四川省成都市2020成都三诊数学(文科)试题及答案

合集下载

四川省成都市2020届高三三诊模拟文科数学试题有答案(精校版)

四川省成都市2020届高三三诊模拟文科数学试题有答案(精校版)

成都2020届第三次高考模拟文科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一次硬币一次,设命题p 是“甲抛的硬币正面向上”,q 是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为( ) A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .()p q ⌝∨2.已知集合{}{}2|02,|10A x x B x x =<<=-<,则AB =( )A . ()1,1-B .()1,2-C .()1,2D .()0,1 3.若1122aii i+=++,则a =( ) A .5i -- B .5i -+ C .5i - D . 5i +4.设()f x 是定义在R 上周期为2的奇函数,当01x ≤≤时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭( ) A .14-B . 12- C. 14 D .125.某几何体的三视图如图所示,则该几何体的表面积为( )A .3612π+B .3616π+ C. 4012π+ D .4016π+ 6.设D 为ABC ∆中BC 边上的中点,且O 为AD 边的中点,则( ) A .3144BO AB AC =-+ B . 1144BO AB AC =-+ C. 3144BO AB AC =- D .1124BO AB AC =-- 7.执行如图的程序框图,则输出x 的值是( )A . 2016B .1024 C.12D .-1 8. 函数()()2sin 4cos 1f x x x =-的最小正周期是( ) A .23π B . 43π C. π D .2π 9. 等差数列{}n a 中的24030a a 、是函数()3214613f x x x x =-+-的两个极值点,则()22016log a =( )A .2B .3 C. 4 D .510. 已知()00,P x y 是椭圆22:14x C y +=上的一点,12,F F 是C 的两个焦点,若120PF PF <,则0x 的取值范围是( ) A .2626⎛ ⎝⎭ B .2323⎛ ⎝⎭ C. 33⎛ ⎝⎭ D .66⎛ ⎝⎭ 11. 已知函数()221f x x ax =-+对任意(]0,2x ∈恒有()0f x ≥成立,则实数a 的取值范围是( ) A .51,4⎡⎤⎢⎥⎣⎦ B .[]1,1- C. (],1-∞ D .5,4⎛⎤-∞ ⎥⎝⎦12.设集合()()()()()()2222436,|34,,|3455A x y x y B x y x y ⎧⎫⎧⎫=-+-==-+-=⎨⎬⎨⎬⎩⎭⎩⎭,(){},|234C x y x y λ=-+-=,若()A B C φ≠,则实数λ的取值范围是( ) A .25652,65⎤⎡⎤⎥⎢⎥⎣⎦⎣⎦ B .25⎤⎥⎣⎦ C. []2524,6⎤⎥⎣⎦D .{}652,65⎡⎤⎢⎥⎣⎦第Ⅱ卷二、填空题:本大题共四小题,每小题5分13.已知向量1,2a b ==,且()21b a b +=,则向量,a b 的夹角的余弦值为 .14.若,m n 满足101040m n a m n n -≥⎧⎪+≤⎨⎪≥⎩,则2u m n =-的取值范围是 .15.直线1y kx =+与曲线3y x ax b =++相切于点()1,2A ,则b a -= .16.已知函数()11,112,1x x x f x x e x +⎧->⎪=-⎨⎪-≤⎩,若函数()()2h x f x mx =--有且仅有一个零点,则实数m 的取值范围是 .三、解答题 (共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知4B π=,cos cos20A A -=.(1)求角C ;(2)若222b c a bc +=-+,求ABC S ∆.18.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家里和品种乙)进行田间实验.选取两大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (1)假设2n =,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即8n =,试验结束后得到的品种甲和品种乙在个小块地上的每公顷产量(单位:2/kg hm )如下表:品种甲 403 397 390 404 388 400 412 406 品种乙 419 403 412 418 408 423 400 413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种? 19. 如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(1)证明:1B C AB ⊥;(2)若011,60AC AB CBB ⊥∠=,1BC =,求三棱柱111ABC A B C -的高.20.如图,椭圆()222210x y a b a b+=>>的左焦点为F ,过点F 的直径交椭圆于,A B 两点.当直线AB 经过椭圆的一个顶点时,其倾斜角为60°.(1)求该椭圆的离心率;(2)设线段AB 的中点为G ,AB 的中垂线与x 轴和y 轴分别交于,D E 两点.记GFD ∆的面积为1S ,OED ∆(O 为原点)的面积为2S ,求12S S 的取值范围. 21. 已知函数()1ln f x x ax a ⎛⎫=+- ⎪⎝⎭(,0a R a ∈≠且). (1)讨论()f x 的单调区间;(2)若直线y ax =的图象恒在函数()y f x =图象的上方,求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在极坐标系下,知圆:cos sin O ρθθ=+和直线)2:sin 0,0242l πρθρθπ⎛⎫-=≥≤≤ ⎪⎝⎭. (1)求圆O 与直线l 的直角坐标方程;(2)当()0,θπ∈时,求圆O 和直线l 的公共点的极坐标. 23.选修4-5:不等式选讲已知函数()2321f x x x =++-. (1)求不等式()5f x ≤的解集;(2)若关于x 的不等式()1f x m <-的解集非空,求实数m 的取值范围.试卷答案一、选择题1-5: ABDCC 6-10: ADAAA 11、12:CA二、填空题13. 4-14. 1,42⎡⎤-⎢⎥⎣⎦15. 5 16. (]{}{},0426m e ∈-∞--三、解答题17. 解:(1)因为cos cos20A A -=,所以22cos cos 10A A --=,解得1cos 2=-,cos 1A =(舍去). 所以23A π=,又4B π=,所以12C π=. (2)因为23A π=,所以222222cos a b c bc A b c bc =+-=++,又222b c a bc +=-+, 所以22a a =+,所以2a =,又因为sin sinsin 1234C πππ⎛⎫==-=⎪⎝⎭,由sin sin c a C A =得3c =,所以1sin 123ABC S ac B ∆==-.18.解:(1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A = “第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个;()()()1,2,1,3,1,4,()2,3,()2,4,()3,4.而事件A 包含1个基本事件:()1,2.所以()16P A =; (2)品种甲的每公顷产量的样本平均数和样本方差分别为:()14033973904043884004124064008x =+++++++=甲, ()()()()2222222213310412012657.258S =+-+-++-+++=甲, 品种乙的每公顷产量的样本平均数和样本方差分别为:()14194034124184084234004134128x =+++++++=乙, ()()()()22222222217906411121568S =+-+++-++-+=乙, 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.19.解:(1)连接1BC ,则O 为1B C 与1BC 的交点,因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥,故1B C ⊥平面ABO .由于AB ⊂平面ABO ,故1B C AB ⊥. (2)作OD BC ⊥,垂足为D ,连接AD .作OH AD ⊥,垂足为H .由于BC AO ⊥,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥.又OH AD ⊥,所以OH ⊥平面ABC ,因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得OD =.由于1AC AB ⊥,所以11122OA B C ==.由OH AD OD OA =,且4AD ==,得14OH =.又O 为1B C 的中点,所以点1B 到平面ABC 的距离为7故三棱柱111ABC A B C -的距离为7. 20.解:(1)由题意,当直线AB 经过椭圆的顶点()0,b 时,其倾斜角为60°.设(),0F c -,则0tan 60b c ==222a b c -=,所以2a c =.所以椭圆的离心率为12c e a ==. (2)由(1)知,椭圆的方程可表示为2222143x y c c+=.设()()1122,,,A x y B x y .根据题意,设直线AB 的方程为()y k x c =+,将其带入2223412x y c +=,整理得()2222224384120k x ck x k c c +++-=,则()21212122286,24343ck ckx x y y k x x c k k -+=+=++=++,22243,443ck ck G kk ⎛⎫- ⎪+⎝⎭. 因为GD AB ⊥,所以2223431443Dckk k ck x k +⨯=---+,2243D ck x k -=+.因为GFD OED ∆∆,所以2122299GD S S k OD ==+,由题意,()0,k ∈∞,∴()290,k ∈∞,所以12S S 的取值范围是()9,+∞. 21.解:(1)()f x 的定义域为1,a ⎛⎫-+∞ ⎪⎝⎭,且()2111a x f x a ax x a'=-=-++. ①当0a <时,∵1x a >-,∴1ax <-,∴()0f x '>,函数在1,a ⎛⎫-+∞ ⎪⎝⎭是增函数; ②当0a >时,10ax +>,在区间1,0a ⎛⎫- ⎪⎝⎭上,()0f x '>;在区间()0,+∞上,()0f x '<. 所以()f x 在区间1,0a ⎛⎫-⎪⎝⎭上是增函数;在区间()0,+∞上是减函数. (2)当0a <时,取1x e a=-,则1111201f e a e ae ae a e a a a ⎛⎫⎛⎫⎛⎫-=--=->>-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不合题意.当0a >时,令()()h x ax f x =-,则()12ln h x ax x a ⎛⎫=-+ ⎪⎝⎭. 问题转化为()0h x >恒成立时a 的取值范围.由于()1212211a x a h x a x x a a ⎛⎫+ ⎪⎝⎭'=-=++,所以在区间11,2a a ⎛⎫-- ⎪⎝⎭上,()0h x '<;在区间1,2a ⎛⎫-+∞ ⎪⎝⎭上,()0h x '>.所以()h x 的最小值为12h a ⎛⎫- ⎪⎝⎭,所以只需102h a ⎛⎫-> ⎪⎝⎭,即1112ln 022aa a a ⎛⎫⎛⎫---+> ⎪ ⎪⎝⎭⎝⎭,所以1ln12a <-,所以2ea >. 22.解:(1)圆:cos sin O ρθθ=+,即2cos sinρρθρθ=+,故圆O 的直角坐标方程为:220x y x y +--=,直线:sin 4l πρθ⎛⎫-= ⎪⎝⎭sin cos 1ρθρθ-=,则直线的直角坐标方程为:10x y -+=.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得22010x y x y x y ⎧+--=⎨-+=⎩解得01x y =⎧⎨=⎩.即圆O 与直线l 的在直角坐标系下的公共点为()0,1,转化为极坐标为1,2π⎛⎫⎪⎝⎭. 23.解:(1)原不等式为:23215x x ++-≤, 当32x ≤-时,原不等式可转化为425x --≤,即7342x -≤≤-; 当3122x -<<时,原不等式可转化为45≤恒成立,所以3122x -<<; 当12x ≥时,原不等式可转化为425x +≤,即1324x ≤≤. 所以原不等式的解集为73|44x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)由已知函数()342,2314,22142,2x x f x x x x ⎧--≤-⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩,可得函数()y f x =的最小值为4,所以24m ->,解得6m >或2m <-.。

成都七中2020届三诊模拟文科数学试卷(含答案)

成都七中2020届三诊模拟文科数学试卷(含答案)

成都七中2020届三诊模拟数 学(文科)一、选择题:(本大题共12小题,每小题5分,共60分.) 1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则AB =( )(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =( )(B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f =( ) (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=( )(A)3 (B)7 (C)5. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是( )(C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是( )(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为( ) (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为( ) (A)99(B)131 (C)139 (D)14110. 已知2πlog e ,a =πln ,eb =2e ln ,πc =则( )得分(A)a b c << (B)b c a << (C)b a c << (D)c b a <<11. 已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为( ) (A)11π4 (B)11π2(C)11π (D)22π 12. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PAPB 的最大值是( )(D)14二、填空题:(本大题共4小题,每小题5分,共20分.)13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数xy a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分) 成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.(本小题满分12分) 如图,在四棱锥M ABCD -中,2,,AB AM AD MB MD AB AD =====⊥(1)证明:AB ⊥平面ADM ;(2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且 2BE EM =,求三棱锥A CEM -的体积.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x ++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+;(2)证明:()f x 在1[2e ,)2++∞单调递增.(其中e 2.71828=是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=+⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m (1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.参考答案一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.二、填空题(每小题5分,共20分)13.8; 14.15; ; 16.1e (1,e ).三、解答题(共70分) 17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A= 于是1cos ,2A =因为0π,A <<所以π.3A =6分(2)因为π2,,3a b A ===22π222cos ,3c c =+-⨯⨯即2230.c c --=又0c >,所以 3.c =故ABC ∆的面积为11πsin 23sin223bc A =⨯⨯⨯= 12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=; 得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分. 6分(2)由(1)知题意 “良”、“中”的频率分别为0.4,0.2.又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的 “良”、“中”的班级个数分别为4,2. 因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为.A 则A 为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4. 2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(,)i j 表示,其中16i j ≤<≤.这些点恰好为66⨯方格格点上半部分(不含i j =对角线上的点),于是有366152-=种. 事件A 仅有(5,6)一个基本事件. 所以114()1()1.1515P A P A =-=-= 所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为14.1512分19.解:(1)因为2AB AM ==,MB =所以222.AM AB MB +=于是.AB AM ⊥ 又,AB AD ⊥且,AMAD A AM =⊂平面ABD ,AD ⊂平面ADM ,所以AB ⊥平面.ADM 5分(2)因为2,AM AD MD ===所以ADM S ∆=因为2BE EM =,所以1.3C AEM C ABM V V --=又//,CD AB AB ⊥平面.ADM 所以111333A CEM C AEM C ABM D ABMB ADM V V V V V -----====111123333ADM S AB =⨯⋅⋅=⨯=所以三棱锥A CEM -的体积为912分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >= 即3eln ,(e,).ex x x x ->∈+∞+ 5分(2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞ 当(e,)x ∈+∞时,由(1)知3eln .e x x x ->+则222223e 1()(e )(e )2(4e 1)2[(2e )],e 2x h x x x x x x x x x ->--++=-+=-++ 当1[2e ,)2x ∈++∞时,()0h x >,从而()0.f x '> 故()f x 在1[2e ,)2++∞严格单调递增. 12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l 的距离为d =于是||AB===5分(2)联立22200112x yy x x x⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x+-+-=设1122(,),(,),(,).A x yB x y M x y则3122,1xx xx+=+32240001()4(1)(1)0.4x x x∆=--+->又20,x≥于是202x≤<+于是32200120022001,.22(1)22(1)x xx xx y x x xx x+===-=-++又C的焦点1(0,),2F于是1(0,).2F'-故||F M'===9分令21,t x=+则13t≤<+于是||F M'==因为3tt+在单调递减,在+单调递增.又当1t=时,1||2F M'=;当t=时,||F M'=;当3t=+时,11||.22F M'=>所以||F M'的取值范围为1).212分22.解:(1)消去参数α得22(2)3(0)x y y-+=≥将cos,sinx yρθρθ==代入得22(cos2)(sin)3,ρθρθ-+=即24cos10.ρρθ-+=所以曲线C的极坐标方程为2π4cos10(0).3ρρθθ-+=≤≤5分(2)法1:将π6θ=代入2π4cos10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A Bρρ则121.ρρ=于是12|||| 1.OA OBρρ⋅==10分法2:π3θ=与曲线C相切于点,Mπ||2sin1,3OM==由切割线定理知2|||||| 1.OA OB OM⋅==10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2a x ∈-∞-时,函数()f x 单调递减;当(,)xb ∈+∞时,函数()f x 单调递增. 所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增. 所以2() 2.222a a a bm f a b +=-=-++==5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2a b ab =时等号成立即1)0,2(20.a b =>=>所以t ≤,故实数t的最大值为10分。

