冈萨雷斯_数字图像处理第3版第4章的习题.doc

合集下载

冈萨雷斯_数字图像处理第3版第4章的习题集.doc

冈萨雷斯_数字图像处理第3版第4章的习题集.doc

4.16 证明连续和离散二维傅里叶变换都是平移和旋转不变的。

首先列出平移和旋转性质:002(//)00(,)(,)j u x M v y N f x y e F u u v v π+⇔-- (4.6-3) 002(//)00(,)(,)j x r M y v N f x x y y F u v e π-+--⇔ (4.6-4)旋转性质:cos ,sin ,cos ,sin x r y r u v θθωϕωϕ====00(,)(,)f r F θθωϕϕ+⇔+ (4.6-5) 证明:由式(4.5-15)得:由式(4.5-16)得:依次类推证明其它项。

4.17 由习题4.3可以推出1(,)u v δ⇔和(,)1t z δ⇔。

使用前一个性质和表4.3中的平移性质证明连续函数00(,)cos(22)f t z A u t v z ππ=+的傅里叶变换是0000(,)[(,)(,)]2AF u v u u v v u u v v δδ=+++-- 证明:000000002()2()002()2()2()2()2()2()2((,)(,)cos(22)[]222j ut vz j ut vz j u t v z j u t v z j ut vz j u t v z j u t v z j ut vz j u F u v f t z e dtdzA u t v z e dtdzA e e e dtdzA A e e dtdz e e πππππππππππ∞∞-+-∞-∞∞∞-+-∞-∞∞∞+-+-+-∞-∞∞∞+-+-+--∞-∞==+=+=+⎰⎰⎰⎰⎰⎰⎰⎰)00000000(,)(,)22[(,)(,)]2t vz dtdz A Au u v v u u v v Au u v v u u v v δδδδ∞∞+-∞-∞=--+++=--+++⎰⎰ 4.18 证明离散函数(,)1f x y =的DFT 是1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它证明:离散傅里叶变换112(//)00(,)(,)M N j ux M vy N x y F u v f x y e π---+===∑∑112(//)00112(//)00{1}M N j ux M vy N x y M N j ux M vy N x y e e ππ---+==---+==ℑ==∑∑∑∑如果0u v ==,{1}1ℑ=,否则:1100{1}{cos[2(//)]sin[2(//)]}M N x y ux M vy N j ux M vy N ππ--==ℑ=+-+∑∑考虑实部,1100{1}cos[2(//)]M N x y ux M vy N π--==ℑ=+∑∑,cos[2(//)]ux M vy N π+的值介于[-1, 1],可以想象,1100{1}cos[2(//)]0M N x y ux M vy N π--==ℑ=+=∑∑,虚部相同,所以1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它4.19 证明离散函数00cos(22)u x v y ππ+的DFT 是00001(,)[(,)(,)]2F u v u Mu v Nv u Mu v Nv δδ=+++--证明:000000112(//)00112(//)0000112()2()2(//)00112()2(//)00(,)(,)cos(22)1[]21{2M N j ux M vy N x y M N j ux M vy N x y M N j u x v y j u x v y j ux M vy N x y M N j u x v y j ux M vy N x y F u v f x y e u x v y e e e e e e πππππππππ---+==---+==--+-+-+==--+-+====+=+=∑∑∑∑∑∑∑∑000000112()2(//)0011112(//)2(//)2(//)2(//)00000000}1{}21[(,)(,)]2M N j u x v y j ux M vy N x y M N M N j Mu x M Nv y N j Mu x M Nv y N j ux M vy N j ux M vy N x y x y e e e e e e u Mu v Nv u Mu v Nv ππππππδδ---+-+==----+-+-+-+====+=+=+++--∑∑∑∑∑∑4.20 下列问题与表4.1中的性质有关。

数字图像处理第三版习题解答(冈萨雷斯版)

