确定一次函数解析式的五种方法
高中数学:函数解析式的十一种方法
高中数学:函数解析式的十一种方法一、定义法 二、待定系数法 三、换元(或代换)法 四、配凑法 五、函数方程组法七、利用给定的特性求解析式.六、特殊值法 八、累加法 九、归纳法 十、递推法 十一、微积分法一、定义法:【例1】设23)1(2+-=+x x x f ,求)(x f .2]1)1[(3]1)1[(23)1(22+-+--+=+-=+x x x x x f =6)1(5)1(2++-+x x 65)(2+-=∴x x x f【例2】设21)]([++=x x x f f ,求)(x f . 【解析】设xx x x x x f f ++=+++=++=111111121)]([xx f +=∴11)(【例3】设33221)1(,1)1(x x x x g x x x x f +=++=+,求)]([x g f .【解析】2)(2)1(1)1(2222-=∴-+=+=+x x f x x x x x x f又x x x g x x x x xx x x g 3)()1(3)1(1)1(3333-=∴+-+=+=+ 故2962)3()]([24623-+-=--=x x x x x x g f【例4】设)(sin ,17cos )(cos x f x x f 求=.【解析】)2(17cos )]2[cos()(sin x x f x f -=-=ππx x x 17sin )172cos()1728cos(=-=-+=πππ.二、待定系数法:在已知函数解析式的构造时,可用待定系数法。
【例1】 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 【解析】设b ax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 【例2】已知1392)2(2+-=-x x x f ,求)(x f .【解析】显然,)(x f 是一个一元二次函数。
确定一次函数解析式的五种方法
五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
八年级数学下册知识梳理:五种类型一次函数解析式的确定
五种类型一次函数解析式的确定确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:因为,函数y=3x+b经过点(2,-6),所以,把x=2,y=-6代入解析式中,得:-6=3×2+b,解得:b=-12,所以,函数的解析式是:y=3x-12.二、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),所以,4=3k+b,7=2k+b,所以,b=4-3k,b=7-2k,所以,4-3k=7-2k,解得:k=-3,所以,函数变为:y=-3x+b,把x=3,y=4代入上式中,得:4=-3×3+b,解得:b=13,所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:因为,函数的图像是直线,所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,设:一次函数的表达式为:y=kx+b,因为,图像经过点A(0,40),B(8,0),所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,得:40=k×0+b,0=8k+b解得:k=-5,b=40,所以,一次函数的表达式为:y=-5x+40。
求函数解析式方法
函 数 解 析 式 的 六 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法.它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数等)及函数的某些特征求其解析式的题目。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .二、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法.但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域.例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式.三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式.用来处理不知道所求函数的类型,且函数的变量易于用另一个变量表示的问题。
它主要适用于已知复合函数的解析式,但使用换元法时要注意新元定义域的变化,最后结果要注明所求函数的定义域。
例3 已知x x x f 2)1(+=+,求)1(+x f .四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法.例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式.五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式. 例5 设,)1(2)()(x xf x f x f =-满足求)(x f .例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式小结:消元法适用于自变量的对称规律。
