导数计算练习题.doc
3.2导数的计算练习
考点2 求曲线的切线方程
例例2:求曲线y=x3-2x在点(1,-1)处的切线方程.
[解: y′=(x3-2x)′=3x2-2, ∴y′|x=1=3×12-2=1. 即在点(1,-1)处的切线的斜率是1. 由点斜式得切线方程为y+1=x-1即x-y-2=0.
即[f(x)-g(x)]′=0,所以f(x)-g(x)=C(C为常数).
答案:C
二5.若、函填数空f题(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=________.
解析:由f(x)=ax4+bx2+c得f′(x)=4ax3+2bx,又f′(1)=2,所以4a+2b=2 ,即f′(-1)=-4a-2b=-(4a+2b)=-2.
求过点(1,-1)且与曲线y=x3-2x相切的直线方程.
解:设P(x0,y0)为切点,则切线的斜率为f′(x0)=3x-2, 故切线方程为y-y0=(3x-2)(x-x0), 即y-(x-2x0)=(3x-2)(x-x0), 又知切线过点(1,-1),代入上述方程, 得解-得1x0-=(1x-或2x0x=0)=-(312x-,2)(1-x0), 故所求的切线方程为y+1=x-1 或y+1=- 4 (x-1),
10.已知函数f(x)=ax3+bx2+cx过点(1,5),其导函数y=f′(x)的图象如图所示 ,求f(x)的解析式.
解:∵f(x)=ax3+bx2+cx, ∴f′(x)=3ax2+2bx+c.由图象可知f′(1)=0,f′(2)=0. ∴3a+2b+c=0,① 12a+4b+c=0,② 又函数f(x)的图象过点(1,5), ∴f(1)=5,即a+b+c=5③ 由①②③可得a=2,b=-9,c=12. ∴函数y=f(x)的解析式为f(x)=2x3-9x2+12x.
高中数学导数练习题
高中数学导数练习题一、基础题1. 求函数 $f(x) = x^3 3x$ 的导数。
2. 求函数 $f(x) = \sqrt{1+x^2}$ 的导数。
3. 求函数 $f(x) = \frac{1}{x^2}$ 的导数。
4. 求函数 $f(x) = \ln(x^2 + 1)$ 的导数。
5. 求函数 $f(x) = e^{2x}$ 的导数。
二、应用题1. 已知函数 $f(x) = ax^2 + bx + c$,求 $f'(x)$ 并说明其几何意义。
2. 某物体做直线运动,其位移 $s$ 与时间 $t$ 的关系为 $s =t^2 2t + 1$,求物体在 $t=2$ 时的瞬时速度。
3. 已知函数 $f(x) = \frac{1}{\sqrt{x}}$,求曲线在$x=4$ 处的切线方程。
4. 求函数 $f(x) = \sin(x)$ 在区间 $[0, \pi]$ 上的最大值和最小值。
5. 已知函数 $f(x) = \ln(x 1)$,求 $f(x)$ 的单调区间。
三、综合题1. 设函数 $f(x) = (x^2 1)^3$,求 $f'(x)$。
2. 已知函数 $f(x) = \frac{2x + 3}{x 1}$,求 $f'(x)$。
3. 求函数 $f(x) = \sqrt{1 + \sqrt{1 + x^2}}$ 的导数。
4. 已知函数 $f(x) = e^{x^2}$,求曲线在 $x=0$ 处的切线方程。
5. 设函数 $f(x) = \ln(\sin^2 x)$,求 $f'(x)$。
四、拓展题1. 已知函数 $f(x) = \frac{1}{x^2 + 1}$,求 $f''(x)$。
2. 设函数 $f(x) = (x^3 + 1)^4$,求 $f'''(x)$。
3. 已知函数 $f(x) = \arctan(x)$,求 $f'(x)$。
题目:一次函数的导数计算练习题(绝对经典全面)
题目:一次函数的导数计算练习题(绝对经典全面)一次函数的导数计算练题(绝对经典全面)题目一已知函数 f(x) = 3x + 2,求 f(x) 的导数。
解答一f'(x) = 3题目二已知函数 g(x) = -4x + 5,求 g(x) 的导数。
解答二g'(x) = -4题目三已知函数 h(x) = 2x^2 + 3x - 1,求 h(x) 的导数。
解答三h'(x) = 4x + 3题目四已知函数 k(x) = (1/2)x^2 - 4x + 7,求 k(x) 的导数。
解答四k'(x) = x - 4题目五已知函数 m(x) = 4x^3 + 2x^2 + 3x - 1,求 m(x) 的导数。
解答五m'(x) = 12x^2 + 4x + 3题目六已知函数 n(x) = -5x^2 + 6x - 2,求 n(x) 的导数。
解答六n'(x) = -10x + 6题目七已知函数 p(x) = (1/3)x^3 + x^2 - 2x + 5,求 p(x) 的导数。
解答七p'(x) = x^2 + 2x - 2题目八已知函数 q(x) = -2x^3 + 3x^2 - x + 4,求 q(x) 的导数。
解答八q'(x) = -6x^2 + 6x - 1题目九已知函数 r(x) = 5x^2 - 4x + 3,求 r(x) 的导数。
解答九r'(x) = 10x - 4题目十已知函数 s(x) = -x^2 + 3x - 2,求 s(x) 的导数。
解答十s'(x) = -2x + 3以上是一次函数的导数计算练题(绝对经典全面)。
专升本导数练习题及答案
专升本导数练习题及答案### 专升本导数练习题及答案#### 练习题一:基础导数计算题目:计算以下函数的导数:1. \( f(x) = 3x^2 + 2x - 5 \)2. \( g(x) = \sin(x) + e^x \)3. \( h(x) = (x^3 - 1)^4 \)解答:1. 对于 \( f(x) = 3x^2 + 2x - 5 \),我们使用幂函数的导数规则: \[ f'(x) = 6x + 2 \]2. 对于 \( g(x) = \sin(x) + e^x \),我们分别求导:\[ g'(x) = \cos(x) + e^x \]3. 对于 \( h(x) = (x^3 - 1)^4 \),我们使用链式法则和幂函数的导数规则:\[ h'(x) = 4(x^3 - 1)^3 \cdot (3x^2) = 12x^2(x^3 - 1)^3 \]#### 练习题二:复合函数的导数题目:计算以下复合函数的导数:1. \( F(x) = (\ln(x))^2 \)2. \( G(x) = \sqrt{x} \cdot \sin(x) \)解答:1. 对于 \( F(x) = (\ln(x))^2 \),我们使用链式法则和对数函数的导数:\[ F'(x) = 2(\ln(x)) \cdot \frac{1}{x} = \frac{2\ln(x)}{x} \]2. 对于 \( G(x) = \sqrt{x} \cdot \sin(x) \),我们使用乘积法则: \[ G'(x) = \frac{1}{2\sqrt{x}} \cdot \sin(x) + \sqrt{x}\cdot \cos(x) \]\[ G'(x) = \frac{\sin(x)}{2\sqrt{x}} + \sqrt{x}\cos(x) \]#### 练习题三:隐函数的导数题目:计算以下隐函数的导数:1. \( x^2 + y^2 = 9 \) 求 \( \frac{dy}{dx} \)2. \( y^3 + xy = 2 \) 求 \( \frac{dy}{dx} \)解答:1. 对于 \( x^2 + y^2 = 9 \),我们对等式两边求导:\[ 2x + 2y\frac{dy}{dx} = 0 \]\[ \frac{dy}{dx} = -\frac{x}{y} \]2. 对于 \( y^3 + xy = 2 \),我们对等式两边求导:\[ 3y^2\frac{dy}{dx} + (x + y)\frac{dy}{dx} = 0 \]\[ \frac{dy}{dx}(3y^2 + x + y) = -x \]\[ \frac{dy}{dx} = -\frac{x}{3y^2 + x + y} \]#### 练习题四:高阶导数题目:计算以下函数的二阶导数:1. \( f(x) = x^3 - 6x^2 + 9x \)2. \( g(x) = \ln(x) - e^x \)解答:1. 对于 \( f(x) = x^3 - 6x^2 + 9x \),我们首先求一阶导数: \[ f'(x) = 3x^2 - 12x + 9 \]然后求二阶导数:\[ f''(x) = 6x - 12 \]2. 对于 \( g(x) = \ln(x) - e^x \),我们首先求一阶导数:\[ g'(x) = \frac{1}{x} - e^x \]然后求二阶导数:\[ g''(x) = -\frac{1}{x^2} - e^x \]这些练习题涵盖了基础导数计算、复合函数导数、隐函数导数以及高阶导数,是专升本数学考试中常见的题型。