2020届四川省成都市高中毕业班第三次诊断性检测数学(文)试题(解析版)

2020届四川省成都市高中毕业班第三次诊断性检测数学(文)试题(解析版)

2020届四川省成都市高中毕业班第三次诊断性检测数学(文)试题一、单选题1.已知集合{}0,A x =,{}0,2,4B =.若A B ⊆,则实数x 的值为( ) A .0或2 B .0或4C .2或4D .0或2或4【答案】C【解析】利用子集的概念即可求解. 【详解】集合{}0,A x =,{}0,2,4B =若A B ⊆,则集合A 中的元素在集合B 中均存在, 则0,2x =或4,由集合元素的互异性可知2x =或4, 故选:C 【点睛】本题考查了子集的概念,理解子集的概念是解题的关键,属于基础题.2.若复数z 满足25zi i =+(i 为虚数单位),则z 在复平面上对应的点的坐标为( ) A .()2,5 B .()2,5-C .()5,2-D .()5,2-【答案】D【解析】根据题意两边同时除以i 可求出复数z ,然后即可求出z 在复平面上对应的点的坐标. 【详解】解:因为25zi i =+,所以2552iz i i+==-,故z 在复平面上对应的点的坐标为()5,2-.故选:D. 【点睛】本题考查复数与复平面上点的坐标一一对应的关系,考查复数除法的四则运算,属于基础题.3.命题“0x R ∃∈,20010x x -+≤”的否定是( )A .0x R ∃∈,20010x x -+> B .x R ∀∈,210x x -+≤ C .0x R ∃∈,20010x x -+≥D .x R ∀∈,210x x -+>【答案】D【解析】含有全称量词和特称量词的否定是:否量词,否结论,不否范围. 【详解】解:命题“0x R ∃∈,20010x x -+≤”的否定是x R ∀∈,210x x -+>.故选:D. 【点睛】本题考查含有全称量词和特称量词的命题的否定,熟练掌握否定的规则是解题的关键,本题属于基础题.4.如图是某几何体的正视图和侧视图,则该几何体的俯视图不可能是( )A .B .C .D .【答案】A【解析】直接利用三视图和直观图的转换的应用求出结果. 【详解】解:根据几何体的三视图可知该几何体为三棱柱,当选A 时,正视的中间的竖线应为虚线,选项BCD 均可能, 故选:A 【点睛】此题考查三视图与几何体之间的转换,考查学生的转换能力和空间想象能力,属于基础题.5.已知函数()22x x f x -=-,则()2log 3f =( ) A .2B .83C .3D .103【答案】B【解析】根据函数解析式及指数对数恒等式计算可得; 【详解】解:因为()22x x f x -=- 所以()22log 3log 3218log 322333f -=-=-=故选:B 【点睛】本题考查函数值的计算,对数恒等式的应用,属于基础题.6.已知实数,x y 满足102050x y x y -≥⎧⎪-≥⎨⎪+-≤⎩,则2z x y =+的最大值为( )A .4B .6C .8D .10【答案】C 【解析】作出题中不等式组表示的平面区域,得如图的ABC 及其内部,再将目标函数2z x y =+对应的直线进行平移,可得当3x =,2y =时,2z x y =+取得最大值8.【详解】作出实数x ,y 满足10,20,50x y x y -⎧⎪-⎨⎪+-⎩表示的平面区域,得到如图的ABC 及其内部,其中(3,2)A ,(1,2)B ,(1,4)C设(,)2z F x y x y ==+,将直线:2l z x y =+进行平移, 当l 经过点A 时,目标函数z 达到最大值()3,22328max z F ∴==⨯+=.故选:C . 【点睛】本题给出二元一次不等式组,求目标函数2z x y =+的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.7.为迎接大运会的到来,学校决定在半径为202m 的半圆形空地O 的内部修建一矩形观赛场地ABCD ,如图所示,则观赛场地的面积最大值为( )A .4002mB . 24002mC .6002mD .8002m【答案】D【解析】连接OD ,设COD θ∠=,则sin CD OD θ=,cos OC OD θ=,2ABCD S OC CD =⋅根据三角函数的性质求出面积最值;【详解】如图连接OD ,设COD θ∠=,0,2πθ⎛⎫∈ ⎪⎝⎭则sin 202sin CD OD θθ==,cos 202OC OD θθ==所以22202202800sin 2ABCD S OC CD θθθ=⋅=⨯⨯=因为0,2πθ⎛⎫∈ ⎪⎝⎭,所以()20,θπ∈,所以(]sin 20,1θ∈,所以(]0,800ABCD S ∈,当4πθ∈时()max 800ABCD S =故选:D 【点睛】本题考查三角函数的应用,属于基础题.8.在等比数列{}n a 中,已知19nn n a a +=,则该数列的公比是( )A .-3B .3C .3±D .9【答案】B【解析】由已知结合等比数列的性质即可求解公比. 【详解】解:因为190nn n a a +=>,所以11111999nn n n n n n n a a a a a a ++---===, 所以29q =,所以3q =或3q =-,当3q =-时,109nn n a a +=<不合题意,故选:B 【点睛】此题考查了等比数列的性质的简单应用,属于基础题.9.已知函数()33f x x x =-,则“1a >”是“()()1f a f >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】对函数()33f x x x =-进行求导可得到:()()()2()31311f x x x x '=-=-+从而可得出函数()33f x x x =-在(),1x ∈-∞-上递增,在()1,1x ∈-递减,在()1,x ∈+∞递增,根据函数的单调性可知:当1a >时,有()()1f a f >成立,即充分性成立;当()()1f a f >时,a 的范围不一定是1a >,可能11a -<<,即必要性不成立,所以“1a >”是“()()1f a f >”的充分不必要条件. 【详解】由题意可得:()()()2()31311f x x x x '=-=-+,令()0f x '>解得1x >或1x <-,即函数()33f x x x =-在(),1x ∈-∞-上递增,在()1,1x ∈-递减,在()1,x ∈+∞递增,根据函数的单调性:当1a >时,有()()1f a f >成立,即充分性成立;当()()1f a f >时,a 的范围不一定是1a >,可能11a -<<,即必要性不成立, 所以“1a >”是“()()1f a f >”的充分不必要条件. 故选:A 【点睛】本题考查了函数的单调性及充分条件,必要条件的判断,属于一般题.10.已知1F ,2F 是双曲线()222210,0x y ab a b-=>>的左,右焦点,经过点2F 且与x 轴垂直的直线与双曲线的一条渐近线相交于点A ,且1264F AF ππ≤∠≤.则该双曲线离心率的取值范围是( )A .5,7⎡⎤⎣⎦B .5,13⎡⎤⎣⎦C .3,13⎡⎤⎣⎦D .7,3⎡⎤⎣⎦【答案】B【解析】由题意画出图形,求得122tan a F AF b ∠=,再由1264F AF ππ∠求得b a的范围,结合双曲线的离心率公式得答案. 【详解】 如图,由题意,(,)bcA c a,12||2F F c =, 则12122||22tan ||F F c aF AF bc AF b a∠===.由1264F AF ππ∠,得321ab, 即223ba. 21()[5,13]c be a a∴=+. 故选:B .【点睛】本题主要考查双曲线的简单几何性质,考查双曲线的离心率的取值范围的求法,意在考查学生对这些知识的理解掌握水平.11.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等; ②PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π;④若AB BC =,E 是线段PC 上一动点,则DE BE + 其中所有正确结论的编号是( ) A .①② B .②③C .①②④D .①③④【答案】C 【解析】根据三角形全等判断①,根据sin PAB ∠的值和三角形的内角和得出PAB ∠的范围,计算外接球半径判断③,将棱锥侧面展开计算最短距离判断④. 【详解】解:如图1,AB BC ⊥,D 是AC 的中点,DA DB DC ∴==,又PD ⊥平面ABC ,Rt PDA RtPDB RTPDC ∴∆≅≅,PA PB PC ∴==,故①正确;PA PB =,PAB PBA ∴∠=∠,又PAB PBA APB π∠+∠+∠=,2PAB π∴∠<,过P 作PM AB ⊥,M 为垂足,如图2,则1PM PD >=,又PA sin2PM PAB PA ∴∠=>=,4PAB π∴∠>,故②正确;AB BC ⊥,D ∴为平面ABC 截三棱锥外接球的截面圆心,设外接球球心为O ,则O 在直线DP 上,如图3,设DO h =,则(1)h ±=0h =,故D 为外接球的球心.∴外接球的体积为344133ππ⨯⨯=,故③错误.若AB BC =,则2BC =,又2PB PC ==,故PBC ∆是等边三角形,将平面PCD 沿PC 翻折到平面PBC 上,如图4,图5. 则DE BE +的最短距离为线段BD 的长.6045105BCD ∠=︒+︒=︒,2BC =1CD =,6221221cos10523BD +∴=+-⨯⨯⨯︒=+④正确. 故选:C . 【点睛】本题考查了棱锥的结构特征,棱锥与外接球的位置关系,属于中档题.12.已知函数()sin 1(0,01)4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭的图象经过点20,2⎛⎫ ⎪ ⎪⎝⎭,且将图象向左平移3π个长度单位后恰与原图象重合.若对任意的[]12,0,x x t ∈,都有()()122f x f x ≥成立,则实数t 的最大值是( )A .34π B .23π C .712π D .2π 【答案】A【解析】将点20,2⎛⎫⎪ ⎪⎝⎭代入解析式,求出A ,然后再利用三角函数的平移变换求出ω,再由()()12min max 2f x f x ≥,结合正弦函数的性质即可求解. 【详解】函数()sin 1(0,01)4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭的图象经过点20,2⎛⎫ ⎪ ⎪⎝⎭,可得sin142A π-=,解得1A =+ 函数()sin 1(0,01)4f x A x A πωω⎛⎫=+-><< ⎪⎝⎭的图象向左平移3π个长度单位可得()(1sin 314g x x πωπω⎛⎫=++- ⎪⎝⎭,根据两函数的图象重合,可知32,k k Z πωπ=∈, 解得2,3kk Z ω=∈, 又因为01ω<<,所以23ω=, 对任意的[]12,0,x x t ∈,都有()()122f x f x ≥成立, 则()()12min max 2f x f x ≥, 由[]12,0,x x t ∈,则12222,,3434434x x t ππππ⎡⎤++∈+⎢⎥⎣⎦, 若要实数t 取最大值,由()()2max1min2f x f x ≥,只需()min 1122f x ≥=, 所以23344t ππ+≤,解得34t π≤, 所以实数t 的最大值是34π. 故选:A 【点睛】本题考查了三角函数的平移变换求解析式、三角不等式恒成立问题、正弦函数的性质,属于中档题.二、填空题13.已知向量()1,a λ=,()2,3b =,且a b ⊥,则实数λ的值为______. 【答案】23-【解析】由a b ⊥,故1230a b λ=⨯+=,即可解得;【详解】解:因为()1,a λ=,()2,3b =,且a b ⊥, 所以1230a b λ=⨯+=,解得23λ=- 故答案为:23- 【点睛】本题考查平面向量数量积的坐标表示,属于基础题.14.某实验室对小白鼠体内x ,y 两项指标进行研究,连续五次实验所测得的这两项指标数据如下表:已知y 与x 具有线性相关关系,利用上表中的五组数据求得回归直线方程为y bx a =+.若下一次实验中170x =,利用该回归直线方程预测得117y =,则b 的值为______. 【答案】0.54【解析】由已知表格中的数据,求得x 和y ,代入回归方程,再把点()170,117代入y bx a =+,联立方程组即可求解b 的值.【详解】解:由已知表格中的数据,求得:1201101251301151205x ++++==,9283909689905y ++++==,则12090b a +=,①又因为下一次实验中170x =,利用该回归直线方程预测得117y =, 则170117b a +=,② 联立①②,解得:0.54b =. 故答案为:0.54. 【点睛】本题考查线性回归方程的求法,明确线性回归方程恒过样本中心点是关键,属于基础题.15.设数列{}n a 的前n 项和为n S ,若15a =,510S =,且n S n ⎧⎫⎨⎬⎩⎭是等差数列.则12310a a a a ++++的值为______.【答案】792【解析】首先求出n S n ⎧⎫⎨⎬⎩⎭的通项公式,即可得到232344n S n n =-+,再利用作差法求出31322n a n =-+,最后利用分组求和计算可得; 【详解】解:因为15a =,510S =,且n S n ⎧⎫⎨⎬⎩⎭是等差数列,设公差为d ,所以15S =,525S =,所以513544S S d -==-, 所以32344n S n n =-+,所以232344n S n n =-+①; 当2n ≥时,()()213231144n S n n -=--+-②;①减②得31322n a n =-+,显然15a =符号故31322n a n =-+,当14n ≤≤时0n a ≥,5n ≥时0n a <所以12310a a a a ++++41102356789a a a a a a a a a a -----+-=++()4104S S S --=4102S S =-2232332344101044442⨯+⨯-⎪=⨯⨯⎛⎫⎛⎫-- ⎪ ⎝⎭⎝⎭+357911222⎛=⎫⨯--= ⎪⎝⎭故答案为:792【点睛】本题考查等差数列的通项公式及求和公式的应用,属于中档题.16.已知点F 为抛物线()220y px p =>的焦点,经过点F 且倾斜角为4π的直线与抛物线相交于A ,B 点,线段AB 的垂直平分线与x 轴相交于点M .则4pFM的值为______. 【答案】2【解析】先写出过点F 且倾斜角为4π的直线方程,然后与抛物线方程联立成方程组,消元后利用根与系数的关系得到线段AB 的中点坐标,从而可得到线段AB 的垂直平分线方程,进而可求出点M 的坐标,于是就得到FM 的值,即可得结果. 【详解】解:抛物线()220y px p =>的焦点(,0)2pF ,则经过点F 且倾斜角为4π的直线为2py x =-,设1122(,),(,)A x y B x y ,线段AB 为00(,)N x y , 由222p y x y px⎧=-⎪⎨⎪=⎩,得22304p x px -+=,所以12003,22x x px y p +===, 所以线段AB 的垂直平分线方程为3()2py p x -=--, 令0y =,得52p x =,所以5(,0)2pM , 所以5222p p FM p =-=,所以4422p p FM p ==, 故答案为:2 【点睛】此题考查抛物线方程和性质,考查直线和抛物线的位置关系,运用了根与系的关系,考查化简运算能力,属于中档题.三、解答题17.某公司为加强对销售员的考核与管理,从销售部门随机抽取了2019年度某一销售小组的月均销售额,该小组各组员2019年度的月均销售额(单位:万元)分别为:3.35,3.35,3.38,3.41,3.43,3.44,3.46,3.48,3.51,3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70.(Ⅰ)根据公司人力资源部门的要求,若月均销售额超过3.52万元的组员不低于全组人数的65%,则对该销售小组给予奖励,否则不予奖励.