式3232x y xy 2x y 4xy =+-+3322x y 2x y xy 4xy =-++ 235xy x y =-.本题考查了整式的加减运算,熟练运用去括号法则及合并同类项法则是解决问题的关键. 4.(1)﹣3x2+5x+1;(2)3x3﹣7x2﹣3;(3)x2﹣21x+15.【解析】试题分析:(1)根据整式的加减法,合并同类项即可;(2)根据整式的加减法,先去括号,再合并同类项即可;(3)根据整式的加减法,先根据乘法分配律去括号,再合并同类项即可.试题解析:(1)5x2+x+3+4x﹣8x2﹣2=(5-8)x2+(1+4)x+(3-2)=-3x2+5x+1(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)= 2x3﹣3x2﹣3+x3-4x2=3 x3﹣7x2-3(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3-6x+12-2x2=x2-21x+155.-4.【解析】分析:先把式子1233A A A B⎡⎤⎛⎫---⎪⎢⎥⎝⎭⎣⎦化为最简,再把32253A x xy y=-+,322247B x y xy=+-代入后,去括号合并同类项化为最简,最后把x=2,y=-1代入求值即可. 详解:1233A A A B ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦[]A A B =--+,2A B =-,32253A x xy y =-+,322247B x y xy =+-,∴原式()3223222106247x xy y x y xy =-+-+-,2232xy y =-+,把2x =,1y =-代入得:321214-⨯⨯+⨯=-.点睛:本题考查了整式的加减-化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材. 6.(1)﹣1;(2) 2y 2﹣5y+3. 【解析】 【分析】(1)先去括号,合并同类项即可. (2)先去括号,合并同类项即可. 【详解】解:(1)原式222243143 1.x y xy x y xy =---+=(2)原式()2243322,y y y y=--++224532,y y y =-+-2253y y =-+.【点睛】考核知识点:整式运算. 去括号,合并同类项是关键.7.(1)32;(2)﹣1.【解析】【分析】(1)先乘方,再计算有理数乘除,最后计算有理数加减法,根据有理数乘方,乘除法和加减法法则进行依次计算即可,(2)先去括号,再去括号时注意两点:括号外的因数要与括号里的每个式子相乘,去括号,括号前是减号,去括号要变号.【详解】(1)(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3,=1﹣8÷(﹣8)+4×(﹣18),=1+1﹣1 2 ,=3 2 ,(2)3(a2b﹣2ab2)﹣(3a2b﹣2ab2), =3a2b﹣6ab2﹣3a2b+2ab2,=﹣4ab2,∵|a﹣1|+(b+)2=0,∴a=1,b=1 2 ,原式=﹣4×1×(12 -)2,=﹣1.【点睛】本题主要考查有理数加减乘除乘方混合运算和整式的化简求值,解决本题的关键是要熟练掌握有理数相关运算法则和整式运算法则.8.﹣6a2【解析】【分析】根据整式的加减即可求出答案.【详解】原式=﹣3a2+4ab+a2﹣4 a2﹣4ab=﹣6a2【点睛】本题考查了整式的加减,注意去括号的顺序.9.(1)-2x2+8;(2)8a2b+2ab-2ab2.【解析】【分析】根据去括号的方法进行计算即可,合并同类项时,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】(1)22347321x x x x-+-++=()()()2233427+1x x x x -+-++ 2028x =-+228x =-+(2)22244323a b ab ab a b ab ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦ 22244323a b ab ab a b ab ⎛⎫=-++- ⎪⎝⎭2224342a b ab ab a b ab =-++-22822.a b ab ab =+-【点睛】本题考查的知识点是整式的加减,解题关键是注意合并同类项.10.162【解析】分析:原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.详解:原式=5x 2y ﹣2x 2y +xy 2﹣2x 2y +4﹣2xy 2=x 2y ﹣xy 2+4.∵(x +2)2+|y ﹣12|=0,∴x =﹣2,y =12, 当x =﹣2,y =12时,原式=2+12+4=612. 点睛:本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.11.【答案1)55;(2)-6;【分析】(1)根据去括号法则、合并同类项法则先化简,再将a=-2代入化简之后的代数式,计算即可得出答案.(2)根据去括号法则、合并同类项法则先化简,再将x=-1,y=2代入化简之后的代数式,计算即可得出答案.【详解】(1)解:原式=4a+3a2-3-3a3+a-4a3,=-7a3+3a2+5a-3,∵a=-2,∴原式=-7×(-2)3+3×(-2)2+5×(-2)-3=56+12-10-3,=55.(2)解:原式=2x2y-2xy2-(-3x2y2+3x2y+3x2y2-3xy2),=xy2-x2y,∵x=-1,y=2,∴原式=(-1)×22-(-1)2×2,=-4-2,=-6.