互为倒数,如f(x)、1()f x ;互为相反数,如f(x)、f(-x),通过对称代换构造一个对称方程组,解方程组即得f(x)的解析式。
确定一次函数的表达式
确定一次函数的表达式
求出一次函数的表达式是数学练习题中常见的提问方式,下面介绍一下确定一次函数的表达式的三种方法。
用待定系数法确定一次函数解析式
待定系数法是确定一次函数的表达式最常用的方法,解题步骤包括“一设、二列、三解、四写”,具体内容如下:
1、根据题中所给的已知条件写出含有待定系数的函数关系式;
2、将x、y的几对值或图像上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;
3、解方程得出未知系数的值;
4、将得到的待定系数代回所求的函数关系式中就可以得到该函数的解析式。
用图像平移法确定一次函数表达式
一次函数的图像在平移时的规律为:直线在平移的倾斜率不变,即k的值保持不变。
当b>0时,把正比例函数y=kx(k≠0)的图像向上平移b个单位,就得到一次函数:y=kx+b(k≠0)的图像;当b<0时,把正比例函数y=kx(k≠0)的图像向下平移∣b∣个单位,就得到一次函数:y=kx+b(k≠0)的图像。
根据直线的对称性确定一次函数表达式
关于y轴对称的两条直线为y=kx+b(k≠0)和y=-kx+b
(k≠0);关于x轴对称的两条直线为y=kx+b(k≠0)和y=-kx-b (k≠0);关于原点对称的两条直线为y=kx+b(k≠0)和y=kx-b (k≠0)。
以上为同学们介绍了确定一次函数的表达式的三种方法,同学们都掌握了吗?其中待定系数法的应用是较为广泛的,同学们一定要学好,利用图像来确定一次函数的表达式属于较为灵活的方法,可以用在选择填空中快速确定答案。
一次函数解析式的确定
学习方法报社 全新课标理念,优质课程资源 第 1 页 共 1 页 ◎吴育弟一次函数解析式的确定一、利用两点坐标确定例1 直线l 过A (0,-1),B (1,0)两点,求直线l 的解析式.解:设函数解析式为y=kx+b ,将(1,0),(0,-1)分别代入解析式,得⎩⎨⎧-==+,1,0b b k 解得⎩⎨⎧-==.1,1b k 所以直线l 的解析式为y=x-1.二、利用直线平行确定例2 直线l 与y=-2x-1平行,且过点(1,3),求直线l 的解析式.解:因为直线l 与y=-2x-1平行,所以设所求直线l 的解析式为y=-2x+b.又直线l 过点(1,3),所以3=-2×1+b ,解得b=5.所以直线l 的解析式为y=-2x+5.三、利用表格确定例3 某工厂有一种材料,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成,并要求每人只加工一种配件.根据下表提供的信息,解答下列问题:设加工甲种配件的人数为x ,加工乙种配件的人数为y ,求y 与x 之间的函数解析式. 解:因为加工甲种配件的人数为x ,加工乙种配件的人数为y ,所以加工丙种配件的人数为(20-x-y )人.因为厂方计划由20个工人一天内加工完成,所以16x+12y+10(20-x-y )=240,则y=-3x+20.四、利用性质确定例4 已知一次函数的图象经过点(0,1),且满足y 随x 的增大而增大,则该一次函数的解析式可以为 .解析:设一次函数的解析式为y=kx+b (k≠0).因为一次函数的图象经过点(0,1),所以b=1.因为y 随x 的增大而增大,所以k >0.当k=1时,该一次函数解析式为y=x+1(答案不唯一,可以是形如y=kx+1,k >0的一次函数).。
求一次函数解析式的方法
例谈求一次函数解析式的常见题型——初二数学方法指导系列一次函数及其图像是初中代数的重要内容,也是中考的重点考查内容。
其中求一次函数解析式就是一类常见题型。
现以部分中考题为例介绍几种求一次函数解析式的常见题型。
希望对同学们的学习有所帮助。
一. 定义型例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。
如本例中应保证二. 点斜型例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。
解:一次函数的图像过点(2,-1),即故这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。
三. 两点型已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
解:设一次函数解析式为由题意得故这个一次函数的解析式为四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2)有故这个一次函数的解析式为五. 斜截型例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。
解析:两条直线:;:。
当,时,直线与直线平行,。
又直线在y轴上的截距为2,故直线的解析式为六. 平移型例6. 把直线向下平移2个单位得到的图像解析式为___________。