试判断该公司是否需要对抽取的销售小组发放奖励;(Ⅱ)从该销售小组月均销售额超过3.60万元的销售员中随机抽取2名组员,求选取的2名组员中至少有1名月均销售额超过3.68万元的概率. 【答案】(Ⅰ)不需要对该销售小组发放奖励;(Ⅱ)710. 【解析】(Ⅰ)求出月均销售额超过3.52万元的销售员占该小组的比例,与65%比较判断即可;(Ⅱ)由题可知,月均销售额超过3.60万元的销售员有5名,其中超过3.68万元的销售员有2名,记为1A ,2A ,其余的记为1a ,2a ,3a ,利用列举法,列举出5名销售员中随机抽取2名的所有结果和至少有1名销售员月均销售额超过3.68万元的结果,最后根据古典概型求概率,即可得出结果. 【详解】解:(Ⅰ)该小组共有11名销售员2019年度月均销售额超过3.52万元, 分别是:3.54,3.56,3.56,3.57,3.59,3.60,3.64,3.64,3.67,3.70,3.70, ∴月均销售额超过3.52万元的销售员占该小组的比例为1155%20=, ∵55%65%<,故不需要对该销售小组发放奖励.(Ⅱ)由题可知,月均销售额超过3.60万元的销售员有5名,其中超过3.68万元的销售员有2名,记为1A ,2A ,其余的记为1a ,2a ,3a , 从上述5名销售员中随机抽取2名的所有结果为:()12,A A ,()11,A a ,()12,A a ,()13,A a ,()21,A a ,()22,A a ,()23,A a ,()12,a a ,()13,a a ,()23,a a ,共有10种,其中至少有1名销售员月均销售额超过3.68万元的结果为:()12,A A ,()11,A a ,()12,A a ,()13,A a ,()21,A a ,()22,A a ,()23,A a ,共有7种, 故选取的2名组员中至少有1名月均销售额超过3.68万元的概率为710P =. 【点睛】本题考查利用列举法写出基本事件和古典概率求概率,以及利用概率对实际问题进行评估,属于基础题.18.在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且()sin()()(sin sin )a c A B a b A B -+=-+.(Ⅰ)求角B 的大小;(Ⅱ)若4b =,求a c +的最大值. 【答案】(Ⅰ)3B π=;(Ⅱ)8.【解析】(Ⅰ)利用三角形的内角和定理可得()sin ()(sin sin )a c C a b A B -=-+,再根据正弦定理的边角互化以及余弦定理即可求解.(Ⅱ)由(Ⅰ)可得2216a c ac +-=,再利用基本不等式即可求解. 【详解】解:(Ⅰ)在ABC 中,∵sin()sin()sin A B C C π+=-=, ∴()sin ()(sin sin )a c C a b A B -=-+. 由正弦定理,得()()()a c c a b a b -=-+. 整理,得222c a b ac +-=.∴222122c a b ac +-=.∴1cos 2B =. 又0B π<<,∴3B π=.(Ⅱ)∵4b =,∴2216a c ac +-=, 即2()163a c ac +-=,∵22a c ac +⎛⎫≤ ⎪⎝⎭,∴22()1632a c a c +⎛⎫+-≤ ⎪⎝⎭. ∴21()164a c ≤+. ∴8a c +≤,当且仅当a c =时等号成立. ∴a c +的最大值为8. 【点睛】本题考查了正弦定理、余弦定理、基本不等式,需熟记定理的内容,属于基础题. 19.如图,在多面体ABCDEF 中,ADEF 为矩形,ABCD 为等腰梯形,//BC AD ,2BC =,4=AD ,且AB BD ⊥,平面ADEF ⊥平面ABCD ,M ,N 分别为EF ,CD 的中点.(Ⅰ)求证://MN 平面ACF ;(Ⅱ)若2DE =,求多面体ABCDEF 的体积. 【答案】(Ⅰ)证明见解析;103. 【解析】(Ⅰ)取AD 的中点O .连接OM ,ON ,可证//OM AF ,//ON AC ,然后利用平面//MON 平面ACF ,可证//MN 平面ACF .(Ⅱ)将多面体分为四棱锥B ADEF -和三棱锥B CDE -两部分,将B CDE V -转化为V E BCD -,然后利用四棱锥和三棱锥的体积公式分别求出然后求和即可. 【详解】解:(Ⅰ)如图,取AD 的中点O .连接OM ,ON .在矩形ADEF 中,∵O ,M 分别为线段AD ,EF 的中点, ∴//OM AF .又OM ⊄平面ACF ,AF ⊂平面ACF , ∴//OM 平面ACF .在ACD 中,∵O ,N 分别为线段AD ,CD 的中点, ∴//ON AC .又ON ⊄平面ACF ,AC ⊂平面ACF , ∴//ON 平面ACF . 又OMON O =,,OM ON ⊂平面MON ,∴平面//MON 平面ACF又MN ⊂平面MON ,∴//MN 平面ACF . (Ⅱ)如图,过点C 作CH AD ⊥于H . ∵平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,CH ⊂平面ABCD ,∴CH ⊥平面ADEF .同理DE ⊥平面ABCD .连接OB ,OC .在ABD △中,∵AB BD ⊥,4=AD , ∴122OB AD ==. 同理2OC=.∵2BC =,∴等边OBC 的高为3,即3CH =. 连接BE .∴ABCDEF B ADEF B CDE B ADEF E BCD V V V V V ----=+=+1111124323233332ADEF BCD S CH S DE =⋅+⋅=⨯⨯⨯+⨯⨯⨯⨯△ 103=.【点睛】本题考查利用线线平行,线面平行和面面平行的判定定理和性质定理,考查分割法求多面体的体积,考查四棱锥和三棱锥的体积公式,考查学生的转化能力和计算能力,属于中档题.20.已知函数()ln xm e f x x e=-,其中m R ∈.(Ⅰ)当1m =时,求函数()f x 的单调区间; (Ⅱ)当2m =时,证明:()0f x >.【答案】(Ⅰ)单调递减区间为0,1,单调递增区间为1,;(Ⅱ)证明见解析.【解析】(Ⅰ)利用导数求函数()f x 的单调区间;(Ⅱ)先证明存在唯一的()01,2x ∈,使得()0'0f x =,再利用导数求出()000201ln 2x e x x f x x e =-=+-最小值,再利用基本不等式证明不等式. 【详解】解:(Ⅰ)当1m =时,()ln x e f x x e =-.则()1'x e f x e x=-.∵()'f x 在0,上单调递增(增函数+增函数=增函数),且()'10f =,∴当()0,1x ∈时,()'0f x <;当()1,x ∈+∞时,()'0f x >. ∴()f x 的单调递减区间为0,1,单调递增区间为1,.(Ⅱ)当2m =时,()2ln x e f x x e =-.则()21'x e f x e x=-.∵()'f x 在0,上单调递增,且()1'110f e =-<,()1'2102f =->, ∴存在唯一的()01,2x ∈,使得()0'0f x =.∴当()00,x x ∈时,()'0f x <,即()f x 在()00,x 上单调递减; 当()0,x x ∈+∞时,()'0f x >,即()f x 在()0,x +∞上单调递增, ∴()()0002ln x e f x ef x x ==-最小值.又0201x e e x =,即0201ln ln x ex -=.化简,得002ln x x -=-. ∴()000201ln 2x e x x f x x e =-=+-最小值. ∵()01,2x ∈,∴()001220x x f x =+->=最小值. ∴当2m =时,()0f x >. 【点睛】本题主要考查利用导数研究函数的单调区间和最值,考查利用导数证明不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.21.已知椭圆C :()222210x y a b a b +=>>的左焦点()1F,点2Q ⎛⎫ ⎪ ⎪⎝⎭在椭圆C 上.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)经过圆O :225x y +=上一动点P 作椭圆C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆O 相交于异于点P 的M ,N 两点.(i )当直线PA ,PB 的斜率都存在时,记直线PA ,PB 的斜率分别为1k ,2k .求证:121k k =-;(ii )求ABMN的取值范围.【答案】(Ⅰ)2214x y +=;(Ⅱ)(i )证明见解析;(ii )14,55⎡⎤⎢⎥⎣⎦.【解析】(Ⅰ)把点Q ⎛ ⎝⎭代入椭圆方程,结合222a b c =+,c =,即可求得椭圆的标准方程.(Ⅱ)(i )设点()00,P x y ,写出切线方程()00y k x x y =-+,联立方程组()0022440y k x x y x y ⎧=-+⎨+-=⎩,再由0∆=,结合韦达定理,写出12k k 的表达式,化简得出结果; (ii )设点()11,A x y ,()22,B x y ,进而求得直线PA 和PB 的直线方程,结合两条直线的形式,可写出直线AB 的方程,运用弦长公式求得ABMN,结合0y 的范围,可求得ABMN的取值范围. 【详解】(Ⅰ)∵椭圆C 的左焦点()1F ,∴c =将Q ⎛ ⎝⎭代入22221x y a b +=,得221314a b +=. 又223a b -=,∴24a =,21b =.∴椭圆C 的标准方程为2214x y +=.(Ⅱ)(i )设点()00,P x y ,设过点P 与椭圆C 相切的直线方程为()00y k x x y =-+. 由()0022440y k x x y x y ⎧=-+⎨+-=⎩,消去y ,得()()()2220000148440k x k y kx x y kx ++-+--=.()()()222200006444144k y kx k y kx ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()22200004210x k x y k y -++-=.由已知,则212214y k k x -=-. 又22005x y +=,∴()220012220154144x x k k x x ---===---. (ii )设点()11,A x y ,()22,B x y .当直线PA 的斜率存在时,设直线PA 的方程为()111y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y ,得()()()22211111111148440k xk y k x x y k x ++-+--=.()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=. 则11111122111444x y x y x k x y y =-=-=--. ∴直线PA 的方程为()11114x y x x y y =--+. 化简,可得22111144x x y y y x +=+,即1114x xy y +=. 经验证,当直线PA 的斜率不存在时,直线PA 的方程为2x =或2x =-,也满足1114x xy y +=. 同理,可得直线PB 的方程为2214x xy y +=. ∵()00,P x y 在直线PA ,PB 上,∴101014x x y y +=,202014x xy y +=.∴直线AB 的方程为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y ,得()22200035816160y x x x y +-+-=.∴01220835x x x y +=+,21220161635y x x y -=+.∴12x AB =-=)20203135y y +==+. 又由(i )可知当直线PA ,PB 的斜率都存在时,PM PN ⊥;易知当直线PA 或PB 斜率不存在时,也有PM PN ⊥.∴MN 为圆O 的直径,即MN =∴)2022022003131413535y y y y ABMN++===-++. 又[]200,5y ∈,∴204141,3555y ⎡⎤-∈⎢⎥+⎣⎦. ∴AB MN 的取值范围为14,55⎡⎤⎢⎥⎣⎦. 【点睛】本题主要考查直线与椭圆相交时的有关知识,考查学生分析问题解决问题的能力.采用了设而不求的方法,运用韦达定理和弦长公式求得AB MN,结合椭圆纵坐标的有界性可求得范围,属于中档题.22.在平面直角坐标系xOy 中,直线l的参数方程为832432x t y t ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为26cos a ρρθ+=,其中0a >.(Ⅰ)写出直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)在平面直角坐标系xOy 中,设直线l 与曲线C 相交于A ,B 两点.若点84,33P ⎛⎫- ⎪⎝⎭恰为线段AB 的三等分点,求a 的值.【答案】(Ⅰ)40x y -+=;2260x y x a ++-=;(Ⅱ)4a =.【解析】(Ⅰ)利用消参法消去参数t ,即可将直线l 的参数方程转化为普通方程,利用互化公式222x y ρ=+,cos x ρθ=,将曲线C 的极坐标方程转化为直角坐标方程; (Ⅱ)把直线l 的参数方程代入曲线C 的直角坐标方程,得出关于t 的一元二次方程,根据韦达定理得出12t t +和12t t ,再利用直线参数方程中的参数t 的几何意义,即可求出a 的值.【详解】解:(Ⅰ)由于直线l的参数方程为83243x y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),消去参数t ,得直线l 的普通方程为40x y -+=,由222x y ρ=+,cos x ρθ=,得曲线C 的直角坐标方程为2260x y x a ++-=.(Ⅱ)将直线l 的参数方程代入曲线C 的直角坐标方程,并整理,得26409t a +--=,(*) 设1t ,2t 是方程(*)的两个根,则有>0∆,得12t t +=,12649t t a ⎛⎫=-+ ⎪⎝⎭, 由于点84,33P ⎛⎫- ⎪⎝⎭恰为线段AB 的三等分点, 所以不妨设122t t =-, ∴223250929a t =+=, 解得:4a =,符合条件0a >和>0∆,.∴a 的值为4.【点睛】本题考查利用消参法将参数方程转化为普通方程,以及利用互化公式将极坐标方程转化为直角坐标方程,考查利用直线参数方程中的参数t 的几何意义求参数值,考查化简运算能力.23.已知函数()12f x x x =--+.(Ⅰ)求不等式()f x x <的解集;(Ⅱ)记函数()f x 的最大值为M .若正实数a ,b ,c 满足1493a b c M ++=,求193c a c ab ac--+的最小值. 【答案】(Ⅰ)1|3x x ⎧⎫>-⎨⎬⎩⎭;(Ⅱ)36. 【解析】(Ⅰ)根据零点分段去掉绝对值,分别求出x 的取值范围,可得不等式的解集; (Ⅱ)由绝对值三角不等式求出()f x 的最大值为M ,将其代入化简,根据柯西不等式求出最值,并写出取等条件.【详解】解:(Ⅰ)不等式()f x x <即12x x x --+<.①当1x ≥时,化简得3x -<.解得1x ≥;②当21x -<<时,化简得21x x --<.解得113-<<x ; ③当2x -≤时,化简得3x <.此时无解. 综上,所求不等式的解集为1|3x x ⎧⎫>-⎨⎬⎩⎭. (Ⅱ)∵()()12123x x x x --+≤--+=,当且仅当2x -≤时等号成立. ∴3M =,即491a b c ++=. ∵193413111c a c a b ab ac ab c a a b c--++=+-=++, 又,,0a b c >, ∴111111(49)a b c a b c a b c ⎛⎫++=++++ ⎪⎝⎭2≥ ()212336=++=. 当且仅当11149a b c a b c==,即16a =,112b =,118c =时取等号, ∴193c a c ab ac--+的最小值为36. 【点睛】本题考查绝对值不等式的解法,以及柯西不等式在求最值中的应用,属于中档题.。