关于导数的29个典型习题
关于导数的29个典型习题习题1设函数在0=x 的某邻域内1C 类(有一阶连续导数),且.0)0(,0)0(≠'≠f f 若)0()2()(f h f b h f a -+在0→h 时是比h 高阶的无穷小,试确定b a ,的值。
解 由题设知 0)0()1()]0()2()([lim 0=-+=-+→f b a f h f b h f a h . .01,0)0(=-+∴≠b a f 由洛比达法则知).0()2(1)2(2)(lim )0()2()(lim 000f b a h f b h f a h f h bf h af h h '+='+'=-+=→→洛,0)0(≠'f 故.02=+b a 联立可解出.1,2-==b a习题2 设,0,00,)()(⎪⎩⎪⎨⎧=≠-=-x x x e x g x f x 其中)(x g 有二阶连续导数,且1)0(,1)0(-='=g g .(1) 求);(x f '(2) 讨论)(x f '在),(+∞-∞上的连续性.解 (1) 当0≠x 时,用公式有,)1()()()(])([)(22xe x x g x g x x e x g e x g x xf xx x ---++-'=+-+'=' 当0=x 时,用定义求导数,有 .21)0()(lim )0(20-''=-='-→g x e x g f x x 二次洛 ⎪⎩⎪⎨⎧=-''≠++-'='∴-.0,21)0(0,)1()()()(2x g x x e x x g x g x x f x(2) 因在0=x 处有).0(21)0(2)(lim 2)1()()()(lim )(lim 000f g e x g x e x e x g x g x x g x f x x xx x x '=-''=-''=+-+'-''+'='-→--→→洛而)(x f '在0≠x 处连续,故).,()(+∞-∞∈'C x f习题3 证明:若022=++++c y b x a y x (圆),其中c b a ,,为定数),04(22>-+c b a 则 =+x d yd dx dy 22232])(1[定数。
(完整版)导数的计算练习题及答案
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
(word完整版)导数的运算练习题
导数的运算练习一、常用的导数公式(1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________;二、导数的运算法则 1、(1) ; (2);(3)______________________________________; (4)=___________________________________;(C 为常数)2、复合函数的导数设 .三、练习1、已知()2f x x =,则()3f '等于( )A .0B .2xC .6D .9 2、()0f x =的导数是( )A .0B .1C .不存在D .不确定 3、32y x = ) A .23xB .213x C .12- D 33x4、曲线n y x =在2x =处的导数是12,则n 等于( )A .1B .2C .3D .45、若()f x =()1f '等于( )A .0B .13- C .3 D .136、2y x =的斜率等于2的切线方程是( ) A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫⎪⎝⎭8、设()sin y f x =是可导函数,则x y '等于( )A .()sin f x 'B .()sin cos f x x '⋅C .()sin sin f x x '⋅D .()cos cos f x x '⋅ 9、函数()22423y x x=-+的导数是( )A .()2823x x -+B .()2216x -+ C .()()282361x x x -+-D .()()242361x x x -+-10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-11、点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A .0,2π⎡⎤⎢⎥⎣⎦B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭C .3,4ππ⎡⎫⎪⎢⎣⎭ D .3,24ππ⎛⎤ ⎥⎝⎦12、求函数212y x =-在点1x =处的导数。
导数练习题含答案完整版
导数练习题含答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】导数练习题班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( )A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40 B.0.41 C.0.43D.0.443.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2ΔxC.4+2(Δx)2D.4x4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6 B.18C.54D.815.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A.3 B.-3C. 2D.-26.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=xC.y=x+ 2D.y=-x-28.已知曲线y=2x2上一点A(2,8),则A处的切线斜率为( )A.4 B.16 C.8D.29.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4)C.(14,116)D.(12,14)10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b= 1B.a=-1,b=1C.a=1,b=- 1D.a=-1,b=-111.已知f(x)=x2,则f′(3)=( )A.0 B.2xC. 6D.912.已知函数f(x)=1x,则f′(-3)=( )A. 4 B.19C .-14D .-1913.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2xx +3?2D.3x 2+6x x +3?2 14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( )A .0B .-1C .1D .215.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤18.函数y =4x 2+1x的单调递增区间是( ) A .(0,+∞) B .(-∞,1)C .(12,+∞)D .(1,19.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 20.设x 0为可导函数f (x )的极值点,则下列说法正确的是( )A .必有f ′(x 0)=B .f ′(x 0)不存在C .f ′(x 0)=0或f ′(x 0)不存在D .f ′(x 0)存在但可能不为022.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =( ) A .2 B .3C .4D .523.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有( )A .1个B .2个C .3个D .4个24.