解析:设函数解析式为,直线向下平移2个单位得到的直线与直线平行直线在y轴上的截距为,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。
解:由题意得,即故所求函数的解析式为()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
八. 面积型例8. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。
一次函数的应用题分类总结整理剖析
一次函数的应用题分类总结整理剖析一次函数应用一、确定解析式的几种方法:1.直接写出一次函数表达式,根据实际意义解决相应问题;(直接法)2.利用待定系数法构建函数表达式,已经明确函数类型;(待定系数法)3.利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;(等式变形法)二、重点题型1.根据各类信息猜测函数类型为一次函数,并验证猜想;2.运用函数思想,构建函数模型解决(最值、决策)问题。
一)根据实际意义直接写出一次函数表达式,然后解决相应问题特点:当所给问题中的两个变量间的关系非常明了时,可以根据二者之间的关系直接写出关系式,然后解决问题。
例1:某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠。
书包每个定价20元,水性笔每支定价5元。
XXX和同学需买4个书包,水性笔若干支(不少于4支)。
1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;直接法:对于第一种优惠方法,每个书包都赠送1支水性笔,所以购买4个书包需要买4支水性笔,总共需要花费4×20+4×5=100元。
因此,y=100.对于第二种优惠方法,购买4个书包和4支水性笔需要花费4×20×0.9+4×5×0.9=82.8元。
因此,y=82.8-0.9x。
2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;当0≤x≤4时,第一种优惠方法更便宜;当x>4时,第二种优惠方法更便宜。
3)XXX和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济。
由于第一种优惠方法总共需要花费100元,而第二种优惠方法的费用函数为y=82.8-0.9x,因此需要求解当x=12时,y 的值为多少。
代入公式得到y=71.4元。
因此,购买4个书包和12支水性笔的最经济方法是选择第二种优惠方法。
例2:某实验中学组织学生到距学校6千米的XXX去参观,学生XXX因事没能乘上学校的校车,于是准备在学校门口改乘出租车去XXX,出租车的收费标准为:3千米以下(含3千米)收费8元,3千米以上,每增加1千米,收费1.8元。
函数解析式的求法
函数解析式的求法1.待定系数法例1.求一次函数y=f(x)解析式,使f(f(x))=4x+3.解:设f(x)=ax+b(a≠0).∴f(f(x))==af(x)+b=a(ax+b)+b=a^2x+ab+b∴a^2x+ab+b=4x+3∴a^2=4,ab+b=3解得a=2,b=1或a=-2,b=-3.∴f(x)=2x+1或f(x)=-2x-3.总结:当已知函数类型时,求函数解析式,常用待定系数法。
其基本步骤:设出函数的一般式,代入已知条件通过解方程(组)确定未知系数。
2.换元法换元法就是引进一个或几个新的变量来替换原来的某些量的解题方法,它的目的是化繁为简、化难为易,以快速的实现从未知向已知的转换,从而达到顺利解题的目的。
常见换元法是多种多样的,如局部换元、整体换元、分母换元、平均换元等,应用极为广泛。
例2.已知f(1-√x)=x.求f(x).解:设1-√x=t,则x=(1-t)^2∵x≥0,∴t≤1,∴f(t)=(1-t)^2(t≤1)∴f(x)=(1-x)^2(x≤1)(函数变量的无关性)总结:(1)利用换元法解题时,要注意在换元时易引起定义域的变化,所以最后的结果要注意所求函数的定义域。
(2)函数变量的无关性,变量无论是用x还是用t表示,都无关紧要,函数依然成立。
3.配凑法例3.已知f(3x+1)=9x^2-6x+5,求f(x).解:∵f(3x+1)=9x^2-6x+5=(3x+1)^2-12x+4=(3x+1)^2-4(3x+1)+8∴f(x)=x^2-4x+8总结:当已知函数表达式比较简单时,可直接应用配凑法,即根据具体的解析式凑出复合变量的形式,从而求出函数解析式。
4.消元法(又叫解方程组法)例4.已知函数f(x)满足条件:f(x)+2f(1/x)=x,求f(x).分析:用1/x代替条件方程中的x得:f(1/x)+2f(x)=1/x.把它与原条件式联立。
用消元法消去f(1/x),即得f(x)的解析式。
求函数解析式的四种常用方法
求函数解析式的四种常用方法函数是数学中的重要概念,它描述了变量之间的关系。
函数解析式是用代数表达式来表示函数的定义域、值域和具体的变化规律。
常用的四种方法来得到函数的解析式是:通过公式、通过图像、通过数据和通过给定条件。
一、通过公式:一些函数的解析式可以通过简单的数学公式来得到。
例如,直线函数y = kx + b、二次函数y = ax^2 + bx + c以及指数函数y = a^x等。
这些函数可以根据已知的系数和常数来确定解析式。