【点睛】考查整式的化简求值,掌握合并同类项法则和去括号法则是解题的关键.12.见解析;【分析】根据去括号法则去掉括号,再合并同类项,将整式化为最简,然后再求值即可.【详解】原式3223233232x 3x y 2xy x 2xy y 2017x 3x y y =---+-+-++3332222332x x x 3x y 3x y 2xy 2xy y y 2017=--+--++-+2017=所以原式与x 、y 的值无关.【点睛】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,熟知整式加减的实质是解决问题的关键.13.结果是定值,与x 、y 取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】 (23x 2y+5xy 2+5)-[(3x 2y 2+23x 2y )-(3x 2y 2-5xy 2-2)] =23x 2y+5xy 2+5-(3x 2y 2+23x 2y-3x 2y 2+5xy 2+2) =23x 2y+5xy 2+5-3x 2y 2-23x 2y+3x 2y 2-5xy 2-2 =(23x 2y-23x 2y )+(5xy 2-5xy 2)+(-3x 2y 2+3x 2y 2)+(5-2) =3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.14.x+y2,11.【解析】【详解】试题分析:先去括号,然后再合并同类项,再根据非负数的性质求出x、y的值代入进行计算即可.试题解析:原式=12x﹣2x+4x+23y2+3x-23y2=112x,∵(2x+4)2+|4﹣6y|=0,∴x=﹣2,y=23,则原式=-11.【点睛】本题考查了整式的加减运算、非负数的性质等,熟练掌握运算法则是解题的关键. 15.(1) 3a;(2)-a+3b.【解析】【分析】先去括号,然后找出同类项即可.【详解】(1)原式=2a-5a+3b+6a-3b=2a-5a+6a+3b-3b=3a.(2)原式=2a-(a+2a-2b)+b=2a-3a+2b+b=-a+3b.【点睛】解答本题时,要注意去括号的时候,括号内各项符号的变化,并且不要漏乘.有多个括号时要注意去括号的顺序.16.2【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可求出值.【详解】原式=6a 2b ﹣4ab 2+3ab 2﹣9a 2b=﹣ab 2﹣3a 2b ,由题意得:a=1,b=﹣2,则原式=﹣4+6=2.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练掌握整式加减的运算法则是解本题的关键 17.(1)6;(2)-16【解析】【分析】(1)原式去括号合并同类项可得最简多项式,将1a =-代入计算即可得出结论.(2)原式去括号合并同类项可得最简多项式,将2x =﹣代入计算即可得出结论.【详解】(1)原式=224266315a a a a ---++=229a a -++当1a =-时,原式=229a a -++=()22119---+=6(2)原式=225634282x x x x x -++--++- =210x x +当2x =-时,原式=210x x +=420-=16-【点睛】本题考查了整式的加减化简求值,关键是熟练掌握去括号及合并同类项的运算技巧.18.36【解析】【分析】先化简,再将x 、y 的值代入求值.【详解】原式=-5x 2y -[2x 2y -3xy +6x 2y ]+2xy =-13x 2y +5xy ,当x =-1,y =﹣2时,原式=36,故答案为36.【点睛】本题主要考查了整式的加减,化简求值,解本题的要点在于熟练掌握运算法则.19.3a2b-9ab2,2【解析】【分析】先拆开后合并同类项,带入所给数值即可得出答案. 【详解】4a2b-[9ab2-(-2ab2+5a2b)]-2(3a2b-ab2)=4a2b-[9ab2+2ab2-5a2b]-(6a2b-2ab2)=4 a2b-11ab2+5a2b-6a2b+2ab2=3a2b-9ab2把a=-1,b=-23代入得原式=-2-(-4)=2【点睛】本题考查了合并同类项,熟悉掌握概念是解决本题的关键.20.ab2+ab,-24【解析】试题分析:先将原式去括号、合并同类项化成最简式,再根据非负数的性质得出a、b的值,最后代入计算可得.试题解析:解:原式=5a2b﹣3ab2+2(ab﹣2.5a2b)﹣ab+4ab2=5a2b﹣3ab2+2ab﹣5a2b﹣ab+4ab2=ab2+ab∵|a+2|+(b﹣3)2=0,∴a+2=0、b﹣3=0,即a=﹣2、b=3∴原式=(﹣2)×32+(﹣2)×3=﹣2×9﹣6=﹣18﹣6=﹣24.点睛:本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和法则及非负数的性质.21.38.【解析】【分析】由非负数的性质,求出a 、b 的值.把式子进行化简,然后把m 和n 的值代入计算即可.【详解】∵|m ﹣2|+(n +1)2=0,∴m ﹣2=0,n +1=0,解得:m =2,n =﹣1.原式=22225[342]mn m n mn m n --+=22225342mn m n mn m n -+-=2295mn m n -.当m =2,n =﹣1时,原式=2292(1)52(1)⨯⨯--⨯⨯-=18+20=38.【点睛】本题考查了整式的加减-化简求值,并考查了非负数的性质,综合能力较强.。