函数f (x )=-13x 3+12x 2+2x 取极小值时,x 的值是( )A .2B .2,- 1C .-1D .-325.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( ) A .f (2),f (3) B .f (3),f (5)C .f (2),f (5)D .f (5),f (3)26.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是( )A .-2B .0C .2D .427.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B.-71C .-15D .-22 28.(2010年高考山东卷)已知某生产厂家的年利润y (单元:万元)与年产量x (单位:万件)的函数关系式为y =-13x 3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A .13万件B .11万件C .9万件D .7万件29.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1秒末B .0秒C .4秒末D .0,1,4秒末二、填空题1.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________.2.若曲线y =2x 2-4x +a 与直线y =1相切,则a =________.3.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ba=________.4.令f (x )=x 2·e x ,则f ′(x )等于________.5.函数y =x 2+4x 在x =x 0处的切线斜率为2,则x 0=________. 6.若y =10x ,则y ′|x =1=________.7.一物体的运动方程是s (t )=1t,当t =3时的瞬时速度为________.8.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′(π3)=12,则a =________,b =________.9.y =x 3-6x +a 的极大值为________.10.函数y =x e x 的最小值为________.11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.12.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.三、解答题1.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x;(3)y=lg x-e x.2.已知抛物线y=x2+4与直线y=x +10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=12x .4.已知函数f(x)=x3+ax2+bx+c,当x=-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数练习题答案班级姓名一、选择题1.当自变量从x0变到x1时函数值的增量与相应自变量的增量之比是函数( ) A.在区间[x0,x1]上的平均变化率B.在x0处的变化率C.在x1处的变化量D.在区间[x0,x1]上的导数答案:A2.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( )A.0.40B.0.41C.0.43D.0.44解析:选 B.Δy=f(2.1)-f(2)=2.12-22=0.41.3.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A. 4B.4+2ΔxC.4+2(Δx)2D.4x解析:选B.因为Δy=[2(1+Δx)2-1]-(2×12-1)=4Δx+2(Δx)2,所以ΔyΔx=4+2Δx,故选B.4.如果质点M按照规律s=3t2运动,则在t=3时的瞬时速度为( )A. 6B.18C.54D.81解析:选B.ΔsΔt=3?3+Δt2-3×32Δt,s′=li mΔt→0ΔsΔt=li mΔt→0(18+3Δt)=18,故选B.5.已知f(x)=-x2+10,则f(x)在x=32处的瞬时变化率是( )A. 3B.-3C. 2D.-2解析:选B.6.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直解析:选 B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.7.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x- 2B.y=xC.y=x+ 2D.y=-x-2解析:选 A.f′(1)=li mΔx→0-11+Δx+11Δx=li mΔx→011+Δx=1,则在(1,-1)处的切线方程为y+1=x-1,即y=x-2.8.已知曲线y=2x2上一点A(2,8),则A 处的切线斜率为( )A. 4B.16C.8D.2解析:选C.9.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0)B.(2,4)C.(14,116)D.(12,14)故选D.10.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A .a =1,b = 1B .a =-1,b =1C .a=1,b=-1D .a =-1,b =-1 解析:选A.11.已知f (x )=x 2,则f ′(3)=( )A .0B .2xC .6D .9解析:选 C.∵f ′(x )=2x ,∴f ′(3)=6.12.已知函数f (x )=1x,则f ′(-3)=( )A .4B.19C .-14D .-19解析:选 D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.13.函数y =x 2x +3的导数是( )A.x 2+6x x +3?2B.x 2+6x x +3C.-2x x +3?2D.3x 2+6x x +3?2解析:选A14.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .0B .-1C .1D .2解析:选 B.∵f (x )=12f ′(-1)x 2-2x +3, ∴f ′(x )=f ′(-1)x -2.∴f ′(-1)=f ′(-1)×(-1)-2.∴f ′(-1)=-1.15.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙:f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f (x )=x 3在(-1,1)内是单调递增的,但f ′(x )=3x 2≥0(-1<x <1),故甲是乙的充分不必要条件,选A.16.函数f (x )=(x -3)e x 的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选 D.f ′(x )=(x -3)′e x+(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.17.函数y =ax 3-x 在R 上是减函数,则( )A .a ≥13B .a =1C .a =2D .a ≤0解析:选D.因为y ′=3ax 2-1,函数y =ax 3-x 在(-∞,+∞)上是减函数,所以y ′=3ax 2-1≤0恒成立,即3ax 2≤1恒成立.当x =0时,3ax 2≤1恒成立,此时a ∈R ;当x ≠0时,若a ≤13x2恒成立,则a ≤0.综上可得a ≤0. 18.函数y =4x 2+1x的单调递增区间是( )A .(0,+∞)B .(-∞,C .(12,+∞)D .(1,+解析:选 C.∵y′=8x-1x2=8x3-1 x2>0,∴x>12.即函数的单调递增区间为(12,+∞).19.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.故选B.20.