例如,对于直线函数y = 2x + 3,我们可以知道它的斜率是2,截距是3,因此解析式为y = 2x + 3二、通过图像:函数的解析式可以通过观察图像来确定。
例如,可以根据函数的特点,如对称性、切线的斜率等,来确定解析式。
对于一元函数来说,可以通过绘制函数的图像来判断函数的特点,从而得到函数的解析式。
例如,对于一次函数来说,可以通过观察图像的直线特点来确定解析式;对于二次函数来说,可以根据开口方向、抛物线的顶点位置等来确定解析式。
三、通过数据:有时候可以通过给定的数值表格或函数的值来确定函数的解析式。
通过列举一组合适的输入和输出值,然后观察数值的规律,可以找到函数的解析式。
例如,已知函数的自变量为x,函数的值为y,通过给定一些具体的x和对应的y值,可以通过观察它们之间的关系来确定函数的解析式。
四、通过给定条件:在一些具体的问题中,函数的解析式可以通过给定的条件来确定。
例如,在几何问题中,根据给定的几何条件和函数的特性,可以建立函数的解析式。
例如,根据直线过点的条件和斜率的特性,可以确定直线的解析式。
综上所述,函数解析式的四种常用方法是通过公式、通过图像、通过数据和通过给定条件。
通过这些方法,可以确定函数的解析式,进而研究函数的性质和变化规律,以及解决一些实际问题。
确定一次函数表达式四法
确定一次函数表达式四法一、 定义确定法例1、己知()3221-+-=-k xk y k 是关于x 的一次函数,则这个函数的表达式为二、 待定系数法 例2、若一次函数b kx y +=的图象经过A (一1,一5)B (2,1)两点,求该一次函数的解析式.例3、己知直线b kx y +=与直线x y 3=平行且过点A (1,一5),求该直线的解析式例4、己知一次函数b kx y +=的图象经过A (3,0),且与坐标轴围成的三角形的面积为6,求这个函数的解析式.三、 方程式确定法 .例5、如图Rt △ABC 中,∠C =︒90,BC =6,AC =8,点P 是AC 上一动点AP BC AB PQ ⋅=⋅,P Q ⊥AB 于Q ,设PC =x ,P Q=y 求y 与x 之间的函数关系式,并分别指出x 与y 的取值范围.四、 算式确定法例6、某电信公司手机A 类收费标准是:月租费18元,另外,每通话1分钟收费0.7元.(1) 写出每月应缴费用y 元与通话时间x (分)之间的函数关系式(2) 如果小明的手机10月份通话时间是82分钟,它应缴费多少元?实际问题中一次函数图象例1 两摞相同规格的饭碗整齐地叠放在桌面上,请根据如图1中给出的数据信息,解答问题:(1)求整齐叠放在桌面上饭碗的高度y (cm)与饭碗数x (个)之间的一次函数解析式(不要求写出自变量x 的取值范围);(2)若桌面上有12个饭碗,整齐叠放成一摞,求出它的高度.例2今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图2所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用 户该月用了多少度电?例3、小强利用星期日参加了一次社会实践活动,他从果农处以每千克3元的价格购进若干千克草莓到市场上销售,在销售了10千克时,收入50元,余下的他每千克降价1元出售,全部售完,两次共收入70元.已知在降价前销售收入y (元)与销售重量x (千克)之间成正比例关系.请你根据以上信息解答下列问题:(1)求降价前销售收入y (元)与售出草莓重量x (千克)之间的函数关系式;并画出其函数图象;(2)小强共批发购进多少千克草莓?小强决定将这次卖草莓赚的钱全部捐给汶川地震灾区,那么小强的捐款为多少元?图2图1例4、某种形如长方体的2000毫升盒装果汁,其盒底面是边长为10cm的正方形,现从盒中倒出果汁,盒中剩余果汁的体积y(毫升)与果汁下降高度x(cm)之间的函数关系如图所示(盒子的厚度不计).(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)若将满盒果汁倒出一部分,下降的高度为15cm,剩余的果汁还能够倒满每个容积为180毫升的3个纸杯吗?请计算说明.例5、恩施山青水秀,气候宜人.在世界自然保护区星斗山,有一种雪白的树蟋蟀,人们发现他15秒钟所叫次数与当地温度之间满足一次函数关系.下面是蟋蟀所叫次数与温度变化(1(2)在该地最热的夏天,人们测得这种蟋蟀15秒钟叫了50次,那么该地当时的最高温度大约为多少摄氏度?。
求函数解析式的6种方法
求函数解析式的6种方法一、待定系数法待定系数法是求函数解析式的常用方法之一,它适用于已知所求函数类型(如一次函数,二次函数,正、反例函数,指数函数,对数函数、幂函数等)及函数的某些特征求其解析式的题目,它在函数解析式的确定中扮演着十分重要的角色。
其方法:已知所求函数类型,可预先设出所求函数的解析式,再根据题意列出方程组求出系数。