数字图像处理第三版习题解答(冈萨雷斯版)
或解: (1) 在 V={0,1}时,p 和 q 之间通路的 D4 距离为∞,D8 距离为 4,Dm 距离为 5。 (2) 在 V={1,2}时,p 和 q 之间通路的 D4 距离为 6,D8 距离为 4,Dm 距离为 6。
4 为什么一般情况下对离散图像的直方图均衡化并不能产生完全平坦的直方 图?【因为同一个灰度值的各个象素没有理由变换到不同灰度级,所以数字图像 的直方图均衡化的结果一般不能得到完全均匀分布的直方图, 只是近似均匀的直 方图。 】 5 设已用直方图均衡化技术对一幅数字图像进行了增强, 如再用这一方法对所得 结果增强会不会改变其结果?【从原理上分析,直方图均衡化所用的变换函数为 原始直方图的累积直方图, 均衡化后得到的增强图像的累积直方图除有些项合并 外,其余项与原始图像的累积直方图相同。如果再次均衡化,所用的变换函数即 为均衡化后得到的增强图像的累积直方图(并且不会有新的合并项) ,所以不会
解:(a)T=M/56000=(1024×1024)×(8+2)/56000=187.25s=3.1min (b) T=M/56000=(1024×1024)×(8+2)/750000=14s
2.两个图像子集S1和S2图下图所示。对于V={1},确定这两个子集是(a) 4-邻接,(b)8-邻接,(c)m-邻接。 a) S1 和S2 不是4 连接,因为q 不在N4(p)集中。 (b) S1 和S2 是8 连接,因为q 在N8(p)集中。
【链码: 110003301232 微分码 303003011113 形状数 003011113303 阶 12】 19 为什么伪彩色处理可以达到增强的效果呢? 由于人眼对彩色的分辨能力远远大于对黑白灰度的分辨率。 对于一般的观察者来说。 通常 能分辨十几级灰度,就是经专业训练的人员也只能分辨几十级灰度。而对于彩色来说,人的 眼睛可分辨出上千种彩色的色调和强度。因此,在一幅黑白图像中检测不到的信息,经伪彩 色增强后可较容易的被检测出来。

冈萨雷斯数字图像处理第3版第4章习题4.164.43备课讲稿

冈萨雷斯数字图像处理第3版第4章习题4.164.43备课讲稿

4.16 证明连续和离散二维傅里叶变换都是平移和旋转不变的。

首先列出平移和旋转性质:002(//)00(,)(,)j u x M v y N f x y e F u u v v π+⇔-- (4.6-3) 002(//)00(,)(,)j x r M y v N f x x y y F u v e π-+--⇔ (4.6-4)旋转性质:cos ,sin ,cos ,sin x r y r u v θθωϕωϕ====00(,)(,)f r F θθωϕϕ+⇔+ (4.6-5) 证明:由式(4.5-15)得:由式(4.5-16)得:依次类推证明其它项。

4.17 由习题4.3可以推出1(,)u v δ⇔和(,)1t z δ⇔。

使用前一个性质和表4.3中的平移性质证明连续函数00(,)cos(22)f t z A u t v z ππ=+的傅里叶变换是0000(,)[(,)(,)]2AF u v u u v v u u v v δδ=+++-- 证明:000000002()2()002()2()2()2()2()2()2((,)(,)cos(22)[]222j ut vz j ut vz j u t v z j u t v z j ut vz j u t v z j u t v z j ut vz j u F u v f t z e dtdzA u t v z e dtdzA e e e dtdzA A e e dtdz e e πππππππππππ∞∞-+-∞-∞∞∞-+-∞-∞∞∞+-+-+-∞-∞∞∞+-+-+--∞-∞==+=+=+⎰⎰⎰⎰⎰⎰⎰⎰)00000000(,)(,)22[(,)(,)]2t vz dtdz A Au u v v u u v v Au u v v u u v v δδδδ∞∞+-∞-∞=--+++=--+++⎰⎰ 4.18 证明离散函数(,)1f x y =的DFT 是1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它证明:离散傅里叶变换112(//)00(,)(,)M N j ux M vy N x y F u v f x y e π---+===∑∑112(//)00112(//)00{1}M N j ux M vy N x y M N j ux M vy N x y e e ππ---+==---+==ℑ==∑∑∑∑如果0u v ==,{1}1ℑ=,否则:1100{1}{cos[2(//)]sin[2(//)]}M N x y ux M vy N j ux M vy N ππ--==ℑ=+-+∑∑考虑实部,1100{1}cos[2(//)]M N x y ux M vy N π--==ℑ=+∑∑,cos[2(//)]ux M vy N π+的值介于[-1, 1],可以想象,1100{1}cos[2(//)]0M N x y ux M vy N π--==ℑ=+=∑∑,虚部相同,所以1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它4.19 证明离散函数00cos(22)u x v y ππ+的DFT 是00001(,)[(,)(,)]2F u v u Mu v Nv u Mu v Nv δδ=+++--证明:000000112(//)00112(//)0000112()2()2(//)00112()2(//)00(,)(,)cos(22)1[]21{2M N j ux M vy N x y M N j ux M vy N x y M N j u x v y j u x v y j ux M vy N x y M N j u x v y j ux M vy N x y F u v f x y e u x v y e e e e e e πππππππππ---+==---+==--+-+-+==--+-+====+=+=∑∑∑∑∑∑∑∑000000112()2(//)0011112(//)2(//)2(//)2(//)00000000}1{}21[(,)(,)]2M N j u x v y j ux M vy N x y M N M N j Mu x M Nv y N j Mu x M Nv y N j ux M vy N j ux M vy N x y x y e e e e e e u Mu v Nv u Mu v Nv ππππππδδ---+-+==----+-+-+-+====+=+=+++--∑∑∑∑∑∑4.20 下列问题与表4.1中的性质有关。