设x0为可导函数f(x)的极值点,则下列说法正确的是( )A.必有f′(x0)=0B.f′(x0)不存在C.f′(x0)=0或f′(x0)不存在D.f′(x0)存在但可能不为0答案:A22.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a=( )A.2 B.3C.4 D.5解析:选D.f′(x)=3x2+2ax+3,∵f(x)在x=-3处取得极值,∴f′(-3)=0,即27-6a+3=0,∴a=5.23.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个解析:选A.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如题图所示,函数f(x)在开区间(a,b)内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.24.函数f(x)=-13x3+12x2+2x取极小值时,x的值是( )A.2 B.2,-1C.-1 D.-3解析:选 C.f′(x)=-x2+x+2=-(x-2)(x+1).∵在x=-1的附近左侧f′(x)<0,右侧f′(x)>0,如图所示:∴x=-1时取极小值.25.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3)B.f(3),f(5)C.f(2),f(5) D.f(5),f(3)解析:选B.∵f′(x)=-2x+4,∴当x∈[3,5]时,f′(x)<0,故f(x)在[3,5]上单调递减,故f(x)的最大值和最小值分别是f(3),f(5).26.f(x)=x3-3x2+2在区间[-1,1]上的最大值是( )A.-2 B.0C.2 D.4解析:选C.f′(x)=3x2-6x=3x(x-2),令f′(x)=0可得x=0或x=2(舍去),当-1≤x<0时,f′(x)>0,当0<x≤1时,f′(x)<0.所以当x=0时,f(x)取得最大值为2. 27.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71C.-15 D.-22解析:选B.f′(x)=3x2-6x-9=3(x -3)(x+1).由f′(x)=0得x=3,-1.又f(-4)=k-76,f(3)=k-27,f(-1)=k+5,f(4)=k-20.由f(x)max=k+5=10,得k=5,∴f(x)min=k-76=-71.28.(2010年高考山东卷)已知某生产厂家的年利润y(单元:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为( )A.13万件B .11万件C.9万件D .7万件解析:选C29.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末B .0秒C.4秒末D .0,1,4秒末解析:选D.∵s′=t3-5t2+4t,令s′=0,得t1=0,t2=1,t3=4,此时的函数值最大,故选D.二、填空题1.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.答案:12.若曲线y=2x2-4x+a与直线y=1相切,则a=________.答案:33.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.答案:24.令f(x)=x2·e x,则f′(x)等于________.解析:f′(x)=(x2)′·e x+x2·(e x)′=2x·e x+x2·e x=e x(2x+x2).答案:e x(2x+x2)5.函数y=x2+4x在x=x0处的切线斜率为2,则x0=________.解析:2=li mΔx→0x+Δx2+4?x0+Δx-x20-4x0Δx=2x0+4,∴x0=-1.答案:-16.若y=10x,则y′|x=1=________.解析:∵y′=10x ln10,∴y′|x=1=10ln10.答案:10ln107.一物体的运动方程是s(t)=1t,当t=3时的瞬时速度为________.解析:∵s′(t)=-1t2,∴s′(3)=-132=-19.答案:-198.设f(x)=ax2-b sin x,且f′(0)=1,f′(π3)=12,则a=________,b=________.解析:∵f′(x)=2ax-b cos x,f′(0)=-b=1得b=-1,f ′(π3)=23πa +12=12,得a =0.答案:0 -19.y =x 3-6x +a 的极大值为________.解析:y ′=3x 2-6=0,得x =± 2.当x <-2或x >2时,y ′>0;当-2<x <2时,y ′<0.∴函数在x =-2时,取得极大值a +4 2.答案:a +4210.函数y =x e x 的最小值为________.解析:令y ′=(x +1)e x =0,得x =-1.当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e11.做一个容积为256 dm 3的方底无盖水箱,它的高为______dm 时最省料.解析:设底面边长为x ,则高为h =256x 2,其表面积为S =x 2+4×256x2×x =x 2+256×4x,S ′=2x -256×4x 2,令S ′=0,则x =8,则高h =25664=4 (dm).答案:412.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2.解析:设矩形的长为x m ,则宽为16-2x2=(8-x ) m(0<x <8), ∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0,则x =4,又在(0,8)上只有一个极值点,且x∈(0,4)时,S(x)单调递增,x∈(4,8)时,S(x)单调递减,故S(x)max=S(4)=16.答案:16三、解答题1.求下列函数的导数:(1)y=3x2+x cos x;(2)y=x1+x;(3)y=lg x-e x.解:(1)y′=6x+cos x-x sin x.(2)y′=1+x-x1+x2=11+x2.(3)y′=(lg x)′-(e x)′=1x ln10-e x.2.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎨⎧y=x2+4,y=x+10,得x2+4=10+x,即x2-x-6=0,∴x=-2或x=3.代入直线的方程得y=8或13.∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y=x2+4,∴y′=limΔx→0x+Δx2+4-x2+4?Δx=limΔx→0Δx2+2x·ΔxΔx=limΔx→0(Δx+2x)=2x.∴y′|x=-2=-4,y′|x=3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6.∴在点(-2,8)处的切线方程为4x+y=0;在点(3,13)处的切线方程为6x-y-5=0.3.求下列函数的单调区间:(1)y=x-ln x;(2)y=1 2x .解:(1)函数的定义域为(0,+∞).其导数为y′=1-1 x .令1-1x>0,解得x>1;再令1-1x<0,解得0<x<1.因此,函数的单调增区间为(1,+∞),函数的单调减区间为(0,1).4.已知函数f(x)=x3+ax2+bx+c,当x =-1时,取得极大值7;当x=3时,取得极小值,求这个极小值及a、b、c的值.解:f′(x)=3x2+2ax+b,依题意可知-1,3是方程3x2+2ax+b=0的两个根,则有⎩⎪⎨⎪⎧-1+3=-23a,-1×3=b3,解得⎩⎨⎧a=-3,b=-9,∴f(x)=x3-3x2-9x+c.由f(-1)=7,得-1-3+9+c=7,∴c=2.∴极小值为f(3)=33-3×32-9×3+2=-25.5.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f′(x)=x2-4,解方程x2-4=0,得x1=-2,x2=2.当x变化时,f′(x),f(x)的变化情况如下表:从上表可看出,当x=-2时,函数有极大值,且极大值为283;而当x=2时,函数有极小值,且极小值为-4 3 .(2)f(-3)=13×(-3)3-4×(-3)+4=7,f(4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。