例1 (1)已知二次函数()f x 满足(1)1f =,(1)5f -=,图象过原点,求()f x ;(2)已知二次函数()f x ,其图象的顶点是(1,2)-,且经过原点,()f x .(3)已知()f x 是二次函数,若(0)0,f =且(1)()1f x f x x +=++试求()f x 的表达式 (4)已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式.解:(1)由题意设 2()f x ax bx c =++, ∵(1)1f =,(1)5f -=,且图象过原点,∴150a b c a b c c ++=⎧⎪-+=-⎨⎪=⎩ ∴320a b c =⎧⎪=-⎨⎪=⎩∴2()32f x x x =-.(2)由题意设 2()(1)2f x a x =++,又∵图象经过原点,∴(0)0f =,∴20a += 得2a =-, ∴2()24f x x x =--.(3)解析:设2()f x ax bx c =++ (a ≠0) 由(0)0,f =得c=0由(1)()1f x f x x +=++ 得22(1)(1)1a x b x c ax bx c x ++++=++++ 整理得 ax 2+(2a+b)x+a+b+c=ax 2+(b+1)x+c+1得 212211120011()22a ab b a bc c b c c f x x x⎧=⎪+=+⎧⎪⎪⎪++=+⇒=⎨⎨⎪⎪=⎩=⎪⎪⎩∴=+(4)解:设二次函数f (x )= ax 2+bx+c ,则 f (0)= c= 0 ① f (x+1)= a 2)1(+x +b (x+1)= ax 2+(2a+b )x+a+b ②由f (x+1)= f (x )+2x+8 与①、② 得⎩⎨⎧=++=+822b a b b a 解得 ⎩⎨⎧==.7,1b a 故f (x )= x 2+7x. 例2 (1)已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
求一次函数的解析式的方法
求一次函数的解析式的方法
一次函数是形如y=ax+b的函数,其中a和b为常数。
求一次函数的解析式的方法如下:
1.通过已知的点求解析式
如果已知一次函数经过某个点(x1, y1),那么可以将这个点代入函数中,得到一个方程:y1=ax1+b,其中a和b为未知数。
此时可以再通过另一个点(x2, y2)来构建另一个方程:y2=ax2+b。
解这个方程组即可得到a和b的值。
2.通过斜率和截距求解析式
一次函数的斜率就是a,截距就是b。
如果已知斜率和截距,那么可以将它们代入y=ax+b中,得到函数的解析式。
3.通过两个点的坐标差求解析式
如果已知一次函数经过两个点(x1, y1)和(x2, y2),那么可以求出两点的坐标差Δx和Δy。
由于a表示函数的斜率,因此有a=Δy/Δx。
将a和其中一个点的坐标代入y=ax+b中,再解出b的值,即可得到函数的解析式。
总之,求一次函数的解析式需要从已知条件入手,通过方程求解的方法得到函数的斜率和截距,进而得到函数的解析式。
- 1 -。
求一次函数解析式的方法
依题意得 :
解 得
-
点. 求 , . b
’
.
4
பைடு நூலகம்
.
{ + . r一 2 1胖 k 2 O b6 , k =0 = . :9  ̄ :。 , 9
/ -2 D
‘ . .
所 求 的解 析式 为 : 2 4 y= x+ .
6 验证. .
方法四 利用平行求解析式.
t 秘 糖
解 巧与 法 罅 题技 方 鞋5 8臻 ≥ 魂
§~
函数
◎ 罗全 文 ( 江西 省 南 昌市 西 湖 区抚 生路 学校 30 2 ) 3 0 5
方 法 一 给 出一 次 函数 上 的 两点 坐 标 求 函数 的解析 式 . 例 1 已知 一 次 函数 Y x =k +b的 图像 经过 点 A( , 1 , 2一 )
同理
.
・ . .
直 线 解 析 式 为 : =一 x+5或 y x一5 y 2 =2 .
解 设 h=k d+b 依题 意得 : ,
数学 学 习与 研 究 2 0 . 0 99
B( 4, 3 . 一 一1 ) 求这 个 函数 的解 析 式. 解 依题意得 :
f + 1f {9 2 b6i k, 0 =0 b k , =  ̄
. .
h与 d之 间 的 函数 关 系 式 为 : h=9 d一2 . 0
{+:。 得 ; 2b 一 解 : 一+- . f . k = 4 1 ,
/
方法 五
通 过 表 格求 解 析 式.
例 5 大拇 指 与 小拇 指 尽 量 张 开 时 ,两 指 尖 的 距 离 称
解由 意 : I5 孚, 图2 题 得1 =
求一次函数解析式常见题型解析
求一次函数解析式常见题型解析一次函数解析式的求法在初中数学内容中占有举足轻重的作用,如何把这一部分内容学得扎实有效呢,整理了一下材料,给大家提供一些题型及解题方法,期望对同学们有所帮助。
第一种情况:直接或间接已知函数是一次函数,采用待定系数法。
(已知是一次函数或已知解析式形式y kx b =+或已知函数图象是直线都是已知了一次函数)一、定义型 一次函数的定义:形如y kx b =+,k 、b 为常数,且k ≠0。
例1. 已知函数()2833m y m x-=-+是一次函数,求其解析式。
解析:由一次函数定义知3m =-,故一次函数的解析式为33y x =-+注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证30m -≠。
例2. 已知y -1与x +1成正比例,且当x =1时,y =5.求y 与x 的函数关系式; 解析: ∵y -1与x +1成正比例,∴可假设y -1=k (x +1)又当x =1时,y =5,代入求出k =2, 所以y -1=2(x +1),变形为y =2x +3注意:“两个量成正比例”和“两个量是正比例函数关系”是完全一致的,题目中已知y -1与x +1成正比例就可以假设y -1=k (x +1)。