成都七中2020届三诊模拟试卷(文科数学)答案

成都七中2020届三诊模拟试卷(文科数学)答案

得分[80,100] 的频率为 0.015 20 0.3 ;
所以得分[60,80) 的频率为1 (0得分的中位数为 x 分,于是 0.1 0.2 x 60 0.4 0.5 ,解得 x 70. 20
所以班级卫生量化打分检查得分的中位数为 70 分.
1 x
4e (x e)2
(x e)2 x(x e)2
0.
于是 g(x) 在 (e, ) 单调递增,所以 g(x) g(e) 0,
即 ln x 3x e , x (e, ).
5分
xe
(2) f (x) (2x 1)x ln x (x2 x e2 )(ln x 1) (x2 e2 ) ln x (x2 x e2 ) .
6分
(2)由(1)知题意 “良”、“中”的频率分别为 0.4, 0.2. 又班级总数为 40.
于是“良”、“中”的班级个数分别为16,8 .
分层抽样的方法抽取的 “良”、“中”的班级个数分别为 4, 2.
因为评定为“良”,奖励 2 面小红旗,评定为“中”,奖励 1 面小红旗.
所以抽取的 2 个班级获得的奖励小红旗面数和不少于 3 为两个评定为“良”的班级或一个评
所以 AM 2 AB2 MB2. 于是 AB AM .
又 AB AD, 且 AM AD A, AM 平面 ABD , AD 平面 ADM ,
所以 AB 平面 ADM .
(2)因为 AM AD 2, MD 2 3 ,所以 SADM 3.
因为 BE
2EM
,所以VC AEM
1 3
6分
2
3
(2)因为 a 7,b 2, A π , 3
由余弦定理得
2
7
22
c2
2 2 c cos

2020年四川省成都市树德中学高考数学三诊试卷(文科)(Word 含解析)

2020年四川省成都市树德中学高考数学三诊试卷(文科)(Word 含解析)