导数复习导数大题练习(含详解答案)
1、函数f(*)=(2*2―k*+k)·e -*(Ⅰ)当k 为何值时,)(x f 无极值;(Ⅱ)试确定实数k 的值,使)(x f 的极小值为0 2、函数()ln f x ax x =+()a ∈R .(Ⅰ)假设2a =,求曲线()y f x =在1x =处切线的斜率;(Ⅱ)求()f x 的单调区间;〔Ⅲ〕设2()22g x x x =-+,假设对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值围. 3、设函数()1x f x x ae -=-。
〔I 〕求函数()f x 单调区间; 〔II 〕假设()0R f x x ≤∈对恒成立,求a 的取值围;〔III 〕对任意n 的个正整数1212,,nn a a a a a a A n++⋅⋅⋅⋅⋅⋅=记〔1〕求证:()11,2,i a iAa e i n A-≤=⋅⋅⋅〔2〕求证:A ≥4、函数b x x a x a x f +++-=23213)(,其中,a b ∈R . 〔Ⅰ〕假设曲线)(x f y =在点))2(,2(f P 处的切线方程为45-=x y ,求函数)(x f 的解析式; 〔Ⅱ〕当0>a 时,讨论函数)(x f 的单调性. 5、函数2()(21)(R x f x ax x e a -=-+⋅∈,e 为自然对数的底数).(I)当时,求函数()f x 的极值;(Ⅱ)假设函数()f x 在[-1,1]上单调递减,求a 的取值围. 6、函数2()(33)x f x x x e =-+⋅,设2t >-,(2),()f m f t n -==.〔Ⅰ〕试确定t 的取值围,使得函数()f x 在[]2,t -上为单调函数;〔Ⅱ〕试判断,m n 的大小并说明理由;〔Ⅲ〕求证:对于任意的2t >-,总存在0(2,)x t ∈-,满足0'20()2(1)3x f x t e =-,并确定这样的0x 的个数.7、函数2()ln (2)f x x ax a x =-+-.〔Ⅰ〕假设()f x 在1x =处取得极值,求a 的值;〔Ⅱ〕求函数()y f x =在2[,]a a 上的最大值. 8、函数221()()ln 2f x ax x x ax x =--+.()a ∈R . 〔I 〕当0a =时,求曲线()y f x =在(e,(e))f 处的切线方程〔e 2.718...=〕; 〔II 〕求函数()f x 的单调区间.9、函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.〔Ⅰ〕当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;〔Ⅱ〕假设函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.10、函数36)2(23)(23-++-=x x a ax x f . 〔1〕当1=a 时,求函数)(x f 的极小值;〔2〕试讨论曲线)(x f y =与x 轴的公共点的个数。
导数计算练习
1.已知f (x )=,若f′(x 0)=0,则x 0=( )A .e 2B .eC .1D .ln22.函数y=cos2x 的导数是( )A .﹣sin2xB .sin2xC .﹣2sin2xD .2sin2x3.下列导数运算错误的是( )A .(x ﹣2)′=﹣2x ﹣1B .(cosx )′=﹣sinxC .(xlnx )′=1+lnxD .(2x )′=2x ln24.函数f (x )=xlnx ,则函数f (x )的导函数是( )A .lnxB .1C .1+lnxD .xlnx5.若f (x )=sinα﹣cosx ,则f′(α)等于( )A .cosαB .sinαC .sinα+cosαD .2sinα6.函数f (x )=0的导数为( ).A .0B .1C .不存在D .不确定7.函数f(x)=ax 3+3x 2+2,若(1)4f '-=,则a 的值是 ( ) A.319 B.316 C.313 D. 3108.已知32()21f x ax x =++,若(1)4f '-=,则a = A. 23 B. 14 C. 83 D. 129.已知函数()x f x e x =+,则函数()f x 的导函数为 ( )A.x eB.1x e +C.ln 1x +D.x e x +10.函数y =x 2co sx 的导数为 ( )A . y ′=2x co sx -x 2s i nxB . y ′=2x co sx +x 2s i nxC. y ′=x 2co sx -2xs i nxD. y ′=x co sx -x 2s i nx11.设()f x ==)2('f ( ).A .- D .5312.若()sin cos f x x α=-,则)('αf 等于A.sin αB.cos αC.sin cos αα+D.2sin α13.函数y=f (2e x ),则导数y ′=( )A . 2f ′(2e x )B .2e x f ′(x )C .2e x f ′(e x ) D.2e x f ′(2e x )14.曲线y=ln (x+1)在x=0处的切线方程是( )A . y=xB . y=﹣xC . y ﹣xD . y=2x15.已知函数f (x )=ln (2x+1),则f′(0)=( )A . 0B . 1C . 2D .16.(5分)函数f (x )=sin (2x+),则f′()的值为( )A . 1B .﹣2C .2D .﹣117.若f (x )=sin (2x+),则f′()等于( )A .0B .1C .2D .318.函数y=x 2cosx 的导数为( )A .y′=2xcosx﹣x 2sinxB .y′=2xcosx +x 2sinxC .y′=x 2cosx ﹣2xsinxD .y′=xcosx﹣x 2sinx19.设f (x )=5x 2﹣5,则f′(1)等于( )A .0B .5C .10D .1520.已知cos ()x f x x =则/()()2f f ππ+=.21.函数f (x )=x•e x ,则f′(1)= .22.已知f (x )=,则f′(x )= .23.已知函数f (x )=x 2+f′(2)(lnx ﹣x ),则f′(﹣)= .24.已知函数f (x )=e x sin (2x+1),则f′(﹣21)= .25.已知f (x )=x 2+3xf′(2),则f′(2)= .26.函数sin xy x =的导数为_________________27.已知函数f(x)的导函数为f′(x),且()2'(1)ln f x xf x =+,则f′(1)= .28.若()()212x f x x f +'=则()='0f29.函数x y e =在1x =处的切线的斜率为______________.30.已知函数y=f (x )的图象在x=3处的切线方程为y=﹣2x+7,则f (3)+f′(3)的值是 _________ .31.已知函数f (x )=x 2+e x ,则f'(1)= .32.已知函数f (x )=13﹣8x+x 2,且f′(a )=4,则实数a 的值 .33.已知函数f (x )=f′(4π)cosx+sinx ,则f (4π)的值为 .34.已知函数f (x )的导函数为f'(x ),且满足关系式f(x)=)1(f x 3x 1'+,则f'(2)的值等于 .35.过抛物线y=f (x )上一点A (1,0)的切线的倾斜角为45°则f′(1)= .36.请用函数求导法则求出下列函数的导数.(1)y=e sinx(2)y=(3)y=ln (2x+3)(4)y=(x 2+2)(2x ﹣1)(5).37.求下列函数的导数(1)()f x =(1+sinx )(1-4x)(2)11()ln()xf x x x =+-+38.求函数y=cos (2x ﹣1)+的导数.39.求下列函数的导数.(1);(2)y=(2x 2﹣1)(3x+1)40. 求下列函数的导数:(1)()tan f x x x =;(2)()(1)(2)(3)f x x x x =---;(3) ()2sin3.f x x =试卷答案1.B2.C3.A4.C5.B6.A7.D8.C9.B 10.A 11.C 12.A 13.D 14.A 15.C 16.B 17.A18.A 19.C20. 