数字图像处理(岗萨雷斯 第三版)课后习题答案

数字图像处理(岗萨雷斯 第三版)课后习题答案

第3章3.6原题:试解释为什么离散直方图均衡技术一般不能得到平坦的直方图?答:假设有一副图像,共有像素个数为n=MN(M行N列),像素灰度值取值范围为(0~255),那么该图像的灰度值的个数为L=256,为了提高图像的对比度,通常我们都希望像素的灰度值不要都局促到某一个狭窄的范围,也就是我们通常说的图像灰度值的动态分布小。

最好是在有效灰度值取值范围上,每个灰度值都有MN/L个像素,这个时候我们就可以得到一张对比度最理想的图像,也就是说像素的取值跨度大,像素灰度值的动态范围大。

因为直方图是PDF(概率密度函数)的近似,而且在处理中,不允许造成新的灰度级,所以在实际的直方图均衡应用中,很少见到完美平坦的直方图。

因此,直方图均衡技术不能保证直方图的均匀分布,但是却可以扩展直方图的分布范围,也就意味着在直方图上,偏向左的暗区和偏向右的亮区都有像素分布,只是不能保证每个灰度级上都有像素分布。

(百度答案:)由于离散图像的直方图也是离散的,其灰度累积分布函数是一个不减的阶梯函数。

如果映射后的图像仍然能取到所有灰度级,则不发生任何变化。

如果映射的灰度级小于256,变换后的直方图会有某些灰度级空缺。

即调整后灰度级的概率基本不能取得相同的值,故产生的直方图不完全平坦。

3.8原题:在某些应用中,将输入图像的直方图模型化为高斯概率密度函数效果会是比较好的,高斯概率密度函数为:其中m和σ分别是高斯概率密度函数的均值和标准差。

具体处理方法是将m和σ看成是给定图像的平均灰度级和对比度。

对于直方图均衡,您所用的变换函数是什么?答:直方图均衡变换函数的一般表达式如下:在回答这个问题时,有两点非常重要,需要学生表达清楚。

第一,这个表达式假定灰度值r只有正值,然而,高斯密度函数通常的取值范围是-∞~∞,认识到这点是非常重要的,认识到这点,学生才能以多种不同的方式来解决问题。

对于像标准差这样的假设,好的答案是,需要足够小,以便于当r为小于0时,在p r(r)曲线下的面积可以被忽略。

数字图像处理第三版中文答案解析冈萨雷斯

数字图像处理第三版中文答案解析冈萨雷斯

第二章2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即()()01702302.x .d =解得x=0.06d 。

根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.⨯π成像单元的阵列。

假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。

则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m 。

如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。

换句话说, 眼睛不能检测到以下直径的点:m .d .x 61011060-⨯<=,即m .d 610318-⨯<2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。

2.1节描述的视觉过程在这种情况下起什么作用?亮度适应。

2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。

美国的商用交流电频率是77HZ 。

问这一波谱分量的波长是多少?光速c=300000km/s ,频率为77Hz 。

因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为:])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。

为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。

(完整版)数字图像处理第三版中文答案解析冈萨雷斯

(完整版)数字图像处理第三版中文答案解析冈萨雷斯

第二章2.1(第二版是0.2和1.5*1.5的矩形,第三版是0.3和1.5圆形)对应点的视网膜图像的直径x 可通过如下图题2.1所示的相似三角形几何关系得到,即()()01702302.x .d =解得x=0.06d 。

根据2.1 节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小25327.⨯π成像单元的阵列。

假设成像单元之间的间距相等,这表明在总长为1.5 mm (直径) 的一条线上有655个成像单元和654个成像单元间隔。

则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=1.1×10-6 m 。

如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。

换句话说, 眼睛不能检测到以下直径的点:m .d .x 61011060-⨯<=,即m .d 610318-⨯<2.2 当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。

2.1节描述的视觉过程在这种情况下起什么作用?亮度适应。

2.3 虽然图2.10中未显示,但交流电的却是电磁波谱的一部分。

美国的商用交流电频率是77HZ 。

问这一波谱分量的波长是多少?光速c=300000km/s ,频率为77Hz 。

因此λ=c/v=2.998 * 108(m/s)/77(1/s) = 3.894*106m = 3894 Km. 2.5根据图2.3得:设摄像机能看到物体的长度为x (mm),则有:500/x=35/14; 解得:x=200,所以相机的分辨率为:2048/200=10;所以能解析的线对为:10/2=5线对/mm. 2.7 假设中心在(x0,y0)的平坦区域被一个强度分布为:])0()0[(22),(y y x x Ke y x i -+--= 的光源照射。