二. 平移型 两条直线1l :11y k x b =+;2l :22y k x b =+。
当12k k =,12b b ≠时,1l ∥2l ,解决问题时要抓住平行的直线k 值相同这一特征。
例1 . 把直线21y x =+向下平移2个单位得到的图像解析式为___________。
解析:直线21y x =+向下平移得到的直线与直线21y x =+平行∴可设把直线21y x =+向下平移2个单位得到的图像解析式为b x y +=2直线21y x =+与y 轴交点为(0,1)向下平移2个单位得到的点为(0,-1)∴可代入b x y +=2求出b =-1 ∴所求解析式为12-=x y例2 . 已知直线y kx b =+与直线2y x =-平行,且与x 轴交点横坐标为1,则直线的解析式为___________。
求一次函数解析式的方法
例谈求一次函数解析式的常见题型——初二数学方法指导系列一次函数及其图像是初中代数的重要内容,也是中考的重点考查内容。
其中求一次函数解析式就是一类常见题型。
现以部分中考题为例介绍几种求一次函数解析式的常见题型。
希望对同学们的学习有所帮助。
一. 定义型例1. 已知函数是一次函数,求其解析式。
解:由一次函数定义知,故一次函数的解析式为注意:利用定义求一次函数解析式时,要保证。
如本例中应保证二. 点斜型例2. 已知一次函数的图像过点(2,-1),求这个函数的解析式。
解:一次函数的图像过点(2,-1),即故这个一次函数的解析式为变式问法:已知一次函数,当时,y=-1,求这个函数的解析式。
三. 两点型已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
解:设一次函数解析式为由题意得故这个一次函数的解析式为四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
解:设一次函数解析式为由图可知一次函数的图像过点(1,0)、(0,2)有故这个一次函数的解析式为五. 斜截型例5. 已知直线与直线平行,且在y轴上的截距为2,则直线的解析式为___________。
解析:两条直线:;:。
当,时,直线与直线平行,。
又直线在y轴上的截距为2,故直线的解析式为六. 平移型例6. 把直线向下平移2个单位得到的图像解析式为___________。
解析:设函数解析式为,直线向下平移2个单位得到的直线与直线平行直线在y轴上的截距为,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q (升)与流出时间t(分钟)的函数关系式为___________。
解:由题意得,即故所求函数的解析式为()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。
八. 面积型例8. 已知直线与两坐标轴所围成的三角形面积等于4,则直线解析式为__________。
五种类型一次函数解析式的确定
五种类型一次函数解析式的确定一次函数,也叫线性函数,是指形如y = kx + b的函数,其中k和b是常数,且k ≠ 0。
一次函数的图像是一条直线。
下面将详细解析五种类型一次函数的确定。
1.斜率为正的一次函数:斜率为正表示直线向上倾斜。
形如y = kx + b,其中k > 0。
当x增大时,y也增大,表示函数具有正相关的关系。
斜率k表示每单位x变化时y的变化量,也就是直线的斜率。
2.斜率为负的一次函数:斜率为负表示直线向下倾斜。
形如y = kx + b,其中k < 0。
当x增大时,y减小,表示函数具有负相关的关系。
斜率k的绝对值表示每单位x变化时y的变化量,斜率的负号表示函数的方向。
3.斜率为零的一次函数:斜率为零表示直线平行于x轴,与y值无关。
形如y=b,其中b为常数。
无论x取何值,y始终为常数b。
该类型的一次函数表示两个变量之间没有线性关系。
4.斜率不存在的一次函数:斜率不存在表示直线垂直于x轴。
由于垂直线没有斜率,所以没有斜率的一次函数只有形如x=k的形式,其中k为常数。
这样的函数表示x取k时,y的取值可以是任意实数。
5.斜率为1的一次函数:斜率为1表示直线与x轴夹角为45度,即倾斜程度适中。
形如y=x+b,其中b为常数。
该类型的一次函数表示x的增加和y的增加的变化率相同,图像上的点都在45度直线上。
以上是五种类型一次函数的解析式的确定。
利用这些解析式,我们可以进一步进行函数的分析和计算,例如求解其零点、斜率、截距等。
一次函数是数学中非常基础和重要的概念,通过研究一次函数,我们可以更好地理解线性关系和直线的性质。
19.2.4确定一次函数解析式
逆向思维 小试牛刀
2、已知函数 y = kx的图象在二、四象限,那
么函数y = kx-k的图象可能是( B )
y
y
0
x
(A )
y
0x
0
x
(B) y
( C)
0x (D)
• 3、已知一次函数y = mx-(m-2),
若它的图象经过原点,则
m= 2 ;
若点(0 ,3) 在它的图象上,则m
= -1 ;若它的图象经过一、 二、四象限,则m <0 .
4.对于一次函数y = mx-(m-2),若y
随x 的增大而增小,则其图象不
过三
象限。
5.若直线 y = kx -3 过(2, 5),
则k = 4
;
若此直线平行于直线y = - 3x - 5,
则k= -3 .