3π-21.2e 【解答】解:f′(x )=(x•e x )′=e x +xe x ,∴f′(1)=e+e=2e .故答案为:2e .22.【解答】解:f (x )==1+∴f′(x )=(1+)′=﹣故答案为:.23.﹣9【解答】解:由函数的解析式可得:∴f′(x )=2x+f′(2)(﹣1),∴f′(2)=4+f′(2)(﹣1),解得f′(2)=,则∴.故答案为:﹣9.24. 2【解答】解:∵f (x )=e x sin (2x+1),∴f′(x )=e x sin (2x+1)+2e x cos (2x+1),∴f′(﹣)=sin0+2cos0=2,故答案为:2.25.﹣2【解答】解:由f (x )=x 2+3xf′(2),得:f′(x )=2x+3f′(2),所以,f′(2)=2×2+3f′(2),所以,f′(2)=﹣2.故答案为:﹣2. 26.2cos sin x x xx - 27.-1 28.-4 29.e 30.1-31.2+e 【解答】解:函数的导数f′(x )=2x+e x ,则f′(1)=2+e ,故答案为:2+e .32.3【解答】解:根据题意,函数f (x )=13﹣8x+x 2,则其导函数f′(x )=2x ﹣8,若f′(a )=4,则有2a ﹣8=4,解可得a=3;故答案为:3.33.1【解答】解:因为f′(x )=﹣f′()•sinx+cosx所以f′()=﹣f′()•sin +cos解得f′()=﹣1故f ()=f′()cos +sin =(﹣1)+=1故答案为1.34.【解答】解:∵f (x )=+3xf′(1),∴f′(x )=﹣+3f′(1),令x=1,则f′(1)=﹣1+3f′(1),∴f′(1)=,∴f′(2)=﹣+=故答案为:.35.136.【解答】解:(1)y′=e sinx cosx ;(2);(3);(4)y'=(x 2+2)′(2x ﹣1)+(x 2+2)(2x ﹣1)′=2x(2x ﹣1)+2(x 2+2)=6x 2﹣2x+4;(5).37.(1)'()4cos 4sin 4cos f x x x x x =-+-- (2)'()f x =2(1)xx +38.【解答】解:函数的导数y′=﹣2sin (2x ﹣1)﹣2•=﹣2sin (2x ﹣1)﹣.39.【解答】解:(1)===;(2)y=(2x 2﹣1)(3x+1)=6x 3+2x 2﹣3x ﹣1,y'=(6x 3+2x 2﹣3x ﹣1)'=(6x 3)'+(2x 2)'﹣(3x )'﹣(1)'=18x 2+4x ﹣3.40.(1)2()tan cos xf x x x '=+. (2)2()31211.f x x x '=-+ (3)()6cos3.f x x =。
函数求导练习题(含解析)
一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。
导数练习题及答案
导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
以下是导数练习题及答案,欢迎阅读。
一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。
完整版)导数大题练习带答案
完整版)导数大题练习带答案1.已知 $f(x)=x\ln x-ax$,$g(x)=-x^2-2$,要求实数 $a$ 的取值范围。
Ⅰ)对于所有 $x\in(0,+\infty)$,都有 $f(x)\geq g(x)$,即$x\ln x-ax\geq -x^2-2$,整理得 $a\leq \ln x +\frac{x}{2}$,对于 $x\in(0,+\infty)$,$a$ 的取值范围为 $(-\infty。
+\infty)$。
Ⅱ)当 $a=-1$ 时,$f(x)=x\ln x+x$,求 $f(x)$ 在 $[m。
m+3]$ 上的最值。
$f'(x)=\ln x+2$,令 $f'(x)=0$,解得 $x=e^{-2}$,在 $[m。
m+3]$ 上,$f(x)$ 单调递增,所以最小值为$f(m)=me^{m}$。
Ⅲ)证明:对于所有 $x\in(0,+\infty)$,都有 $\lnx+1>\frac{1}{x}$。
证明:$f(x)=\ln x+1-\frac{1}{x}$,$f'(x)=\frac{1}{x}-\frac{1}{x^2}=\frac{1}{x^2}(x-1)>0$,所以$f(x)$ 在 $(0,+\infty)$ 上单调递增,即对于所有$x\in(0,+\infty)$,都有 $\ln x+1>\frac{1}{x}$。
2.已知函数 $f(x)=\frac{2}{x}+a\ln x-2(a>0)$。
Ⅰ)若曲线 $y=f(x)$ 在点 $P(1,f(1))$ 处的切线与直线$y=x+2$ 垂直,求函数 $y=f(x)$ 的单调区间。
$f'(x)=-\frac{2}{x^2}+a$,在点 $P(1,f(1))$ 处的切线斜率为 $f'(1)=a-2$,由于切线垂直于直线 $y=x+2$,所以 $a-2=-\frac{1}{1}=-1$,解得 $a=1$。
导数定义运算练习
导数练习题一第I 卷(选择题)一、选择题1.函数2()4f x x =的导函数是( )A .'()2f x x =B .'()4f x x =C .'()8f x x =D .'()16f x x =2.函数f (x )=sin 2x 的导数f′(x )=( )A .2sinxB .2sin 2xC .2cosxD .sin2x3.函数y=x cos x ﹣sin x 的导数为( )A .x sin xB .﹣x sin xC .x cos xD .﹣xcos x4.已知函数f (x )=sinx+lnx ,则f′(1)的值为( )A .1﹣cos1B .1+cos1C .cos1﹣1D .﹣1﹣cos15..若f′(x 0)=2,则k 2)x(f )k x (f 000k lim --→等于( )A .﹣1B .﹣2C .1D .6.下列各函数的导数:①;②(a x )′=a 2lnx ;③(sin2x )′=cos2x;④()′=.其中正确的有( )A .0个B .1个C .2个D .3个7.下列求导运算正确的是( )A .(x )′=1B .(x 2cosx )′=﹣2xsinxC .(3x )′=3x log 3eD .(log 2x )′=8.设x x y sin 12-=,则='y ( ).A .x x x x x 22sin cos )1(sin 2---B .x xx x x 22sin cos )1(sin 2-+-C .x x x x sin )1(sin 22-+-D .xx x x sin )1(sin 22---9.过抛物线y=x 2上的点的切线的倾斜角( ) A .30° B .45° C .60° D .135°9.若()sin cos f x x α=-,则'()f α等于( )A .sin αB .cos αC .sin cos αα+D .2sin α10.已知f(x)=xln x ,若f ′(x 0)=2,则x 0等于 ( ).A .e 2B .eC .ln 22D .ln 211.已知函数f (x )=2ln (3x )+8x+1,则的值为( )A .10B .﹣10C .﹣20D .2012.已知函数,则其导函数f′(x )的图象大致是( )A .B .C .D .二、填空题13.已知函数y=f (x )在定义域内可导,其图象如图,记y=f (x )的导函数为y=f′(x ),则不等式f′(x )≥0的解集为 ______________14.已知函数=+=)4(,cos sin )2()('ππf x x f x f 则_______. 15.函数()ln 1f x x =+在点(1,1)处的切线方程为 .16.若函数()(1)(2)(3)(4)f x x x x x =----,则(2)=f ' .三、解答题17. 用导数的定义求函数121)(+=x x f 在0x x =处的导数18. 用导数公式求函数121)(+=x x f 的导数)('x f ,并求)(0'x f19.已知函数2321)(x x x f +=.(1)求)(x f 在))34(,34(--f 处的切线方程; (2)函数x e x f y )(=的导数.20.已知函数f(x)=ae x+bxlnx图象上x=1处的切线方程为y=2ex﹣e.求实数a和b的值;21.已知函数f(x)=(2x﹣1)2+5x(1)求f′(x)(2)求曲线y=f(x)在点(2,19)处的切线方程.22.已知抛物线1=xfx(2+2)(1)抛物线上哪一点处的切线的倾斜角是︒45。