整式的加减化简60题

整式的加减化简60题

整式的加减化简求值专项练习1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b ﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.先化简,再求值:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],其中.7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.9.先化简,再求值,其中a=﹣2.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;18.2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.19.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x ﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代22.先化简,再求值:a2﹣(2a2+2ab ﹣b2)+(a2﹣ab ﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab ﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣227.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.27.化简计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.28.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.化简求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.化简求值其中a=1,b=﹣2 37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy ﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x ﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy ﹣x2y)﹣2(xy ﹣x2y﹣1)其中xy+1=0.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]再求值x=,y=.54.化简求值:其中x=﹣2,.55.先化简,再求值,已知a=1,b=﹣,求多项式的值.56.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.化简求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.化简求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn ,其中.。

2.4.4 整式的加减 考点梳理与突破(课件)华东师大版(2024)数学七年级上册

2.4.4 整式的加减 考点梳理与突破(课件)华东师大版(2024)数学七年级上册

单 符号括起来,用加减号连接,然后去括号、合并同类项.特

读 别注意在作差时,不要弄错符号.
2.4.4 整式的加减






对点典例剖析
典例1 已知 A =3x2 +6xy -2x -1,B=-2x2+3xy+x.
(1)求 A-B;
(2)求 2A+3B.
返回目录
2.4.4 整式的加减
返回目录






[解题思路]
返回目录
2.4.4 整式的加减
返回目录
[答案] 解:原式=3a2b-(2ab2-2ab+3a2b +ab)+3ab2


清 =3a2b -2ab2 +2ab -3a2b-ab+3ab2=ab+ab2,当 a=3,b=-




2

时,原式=3×()
+3×()
=.


型 的值与某个字母的取值无关时,则化简后含该字母的项的

破 系数为 0.
2.4.4 整式的加减
易 ■在整式的加减中,忽略括号的作用

2-x+1,A+B=2x2-3x-2.

已知
A=3x


(1)求 A-B;