2020年高考数学三诊试卷(文科)一、选择题(共12小题)1.已知集合A={x|x2﹣2x﹣3>0,x∈Z},集合B={x|x>0},则集合∁Z A∩B的真子集个数为()A.3B.4C.7D.82.方程x2m−2+y2m+3=1表示双曲线的一个充分不必要条件是()A.﹣3<m<0B.﹣3<m<2C.﹣3<m<4D.﹣1<m<33.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置p(x,y).若初始位置为P0(√32,12),当秒针从P0(注此时t=0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为()A.y=sin(π30t+π6)B.y=sin(−π60t−π6)C.y=sin(−π30t+π6)D.y=sin(−π30t−π3)4.已知直线x+7y=10把圆x2+y2=4分成两段弧,这两段弧长之差的绝对值等于()A.π2B.2π3C.πD.2π5.若x的取值范围为[0,10],给出如图所示的程序框图,输入一个数x,则输出y满足y <5的概率为()A.0.3B.0.4C.0.5D.0.76.变量x,y满足{x−4y+3≤03x+5y−25≤0x≥1,则x2+y2+6x﹣4y+14的最大值为()A.8B.9C.64D.657.某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为()A.2+3√22B.72+3√22C.3+2√2D.2+√28.已知平面α及直线a,b,则下列说法错误的个数是()①若直线a,b与平面α所成角都是30°,则这两条直线平行;②若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直;③若直线a,b垂直,则这两条直线与平面α不可能都垂直;④若直线a,b平行,则这两条直线中至少有一条与平面α平行.A.1B.2C.3D.49.已知函数f(x)=e x−1e x+1,g(x)=1﹣x,若对∀x1∈R,总存在x2∈[m,n],使得f(x1)>g(x2)成立,以下对m、n的取值范围判断正确的是()A.m≥2B.m>2C.n≥2D.n>210.已知△ABC的外接圆的圆心为O,满足:CO→=m CA→+n CB→,4m+3n=2,且|CA→|=4√3,|CB→|=6,则CA→•CB→=()A.36B.24C.24√3D.12√311.设函数f(x)={log2(x+1),x≥0√−x,x<0,则满足f(x+1)<2的x的取值范围为()A.(﹣4,3)B.(﹣5,2)C .(﹣3,4)D .(﹣∞,﹣3)∪(4,+∞)12.已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =−116的距离为d ,若|MN |2=λ•d 2,则λ的最小值为( ) A .√22B .1−√22C .1+√22D .2+√2二、填空题 13.双曲线x 29−y 216=λ(λ∈R 且λ≠0)的离心率为 .14.复数z 满足方程z 2+z +3=0,z 是z 的共轭复数,则z +z = . 15.若f(x)=21+2x +11+4x ,且f[log a (√2+1)]=1,其中a >1,则f[log a (√2−1)]= .16.函数f(x)=x 2−6x ⋅sin πx2+1(x ∈R)的零点个数有 个.三、解答题:解答应写出相应的文字说明,证明过程或者演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22.23题为选考题,考生根据要求作答)(一)必考题 17.已知等差数列{a n }的前n 项和为S n ,若S m ﹣1=﹣4,S m =0,S m +2=14.(m ≥2,且m ∈N*) (1)求m 的值; (2)若数列{b n }满足a n 2=log 2b n (n ∈N*),求数列{(a n +6)•b n }的前n 项和.18.四面体A ﹣BCD 中,O ,E 分别是BD ,BC 的中点,AC =BC =CD =BD =2,AB =AD =√2(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点C 到平面AED 的距离.19.2019年全国“两会”,即中华人民共和国第十三届全国人大二次会议和中国人民政治协商会议第十三届全国会第二次会议,分别于2019年3月5日和3月3日在北京召开.为了了解哪些人更关注“两会”,某机构随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制出频率分布直方图,如图.若把年龄在区间[15,35),[35,75]内的人分别称为“青少年”“中老年”.经统计“青少年”和“中老年”的人数之比为19:21.其中“青少年”中有40人关注“两会”,“中老年”中关注“两会”和不关注“两会”的人数之比为2:1. (1)求图中a +b 的值.(2)现采用分层抽样在[25,35)和[45,55)中随机抽取8人作为代表,从8人中任选2人,求2人都是“中老年”的概率.(3)根据已知条件,完成下面的2×2列联表,并判断能否有99.9%的把握认为“中老年”比“青少年”更加关注“两会”.关注 不关注总计 “青少年” “中老年” 总计附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d . P (K 2≤k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.82820.已知椭圆E :x 2a +y 2b =1(a >b >0)的离心率为12,且过点P(1,32),直线l :y =kx +m交椭圆E 于不同的两点A ,B ,设线段AB 的中点为M . (1)求椭圆E 的方程;(2)当△AOB 的面积为32(其中O 为坐标原点)且4k 2﹣4m 2+3≠0时,试问:在坐标平面上是否存在两个定点C ,D ,使得当直线l 运动时,|MC |+|MD |为定值?若存在,求出点C ,D 的坐标和定值;若不存在,请说明理由.21.已知函数f (x )=(a +1a )lnx +1x −x (a >1).(l )试讨论f (x )在区间(0,1)上的单调性;(2)当a ∈[3,+∞)时,曲线y =f (x )上总存在相异两点P (x 1,f (x 1)),Q (x 2,f (x 2 )),使得曲线y =f (x )在点P ,Q 处的切线互相平行,求证:x 1+x 2>65. 请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系中,曲线C 1的参数方程为{ x =−2tanθ√2tan θ+1y =√2tan θ+1(θ为参数,0≤θ≤π,θ≠π2),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2:ρcos (θ−π4)=√2. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若点P 在曲线C 1上,点Q 在曲线C 2上,求|PQ |的最小值. 23.已知函数f (x )=|x +1|﹣|x ﹣2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2﹣x +m 的解集非空,求m 的取值范围.参考答案一、在每小题出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣2x﹣3>0,x∈Z},集合B={x|x>0},则集合∁Z A∩B的真子集个数为()A.3B.4C.7D.8【分析】可以求出集合A,然后进行补集、交集的运算求出∁Z A∩B,从而可得出∁Z A∩B 的真子集的个数.解:∵A={x|x<﹣1或x>3,x∈Z},B={x|x>0},∴∁Z A={﹣1,0,1,2,3},∴∁Z A∩B={1,2,3},∴∁Z A∩B的真子集个数为23﹣1=7.故选:C.【点评】本题考查了一元二次不等式的解法,描述法、列举法的定义,交集和补集的运算,考查了计算能力,属于基础题.2.方程x2m−2+y2m+3=1表示双曲线的一个充分不必要条件是()A.﹣3<m<0B.﹣3<m<2C.﹣3<m<4D.﹣1<m<3【分析】根据题意,由双曲线的标准方程分析可得方程x2m−2+y2m+3=1表示双曲线时m的取值范围,进而由充分必要条件的定义分析可得答案.解:根据题意,方程x2m−2+y2m+3=1表示双曲线,则有(m﹣2)(m+3)<0,解可得﹣3<m<2,要求方程x2m−2+y2m+3=1表示双曲线的一个充分不必要条件,即要求的是{m|﹣3<m<2}的真子集;依次分析选项:A符合条件,故选:A.【点评】本题考查双曲线的几何性质,涉及充分必要条件的判定,关键是掌握二元二次方程表示双曲线的条件.3.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置p(x,y).若初始位置为P0(√32,12),当秒针从P0(注此时t=0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为()A.y=sin(π30t+π6)B.y=sin(−π60t−π6)C.y=sin(−π30t+π6)D.y=sin(−π30t−π3)【分析】先确定函数的周期,再假设函数的解析式,进而可求函数的解析式.解:由题意,函数的周期为T=60,∴ω=2π60=π30设函数解析式为y=sin(−π30t+φ)(因为秒针是顺时针走动)∵初始位置为P0(√32,12),∴t=0时,y=1 2∴sinφ=1 2∴φ可取π6∴函数解析式为y=sin(−π30t+π6)故选:C.【点评】本题考查三角函数解析式的确定,考查学生的阅读能力,解题的关键是确定函数的周期,正确运用初始点的位置.4.已知直线x+7y=10把圆x2+y2=4分成两段弧,这两段弧长之差的绝对值等于()A.π2B.2π3C.πD.2π【分析】根据圆的方程求得圆心坐标和半径,进而根据点到直线的距离求得圆心到直线的距离,利用勾股定理求得直线被圆截的弦长,进而可利用勾股定理推断出弦所对的角为直角,进而分别求得较短的弧长和较长的弧长,答案可得.解:圆的圆心为(0,0)到直线x+7y=10的距离为√1+49=√2∴弦长为2×√4−2=2√2根据勾股定理可知弦与两半径构成的三角形为直角三角形,较短弧长为14×2π×2=π,较长的弧长为4π﹣π=3π∴两段弧长之差的绝对值等于2π故选:D.【点评】本题主要考查了直线与圆相交的性质.一般采用数形结合的方法,在弦与半径构成的三角形中,通过解三角形求得问题的答案.5.若x的取值范围为[0,10],给出如图所示的程序框图,输入一个数x,则输出y满足y <5的概率为()A.0.3B.0.4C.0.5D.0.7【分析】由程序框图得出输出变量y的解析式,求出输出的y满足y<5时x的取值范围,代入几何概型概率计算公式,可得答案;解:由题意知,程序框图所表示的函数解析式为y={x+1,x≤7 x−1,x>7;当y<5时,若输出y=x+1(0≤x≤7),此时输出的结果满足x+1<5,解得0≤x<4;若输出y=x﹣1(7<x≤10),此时输出的结果满足x﹣1<5,解得0≤x<6(不合题意),所以输出的y <5时,x 的取值范围是0≤x <4; 所以使得输出的y 满足y <5的概率为P =4−010−0=25=0.4. 故选:B .【点评】本题考查了程序框图、分段函数与几何概型的概率计算问题,是综合题. 6.变量x ,y 满足{x −4y +3≤03x +5y −25≤0x ≥1,则x 2+y 2+6x ﹣4y +14的最大值为( )A .8B .9C .64D .65【分析】画出约束条件表示的可行域,利用表达式的几何意义是可行域上的点到点(﹣3,2)的距离的平方平方再加1.求解即可.解:由变量x ,y 满足{x −4y +3≤03x +5y −25≤0x ≥1,作出(x ,y )的可行域如图所示.z =x 2+y 2+6x ﹣4y +14=(x +3)2+(y ﹣2)2+1的几何意义是可行域上的点到点(﹣3,2)的距离的平方再加1.结合图形可知,{x −4y +3=03x +5y −25=0解得B (5,2),可行域上的点到(﹣3,2)的距离中,d min =1﹣(﹣3)=4,d max =8. ∴17≤z ≤65.则x 2+y 2+6x ﹣4y +14的最大值为65. 故选:D .【点评】本题考查简单线性规划的应用,注意目标函数的几何意义是解题的关键,常考题型.7.某空间凸多面体的三视图如图所示,其中俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为( )A.2+3√22B.72+3√22C.3+2√2D.2+√2【分析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可.解:由题意可知几何体的直观图如图:左侧是放倒的三棱柱,右侧是三棱锥,俯视图和侧(左)视图中的正方形的边长为1,正(主)视图和俯视图中的三角形均为等腰直角三角形,则该几何体的表面积为:1×√2+2×12×1×1+1×1+12×1×1+12×1×√2+12×1×√2+12×1×1=3+2√2.故选:C.【点评】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,考查计算能力.8.已知平面α及直线a,b,则下列说法错误的个数是()①若直线a,b与平面α所成角都是30°,则这两条直线平行;②若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直;③若直线a,b垂直,则这两条直线与平面α不可能都垂直;④若直线a,b平行,则这两条直线中至少有一条与平面α平行.A.1B.2C.3D.4【分析】作图说明①②错误;由直线与平面垂直的性质说明③正确;举例说明④错误.解:①若直线a,b与平面α所成角都是30°,则这两条直线平行,错误,如图:在直线a上取一点A,作AA1⊥α,在直线b上取一点B,作BB1⊥α.可以使∠AOA1=∠BOB1=30°,但a与b不平行;②若直线a,b与平面α所成角都是30°,则这两条直线不可能垂直,错误,上图中在∠AOA1=∠BOB1=30°时,可以使∠AOB=90°,即a⊥b;③若直线a,b垂直,则这两条直线与平面α不可能都垂直,正确.原因是若a与b与平面α都垂直,则a∥b,a与b不垂直;④若直线a,b平行,则这两条直线中至少有一条与平面α平行,错误,如a,b都垂直平面α.∴说法错误的个数是3个.故选:C.【点评】本题考查空间中直线与直线、直线与平面位置关系的判定及其应用,考查空间想象能力与思维能力,是中档题.9.已知函数f(x)=e x−1e x+1,g(x)=1﹣x,若对∀x1∈R,总存在x2∈[m,n],使得f(x1)>g(x2)成立,以下对m、n的取值范围判断正确的是()A.m≥2B.m>2C.n≥2D.n>2【分析】由指数函数的值域和不等式的性质,求得f(x)的值域;由一次函数的单调性可得g(x)的值域,由题意可得n的不等式,解不等式可得所求范围.解:函数f(x)=e x−1e x+1,即f(x)=1−21+e x,由e x>0,可得1+e x>1,即有0<21+e x<2,则﹣1<1−21+e x<1,即有f(x)的值域为(﹣1,1);g(x)=1﹣x在[m,n]递减,可得g(x)的值域为[1﹣n,1﹣m],对∀x1∈R,总存在x2∈[m,n],使得f(x1)>g(x2)成立,可得﹣1≥1﹣n,即有n≥2,故选:C.【点评】本题考查函数恒成立问题解法,注意运用转化思想,以及函数的单调性求值域,考查运算能力和推理能力,属于中档题.10.已知△ABC 的外接圆的圆心为O ,满足:CO →=m CA →+n CB →,4m +3n =2,且|CA →|=4√3,|CB →|=6,则CA →•CB →=( ) A .36B .24C .24√3D .12√3【分析】根据已知条件,在CO →=mCA →+nCB →两边分别乘以向量CA →,CB →便可得到,{24=48m +nCA →⋅CB →①18=36n +mCA →⋅CB →②,所以根据4m +3n =2,①+②,和①×3+②×4得{(m +n)CA →⋅CB →=1872(m +n)+CA →⋅CB →=72,所以由这两式即可求出CA →⋅CB →. 解:如图,根据已知条件:{CO →⋅CA →=mCA →2+nCA →⋅CB →CO →⋅CB →=mCA →⋅CB →+nCB →2; ∴{2√3⋅4√3=48m +nCA →⋅CB →3⋅6=36n +mCA →⋅CB →; ∴{24=48m +nCA →⋅CB →①18=36n +mCA →⋅CB →②; ∴①+②得,42=12(4m +3n )+(m +n )CA →⋅CB →=24+(m +n)CA →⋅CB →; ∴(m +n)CA →⋅CB →=18③;①×3+②×4得,144=144(m +n )+(4m +3n )CA →⋅CB →=144(m +n )+2CA →⋅CB →; ∴72(m +n)+CA →⋅CB →=72④; ∴联立③④可CA →⋅CB →=36. 故选:A .【点评】考查向量数量积的计算公式,三角形外心的概念,直角三角形的边角关系,以及对条件4m+3n=2的灵活运用.11.设函数f(x)={log2(x+1),x≥0√−x,x<0,则满足f(x+1)<2的x的取值范围为()A.(﹣4,3)B.(﹣5,2)C.(﹣3,4)D.(﹣∞,﹣3)∪(4,+∞)【分析】作出函数f(x)的图象,结合图象可知,不等式可转化为0≤x+1<3或﹣4<x+1≤0,分别解出后取并集即可.解:作出函数f(x)的图象如图所示,令f(x)=2,解得x=﹣4或x=3,由图象可知,f(x+1)<2等价为0≤x+1<3或﹣4<x+1≤0,解得﹣1≤x<2或﹣5<x≤﹣1,∴所求不等式的解集为(﹣5,2).故选:B.【点评】本题考查不等式的解法,考查数形结合思想,属于基础题.12.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足∠MFN=135°,弦MN的中点P到直线l:y=−116的距离为d,若|MN|2=λ•d2,则λ的最小值为()A.√22B.1−√22C.1+√22D.2+√2【分析】求得抛物线的焦点和准线方程,设|MF|=a,|NF|=b,由∠MFN=135°,运用余弦定理可得|MN |,运用抛物线的定义和中位线定理可得d =12(|MF |+|NF |)=12(a +b ),运用基本不等式计算即可得到所求最小值. 解:抛物线y =4x 2的焦点F (0,116),准线为y =−116, 设|MF |=a ,|NF |=b ,由∠MFN =135°,可得|MN |2=|MF |2+|NF |2﹣2|MF |•|NF |•cos ∠MFN =a 2+b 2+√2ab , 由抛物线的定义可得M 到准线的距离为|MF |,N 到准线的距离为|NF |, 由梯形的中位线定理可得d =12(|MF |+|NF |)=12(a +b ), 由|MN |2=λ•d 2,可得14λ=a 2+b 2+√2ab (a+b)2=1−(2−√2)ab (a+b)2≥1√2)ab (2√ab)2=1−2−√24=2+√24,可得λ≥2+√2,当且仅当a =b 时,取得最小值2+√2. 故选:D .【点评】本题考查抛物线的定义、方程和性质,考查余弦定理和基本不等式的运用:求最值,考查化简整理的运算能力,属于中档题. 二、填空题 13.双曲线x 29−y 216=λ(λ∈R 且λ≠0)的离心率为53或54.【分析】利用双曲线方程,转化求解离心率即可. 解:当λ>0时,双曲线x 29−y 216=λ(λ∈R 且λ≠0)的离心率为:e =√c 2a2=√9λ+16λ9λ=53. 