抢答题
1在平面直角坐标系中,函数y=-2x+3的图象经过( A.一、二、三象限 B.二、三、四象限
则该函数图象必经过点( B )
A (-1,1)
B (2,2)
C (-2,2)
D (2,一2)
3、若直线y=kx+b平行直线y=-3x+2,且在y轴上的 的交点坐标为(0,-5),则k= -3 ,b= -5 。
已知一次函数图象经过A(2,-1) 和点B, 其中点B是另一条直线y= 5x+3与y轴的 交点,求这个一次函数的解析式.
• (1)当 k > 0 时,y 随 x 的增大 而 增大 。
• (2)当 k < 0 时,y 随 x 的增大 而 减小 。
一次函数y=kx+b (k‡0)的性质: 当k>0时,y随x的增大而增大;
求解一次函数解析式的方法
一、与坐标轴构成的三角形的面积求解析式1、已知一次函数图像经过P(0,2)且与两坐标轴所围成的直角三角形的面积为3,求此一次函数的解析式,并画出图象。
2、已知一次函数图象经过(5/2, 0)且两坐标轴围成的直角三角形的面积为25/4,求解析式。
3、在平面直角坐标系中,已知一次函数y=kx+b(k≠0)的图象经过点P(1,1)与X轴交于点A,与Y轴交点于点B,且OA/OB=3,那么点A的坐标为此解析式为与坐标围成的面积是4.Y=(1-kx)/(k+1),k是不为0轴围成的三角形的面积SK为S1、S2S1+S2+S3+…S2008的和。
5比例函数和一次函数的图象与Y15/2,求符合条件的一次函数的解析式。
6、y1=2x-1与一次函数y2=kx+b6/5),y2=kx+b与y=-1/2x+3(1)求两函数图象与X(2)求两函数图象与Y+6与两坐标轴围成的三角形面积是24,+9/5 L2:Y=-3/2X+6它们的交X轴的交点分别为A、B,求△ABC的面Y=KX+b(K≠0)的图像经过P(3,2)A点和B点,当OA+OB=1210、直线Y=X+3的图象与X、Y轴交于A、B两点,直线L经过原点,与线段AB交于点C,把△AOB分为2 :1两部分,求直线L的解析式。
例5 已知一次函数的图象过点()3,0,且与坐标轴围成的三角形的面积为6.求该一次函数的解析式析解:设此一次函数解析式为y kx b=+,则有30k b+=.又∵直线与两坐标轴交点分别为()0,b,,0bk⎛⎫-⎪⎝⎭,且该直线与两坐标轴围成的三角形是直角三角形,∴162bbk⨯-=,即212bk=.①当0k>时,212b k=,又∵3b k=-,∴43k=,4b=-;②当0k<时,212b k=-,又∵3b k=-,∴43k=-,4b=.∴此函数解析式为443y x=-或443y x=-+.说明:用点的坐标表示线段长度时,应加绝对值符号,以避免漏解.二、最佳方案问题1、某果品公司急需将一批不易存放的水果从A市运到B(1)是甲公司的2倍,求A、B地的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五种类型一次函数解析式的确定
确定一次函数的解析式,是一次函数学习的重要内容。
下面就确定一次函数的解析式的题型作如下的归纳,供同学们学习时参考。
一、根据直线的解析式和图像上一个点的坐标,确定函数的解析式
例1、若函数y=3x+b经过点(2,-6),求函数的解析式。
分析:因为,函数y=3x+b经过点(2,-6),
所以,点的坐标一定满足函数的关系式,所以,只需把x=2,y=-6代入解析式中,就可以求出b的值。
函数的解析式就确定出来了。
解:
因为,函数y=3x+b经过点(2,-6),
所以,把x=2,y=-6代入解析式中,
得:-6=3×2+b,
解得:b=-12,
所以,函数的解析式是:y=3x-12.
二、根据直线经过两个点的坐标,确定函数的解析式
例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),
求函数的表达式。
分析:把点的坐标分别代入函数的表达式,用含k的代数式分别表示b,
因为b是同一个,这样建立起一个关于k的一元一次方程,这样就可以把k的值求出来,然后,就转化成例1的问题了。
解:
因为,直线y=kx+b的图像经过A(3,4)和点B(2,7),
所以,4=3k+b,7=2k+b,
所以,b=4-3k,b=7-2k,
所以,4-3k=7-2k,
解得:k=-3,
所以,函数变为:y=-3x+b,
把x=3,y=4代入上式中,得:4=-3×3+b,
解得:b=13,
所以,一次函数的解析式为:y=-3x+13。
三、根据函数的图像,确定函数的解析式
例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.