为简单起见,假设区域的反射是恒定的,并等于1.0,令K=255。

数字图像处理第三版中文答案冈萨雷斯.doc

数字图像处理第三版中文答案冈萨雷斯.doc

第二章(第二版是和* 的矩形,第三版是和圆形)对应点的视网膜图像的直径x 可通过如下图题所示的相似三角形几何关系得到,即d 2 x 20.30.017解得x=。

根据节内容,我们知道:如果把中央凹处想象为一个有337000 个成像单元的圆形传感器阵列,它转换成一个大小327.52 成像单元的阵列。

假设成像单元之间的间距相等,这表明在总长为 1.5 mm(直径)的一条线上有655 个成像单元和654 个成像单元间隔。

则每个成像单元和成像单元间隔的大小为s=[(1.5 mm)/1309]=× 10-6 m。

如果在中央凹处的成像点的大小是小于一个可分辨的成像单元,在我们可以认为改点对于眼睛来说不可见。

换句话说,眼睛不能检测到以下直径的点:x 0.06d 1.1 10 6 m ,即 d 18.3 10 6 m当我们在白天进入一家黑暗剧场时,在能看清并找到空座时要用一段时间适应。

节描述的视觉过程在这种情况下起什么作用亮度适应。

虽然图中未显示,但交流电的却是电磁波谱的一部分。

美国的商用交流电频率是 77HZ。

问这一波谱分量的波长是多少光速 c=300000km/s ,频率为 77Hz。

因此λ =c/v= * 10 8(m/s)/77(1/s) = *10 6m = 3894 Km.根据图得:设摄像机能看到物体的长度为x (mm),则有 :500/x=35/14; 解得: x=200 ,所以相机的分辨率为: 2048/200=10; 所以能解析的线对为:10/2=5 线对 /mm.假设中心在( x0,y0 )的平坦区域被一个强度分布为:i (x, y) Ke [( x x 0) 2 ( y y 0) 2 ] 的光源照射。

为简单起见,假设区域的反射是恒定的,并等于,令 K=255。

如果图像用 k 比特的强度分辨率进行数字化,并且眼睛可检测相邻像素间 8 种灰度的突变,那么 k 取什么值将导致可见的伪轮廓解:题中的图像是由:f x, y i x, y r x, y 255e x x02 y y0 2255ex x0 2 y y0 21.0一个截面图像见图(a)。

冈萨雷斯数字图像处理4讲解

冈萨雷斯数字图像处理4讲解
第4章 频域处理
一、背景知识
频域滤波,就是对图像做傅里叶变换后进行的处理 频域滤波在图像增强、图像复原、图像数据压缩等
过程中都起着重要作用 频域滤波包括低通滤波、高通滤波和高频强调滤波
一、二维离散傅里叶变换
令f(x,y)表示一幅大小为MXN的图像,其中 x=0,1,2, …,M-1, y=0, 1, 2, …, N-1
二、 Matlab中的二维DFT
显示频谱: FC = fftshift(F) imshow(abs(FC), [])
对数变换可以拓展显示范围 S2 = log(1 + abs(FC)) imshow(S2, [])
二、 Matlab中的二维DFT
傅里叶逆变换: f=ifft2(F)
图像处理中,逆变换结果一般只取实部: f = real(ifft2(F))
三、频域滤波
P = 2^nextpow2(2*m); PQ = [P, P]; elseif nargin == 3 m = max([AB CD]); P = 2^nextpow2(2*m); PQ = [P, P]; else error('Wrong number of inputs.') end
f (x, y)
1
M 1 N 1
F (u, v)e j 2 (ux / M vy/ N )
MN u0 v0
其中x=0,1,2, …,M-1和y=0, 1, 2, …, N-1 F(u,v)在这里称为傅里叶系数 Matlab中F(1,1)=F(0,0)
一、二维离散傅里叶变换
在原点处的频率值F(0,0)称为直流分量 傅里叶变换的频谱定义为
M 1 N 1
F(u, v)
f (x, y)e j2 (ux/ M vy/ N )

冈萨雷斯数字图像处理4

冈萨雷斯数字图像处理4

五、低通频域滤波器
理想低通滤波器(ILP)具有传递函数:
1 H (u, v) 0
若D(u, v) D0 若D(u, v) D0
n阶巴特沃兹低通滤波器(BLPF),截止频率
为D0
H
(u,
v)

1ຫໍສະໝຸດ [1 D(u, v)
/
D0
]2n
高斯低通滤波器(GLPF)的传递函数为:
H (u, v) eD2 (u,v)/ 2D02
五、在频率域直接生成滤波器
其中函数meshgrid用来生成网格数组,语 法:
[C, R] = meshgrid(c,r);
c和r是输入的行向量,C和R是输出的矩阵 C和R的维数为length(c)*length(r) 其中C的行是c的副本,R的列是r的副本 如c=[0,1]; r=[0, 1, 2]; 则C=[0 1 R=[0 0
M 1 N 1
F(u, v)
f (x, y)e j2 (ux/ M vy/ N )
x0 y0
其中u=0,1,2, …,M-1和v=0, 1, 2, …, N-1
频域系统是由F(u,v)所构成的坐标系统,其中u和 v是频率变量
利用欧拉公式可以手工计算傅里叶变换
一、二维离散傅里叶变换
自定义函数paddedsize()用来计算P、Q的最小偶 数值,以满足快速傅里叶变换FFT的计算需要
三、频域滤波
为避免折叠误差的干扰,在做频域滤波前要对输入 的图像和滤波器进行扩充补零的操作
设f(x,y)的大小为AXB, h(x,y)的大小为CXD, 则扩充后的函数大小为PXQ,其中: P>=A+C-1 Q>=B+D-1