(2)当 x 为最大的负整数时,求 A-B 的值.
返回目录
2.4.4 整式的加减



2.4.4 整式的加减
● 考点清单解读
● 重难题型突破

整式加减-化简求值

整式加减-化简求值

整式加减-化简求值1.若代数式22(3)x ax bx x +---的值与字母x 无关,则a b -的值为( )A .0B .2-C .2D .1【解答】解:22222(3)3(1)(1)3x ax bx x x ax bx x b x a x +---=+-++=-+++,且代数式的值与字母x 无关, 10b ∴-=,10a +=,解得:1a =-,1b =,则112a b -=--=-,故选:B .2.已知65b a -=-,则(2)2(2)(a b a b +--= )A .5B .5-C .10-D .10【解答】解:65b a -=-,则(2)2(2)a b a b +--224a b a b =+-+6a b =-+5=-;故选:B .3.已知:23x y -=,那么代数式22()(3)x y y x x -----的值为( )A .3B .3-C .6D .9【解答】解:原式2223x y y x x =--+-+243x y =-+2(2)3x y =-+63=+9=,故选:D .4.如果a 和14b -互为相反数,那么多项式2(210)7(23)b a a b -++--的值是() A .4- B .2- C .2 D .4【解答】解:由题意可知:140a b +-=,41a b ∴-=-,∴原式242071421b a a b =-++--3121a b =--3(4)1a b =--31=--4=-,故选:A .5.已知145a b +=-,那么代数式9(2)2(2)a b a b +--的值是( )A .15-B .1-C .15 D .1【解答】解:当145a b +=-,9(2)2(2)a b a b +--520a b =+5(4)a b =+15()5=⨯-1=-,故选:B .6.先化简,再求值:222()3(2)x xy x xy ---,其中1x =,1y =-.【解答】解:原式22222364x xy x xy x xy =--+=-+,当1x =,1y =-时,原式2141(1)5=-+⨯⨯-=-.7.已知23a b -=,求代数式222(3)3(2)5a b a b a b a b b +---+-的值.【解答】解:原式226226335a b a b a b a b b =+--+--510a b =-,23a b -=,∴原式5(2)15a b =-=.8.先化简,再求值:22263(24)2()x x y x y --+-,其中,1x =-,12y =. 【解答】解:原式222661222x x y x y =-++- 2210x y =+,当1x =-,12y =时,原式121102572=⨯+⨯=+=. 9.小丽同学准备化简:22(368)(2x x x x ----□6),算式中“□”是“+,-,⨯,÷”中的某一种运算符号 (1)如果“□”是“⨯”,请你化简:22(368)(26)x x x x ----⨯;(2)若2230x x --=,求22(368)(26)x x x x -----的值;(3)当1x =时,22(368)(2x x x x ----□6)的结果是4-,请你通过计算说明“□”所代表的运算符号.【解答】解:(1)22(368)(26)x x x x ----⨯22(368)(12)x x x x =----2236812x x x x =---+2268x x =+-;(2)22(368)(26)x x x x -----2236826x x x x =---++2242x x =--,2230x x --=,223x x ∴-=,222422(2)2624x x x x ∴--=--=-=;(3)“□”所代表的运算符号是“-”,当1x =时,原式(368)(12=----□6),由题意得,11(12---□6)4=-,整理得:12-□67=-,2∴-□68=-∴即□处应为“-”.10.先化简,再求值:222213()(32)3x y xy x y xy xy ----++,其中2x =,12y =-. 【解答】解:原式2222332x y xy x y xy xy =-++-+,2xy xy =-+,当2x =,12y =-时, 原式211132()2()12222=-⨯-+⨯-=--=-. 11.已知325A x x =-,2116B x x =-+,当1x =-时,求:(3)2()A B A B -++-的值. 【解答】解:325A x x =-,2116B x x =-+,(3)2()A B A B ∴-++-,322A B A B =--+-,5A B =-,32255(116)x x x x =---+,322555530x x x x =--+-,32105530x x x =-+-,当1x =-时,原式32(1)10(1)55(1)3096=--⨯-+⨯--=-.12.先化简,再求值:23[4(3)]a b a a b -+--,其中a 、b 满足2|1|3(2)0a b +++=.【解答】解:由题意得,10a +=,20b +=,解得,1a =-,2b =-,23[4(3)]a b a a b -+--23[43]a b a a b =-+-+2343a b a a b =-+-+32a b =-,当1a =-,2b =-时,原式3(1)2(2)341=⨯--⨯-=-+=.13.(1)化简:2222(234)3(2)x xy y x xy ----;(2)先化简,再求值:22222221314[23(64)10]2()222mn mn m n mn m n mn m n ---+--,其中2(2)|1|0m n +++=. 【解答】解:(1)原式22222468368x xy y x xy x y =---+=-;(2)原式222222214(2181210)32mn mn m n mn m n mn m n =--++-+ 222222249653mn mn m n mn m n mn m n =-+---+2265m n mn =-+, 2(2)|1|0m n +++=.20m ∴+=,10n +=,2m ∴=-,1n =-,∴原式226(2)(1)5(2)(1)=-⨯-⨯-+⨯-⨯-241014=-=.14.已知21|2|()02x y ++-=,先化简再求323222122357533x x y x x y xy xy -++++-的值. 