当λ<0时,双曲线x 29−y 216=λ(λ∈R 且λ≠0)的离心率为:e =√c 2a2=√−9λ−16λ−16λ=54. 故答案为:53或54.【点评】本题考查双曲线的简单性质的应用、分类讨论方法,是基本知识的考查,基础题.14.复数z 满足方程z 2+z +3=0,z 是z 的共轭复数,则z +z = ﹣1 . 【分析】直接利用实系数一元二次方程的虚根成对原理得答案. 解:∵方程z 2+z +3=0的判别式小于0, ∴z 为方程z 2+z +3=0的虚根,由实系数一元二次方程虚根成对原理,可得z +z =−1. 故答案为:﹣1.【点评】本题考查实系数一元二次方程的虚根成对原理,是基础题. 15.若f(x)=21+2x +11+4x ,且f[log a (√2+1)]=1,其中a >1,则f[log a (√2−1)]= 2 . 【分析】直接利用函数的关系式的运算的应用和对数的关系式的运算的应用求出结果.解:由于f(x)=21+2x +11+4x ,所以f(−x)=21+2−x +11+4−x =2×2x 1+2x +4x1+4x , 所以f (x )+f (﹣x )=21+2x +11+4x +2×2x1+2x +4x 1+4x =3. 由于:log a (√2+1)=−log a (√2−1), 所以f[log a (√2−1)]+f[log a (√2−1)]=3, 整理得f[log a (√2−1)]=2. 故答案为:2【点评】本题考查的知识要点:函数的、关系式的运算,对数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.16.函数f(x)=x 2−6x ⋅sin πx2+1(x ∈R)的零点个数有 8 个.【分析】显然0不是函数f(x)=x 2−6x ⋅sin πx2+1(x ∈R)的零点,故化为函数y =6sin π2x 与y =x +1x的图象的交点的个数,作函数图象求解即可.解:显然0不是函数f (x )=x 2﹣6x sin π2x +1的零点,故f (x )=x 2﹣6x sin π2x +1=0可化为6sin π2x =x +1x,故可化为函数y =6sin π2x 与y =x +1x的图象的交点的个数,作函数y =6sin π2x 与y =x +1x的图象如图:由图象可知,有8个交点.故答案为:8.【点评】本题考查了函数的零点与方程的根及函数的图象的交点的关系应用,同时考查了学生作图与用图的能力,属于中档题.三、解答题:解答应写出相应的文字说明,证明过程或者演算步骤.第17~21题为必考题,每个试题考生都必须作答,第22.23题为选考题,考生根据要求作答)(一)必考题17.已知等差数列{a n}的前n项和为S n,若S m﹣1=﹣4,S m=0,S m+2=14.(m≥2,且m∈N*)(1)求m的值;(2)若数列{b n}满足a n2=log2b n(n∈N*),求数列{(a n+6)•b n}的前n项和.【分析】(1)利用a m=S m﹣S m﹣1,转化求出数列的公差,然后利用已知条件求解m.(2)化简数列的通项公式,利用错位相减法求和求解即可.解:(1)∵S m﹣1=﹣4,S m=0,S m+2=14,∴a m=S m﹣S m﹣1=4,a m+1+a m+2=S m+2﹣S m=14.设{a n}的公差为d,则2a m+3d=14,∴d=2.∵S m =a 1+a m2=0,∴a 1=﹣a m =﹣4. ∴a m =a 1+(m ﹣1)d =﹣4+2(m ﹣1)=4, ∴m =5.(2)由(1)可得a n =﹣4+2(n ﹣1)=2n ﹣6. ∵a n 2=log 2b n ,即n ﹣3=log 2b n ,∴b n =2n ﹣3,∴(a n +6)•b n =2n •2n ﹣3=n •2n ﹣2,设数列{(a n +6)•b n }的前n 项和为T n ,则T n =1•2﹣1+2•20+3•21+4•22+…+n •2n ﹣2,① ∴2T n =1•20+2•21+3•22+4•23+…+n •2n ﹣1,② ①﹣②得: ﹣T n =12+1+21+22+23+…+2n ﹣2﹣n •2n ﹣1=12+1−2n−11−2−n •2n ﹣1=−12−(n ﹣1)2n ﹣1, T n =12+(n ﹣1)2n ﹣1. 【点评】本题考查数列的递推关系式的应用,数列通项公式的求法,数列求和的方法,考查计算能力.18.四面体A ﹣BCD 中,O ,E 分别是BD ,BC 的中点,AC =BC =CD =BD =2,AB =AD =√2(1)求证:AO ⊥平面BCD ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点C 到平面AED 的距离.【分析】(1)连接OC ,运用勾股定理的逆定理,证得AO ⊥OC ,再由线面垂直的判定定理,即可得证;(2)取AC 中点M ,连接OM ,ME ,OE ,又E 为BC 中点,则ME ∥AB ,OE ∥CD ,所以直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成角,运用解直角三角形,即可得到;(3)设点C 到平面AED 的距离为h ,由V C ﹣AED =V A ﹣CDE ,由三棱锥的体积公式,结合余弦定理和面积公式,即可得到点C 到平面AED 的距离. 【解答】(1)证明:连接OC ,已知O 为BD 中点, AB =AD =√2,AC =BC =CD =BD =2, 故AO ⊥BD ,CO ⊥BD ,所以OA =√AB 2−BO 2=1,OC =√3,在△AOC 中, OA 2+OC 2=4=AC 2,所以∠AOC =90°,则AO ⊥OC , 又AO ⊥BD ,BD ∩OC =O ,故AO ⊥平面BCD .(2)解:取AC 中点M ,连接OM ,ME ,OE ,又E 为BC 中点,则ME ∥AB ,OE ∥CD ,所以直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成角,在△OME 中,EM =12AB =√22,OE =12CD =1,又OM 为Rt △AOC 的斜边AC 上的中线,故OM =1,所以cos ∠OEM =√24,即异面直线AB 与CD 所成角的余弦值为√24.(3)解:(体积法)设点C 到平面AED 的距离为h ,因为V C ﹣AED =V A ﹣CDE , 即有13hS △AED =13AO •S △CDE ,又CA =BC =2,AB =√2,设AE =x ,则由余弦定理有cos ∠ABC =AB 2+BC 2−AC 22AB⋅BC =AB 2+BE 2−AE 22AB⋅BE,即有AE =√2,△AED 为等腰三角形,而DE =√3,等腰三角形△AED 底边上的高为√52,故△AED 的面积为S △AED =12⋅DE ⋅√52=√154.则而AO =1,S △CDE =12×√34×4=√32,故h =2√55,点E 到平面ACD 的距离为2√55.【点评】本题考查线面垂直的判定和性质及运用,考查异面直线所成的角的求法,考查点到平面的距离的求法:体积法,考查运算能力,属于中档题.19.2019年全国“两会”,即中华人民共和国第十三届全国人大二次会议和中国人民政治协商会议第十三届全国会第二次会议,分别于2019年3月5日和3月3日在北京召开.为了了解哪些人更关注“两会”,某机构随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制出频率分布直方图,如图.若把年龄在区间[15,35),[35,75]内的人分别称为“青少年”“中老年”.经统计“青少年”和“中老年”的人数之比为19:21.其中“青少年”中有40人关注“两会”,“中老年”中关注“两会”和不关注“两会”的人数之比为2:1. (1)求图中a +b 的值.(2)现采用分层抽样在[25,35)和[45,55)中随机抽取8人作为代表,从8人中任选2人,求2人都是“中老年”的概率.(3)根据已知条件,完成下面的2×2列联表,并判断能否有99.9%的把握认为“中老年”比“青少年”更加关注“两会”.关注 不关注总计 “青少年” “中老年” 总计附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d .P (K 2≤k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828【分析】(1)根据频率分布直方图的频率和已知可求得a +b 的值. (2)利用列举法和古典概型的定义可求2人都是“中老年”的概率.(3)根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论.可判断能否有99.9%的把握认为“中老年”比“青少年”更加关注“两会”.解:(1)由题意得{(b +0.030)×10=1919+21(a +0.010+0.005×2)×10=2119+21, 解得{b =0.0175a =0.0325,所以a +b =0.0325+0.0175=0.05. (2)由题意得,在[25,35)中抽取8×0.0300.030+0.010=6(人),分别记为A ,B ,C ,D ,E ,F ,在[45,55)中抽取8﹣6=2(人),分别记为a ,b .则从8人中任选2人的全部基本事件有AB ,AC ,AD ,AE ,AF ,Aa ,Ab ,BC ,BD ,BE ,BF ,Ba ,Bb ,CD ,CE ,CF ,Ca ,Cb ,DE ,DF ,Da ,Db ,EF ,Ea ,Eb ,Fa ,Fb ,ab ,共28种,其中所选的2人都是“中老年”的事件只有ab 这1种, 故2人都是“中老年”的概率p =128. (3)2×2列联表如下:关注 不关注 总计 “青少年” 40 55 95 “中老年”70 35 105 总计11090200所以K 2=200×(40×35−55×70)295×105×110×90≈12.157>10.828,故有99.9%的把握认为“中老年”比“青少年”更加关注“两会”.【点评】本题考查了独立性检验的应用问题,结合古典概型,也考查了计算能力的应用问题,是中档题目. 20.已知椭圆E :x 2a +y 2b =1(a >b >0)的离心率为12,且过点P(1,32),直线l :y =kx +m交椭圆E 于不同的两点A ,B ,设线段AB 的中点为M . (1)求椭圆E 的方程;(2)当△AOB 的面积为32(其中O 为坐标原点)且4k 2﹣4m 2+3≠0时,试问:在坐标平面上是否存在两个定点C ,D ,使得当直线l 运动时,|MC |+|MD |为定值?若存在,求出点C ,D 的坐标和定值;若不存在,请说明理由.【分析】(1)利用椭圆的离心率为12,则a 2:b 2:c 2=4:3:1,设出椭圆E :x 24+y 23=λ(λ>0)又椭圆过点P(1,32),然后求解椭圆方程.(2)当直线l 的斜率存在时,设其方程为y =kx +m ,并设A (x 1,y 1),B (x 2,y 2),联立方程{y =kx +mx 24+y 23=1,利用韦达定理以及判别式,弦长公式点到直线的距离公式表示三角形的面积,结合mk 的关系,求解|MC |+|MD |为定值2√3. 解:(1)由于椭圆的离心率为12,则a 2:b 2:c 2=4:3:1,故椭圆E :x 24+y 23=λ(λ>0)又椭圆过点P(1,32),从而λ=14+34=1,从而椭圆E 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =kx +m ,并设A (x 1,y 1),B (x 2,y 2), 联立方程{y =kx +mx 24+y 23=1,得(3+4k 2)x 2+8kmx +4m 2﹣12=0,则{△=48(4k 2−m 2+3)>0x 1+x 2=−8km 4k 2+3x 1x 2=4m 2−124k 2+3从而y 1+y 2=k(x 1+x 2)+2m =6m4k 2+3,从而点M 的坐标为(−4km 4k 2+3,3m 4k 2+3)由于|AB|=√1+k 2|x 1−x 2|=√1+k 2√48(4k 2−m 2+3)4k 2+3,点O 到直线l 的距离为d =|m|√1+k,则△AOB 的面积S △AOB=12|AB|⋅d =2√3⋅√m 2(4k 2−m 2+3)4k 2+3, 由题得:S △AOB =2√3⋅√m 2(4k 2−m 2+3)4k 2+3=32,从而化简得:3(4k 2+3)2﹣16m 2(4k 2+3)+16m 4=0,故[(4k 2+3)﹣4m 2][3(4k 2+3)﹣4m 2]=0,即m 2=4k 2+34或m 2=3(4k 2+3)4,又由于4k 2﹣4m 2+3≠0,从而m 2=3(4k 2+3)4.当m 2=3(4k 2+3)4时,由于x M =−4km4k 2+3,y M =3m 4k 2+3,从而(x M 2)2+(M 3)2=(−2km 4k 2+3)2+(√3m 4k 2+3)2=m 2(4k 2+3)(4k 2+3)2=34, 即点M 在椭圆x 23+y 294=1上.由椭圆的定义得,存在点C(−√32,0),D(√32,0)或D(−√32,0),C(√32,0),使得|MC |+|MD |为定值2√3.【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查设而不求的方法的应用,考查转化思想以及计算能力. 21.已知函数f (x )=(a +1a )lnx +1x −x (a >1). (l )试讨论f (x )在区间(0,1)上的单调性;(2)当a ∈[3,+∞)时,曲线y =f (x )上总存在相异两点P (x 1,f (x 1)),Q (x 2,f (x 2 )),使得曲线y =f (x )在点P ,Q 处的切线互相平行,求证:x 1+x 2>65. 【分析】(1)求出f ′(x ),当x ∈(0,1)时,解不等式f ′(x )>0,f ′(x )<0即可.(2)由题意可得,当a ∈[3,+∞)时,f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2),由此可得a +1a =x 1+x 2x 1x 2>4x 1+x2,从而x 1+x 2>4a+1a,只要求出4a+1a在[3,+∞)的最大值即可.解:(1)由已知,得x >0,f′(x)=a+1a x −1x 2−1=−x 2−(a+1a )x+1x 2=−(x−a)(x−1a )x 2. 由f ′(x )=0,得x 1=1a ,x 2=a .因为a >1,所以0<1a <1,且a >1a.所以在区间(0,1a)上,f ′(x )<0;在区间(1a,1)上,f ′(x )>0.故f (x )在(0,1a)上单调递减,在(1a,1)上单调递增.证明:(2)由题意可得,当a ∈[3,+∞)时,f ′(x 1)=f ′(x 2)(x 1,x 2>0,且x 1≠x 2). 即a+1ax 1−1x 12−1=a+1ax 2−1x 22−1,所以a +1a =1x 1+1x 2=x 1+x2x 1x 2,a ∈[3,+∞).因为x 1,x 2>0,且x 1≠x 2,所以x 1x 2<(x 1+x 22)2恒成立, 所以1x 1x 2>4(x 1+x 2)2,又x 1+x 2>0,所以a +1a =x 1+x2x 1x 2>4x 1+x 2,整理得x 1+x 2>4a+1a , 令g (a )=4a+1a ,因为a ∈[3,+∞),所以a +1a单调递增,g (a )单调递减, 所以g (a )在[3,+∞)上的最大值为g (3)=65, 所以x 1+x 2>65.【点评】本题考查了利用导数研究函数的单调性问题、求最值问题,运用所学知识解决问题的能力. 一、选择题22.在平面直角坐标系中,曲线C 1的参数方程为{ x =−2tanθ√2tan θ+1y =√2tan θ+1(θ为参数,0≤θ≤π,θ≠π2),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 2:ρcos (θ−π4)=√2. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若点P 在曲线C 1上,点Q 在曲线C 2上,求|PQ |的最小值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用点到直线的距离公式的应用和三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.解:(1)由已知可得{x 2=4tan 2θ2tan 2θ+1y 2=12tan 2θ+1,所以x 2+2y 2=2,又0≤θ≤π且θ≠π2. 所以y =1√2tan θ+1∈(0,1],故C 1普通方程为x 22+y 2=1(0<y ≤1),曲线C 2:ρcos (θ−π4)=√2.整理得√22ρcosθ+√22ρsinθ−√2=0,转换为直角坐标方程为:x +y ﹣2=0.(2)设P(√2φ,cosφ),(0<φ<π). 则点P 到直线x +y ﹣2=0的距离d =|√2cosφ+sinφ−2|√2=|√3sin(φ+α)−2|√2=2−√3sin(φ+α)√2,当sin (φ+α)=1时,d min =√32=√2−√62.所以|PQ |的最小值为√2−√62.【点评】本题考查的知识要点:参数方程、极坐标方程和直角坐标方程之间的转换,点到直线的距离公式的应用,三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型. 23.已知函数f (x )=|x +1|﹣|x ﹣2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2﹣x +m 的解集非空,求m 的取值范围.【分析】(1)由于f (x )=|x +1|﹣|x ﹣2|={−3,x <−12x −1,−1≤x ≤23,x >2,解不等式f (x )≥1可分﹣1≤x ≤2与x >2两类讨论即可解得不等式f (x )≥1的解集;(2)依题意可得m ≤[f (x )﹣x 2+x ]max ,设g (x )=f (x )﹣x 2+x ,分x ≤1、﹣1<x <2、x ≥2三类讨论,可求得g (x )max =54,从而可得m 的取值范围.解:(1)∵f (x )=|x +1|﹣|x ﹣2|={−3,x <−12x −1,−1≤x ≤23,x >2,f (x )≥1,∴当﹣1≤x ≤2时,2x ﹣1≥1,解得1≤x ≤2; 当x >2时,3≥1恒成立,故x >2; 综上,不等式f (x )≥1的解集为{x |x ≥1}.(2)原式等价于存在x ∈R 使得f (x )﹣x 2+x ≥m 成立, 即m ≤[f (x )﹣x 2+x ]max ,设g (x )=f (x )﹣x 2+x .由(1)知,g (x )={−x 2+x −3,x ≤−1−x 2+3x −1,−1<x <2−x 2+x +3,x ≥2,当x ≤﹣1时,g (x )=﹣x 2+x ﹣3,其开口向下,对称轴方程为x =12>−1,∴g (x )≤g (﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x <2时,g (x )=﹣x 2+3x ﹣1,其开口向下,对称轴方程为x =32∈(﹣1,2), ∴g (x )≤g (32)=−94+92−1=54;当x ≥2时,g (x )=﹣x 2+x +3,其开口向下,对称轴方程为x =12<2, ∴g (x )≤g (2)=﹣4+2+3=1;综上,g (x )max =54,∴m 的取值范围为(﹣∞,54].【点评】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题.。