数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。

根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。

图像处理着重强调在图像之间进行的变换。

比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。

图像处理主要在图像的像素级上进行处理,处理的数据量非常大。

图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。

图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。

图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。

图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。

第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。

图像的量化等级反映了采样的质量,数字图像的量化级数随图像的内容及处理的目的差别而不同,低的量化级数只满足于处理简单的线条而对于图像,若线条不明显时,则会产生伪轮廓。

《数字图像处理(第3版)》习题解答

《数字图像处理(第3版)》习题解答

胡学龙编著《数字图像处理(第 3 版)》思考题与习题参考答案目录第 1 章概述 (1)第 2 章图像处理基本知识 (4)第 3 章图像的数字化与显示 (7)第 4 章图像变换与二维数字滤波 (10)第 5 章图像编码与压缩 (16)第 6 章图像增强 (20)第 7 章图像复原 (25)第 8 章图像分割 (27)第 9 章数学形态学及其应用 (31)第 10 章彩色图像处理 (32)第1章概述1.1连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。

这样,数字图像可以用二维矩阵表示。

将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。

图像的数字化包括离散和量化两个主要步骤。

在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。

1.2采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。

(1)处理精度高。

(2)重现性能好。

(3)灵活性高。

2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。

3.数字图像处理技术适用面宽。

4.数字图像处理技术综合性强。

1.3数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。

1.4 说出图像、视频(video)、图形(drawing)及动画(animation)等视觉信息之间的联系和区别。

答:图像是用成像技术形成的静态画面;视频用摄像技术获取动态连续画面,每一帧可以看成是静态的图像。

图形是人工或计算机生成的图案,而动画则是通过把人物的表情、动作、变化等分解后画成许多动作瞬间的画幅,再用摄影机连续拍摄成一系列画面,给视觉造成连续变化的图画。

数字图像处理第四章部分答案(全手打来自文库)

数字图像处理第四章部分答案(全手打来自文库)

6
7
7
7
j=INT[(L-1)pj+0.5] 5 确定灰度变换关系:i→j
0→1 1→3 2→4 3→5 4→6 5,6,7→7
6 计算变换后图像的直方图:p
ห้องสมุดไป่ตู้
0.14
(j)=nj∕n
直方图规定化
0.22 0.25 0.17 0.10 0.12
步骤 计算方式
计算结果
1
列出图像灰度级 i,j 0
1
2
3
4
已知通过图像平均法可以将噪声均方差降低到原来的m为用于平均的图像个数所以48解
4.2
解:1、[0,15]=3/2[0,10]; 2、[15,25]=15+[10,20]-10; 3、[25,30]=25+1/2([20,30]-20);
4.4
直方图均衡化

计算方法或公式

1 列出图像灰度级(i 或 j)
=H(u,v)F(u,v)
所以频域的等价滤波器为 H(u,v) =(1- ej2 u/m)+(1- ej2 v/n)
5
6
7
2
计算原始直方图 pr(i) 0.14 0.22 0.25 0.17 0.10 0.06 0.03 0.03
3
列出规定直方图 pz(j) 0
0
0
0.19 0.25 0.21 0.24 0.11
4
计算原始累积直方图 pi 0.14 0.36 0.61 0.78 0.88 0.94 0.97 1.00
所以 g=1/10 n= 1/ m n
所以 M=100,T=3.33 秒
4.8 解:对提示表达式进行傅里叶变换得

23887《数字图像处理(第3版)》习题解答(上传)

23887《数字图像处理(第3版)》习题解答(上传)

胡学龙编著《数字图像处理‎(第 3 版)》思考题与习题‎参考答案目录第1章概述 (1)第2章图像处理基本‎知识 (4)第3章图像的数字化‎与显示 (7)第4章图像变换与二‎维数字滤波 (10)第5章图像编码与压‎缩 (16)第6章图像增强 (20)第7章图像复原 (25)第8章图像分割 (27)第9章数学形态学及‎其应用 (31)第10章彩色图像处理‎ (32)第1章概述1.1连续图像和数‎字图像如何相‎互转换?答:数字图像将图‎像看成是许多‎大小相同、形状一致的像‎素组成。

这样,数字图像可以‎用二维矩阵表‎示。

将自然界的图‎像通过光学系‎统成像并由电‎子器件或系统‎转化为模拟图‎像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数‎字图像信号。