求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。
分析:根据图形是线段,是直线上的一部分,所以,我们可以确定油箱里所剩油y(升)是行驶时间x(小时)的一次函数,明白这些后,就可以利用设函数解析式的方法去求函数的解析式。
解:
因为,函数的图像是直线,
所以,油箱里所剩油y(升)是行驶时间x(小时)的一次函数,
设:一次函数的表达式为:y=kx+b,
因为,图像经过点A(0,40),B(8,0),
所以,把x=0,y=40,x=8,y=0,分别代入y=kx+b中,
得:40=k×0+b,0=8k+b
解得:k=-5,b=40,
所以,一次函数的表达式为:y=-5x+40。
当汽车没有行驶时,油箱里的油是40升,此时,行驶的时间是0小时;
当汽车油箱里的油是0升,此时,行驶的时间是8小时,
所以,自变量x的范围是:0≤x≤8.
四、根据平移规律,确定函数的解析式
例4、如图2,将直线OA向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是.(08年上海市)
分析:仔细观察图像,直线OA经过坐标原点,所以,直线OA表示的一个正比例函数的图像,并且当x=2时 y=4,这样,我们就可以求出,平移的起始函数的解析式,根据函数平移的规律,就可以确定一次函数的解析式。
把正比例函数y=kx(k≠0)的图像向上或者向下平移|b|个单位,就得到一次函数:y=kx+b (k≠0,b≠0)的图像。
具体平移要领:
当b>0时,把正比例函数y=kx(k≠0)的图像向上平移b个单位,就得到一次函数:y=kx+b (k≠0)的图像。
当b<0时,把正比例函数y=kx(k≠0)的图像向下平移|b|个单位,就得到一次函数:y=kx+b (k≠0)的图像。
解:
因为,直线OA经过坐标原点,
所以,直线OA表示的一个正比例函数的图像,
设y=kx,
把x=2, y=4代入上式,得:4=2k,
解得:k=2,
所以,正比例函数的解析式为:y=2x,
所以,直线向上平移1个单位,所得解析式为:y=2x+1,
所以,这个一次函数的解析式是y=2x+1。
五、根据直线的对称性,确定函数的解析式
例5、已知直线y=kx+b与直线y= -3x+7关于y轴对称,求k、b的值。
分析:直线y=kx+b与直线y= -3x+7关于y轴对称,所以,对称点的横坐标互为相反数,纵坐标保持不变,这可以是解题的理论依据,当然,也可以从已知直线解析式的图像上,确定出两个点的坐标,分别求出它们关于y轴的对称点的坐标,然后利用待定系数法,计算出k、b的值。
解法1:
设A(x,y)是直线y= -3x+7上一个点,
其关于y轴对称的点的坐标为(-x,y ),
则有:y= -3x+7,y= -kx+b
整理,得:-3x+7= -kx+b,
比较对应项,得:k=3,b=7。
解法2:设A(m,n)是直线y= -3x+7上一个点,
其关于y轴对称的点的坐标为(a,b),
则有:b=n,m=-a,
因为,A(m,n)是直线y= -3x+7上一个点,
所以,点的坐标满足函数的表达式,
即n=-3×m+7,
把n=b ,m=-a ,代入上式,得:
b=-3×(-a )+7,
整理,得:b=3a+7,即y=3x+7,它实际上与直线y=kx+b 是同一条直线, 比较对应项,得:k=3,b=7。
解法3:
因为,y=kx+b ,所以,x=
k
b y -, 因为,y= -3x+7,所以,x=37--y , 因为,直线y=kx+b 与直线y= -3x+7关于y 轴对称,
所以,两直线上点的坐标,都满足纵坐标相同,横坐标坐标互为相反数, 所以,k b y -= -37--y =3
7-y , 比较对应项,得:y-b= y-7,k=3,
所以,k=3,b= 7。
解法4、
因为,直线y= -3x+7,
所以,
当x=1时,y=-3×1+7=4,
即点的坐标(1,4);
当x=2时,y=-3×2+7=1,
即点的坐标(2,1);
因此,(1,4)、(2,1)关于y 轴对称的坐标分别为(-1,4)、(-2,1), 所以,点(-1,4)、(-2,1)都在直线y=kx+b ,
所以,⎩
⎨⎧+⨯-=+⨯-=b k b k 2114, 留一个练习:
1、已知直线y=kx+b 与直线y= -3x+7关于x 轴对称,求k 、b 的值。
2、已知直线y=kx+b 与直线y= -3x+7关于原点对称,求k 、b 的值。
参考答案:
1、k=3,b=-7.
2、k=-3,b=-7.。