【解答】解:21|2|()02x y ++-=, 20x ∴+=,102y -=, 解得:2x =-,12y =, 当2x =-,12y =时, 原式327x x y =++321(2)(2)72=-+-⨯+ 827=-++1=.15.解答(1)已知2(3)|2|0m n -++=,求m n mn +的值;(2)先化简后求值:223(7)2(31)3a ab ab a -+--++,其中2a =,13b =. 【解答】解:(1)2(3)|2|0m n -++=,3m ∴=,2n =-,则原式8614=--=-;(2)原式222332162235922a ab ab a a ab =-+-+-+=-+,当2a =,13b =时,原式2062236=-+=. 16.化简求值:2232352x x x x --++,其中3x =.【解答】解:原式2332x x =-+,当3x =时,原式272722=-+=. 17.先化简,后求值: 已知:21(2)||02x y ++-=,求22222()[23(1)]2xy x y xy x y +----的值. 【解答】解:由题意可知 20x +=,102y -=, 解得:2x =-,12y =, 原式222222222(22)[233]22223321xy x y xy x y xy x y xy x y x y =+--+-=+-+--=-,当2x =-,12y =时,原式22111(2)1212x y =-=--⨯=-=-. 18.求代数式的值:22223()2(2)31a b ab a b ab +----,其中1a =-,1b =. 【解答】解:原式222223324313a b ab a b ab a b =+-+--=+, 当1a =-,1b =时,原式134=+=.19.先化简,再求值:22224[2()3()]ab a a ab a b --+--,其中1a =-,2b =.【解答】解:原式222224223323ab a a ab a b ab b =---+-=-, 当1a =-,2b =时,原式41216=--=-.20.先化简,后求值:222(3)[25()]mn m mn mn m -----,其中1m =,2n =-.【解答】解:原式22226255mn m mn mn m m mn =-+-+-=+, 当1m =,2n =-时,原式121=-=-.21.先化简,再求值:22112(21)3()23a a a a -+-++,其中2017a =-. 【解答】解:原式224232a a a a a =--+++=-+,当2017a =-时,原式201722019=+=.22.先化简,再求值:2211312()()4323x x y x y --+-+,其中x 、y 满足23||(2)02x y -++=. 【解答】解:原式22212312323x x y x y x y =-+-+=-+, 由23||(2)02x y -++=,得302x -=,20y +=, 解得32x =,2y =-, 则原式35422=-+=. 23.数与式的计算(1)(7)(5)90(15)-⨯--÷-(2)32(3)4(312)15⨯--⨯--+(3)整式加减 2225[22(31)]x x x x x ----+(4)化简求值:2(3)(32)a a a ab ---,其中2a =-,0.5b =.【解答】解:(1)(7)(5)90(15)-⨯--÷-35(6)=--41=;(2)32(3)4(312)15⨯--⨯--+544(15)15=--⨯-+546015=-++21=;(3)2225[22(31)]x x x x x ----+2225[2262]x x x x x =---+-22252262x x x x x =-++-+2642x x =-+;(4)2(3)(32)a a a ab ---2332a a a ab =--+262a a ab =-+,当2a =-,0.5b =时,原式412214=+-=.24.已知21A x y =---,112B x y =++.(1)求3A B +;(2)当26x y +=时,求3A B +的值;(3)若A mB +的值与y 的取值无关,求m 的值.【解答】解:(1)3A B +1213(1)2x y x y =---+++321332x y x y =---+++122x y =++;(2)26x y +=,3A B ∴+122x y =++1(2)22x y =++1622=⨯+32=+5=;(3)A mB +121(1)2x y m x y =---+++1212x y mx my m =---+++1(1)(2)12m x m y m =-++-+-+,与y 的取值无关,20m ∴-+=,解得2m =.故m 的值为2.25.先化简,后求值:2[(2(4)3(2)]2x x x y y -+-+-,其中2x =-,2y =.【解答】解:原式2[2836]2x x x y y =-+---228362x x x y y =--++-348x y =+-,当2x =-,2y =时,原式3(2)4286=⨯-+⨯-=-.26.先化简,再求值:22222222(534)3(2)x x y y y x y x -+--+,其中1x =-,12y =-.【解答】解:22222222(534)3(2)x x y y y x y x -+--+ 22222222534336x x y y y x y x =-+-+-22x y =-+,当1x =,12y =-时, 原式13144=-+=-. 27.化简求值:先化简代数式2222(3)[5()2]a a a a a a ---+--,再求当2a =时代数式的值.【解答】解:原式222226552105a a a a a a a a =-+--++=-, 当2a =时,原式401030=-=.28.先化简,再求值:22223(2)(52)x y xy x y xy --+,其中2|1|(2)0x y ++-=.【解答】解:原式22222263525x y xy x y xy x y xy =---=-, 2|1|(2)0x y ++-=,1x ∴=-,2y =时,则原式22022=+=.29.(1)计算:2(2)[18(3)2]4-+--⨯÷;(2)化简求值:2222(8)4(23)xy x y x y xy -+--+-,其中,1x =,1y =-.【解答】解:2(2)[18(3)2]4-+--⨯÷4(186)4=++÷46=+10=.(2)2222(8)4(23)xy x y x y xy -+--+-2222844812xy x y x y xy =-+-+-+225512x y =-++.