图像的数字化包括离散和‎量化两个主要‎步骤。

在空间将连续‎坐标过程称为‎离散化,而进一步将图‎像的幅度值(可能是灰度或‎色彩)整数化的过程‎称为量化。

1.2采用数字图像‎处理有何优点‎?答:数字图像处理‎与光学等模拟‎方式相比具有‎以下鲜明的特‎点:1.具有数字信号‎处理技术共有‎的特点。

(1)处理精度高。

(2)重现性能好。

(3)灵活性高。

2.数字图像处理‎后的图像是供‎人观察和评价‎的,也可能作为机‎器视觉的预处‎理结果。

3.数字图像处理‎技术适用面宽‎。

4.数字图像处理‎技术综合性强‎。

1.3数字图像处理‎主要包括哪些‎研究内容?答:图像处理的任‎务是将客观世‎界的景象进行‎获取并转化为‎数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像‎转化为另一幅‎具有新的意义‎的图像。

1.4 说出图像、视频(video)、图形(drawin‎g)及动画(animat‎i on)等视觉信息之‎间的联系和区别‎。

答:图像是用成像‎技术形成的静‎态画面;视频用摄像技‎术获取动态连‎续画面,每一帧可以看成是静态‎的图像。

图形是人工或‎计算机生成的‎图案,而动画则是通‎过把人物的表‎情、动作、变化等分解后‎画成许多动作‎瞬间的画幅,再用摄影机连‎续拍摄成一系‎列画面,给视觉造成连续变化的‎图画。

数字图像处理第三版中文答案解析冈萨雷斯

数字图像处理第三版中文答案解析冈萨雷斯

数字图像处理第三版中文答案解析引言《数字图像处理》是一本经典的图像处理教材,目前已经出版了第三版。

本文是对该书答案解析的总结,将分析和解释书中的问题和答案。

目录•第一章:绪论•第二章:数字图像基础•第三章:灰度变换•第四章:空间滤波•第五章:频域滤波•第六章:图像复原•第七章:几何校正•第八章:彩色图像处理•第九章:小波与多分辨率处理第一章:绪论本章主要介绍了数字图像处理的概念和基本步骤。