2020年四川省成都七中高考数学三诊试卷(文科)(含答案解析)

2020年四川省成都七中高考数学三诊试卷(文科)(含答案解析)

2020年四川省成都七中高考数学三诊试卷(文科)一、选择题(本大题共12小题,共60.0分)1.已知集合0,1,2,3,,,则A. 1,B. 1,C. 0,1,D. 0,1,2.已知复数,则A. B. 1 C. D. 23.设函数为奇函数,当时,,则A. B. C. 1 D. 24.已知单位向量,的夹角为,则A. 3B. 7C.D.5.已知双曲线的渐近线方程为,则双曲线的离心率是A. B. C. D.6.在等比数列中,,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是A. B. C. D.8.已知a,b为两条不同直线,,,为三个不同平面,下列命题:若,,则若,,则若,,则若,,则其中正确命题序号为A. B. C. D.9.南宋数学家杨辉在详解九章算法和算法通变本末中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为A. 99B. 131C. 139D. 14110.已知,,,则A. B. C. D.11.已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为A. B. C. D.12.已知P是椭圆上一动点,,,则的最大值是A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知数列的前n项和为,且,,则______.14.已知实数x,y满足线性约束条件,则目标函数的最大值是______.15.如图是一种圆内接六边形ABCDEF,其中且则在圆内随机取一点,则此点取自六边形ABCDEF内的概率是______.16.若指数函数且与一次函数的图象恰好有两个不同的交点,则实数a的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.在中,内角A,B,C的对边分别为a,b,已知.求角A的大小;若,,求的面积.18.成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查满分100分,最低分20分根据检查结果:得分在评定为“优”,奖励3面小红旗;得分在评定为“良”,奖励2面小红旗;得分在评定为“中”,奖励1面小红旗;得分在评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如图:依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.如图,在四棱锥中,,,,.证明:平面ADM;若且,E为线段BM上一点,且,求三棱锥的体积.20.已知函数,.证明:当时,;证明:在单调递增.其中是自然对数的底数.21.已知点P是抛物线C:上的一点,其焦点为点F,且抛物线C在点P处的切线l交圆O:于不同的两点A,B.若点,求的值;设点M为弦AB的中点,焦点F关于圆心O的对称点为,求的取值范围.22.在平面直角坐标系xOy中,曲线C的参数方程为为参数,在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中,射线l的极坐标方程是.求曲线C的极坐标方程;若射线l与曲线C相交于A,B两点,求的值.23.已知,,且,函数在R上的最小值为m.求m的值;若恒成立,求实数t的最大值.-------- 答案与解析 --------1.答案:B解析:解:0,1,2,3,,1,4,9,,1,.故选:B.可以求出集合B,然后进行交集的运算即可.本题考查了列举法、描述法的定义,交集的运算,考查了计算能力,属于基础题.2.答案:A解析:解:,则.故选:A.利用复数模的运算性质即可得出.本题考查了复数模的运算性质,考查了推理能力与计算能力,属于基础题.3.答案:C解析:解:根据题意,当时,,则,又由为奇函数,则,则;故选:C.根据题意,由函数的解析式可得,由函数的奇偶性可得的值,据此可得,即可得答案.本题考查函数的奇偶性的性质以及应用,涉及函数值的计算,属于基础题.4.答案:D解析:解:根据题意,单位向量,的夹角为,则,则,故;故选:D.根据题意,求出的值,由数量积的运算性质可得,代入数据计算可得的值,变形可得答案.本题考查向量数量积的计算,涉及向量模的计算,属于基础题.5.答案:A解析:解:由双曲线的方程可得渐近线为:,所以由题意可得:,所以离心率,故选:A.由双曲线的方程可得渐近线的方程,再由椭圆可得a,b的关系,由a,b,c之间的关系进而求出离心率.考查双曲线的性质,属于基础题.6.答案:A解析:【分析】本题主要考查充分条件和必要条件的判断,结合等比数列的性质是解决本题的关键.根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.【解答】解:在等比数列中,若,即,,,即,则,即成立,若等比数列1,,4,,16,满足,但不成立,故“”是“”的充分不必要条件,故选:A7.答案:C解析:【分析】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律,属于基础题.按照程序框图的流程,写出前几次循环的结果判断出当i为何值时输出,得到判断框中的条件.【解答】解:初始值,模拟执行程序框图,可得,不满足条件,继续循环;,不满足条件,继续循环;,不满足条件,继续循环;,,此时,由题意,应该满足条件,退出循环,输出S的值为31.故判断框中应填入的关于i的条件是?故选C.8.答案:C解析:解:若,,则,故正确;若,,则或与相交,故错误;若,,则或与相交,故错误;若,,则,故正确.正确命题序号为.由空间中直线与直线、直线与平面位置关系的判定逐一核对四个命题得答案.本题考查空间中直线与直线、直线与平面位置关系的判定,考查空间想象能力与思维能力,是中档题.9.答案:D解析:解:由题意可知:1,5,11,21,37,61,95,的差的数列为:4,6,10,16,24,34,这个数列的差组成的数列为:2,4,6,8,10,是等差数列,所以前7项分别为1,5,11,21,37,61,95,则该数列的第8项为:.故选:D.利用已知条件,推出数列的差数列的差组成的数列是等差数列,转化求解即可.本题考查数列的递推关系式的应用,等差数列的定义的应用,是中档题.10.答案:C解析:解:,,..又..故选:C.利用对数函数的单调性即可得出.本题考查了对数函数的单调性,考查了推理能力与计算能力,属于基础题.11.答案:C解析:解:设长方体的长宽高分别是a,b,c,其四个顶点就构成一个四面体满足每个面的边长为3,3,2,则,,,则,即长方体的外接球直径,故外接球的表面积,故选:C.考虑一个长方体,其四个顶点就构成一个四面体恰好就是每个三角形边长为3,3,2,则四面体的外接球即为长方体的外接球,进而计算出其外接球的直径,可得外接本题考查求一个几何体的外接球表面积,关键是求出外接球的半径,将几何体补成一个长方体是解题的关键,考查数形结合思想,属于中档题.12.答案:A解析:解:过点P作,垂足为H,设,则,,令,当时,,,;当时,,当且仅当,即时取等号,此时最大,且.故选:A.过点P作,垂足为H,设,可得,由正切的和角公式可得,通过换元令,结合基本不等式可得当时最大,由此得解.本题考查圆锥曲线中的最值求解,涉及了正切的和角公式,基本不等式的运用等基础知识点,考查转化思想,换元思想,数形结合思想等,考查运算求解能力,属于较难题目.13.答案:8解析:解:数列的前n项和为,且,,可得,,,故答案为:8.利用数列的递推关系式,逐步求解即可.本题考查数列的递推关系式的应用,数列项的求法,是基本知识的考查.14.答案:15解析:解:先根据实数x,y满足线性约束条件,画出可行域,然后平移直线,当直线过点时,目标函数的纵焦距取得最大值,此时z取得最大值,z 最大值为.故答案为:15.先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线过点时,z 最大值即可.本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.答案:解析:解:因为且.所以该图形是该圆的内接正六边形AMNBCDEF的一部分.易知,以O为顶点,正八边形的各边为底边的八个等腰三角形全等.且它们的腰长为圆的半径r,顶角为.故每个小等腰三角形的面积为.内接六边形ABCDEF的面积为,由正八边形的性质知:四边形ABCF是矩形,且,所以.又,故所求概率为:.故答案为:.易知,题中所给的多边形是该圆的内接正八边形的一部分,并且整个正八边形是由八个全等的等腰三角形组合而成.结合正八边形的对称性,可知内接六边形ABCDEF部分,其面积是六个等腰三角形的面积,由此可求出结果.本题考查几何概型概率的计算,以及圆的内接正八边形的性质.属于中档题.16.答案:解析:解:当时,函数且的图象与一次函数的图象没有交点,设当时,指数函数且与一次函数的图象恰好有两个不同的交点,,且与相切于,,则有,故,,即,,,实数a的取值范围是:.故答案为:.判断,利用函数的导数,转化求解a的最大值,从而求出a的取值范围.本题考查了指数函数的性质,函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.17.答案:解:由正弦定理知,又,所以.于是,因为,所以.因为,由余弦定理得,即.又,所以.故的面积为.解析:由正弦定理,同角三角函数基本关系式化简已知等式可得,结合范围,可求A的值.由已知利用余弦定理得,结合,可求c的值,进而根据三角形的面积公式即可求解.本题主要考查了正弦定理,同角三角函数基本关系式,余弦定理,三角形的面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.答案:解:得分的频率为;得分的频率为;得分的频率为;所以得分的频率为.设班级得分的中位数为x分,于是,解得.所以班级卫生量化打分检查得分的中位数为70分.由知题意“良”、“中”的频率分别为,又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的“良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为A.则为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4,2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点表示,其中.这些点恰好为方格格点上半部分不含对角线上的点,于是有种.事件仅有一个基本事件.所以.所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为.解析:利用频率分布直方图,能求出班级卫生量化打分检查得分的中位数.“良”、“中”的频率分别为,又班级总数为从而“良”、“中”的班级个数分别为16,分层抽样的方法抽取的“良”、“中”的班级个数分别为4,由此利用对立事件概率计算公式能求出抽取的2个班级获得的奖励小红旗面数和不少于3的概率.本题考查中位数、概率的求法,考查分层抽样、频率分布直方图、古典概型等基础知识,考查运算求解能力,是基础题.19.答案:解:因为,,所以于是.又,且,平面ABD,平面ADM,所以平面ADM.因为,所以.因为,所以.又,平面ADM.所以.所以三棱锥的体积为.解析:推导出,由此能证明平面ADM.推导出,,由此能求出三棱锥的体积.本题考查线面垂直的证明,考查三棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.答案:证明:令,则.于是在单调递增,,即;.令,.当时,由知.则,当时,,从而.故在上单调递增.解析:令,求其导函数,可得导函数大于0,由得结论;求出原函数的导函数,再令,结合中,把导函数缩小,再由缩小后的解析式在上大于0恒成立,可得在单调递增.本题考查利用导数研究函数的单调性,正确求导是解答该题的关键,考查计算能力,是中档题.21.答案:解:设点,其中.因为,所以切线l的斜率为,于是切线.因为,于是切线l:故圆心O到切线l的距离为.于是.联立得.设,,则,.又,于是.于是.又C的焦点,于是.故.令,则于是.因为在单调递减,在单调递增.又当时,;当时,;当时,.所以的取值范围为.解析:设点,其中利用函数的导数求出切线的斜率,得到切线方程,通过圆心O到切线l的距离为转化求解即可.联立得设,,利用韦达定理,求出中点坐标,求出的表达式,令,则于是利用函数的单调性求解范围即可.本题考查直线与抛物线的位置关系的综合应用,圆的方程的应用,考查转化思想以及计算能力,是中档题.22.答案:解:消去参数得将,代入得,即.所以曲线C的极坐标方程为.法1:将代入,得,设,则.于是.法2:与曲线C相切于点M,,由切割线定理知.解析:直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.利用极径的应用和一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.答案:解:,当时,函数单调递减;当时,函数单调递增,所以m只能在上取到.当时,函数单调递增.所以;因为恒成立,且,,所以恒成立即.由知,于是.当且仅当时等号成立即.所以,故实数t的最大值为.解析:由绝对值的意义,去绝对值,可得的分段函数式,由一次函数的单调性,可得的最小值,进而得到m的值;由参数分离可得恒成立即,运用基本不等式可得此不等式右边的最小值,进而得到所求t的最大值.本题考查含绝对值的函数的最值求法,注意结合一次函数的单调性,考查不等式恒成立问题解法,注意运用转化思想和基本不等式,考查运算能力和推理能力,属于中档题.。

四川省成都市第七中学高中2020届高三高中毕业班三诊模拟数学(文科)试题附答案

四川省成都市第七中学高中2020届高三高中毕业班三诊模拟数学(文科)试题附答案

成都七中2020届高中毕业班三诊模拟数 学(文科)本试卷分选择题和非选择题两部分. 第Ⅰ卷(选择题)1至2页,第Ⅱ卷 (非选择题)3至4页,共4页,满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,只将答题卡交回.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{1,0,1,2,3,4},{|,}A B y y x x A =-==∈,则A B =I(A){0,1,2} (B){0,1,4} (C){1,0,1,2}- (D){1,0,1,4}- 2. 已知复数11iz =+,则||z =(A)2(B)1 (D)2 3. 设函数()f x 为奇函数,当0x >时,2()2,f x x =-则((1))f f = (A)1- (B)2- (C)1 (D)24. 已知单位向量12,e e 的夹角为2π3,则122e e -=(A)3 (B)75. 已知双曲线22221(0,0)x y a b a b-=>>的渐近线方程为3y x =±,则双曲线的离心率是(B)3 (C)10 (D)1096. 在等比数列{}n a 中,10,a >则“41a a <”是“53a a <”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件7. 如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是(A)6?i ≤ (B)5?i ≤ (C)4?i ≤ (D)3?i ≤8. 已知,a b 为两条不同直线,,,αβγ为三个不同平面,下列命题:①若///,,/ααγβ则//βγ;②若//,//,a a αβ则//αβ;③若,,αγγβ⊥⊥则αβ⊥;④若,,a b αα⊥⊥则//a b .其中正确命题序号为 (A)②③(B)②③④(C)①④(D)①②③9. 南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第8项为 (A)99(B)131 (C)139 (D)14110. 已知2πlog e ,a =πln ,eb =2e ln ,πc =则(A)a b c <<(B)b c a <<(C)b a c <<(D)c b a <<11. 已知一个四面体的每一个面都是以3,3,2为边长的锐角三角形,则这个四面体的外接球的表面积为 (A)11π4 (B)11π2(C)11π (D)22π 12. 已知P 是椭圆2214x y +=上一动点,(2,1),(2,1)A B -,则cos ,PA PB u u u r u u u r 的最大值是(A)4 (B)17 (C)6- (D)14第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.已知数列{}n a 的前n 项和为,n S 且111,1(2),n n a a S n -==+≥则4a =14. 已知实数,x y 满足线性约束条件117x y x y ≥⎧⎪≥-⎨⎪+≤⎩,则目标函数2z x y =+的最大值是15. 如图是一种圆内接六边形ABCDEF ,其中BC CD DE EF FA ====且.AB BC ⊥则在圆内随机取一点,则此点取自六边形ABCDEF 内的概率是16. 若指数函数xy a =(0a >且1)a ≠与一次函数y x =的图象恰好有两个不同的交点,则实数a 的取值范围是三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,.a b c 已知2.tan sin a bA B= (1)求角A 的大小; (2)若2,a b ==求ABC ∆的面积.18.(本小题满分12分)成都七中为了解班级卫生教育系列活动的成效,对全校40个班级进行了一次突击班级卫生量化打分检查(满分100分,最低分20分).根据检查结果:得分在[80,100]评定为“优”,奖励3面小红旗;得分在[60,80)评定为“良”,奖励2面小红旗;得分在[40,60)评定为“中”,奖励1面小红旗;得分在[20,40)评定为“差”,不奖励小红旗.已知统计结果的部分频率分布直方图如下图:(1)依据统计结果的部分频率分布直方图,求班级卫生量化打分检查得分的中位数;(2)学校用分层抽样的方法,从评定等级为“良”、“中”的班级中抽取6个班级,再从这6个班级中随机抽取2个班级进行抽样复核,求所抽取的2个班级获得的奖励小红旗面数和不少于3的概率.19.(本小题满分12分)如图,在四棱锥M ABCD -中,2,2.,,3AB AM AD MB MD AB AD =====⊥ (1)证明:AB ⊥平面ADM ; (2)若//CD AB 且23CD AB =,E 为线段BM 上一点,且 2BE EM =,求三棱锥A CEM -的体积.20.(本小题满分12分)已知函数22e (),(e,).ln x xf x x x x++=∈+∞ (1)证明:当(e,)x ∈+∞时,3eln ex x x ->+; (2)证明:()f x 在1[2e ,)2++∞单调递增.(其中e 2.71828=L 是自然对数的底数).21.(本小题满分12分)已知点P 是抛物线21:2C y x =上的一点,其焦点为点,F 且抛物线C 在点P 处的切线l 交圆:O 221x y +=于不同的两点,A B .(1)若点(2,2),P 求||AB 的值;(2)设点M 为弦AB 的中点,焦点F 关于圆心O 的对称点为,F '求||F M '的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上将所选题目对应的标号涂黑.22.(本小题满分10分)选修44-:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为233x y αα⎧=⎪⎨=⎪⎩(α为参数,0πα≤≤).在以坐标原点为极点,x 轴的非负半轴为极轴的极坐标系中,射线l 的极坐标方程是π6θ=.(1)求曲线C 的极坐标方程;(2)若射线l 与曲线C 相交于,A B 两点,求||||OA OB ⋅的值.23.(本小题满分10分)选修45-:不等式选讲已知0,0,a b >>且24,a b +=函数()2f x x a x b =++-在R 上的最小值为.m(1)求m 的值;(2)若22a mb tab +≥恒成立,求实数t 的最大值.成都七中2020届高中毕业班三诊模拟数 学(文科)参考答案及评分意见第Ⅰ卷 (选择题,共60分)一、选择题(每小题5分,共60分)1.B ;2.A ;3.C ;4.D ;5.A ;6.A ;7.B ;8.C ;9.D ; 10.B ; 11.C ; 12.A.第Ⅱ卷 (非选择题,共90分)二、填空题(每小题5分,共20分)13.8; 14.15; 15.2π; 16.1e (1,e ).三、解答题(共70分) 17. 解:(1)由正弦定理知sin sin a b A B =,又2,tan sin a b A B =所以2.sin tan a aA A= 于是1cos ,2A =因为0π,A <<所以π.3A = L L 6分(2)因为π2,,3a b A ===22π222cos,3c c =+-⨯⨯即2230.c c --=又0c >,所以 3.c =故ABC ∆的面积为11πsin 23sin 223bc A =⨯⨯⨯= L L 12分18.解:(1)得分[20,40)的频率为0.005200.1⨯=;得分[40,60)的频率为0.010200.2⨯=; 得分[80,100]的频率为0.015200.3⨯=;所以得分[60,80)的频率为1(0.10.20.3)0.4.-++=设班级得分的中位数为x 分,于是600.10.20.40.520x -++⨯=,解得70.x = 所以班级卫生量化打分检查得分的中位数为70分. L L 6分 (2)由(1)知题意 “良”、“中”的频率分别为0.4,0.2.又班级总数为40.于是“良”、“中”的班级个数分别为16,8.分层抽样的方法抽取的 “良”、“中”的班级个数分别为4,2.因为评定为“良”,奖励2面小红旗,评定为“中”,奖励1面小红旗.所以抽取的2个班级获得的奖励小红旗面数和不少于3为两个评定为“良”的班级或一个评定为“良”与一个评定为“中”的班级.记这个事件为.A 则A 为两个评定为“中”的班级.把4个评定为“良”的班级标记为1,2,3,4. 2个评定为“中”的班级标记为5,6.从这6个班级中随机抽取2个班级用点(,)i j 表示,其中16i j ≤<≤.这些点恰好为66⨯方格格点上半部分(不含i j =对角线上的点),于是有366152-=种. 事件A 仅有(5,6)一个基本事件. 所以114()1()1.1515P A P A =-=-= 所抽取的2个班级获得的奖励小红旗面数和不少于3的概率为14.15L L 12分19.解:(1)因为2AB AM==,MB =所以222.AM AB MB +=于是.AB AM ⊥又,AB AD ⊥且,AM AD A AM =⊂I 平面ABD ,AD ⊂平面ADM ,所以AB ⊥平面.ADM L L 5分(2)因为2,AM AD MD ===所以ADM S ∆=因为2BE EM =,所以1.3C AEM C ABM V V --=又//,CD AB AB ⊥平面.ADM所以111333A CEM C AEM C ABM D ABM B ADM V V V V V -----==== 111123333ADM S AB =⨯⋅⋅=⨯=所以三棱锥A CEM -L L 12分20.解:(1)令3e ()ln ,(e,).e x g x x x x -=-∈+∞+则22214e (e)()0.(e)(e)x g x x x x x -'=-=>++于是()g x 在(e,)+∞单调递增,所以()(e)0,g x g >=即3eln ,(e,).ex x x x ->∈+∞+ L L 5分 (2)22222222(21)ln (e )(ln 1)(e )ln (e )().(ln )(ln )x x x x x x x x x x f x x x x x +-+++--++'== 令2222()(e )ln (e ),(e,).h x x x x x x =--++∈+∞当(e,)x ∈+∞时,由(1)知3eln .e x x x ->+则222223e 1()(e )(e )2(4e 1)2[(2e )],e 2x h x x x x x x x x x ->--++=-+=-++ 当1[2e ,)2x ∈++∞时,()0h x >,从而()0.f x '> 故()f x 在1[2e ,)2++∞严格单调递增. L L 12分21.解:设点00(,)P x y ,其中2001.2y x =因为,y x '=所以切线l 的斜率为0,x 于是切线2001:.2l y x x x =-(1)因为(2,2),P 于是切线:2 2.l y x =-故圆心O 到切线l的距离为d =于是||5AB === L L 5分(2)联立22200112x y y x x x ⎧+=⎪⎨=-⎪⎩得22340001(1)10.4x x x x x +-+-= 设1122(,),(,),(,).A x y B x y M x y 则301220,1x x x x +=+32240001()4(1)(1)0.4x x x ∆=--+-> 又200,x ≥于是2002x ≤<+于是32200120022001,.22(1)22(1)x x x x x y x x x x x +===-=-++ 又C 的焦点1(0,),F 于是1(0,).F '-故||F M '===L L 9分 令201,t x =+则13t ≤<+于是||F M'==因为3t t+在单调递减,在+单调递增.又当1t =时,1||2F M '=;当t =时,||F M '=;当3t =+时,11||.22F M '=> 所以||F M '的取值范围为1).2L L 12分22.解:(1)消去参数α得22(2)3(0)x y y -+=≥将cos ,sin x y ρθρθ==代入得22(cos 2)(sin )3,ρθρθ-+=即24cos 10.ρρθ-+=所以曲线C 的极坐标方程为2π4cos 10(0).3ρρθθ-+=≤≤L L 5分 (2)法1:将π6θ=代入2π4cos 10(0)3ρρθθ-+=≤≤得210ρ-+=,设12ππ(,),(,),66A B ρρ则12 1.ρρ=于是12|||| 1.OA OB ρρ⋅== L L 10分法2:π3θ=与曲线C 相切于点,M π||2sin 1,3OM ==由切割线定理知2|||||| 1.OA OB OM ⋅== L L 10分23.解:(1)3, (,),2()2, [,],23, (,).a x a b x a f x x a x b x a b x b x a b x b ⎧--+∈-∞-⎪⎪⎪=++-=++∈-⎨⎪+-∈+∞⎪⎪⎩.当(,)2ax ∈-∞-时,函数()f x 单调递减;当(,)x b ∈+∞时,函数()f x 单调递增.所以m 只能在[,]2a b -上取到.当[,]2ax b ∈-时,函数()f x 单调递增.所以2() 2.222a a a bm f a b +=-=-++== L L 5分(2)因为22a mb tab +≥恒成立,且0,0a b >>,所以22a mb t ab +≤恒成立即mina b mb t a ⎛⎫≤+ ⎪⎝⎭.由(1)知2m =,于是a b a mb +≥== 当且仅当2aab =时等号成立即1)0,2(20.a b =>=> 所以t ≤,故实数t 的最大值为 L L 10分。