函数求导练习题
函数求导练习题函数求导是微积分中的重要内容,它在解析几何、物理学等领域中具有广泛的应用。
本文将介绍一些函数求导的练习题,帮助读者巩固和提高函数求导的技巧。
1. 求函数$y = 3x^2 + 2x - 1$的导函数。
解析:要求函数$y$的导函数,可以按照求导法则逐项求导。
对于$x$的幂函数,求导后指数减1,系数不变。
因此,导函数为$y' = 6x + 2$。
2. 求函数$y = \frac{1}{x}$的导函数。
解析:对于分式函数,可以采用换元法,将分式转化为指数形式。
将函数$y = \frac{1}{x}$改写为$y = x^{-1}$,再对其求导。
根据幂函数的求导法则,得到导函数为$y' = -\frac{1}{x^2}$。
3. 求函数$y = \sqrt{x}$的导函数。
解析:函数$y = \sqrt{x}$可以表示为$y = x^{\frac{1}{2}}$,再利用幂函数的求导法则,得导函数为$y' = \frac{1}{2}x^{-\frac{1}{2}}$。
可以进一步化简导函数为$y' = \frac{1}{2\sqrt{x}}$。
4. 求函数$y = e^x$的导函数。
解析:对于指数函数$y = e^x$,它的导函数与其本身相等。
即$y' = e^x$。
5. 求函数$y = \ln(x)$的导函数。
解析:对于自然对数函数$y = \ln(x)$,其导函数可以通过链式法则求得。
链式法则指出,如果有复合函数$y = f(g(x))$,则它的导数可以表示为$y' = f'(g(x)) \cdot g'(x)$。
将函数$y = \ln(x)$表示为$y = \ln(u)$,其中$u = x$,则有$f(u) = \ln(u)$和$g(x) = x$。
通过求导规则,得到导函数$y' = \frac{1}{x}$。
通过以上几个例子,我们可以看到不同类型函数的求导规律。
(完整word版)高等数学——导数练习题
一.选择题1.若k x x f x x f x =∆-∆+→∆)()(lim000,则xx f x x f x ∆-∆⋅+→∆)()2(lim000等于( ) A.k 2 B.k C.k 21D.以上都不是2.若f (x )=sinα-cosx ,则f ′(a )等于 ( )A .sinαB .cosαC .sinα+cosαD .2sinα3.f (x )=ax 3+3x 2+2,若f ′(−1)=4,则a 的值等于( )A .319 B .316 C .313D .3104.函数y =x sin x 的导数为( )A .y ′=2x sin x +x cos xB .y ′=x x 2sin +x cos xC .y ′=xx sin +x cos x D .y ′=xx sin -x cos x5.函数y =x 2cos x 的导数为( )A .y ′=2x cos x -x 2sin xB .y ′=2x cos x +x 2sin xC .y ′=x 2cos x -2x sin xD .y ′=x cos x -x 2sin x6.函数y =22xax +(a >0)的导数为0,那么x 等于( )A .aB .±aC .-aD .a 27. 函数y =xxsin 的导数为( )A .y ′=2sin cos xxx x + B .y ′=2sin cos xxx x - C .y ′=2cos sin x xx x -D .y ′=2cos sin x xx x +8.函数y =2)13(1-x 的导数是( )A .3)13(6-x B .2)13(6-x C .-3)13(6-x D .-2)13(6-x9.已知y =21sin2x +sin x ,那么y ′是( ) A .仅有最小值的奇函数 B .既有最大值,又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数10.函数y =sin 3(3x +4π)的导数为( )A .3sin 2(3x +4π)cos (3x +4π)B .9sin 2(3x +4π)cos (3x +4π)C .9sin 2(3x +4π)D .-9sin 2(3x +4π)cos (3x +4π)11.函数y =cos (sin x )的导数为( )A .-[sin (sin x )]cos xB .-sin (sin x )C .[sin (sin x )]cos xD .sin (cos x )12.函数y =cos2x +sin x 的导数为( )A .-2sin2x +xx2cos B .2sin2x +xx 2cosC .-2sin2x +xx 2sin D .2sin2x -xx 2cos13.过曲线y =11+x 上点P (1,21)且与过P 点的切线夹角最大的直线的方程为( )A .2y -8x +7=0B .2y +8x +7=0C .2y +8x -9=0D .2y -8x +9=014.函数y =ln (3-2x -x 2)的导数为( )A .32+x B .2231x x -- C .32222-++x x xD .32222-+-x x x15.函数y =lncos2x 的导数为( )A .-tan2xB .-2tan2xC .2tan xD .2tan2x16.已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是( )A. 21>-<b b ,或B.21≥-≤b b ,或C. 21<<-bD. 21≤≤-b 17.函数的单调递增区间是 ( )x e x x f )3()(-=A. B.(0,3) C.(1,4) D. 18.函数y =xxa 22-(a >0且a ≠1),那么y ′为( )A .xxa 22-ln aB .2(ln a )xx a 22- C .2(x -1)xx a 22-·ln aD .(x -1)xx a22-ln a19.函数y =sin32x 的导数为( )A .2(cos32x )·32x ·ln3B .(ln3)·32x ·cos32xC .cos32xD .32x ·cos32x20.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .421.曲线1323+-=x x y 在点(1,-1)处的切线方程为( )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y22.函数)1()1(2-+=x x y 在1=x 处的导数等于( )A .1B .2C .3D .423.已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为( ) A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f24.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A.2B.3C.4D.525.函数32()31f x x x =-+是减函数的区间为( )A.(2,)+∞B.(,2)-∞C.(,0)-∞D.(0,2) 26.函数()323922y x x x x =---<<有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大 27.三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则( )A.0>aB.0<a)2,(-∞),2(+∞C.1=aD.31=a 28.在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( ) A .3 B .2 C .1 D .029.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个C .3个D .4个 30.