答案解析中包括对一些基本概念和术语的解释,以及相关的数学公式和图像处理方法的应用。

第二章:数字图像基础本章介绍了数字图像的表示和存储方法,以及图像的采样和量化过程。

答案解析中详细解释了图像的像素值和灰度级之间的关系,以及采样频率和量化步长对图像质量的影响。

第三章:灰度变换本章讲述了图像的灰度变换方法,包括线性和非线性变换。

答案解析中对不同灰度变换函数的作用和效果进行了解释,并给出了一些实例和应用。

第四章:空间滤波本章介绍了图像的空间滤波方法,包括平滑和锐化滤波。

答案解析中解释了不同滤波器的原理和效果,并给出了滤波器设计的步骤和实例。

第五章:频域滤波本章讲述了图像的频域滤波方法,包括傅里叶变换和滤波器设计。

答案解析中详细解释了傅里叶变换的原理和应用,以及频域滤波器的设计方法和实例。

第六章:图像复原本章介绍了图像的复原方法,包括退化模型和复原滤波。

答案解析中详细解释了退化模型的建立和复原滤波器的设计方法,以及如何根据退化模型进行图像复原的实例。

第七章:几何校正本章讲述了图像的几何校正方法,包括图像的旋转、缩放和平移等操作。

答案解析中给出了不同几何变换的矩阵表示和变换规则,以及几何校正的应用实例。

第八章:彩色图像处理本章介绍了彩色图像的表示和处理方法,包括RGB和HSV 等颜色模型的转换和处理。

答案解析中详细解释了不同颜色模型的表示和转换方法,以及彩色图像处理的实例和应用。

第九章:小波与多分辨率处理本章讲述了小波和多分辨率处理的方法和应用。

数字图像处理冈萨雷斯第三版第四章讲解学习

数字图像处理冈萨雷斯第三版第四章讲解学习

1 其它
设置F(0,0)=0(结果图像的平均值为零),而保留其 它傅里叶变换的频率成分不变
由于图像平均值为0而产生整体平均灰度级的降低, 因此几乎没有平滑的灰度级细节
低通滤波器:
使低频通过,高频衰减的滤波器
被低通滤波的图像比原始图像少了尖锐的细节部分 而突出了平滑过渡部分
高通滤波器:
使高频通过,低频衰减的滤波器
x0 y0
②当从变换的原点移开时,对低频对应着图像的慢变化分量, 如图像的平滑部分
③进一步离开原点时,较高的频率对应图像中变化越来越 快的灰度级,如边缘或噪声等尖锐部分
F(u, v) F(u, v) ei(u,v)
从幅度谱中我们可以看出明亮线和原始图像中对应的轮廓 线是垂直的。如果原始图像中有圆形区域那么幅度谱中也 呈圆形分布。
性滤波 g(x, y) w(s,t) f (x s, y t) (3.4 1)
sa tb
(4.6-23)和(3.4-1)本质上是相似的;相差之处只在于:常数、 负号及求和的上、下限; 在实践中,我们宁愿使用(3.4-1)和较小的滤波器模板来实现滤波 处理; 滤波在频率域中更为直观,可以在频率域指定滤波器,做反变换, 然后在空间域使用结果滤波器作为在空间域构建小滤波器模板的 指导;
傅里叶频谱显示了±450的强边缘,在垂直轴偏左的部分有垂 直成分(对应两个氧化物突起)。
频率域滤波的基本步骤
DFT
滤波器 H (u , v)
IDFT
F (u , v)
H (u , v) F (u , v)
前处理
后处理
f (x , y)
g (x , y)
思想:通过滤波器函数以某种方式来修改图像变换, 然后通过取结果的反变换来获得处理后的输出图像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.16 证明连续和离散二维傅里叶变换都是平移和旋转不变的。

首先列出平移和旋转性质:002(//)00(,)(,)j u x M v y N f x y e F u u v v π+⇔-- (4.6-3) 002(//)00(,)(,)j x r M y v N f x x y y F u v e π-+--⇔ (4.6-4)旋转性质:cos ,sin ,cos ,sin x r y r u v θθωϕωϕ====00(,)(,)f r F θθωϕϕ+⇔+ (4.6-5)证明:由式(4.5-15)得:由式(4.5-16)得:依次类推证明其它项。

4.17 由习题4.3可以推出1(,)u v δ⇔和(,)1t z δ⇔。

使用前一个性质和表4.3中的平移性质证明连续函数00(,)cos(22)f t z A u t v z ππ=+的傅里叶变换是0000(,)[(,)(,)]2AF u v u u v v u u v v δδ=+++-- 证明:000000002()2()002()2()2()2()2()2()2((,)(,)cos(22)[]222j ut vz j ut vz j u t v z j u t v z j ut vz j u t v z j u t v z j ut vz j u F u v f t z e dtdzA u t v z e dtdzA e e e dtdzA A e e dtdz e e πππππππππππ∞∞-+-∞-∞∞∞-+-∞-∞∞∞+-+-+-∞-∞∞∞+-+-+--∞-∞==+=+=+⎰⎰⎰⎰⎰⎰⎰⎰)00000000(,)(,)22[(,)(,)]2t vz dtdz A Au u v v u u v v Au u v v u u v v δδδδ∞∞+-∞-∞=--+++=--+++⎰⎰ 4.18 证明离散函数(,)1f x y =的DFT 是1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它证明:离散傅里叶变换112(//)00(,)(,)M N j ux M vy N x y F u v f x y e π---+===∑∑112(//)00112(//)00{1}M N j ux M vy N x y M N j ux M vy N x y e e ππ---+==---+==ℑ==∑∑∑∑如果0u v ==,{1}1ℑ=,否则:1100{1}{cos[2(//)]sin[2(//)]}M N x y ux M vy N j ux M vy N ππ--==ℑ=+-+∑∑考虑实部,1100{1}cos[2(//)]M N x y ux M vy N π--==ℑ=+∑∑,cos[2(//)]ux M vy N π+的值介于[-1, 1],可以想象,1100{1}cos[2(//)]0M N x y ux M vy N π--==ℑ=+=∑∑,虚部相同,所以1,0{1}(,)0,u v u v δ==⎧ℑ==⎨⎩其它4.19 证明离散函数00cos(22)u x v y ππ+的DFT 是00001(,)[(,)(,)]2F u v u Mu v Nv u Mu v Nv δδ=+++--证明:000000112(//)00112(//)0000112()2()2(//)00112()2(//)00(,)(,)cos(22)1[]21{2M N j ux M vy N x y M N j ux M vy N x y M N j u x v y j u x v y j ux M vy N x y M N j u x v y j ux M vy N x y F u v f x y e u x v y e e e e e e πππππππππ---+==---+==--+-+-+==--+-+====+=+=∑∑∑∑∑∑∑∑000000112()2(//)0011112(//)2(//)2(//)2(//)00000000}1{}21[(,)(,)]2M N j u x v y j ux M vy N x y M N M N j Mu x M Nv y N j Mu x M Nv y N j ux M vy N j ux M vy N x y x y e e e e e e u Mu v Nv u Mu v Nv ππππππδδ---+-+==----+-+-+-+====+=+=+++--∑∑∑∑∑∑4.20 下列问题与表4.1中的性质有关。