当1x =,1y =-,原式551212=-++=.30.(1)11316(1)()23102÷-+--- (2)先化简,再求值:222233()(2)3x x x x x x ++---,其中12x =-. 【解答】解:(1)11316(1)()23102÷-+--- 632656610-+--=÷- 361510=-- 7310=- (2)222233()(2)3x x x x x x ++--- 2223322x x x x x x =++--+24x = 当12x =-时,原式1=. 31.计算与求值(1)254()0.255(40.4)8-⨯--⨯⨯-(2)2(1)2(34)x x x +---- (3)先化简,再求值:222223[2()4]x y x y xy x y xy ----,其中4x =-,12y =. 【解答】(1)解:原式5116()5(40.4)84=-⨯--⨯⨯- 10 4.5=-5.5=(2)解:原式2268x x x =---+76x =-+(3)解:222223[2()4]x y x y xy x y xy ----2223(35)x y x y xy =--22223355x y x y xy xy =-+=当4x =-,12y =时,原式15(4)54=⨯-⨯=-. 32.化简并求值(1)22225(3)(3)a b ab ab a b --+,其中12a =-,13b =. (2)已知2|1|(2)0x y ++-=,求22222222(22)[(33)(33)]x y xy x y x y x y xy --++-的值. 【解答】解:(1)原式22221553a b ab ab a b =---22126a b ab =- 当12a =-,13b =时 原式22111112()6()()2323=⨯-⨯-⨯-⨯ 43= (2)由题意得:1x =-,2y =原式22222222223333x y xy x y x y x y xy =----+22226x y x y xy =--+当1x =-,2y =时,原式61412430=-⨯⨯-⨯-=-.33.先化简,再求值:2222()3()4x y xy x y xy x y +---,其中x ,y 满足21|1|()02x y ++-=.【解答】解:原式22222233455x y xy x y xy x y x y xy =+-+-=-+, 21|1|()02x y ++-=, 10x ∴+=,102y -=,即1x =-,12y =, 当1x =-,12y =时,原式5=-. 34.先化简, 再求值:(1) 求221242(2)2m m l m m -+-+-,其中1m =-;(2) 已知2(2)|1|0x y -++=,求2225[2(2xy x y x --23)]y xy -.【解答】解: (1) 原式2224124182m m m m m =-+--+=-+, 当1m =-时, 原式8210=+=;(2) 原式2222252232xy x y x y xy xy =-+-=, 2(2)|1|0x y -++=,20x ∴-=,10y +=,即2x =,1y =-,当2x =,1y =-时, 原式222(1)4=⨯⨯-=.35.先化简,再求值:已知2222(3)[23(52)]xy y x xy x xy -+----,其中x ,y 满足2|2|(3)0x y ++-=.【解答】解:原式22262[2156]xy y x xy x xy =-+--+- 222622156xy y x xy x xy =-+-+-+228102x xy y =-++;2|2|(3)0x y ++-=,2x ∴=-,3y =,∴原式228(2)10(2)323=-⨯-+⨯-⨯+⨯326018=--+74=-.36.先化简:22222()2(1)22a b ab a b ab ab +-----,再求值,其中a 、b 满足2|2|(2)0a b ++-=.【解答】解:22222()2(1)22a b ab a b ab ab +-----22222222222a b ab a b ab ab =+-++--2ab =; a 、b 满足2|2|(2)0a b ++-=.20a ∴+=,20b -=,2a ∴=-,2b =,当2a =-,2b =时,原式2(2)28=⨯-⨯=-.37.化简求值,先化简代数式:22223(1)(2)a b ab ab a b ⨯-+--,再求12a =,2b =时代数式的值. 【解答】解:原式2222223332543a b ab ab a b a b ab =-+-+=-+, 当12a =,2b =时,原式558322=-+=-. 38.先化简,再求值:223(32)3(2)xy x y xy x ++-+,其中2x =-,1y =. 【解答】解:原式2223323632xy x y xy x x y =++--=-+, 当2x =-,1y =时,原式12210=-+=-.39.已知22321A x xy x =++-,232B x xy x =++-.(1)当2x y ==-时,求2A B -的值;(2)若2A B -的值与x 无关,求y 的值.【解答】解:222(2321)2(32)43A B x xy x x xy x xy x -=++--++-=-+,(1)当2x y ==-时,2(2)(2)4(2)315A B -=-⨯--⨯-+=;(2)243(4)3A B xy x y x -=-+=-+2A B -的值与x 无关,40y ∴-=,解得:4y =.40.先化简,再求值.22223()(2)a b ab a b ab ---,其中2a =,3b =.【解答】解:22223()(2)a b ab a b ab ---2222332a b ab a b ab =--+ 222a b ab =-当2a =,3b =时原式222232324186=⨯⨯-⨯=-=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学 3.4整式的加减——整式的化简求值(1)P95至96页初一()班姓名____________ 学号______________
(一)课前训练
1、2
1 4
3
x x
-+-是次项式,它的项分别是,其中常数项是 .
2、-x-x合并同类项得_______.
3、一个两位数,十位上的数字是x,个位上的数字是y,这个数用代数式表示为____________,若十位上的数为y,个位上的数是x,所得的两位数为__________。