下列求导运算正确的是( ) A 、3211)1(xx x -='+B 、(log 2x )′=1xln2C 、(x 2cosx )′=−2xsinxD 、 (3x )′=3x log 3e 31.已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A .0 B .2 C .-1 D .1 32.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 33. 函数y =x ln 的导数为( )A .2x x lnB .x x ln 2C .xx ln 1 D .xx ln 2134.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定 35.函数x x y 33-=的极大值为m ,极小值为n ,则n m +为( ) A .0 B .1 C .2D .436.函数xx y 142+=单调递增区间是( )A .),0(+∞B .)1,(-∞C .),21(+∞ D .),1(+∞37.函数在上( )A .是增函数B .是减函数C .有最大值D .有最小值 38.函数xxy ln =的最大值为( ) A .1-e B .e C .2e D .310 二.填空题1.()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。
导数经典练习100例.doc
导数及其应用1.已知直线y = %4-1与曲线y = ln(x + tz)相切,则。
=()A.-1B. -2C. 0 I). 22.设函数= V3;in气3 +号尤2 +4「一1,关[0,学],则导数广(一1)的取值范围是 ( )A.[3,4+ V3]B. [3,6]C. [4-V3,6]D. [4-73,4 + 73]3.[ V- x2 - 2xdx =—,则m 等于( )J-2 2A.-1B. 0C. 1D. 24.曲线C:y = x\x>0)在点尤=1处的切线为/,则由曲线C、直线/及x轴围成的封闭图形的面积是().1 4 3A • 1 B. — C. — D.—12 3 45.定义方程/(x) = /*(x)的实数根工。
叫做函数/⑴的“新驻点”,若函数g(x) = x,/i(x) = ln(x + l),(p(x) = x3-l的“新驻点”分别为则0,0,/的大小关系为( )A. y> a> pB. (3>a> yC. a> p>yD. (3>y>a6.若/'(尤)在/?上可导,/(X)= X2+2/(2)X+3,则水=()A. 16B. 54C. - 24D. - 187.若/。
)满足x2f\x) - 2xf(x) = x3e\f(2) = -2e2.则工>0 时,f(x)( )A.有极大值,无极小值B.有极小值,无极大值C.既有极大值,又有极小值D.既无极大值,也无极小值8.已知函数/(^) = ^ln(x+l)-x2在区间(0, 1)内任取两个实数p, q,且p/q,不等式/(p + Kq + l),p—q1恒成立,则实数。
的取值范围为( )A. [15,+8)B. (-oo,15]C. (12,30]D. (-12,15]9.己知/(x) = x2 --矿(0) — 1,则/(2014)的值为()A. 2012x2014 C. 2013x2015B. 2013x2014 D. 2014x201610.若函数 > =广⑴在区间(尤1,尤2)内是单调递减函数,则函数y = /(x)在区间(知工2)内的c.(-1,0)U (0,1)11. 设a 为实数,函数f (x) =x 3+ax 2+ (a-2) x 的导数是f'ix),且尸(x)是偶函数,则曲线y=f(x)在原点处的切线方程为( )A. y=-2xB. y=3xC. y=-3xD. y=4x12. 已知定义在R 上的函数.广3)满足.门1) = 1,且对于任意的工,f\x) < -恒成立,则不等式/(lg 2x)<^- + -的解集为()A. (0,£)B. (0,*)U(10,+8) C ・(土,10) D. (10,+8) 13. 曲线y = 2x'-3x+1在点(1, 0)处的切线方程为( )A. y = 4x —5B. y=—3x + 2C. y=—4x + 4D. y = 3x-314. 若点P 是曲线y = x 2-ln x 上任意一点,则点P 到直线y = x —2的最小值为() A. 1 B. V2C.——D. V3215. 已知函数y = 2x 2-2x +1的导数为)/, y /=() A. 2x-2B. 4x +1C. 4x~~2D. 2x + l16. 己知曲线f (x) =ln x 在点(xo, f (xo))处的切线经过点(0, —1),则Xo 的值为() A. - B. 1C. eD. 10e17. 已知r ⑴是奇函数的导函数,./'(—1) = 0,当工>0时,xf(x)-/(x)>0,见I 使得f(X)>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数计算练习题
1、已知()2f x x =,则()3f '等于( )
A .0
B .2x
C .6
D .9 2、()0f x =的导数是( )
A .0
B .1
C .不存在
D .不确定
3、y = )
A .23x
B .21
3x C .12- D 4、曲线n y x =在2x =处的导数是12,则n 等于( )
A .1
B .2
C .3
D .4
5、若()f x =()1f '等于( )
A .0
B .13-
C .3
D .13
6、2y x =的斜率等于2的切线方程是( )
A .210x y -+=
B .210x y -+=或210x y --=
C .210x y --=
D .20x y -=
7、在曲线2y x =上的切线的倾斜角为4
π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫ ⎪⎝⎭
8、(理科)设()sin y f x =是可导函数,则x y '等于( )
A .()sin f x '
B .()sin cos f x x '⋅
C .()sin sin f x x '⋅
D .()cos cos f x x '⋅
9、(理科)函数()2
2423y x x =-+的导数是( ) A .()2823x x -+ B .()2
216x -+ C .()()282361x x x -+- D .()()242361x x x -+-
10、曲线34y x x =-在点()1,3--处的切线方程是( )
A .74y x =+
B .72y x =+
C .4y x =-
D .2y x =-
11、点P 在曲线323
y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π⎡⎤⎢⎥⎣⎦ B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦
⎣⎭ C .3,4ππ⎡⎫⎪⎢⎣⎭ D .3,24ππ⎛⎤ ⎥⎝⎦ 12、求函数212y x =-在点1x =处的导数。
13、求在抛物线2y x =上横坐标为3的点的切线方程。
14、求曲线y =上点(1,1)处的切线方程。
15、求下列各函数的导数
(1) 235y x x =-+
(2) 1y x
=+
(3) 2222x y x
=+
(4) 3y
=
(5) 1)y
=-
(6) (y x =+
(7) ()()y x a x b =--
16、求下列各函数的导数
(1)ln y x x =
(2)ln n y x x =
(3)log a
y =
(4)11x y x +=
-
(5)251x y x =
+
(6)232x y x x
=-- 17、求下列各函数的导数
(1)sin cos y x x x =+
(2)1cos x
y x =-
(3)tan tan y x x x =-
(4)5sin 1cos x y x =
+
18、(理科)求下列各函数的导数
(1)25(1)y x =+
(2)2(23y x =+
(3)y (4)
y =
(5) 2log (1)a y x =+
(6) y =
(7) y =
(8) sin y nx =
(9) sin n y x =
(10) sin n y x =
(11) ln tan
2x y =
(12)21
sin y x x =。