★ (a) 证明性质1的正确性。

★ (b) 证明性质3的正确性。

(c) 证明性质6的正确性。

★ (d) 证明性质7的正确性。

(e) 证明性质9的正确性。

(f) 证明性质10的正确性。

★ (g) 证明性质11的正确性。

(h) 证明性质12的正确性。

(i) 证明性质13的正确性。

(a)当)y ,x (f 为实函数,则()()[][]())v ,u (F )N /y v M /x u 2exp()y ,x (f )N /vy M /ux 2j exp()y ,x (f )N /vy M /ux 2j exp()y ,x (f )v ,u (F 1M 0x 1N 0y 1M 0x 1N 0y **1M 0x 1N 0y *--=-+--=+=⎥⎦⎤⎢⎣⎡+-=∑∑∑∑∑∑-=-=-=-=-=-=πππ(b)当)y ,x (f 为实函数,则)v ,u (jI )v ,u (R )v ,u (F +=和)v ,u (jI )v ,u (R )v ,u (F *-=并且)v ,u (jI )v ,u (R )v ,u (F --+--=--。

而且)v ,u (F )v ,u (F *--=,所以可以得到:)v ,u (jI )v ,u (R )v ,u (jI )v ,u (R --+--=-,便是)v ,u (R )v ,u (R --=为偶函数和 )v ,u (I )v ,u (I --=-为奇函数。

(c)当)y ,x (f --为复函数,由下式得:[]()()1100**(,)(,)exp(2//)11*00(,)(,)exp(2//)M N m n f x y f m n j um M vn N M N m n u v m n j um M vn N f F ππ--==ℑ--=+--∑∑===∑∑⎡⎤-+⎢⎥⎣⎦所以得证;(d)当*)y ,x (f 为复函数,由下式得:()()11**00**(,)(,)exp(2//)1100(,)(,)exp(2//)M N m n x y x y j ux M vy N M N m n u v fff x y j ux M vy N F ππ--==⎡⎤ℑ=-+⎢⎥⎣⎦--=∑∑==--∑∑⎡⎤+⎢⎥⎣⎦所以得证;(e)当)y ,x (f 为实函数、奇函数,则)v ,u (F 的实部为0,即为虚数,且也是奇数。

()[][]()[][][][]()()[]()()[]()()[]∑∑∑∑∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-=-=-=-=--=--=--=+-=1M 0x 1M 0x 1M 0x 1N 0y 1N 0y 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y even odd even even j 2even odd jodd even jodd even odd )N /vy 2j exp())M /ux (2j exp()y ,x (f )N /vy M /ux 2j exp()y ,x (f )v ,u (F πππ由式可知,为虚数。

(f)当)y ,x (f 为虚函数、偶函数,由下式得:()[]()[]()[][][][][]()()()()()()[]()()[]()()[]()()[]∑∑∑∑∑∑∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-=-=-=-=-=-=-+=--=--=--=+-=1M 0x 1M 0x 1M 0x 1N 0y 1N 0y 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y even even j odd even 2even even j odd odd odd even j 2even even jeven jodd even jodd even jeven )N /vy 2j exp()M /ux 2j exp()y ,x (jg )N /vy M /ux 2exp()y ,x (f )v ,u (F πππ所以F(u ,v)为一虚数。

(g)当)y ,x (f 为虚函数、奇函数,由下式得:[]()()()()()()[][][][]()()[]()()[]()()[]∑∑∑∑∑∑∑∑∑∑-=-=-=-=-=-=-=-=-=-=-+=--=--=1M 0x 1N 0y 1M 0x 1M 0x 1N 0y 1N 0y 1M 0x 1N 0y 1M 0x 1N 0y even odd j even even 2even odd j jodd even jodd even jodd odd odd odd even j 2even even jodd )v ,u (F可知,结果为一实数。

(h)当)y ,x (f 为复函数、偶函数,由下式得:[]()()()∑∑∑∑∑∑-=-=-=-=-=-=+-++-=+-+=+=1M 0x 1M 0x 1N 0y ie1N 0y re1M 0x 1N 0y iereiere)N /vy M /ux 2j exp()y ,x (j )N /vy M /ux 2j exp()y ,x ()N /vy M /ux 2j exp()y ,x (j)y ,x ()x ,u (F )y ,x (j)y ,x ()y ,x (f ffffffπππ由式子可知,前项为实数,而后项为一纯虚偶数。

(i)当)y ,x (f 为复函数、奇函数,由下式得:[]()()()∑∑∑∑∑∑-=-=-=-=-=-=+-++-=-+=1M 0x 1N 0y io1M 0x 1N 0y ro1M 0x 1N 0y ioro)N /vy M /ux 2j exp()y ,x (j )N /vy M /ux 2j exp()y ,x ()N /vy ,M /ux 2j exp()y ,x (j)y ,x ()v ,u (F ffffπππ由式子可知,前项为一偶实函数,后项为一纯虚奇数。

★ 4.21 4.6.6节中在讨论频率域滤波时需要对图像进行填充。

相关文档
最新文档