4、下面的式子,正确的是()
A、3a2+5a2=8a4
B、5a2b-6ab2=-ab2
C、6xy-9yx=-3xy
D、2x+3y=5xy
5.化简(1)3xy―4xy―(―2xy) (2)(8a―7b) ―(4a―5b)
(二)新课探究:
1、按照下面的步骤做一做:
(1)任意写一个两位数_______;
(2)交换这个两位数的十位数字和个位数字,又得到一个数_______;
(3)求这两个数的和_______________________。

(4)再写几个两位数重复上面的过程,这些和有什么规律?________________________.
(5)这个规律对任意一个两位数都成立吗?________________.
2、(1)a、b分别表示一个两位数的十位数字和个位数字,那么这个两位数字可以表示为:____________,交换这个两位数的十位数字和个位数字,得到的数字是_____________.
(2)(10a+b)+(10b+a)=_________________________________________________.
3、P95
(1)两个数相减后的结果有什么规律?________________
(2)这个规律对任意一个三位数都成立吗?____________
(3)你能利用所学的知识说明其中的道理吗?______________________________________
____________________________________________________.
结论:整式加减方法:进行整式加减运算时,如果遇到括号要先去_______,再合并____________。

4. P96例题讲解
(1)1322+-x x 与7532-+-x x 的和 . (2)-x 2+3xy -21y 2与-21x 2+4xy -2
3y 2的差.
(三)巩固练习:化简:
(1) (4k 2+7k )+(-k 2+3k -1) ; (2) (5y +3x -15z 2)-(12y -7x +z 2)
(3))(2173
23p p p p p +---+)( ; (4))32()31(3232m n m m n m ---++-
(5)x xy x 21232
-+与x xy x +-22的差 ; (6)1212++y xy 与122122---y xy x 的和;
(7))43(2-+-xy y x 与)2(32+-xy y x 的和; (8))2842(4123-+-k k 与)42(2
123k k k +-的和.。

相关文档
最新文档