精品解析:四川省成都市第七中学2020届高三高中毕业班三诊模拟数学(文科)试题(解析版)

精品解析:四川省成都市第七中学2020届高三高中毕业班三诊模拟数学(文科)试题(解析版)

【答案】C
【解析】 【分析】
根据程序框图的运行,循环算出当 S 31 时,结束运行,总结分析即可得出答案.
【详解】由题可知,程序框图的运行结果为 31,
当 S 1时, i 9 ; 当 S 1 9 10 时, i 8; 当 S 1 9 8 18 时, i 7 ; 当 S 1 9 8 7 25 时, i 6 ; 当 S 1 9 8 7 6 31时, i 5 . 此时输出 S 31 .
4
【答案】C
11π
B.
2
C. 11π
D. 22π
【解析】 【分析】
考虑一个长方体 ABCD A1B1C1D1 ,其四个顶点就构成一个四面体 AB1CD1 恰好就是每个三角形边长为
3, 3, 2 ,则四面体的外接球即为长方体的外接球,进而计算出其外接球的直径,即可得外接球的表面积.
【详解】设长方体 ABCD A1B1C1D1 的长宽高分别是 a, b, c ,其四个顶点就构成一个四面体 AB1CD1 满足
a3 2a2 4 ,
a4 2a3 8 ,
故答案为:8
【点睛】本题主要考查了数列的项 an 与前 n 项和 Sn 的关系,考查了利用递推关系求数列的项,属于中档题.
x 1
14.已知实数
x

y
满足线性约束条件
y
1
,则目标函数 z 2x y 的最大值是______.
x y 7
【答案】15
【详解】 所给数列为高阶等差数列 设该数列的第 8 项为 x
根据所给定义:用数列的后一项减去前一项得到一个新数列, 得到的新数列也用后一项减去前一项得到一个新数列 即得到了一个等差数列,如图:
根据图象可得: y 34 12 ,解得 y 46

四川省成都市高三数学第三次诊断性检测(文)

四川省成都市高三数学第三次诊断性检测(文)

四川省成都市2020届高中毕业班第三次诊断性检测数学试题(文科)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷满分为150分,完成时间120分钟.参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P A B P A P B ++()=()() 24S R =π 如果事件A 、B 独立,那么 其中R 表示球的半径 P A B P A P B ⋅⋅()=()() 球的体积公式 如果事件A 在一次试验中发生的概率是P , 343V R =π 那么n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径n k k n kn P k PP -()=C (1-)第I 卷(选择题,共60分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项的代号涂在机读卡的相应位置上. 1.已知向量m =(a ,1),n = (1,-2),若m ∥n ,则实数a 的值为 ( )A .-2B .-12C .12D .2 2.计算212sin8π-的值为( )A .lB .12C D .23.若数列{}n a 的前n 项和28n S n n =-+(*N n ∈),则当n S 取最大值时,n 的值为( )A .4B .6C .8D .104.设}{|01A x x =<<,}{|1B x x =<,则“x A ∈”是“x B ∈”的 ( )A .充分而不必要的条件B .必要而不充分条件C .充要条件D .既不充分也不必要的条件 5.6)1(xx -的二项展开式中常数项为( )A .20B .-20C .120D .-1206.在国务院办公厅下发《关于限制生产销售使用塑料购物袋的通知》后,为了让同学们感知丢弃塑料袋对环境造成的影响,某校环保小组的五名同学记录了自己家中某一周内丢弃的塑料袋的数量,结果如下(单位:个):31、25、28、26、25.已知该班有45名学生,根据提供的数据,估计该班所有同学的家庭在这周内共丢弃的塑料袋个数为 ( ) A .1169 B .1175 C .1215 D .1299 7.若函数y g =(x )与21y x =+0x ≤()互为反函数,则函数y g x =(-)大致图象为( )A B C D 8.已知直线1x ya b+=(a >0,b >0)过点(1,4),则a b +最小值是 ( )A .16B .9C .8D .39.某炮兵旅接到上级命令,要派出5个连队急赴某市遭受冻雨灾情较重的A 、B 、C 三地执行抢险救灾任务(每地至少派1个连队),则恰有2个连队被派往受灾最重的A 地,则不同的派遣方法的总数为 ( ) A .360 B .80 C .60 D .50 10.如图,已知二面角βα--PQ 的大小为60°,点C为棱PQ 一点,A ∈β,AC =2,则点A 到平面α的距离为 ( ) A .1 B .12C .32D .3211.过抛物线24y x =的焦点F 且斜率为k (k >0)的直线交抛物线于A 、B 两点,若4AF FB =u u u r u u u r,则斜率k 的值为( )A .1B .2C .23D .4312.设计一个计算机自动运算程序:112⊗=,11m n m n +⊗=⊗-(),12m n m n ⊗+=⊗+()(m 、*N n ∈).则2020⊗2020的输出结果为( )A .2020B .2020C .2020D .22008第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共4小题,每小题4分,共16分)把答案填在题中横线上. 13.函数3sin sin 2f x x x π-+()=()的最大值为___________. 14.已知关于x 的不等式210mx nx +-<(m 、n ∈R )的解集为{11|32x x ⎫-<<⎬⎭, 则m n +_________.15.已知圆C 以双曲线2213x y -=的右焦点为圆心,并经过双曲线的左准线与渐近线的交点,则圆C 的标准方程为_______________________. 16.已知平行六面体1111ABCD A B C D -中, 1A AD ∠=1A AB ∠=BAD ∠=60°,1AA AB AD ==,E 为11A D 的中点.给出下列四个命题:①1BCC ∠为异面直线AD 与1CC 所成的角;②三棱锥1A ABD -是正三棱锥;③CE ⊥平面11BB D D ;④112CE AD AB AA =--+u u u r u u ur u u u r u u u r .其中正确的命题有___________.(写出所有正确命题的序号) 三、解答题:(本大题共6小题,共74分)解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知△ABC 中,角A 、B 、C 所对边的长分别为a 、b 、c ,若直线1l :22()20a c ac x by +-++=与2l :10bx y ++=互相平行(2b ≠).(1)求角B 的大小;(2)若a =4,b =43当向量14CB CA +u u ur u u u r 与向量mCB CA +u u u r u u u r 垂直时,求实数m 的值.18.(本小题满分12分)如图1,在平行四边形ABCD 中,1AB =,2BD =ABD ∠=90°,E 是BD 上的一个动点.现将该平行四边形沿对角线BD 折成直二面角A BD C --,如图2所示. (1)若F 、G 分别是AD 、BC 的中点,且AB ∥平面EFG ,求证:CD ∥平面EFG ; (2)当图1中AE +EC 最小时,求图2中二面角A EC B --的大小.图1 图219.(本小题满分12分) 某中学开展“创建文明城市知识竞赛”活动,竞赛题由20道选择题构成,每道选择题有4个选项,其中有且只有1个选项是正确的,要求学生在规定时间内通过笔试完成,且每道题必须选出一个选项(不得多选和不选),每道题选择正确得6分,选择错误得0分.已知学生甲对任一道题选择正确的概率是34;学生乙由于未作准备,因此只能从每道题的4个选项中随机地选择1个.(1)比较甲得66分的概率与乙得54分的概率的大小;(2)就前两道题而言,求甲、乙两人得分之和不得低于18分的概率. 20.(本小题满分12分)已知正数数列{}n a 的前n 项和为n S ,且42n a -n S =1,数列{}n b 满足132log n b =n a ,*N n ∈(1)求数列{}n a 的通项n a 与{}n b 的前n 项和n T .(2)设数列n n b a ⎫⎧⎪⎨⎬⎪⎩⎭的前n 项和为n U ,求证:04n U <≤.21.(本小题满分12分)设奇函数32f x ax bx cx d +++()=的图像在P (1,f (1))处的切线的斜率为-6.且x =2时,)(x f 取得极值.(1)求实数a b c 、、、d 的值;(2)设函数)(x f 的导函数为)(x f ',函数)(x g 的导函数434)(21)(2--+'-='mx mx x f x g ,m ∈(0,1),求函数)(x g 的单调区间;(3)在(2)的条件下,当x ∈[]12m m ++,时,m x g ≤'|)(|恒成立,试确定m 的取值范围.22.(本小题满分12分)已知O 为坐标原点,点E 、F的坐标分别为(,0)、,0),点A 、N 满足AE =u u u r 12ON OA OF =+u u u r u u u r u u u r(),过点N 且垂直于AF 的直线交线段AE 于点M ,设点M 的轨迹为C . (1)求轨迹C 的方程;(2)若轨迹C 上存在两点P 和Q 关于直线l :(1)y k x =+(0k ≠)对称,求k 的取值范围;(3)在(2)的条件下,设直线l 与轨迹C 交于不同的两点R 、S ,对点B (1,0)和向量a =(3k ),求2||a -⋅取最大值时直线l 的方程.参考答案第Ⅰ卷(选择题 共60分)一、选择题:(每小题5分,共60分) 1—5BDAAB 6—10CDBCC 11—12DB第Ⅱ卷(非选择题 共90分)二、填空题:(每小题4分,共16分)13214.5;15.13)2(22=+-y x ; 16.②④ 三、解答题:(本大题共6小题,共74分)17.解:(1)∵1l ∥2l ,∴222a c acb +-=. ………………2分由余弦定理,得1cos 2B =. ∴B =60°. ………………2分(2)在△ABC 中,由正弦定理,得443sin A = ∴1sin 2A =. ∵a b <,∴A B <.∴30A =o.………………2分 ∴C =90°.∴CA u u u r ·CB u u u r0=.………………2分 又14CB CA +u u ur u u u r 与mCB CA +u u u r u u u r 垂直, ∴(14CB CA +u u ur u u u r )·(mCB CA +u u u r u u u r )0=.∴2214mCB CA +u u u u r u u u u r mCA +u u u r ·CB u u u r 14CA +u u u r ·CB u u u r 0=.………………2分即1164804m ⨯⨯+=,∴12m =-.2分 18.(1)证明: ∵AB ∥平面EFG ,平面ABD ∩平面EFG EF =,∴AB ∥EF . …2分 ∵F 是AD 的中点.∴E 是BD 中点. 又∵G 是BC 的中点.∴GE ∥CD .∵CD ⊄平面EFG ,∴CD ∥平面EFG .………………2分 (2)解:由图1可知,当AE EC +最小时,E 是BD 的中点. ∵平面ABD ⊥平面BCD ,AB ⊥BD ,AB ⊥平面BCD .故以B 为坐标原点,平行于CD 的直线为x 轴,BD 所在的直线为y 轴,AB 所在的直线为z 轴,建立如图所示的空间直角坐标系B xyz -.则A (0,0,1),C (2,0),D (2,0),E (0,22,0);EA u u u r =(0,2,0),EC uuu r =(2,0). ………………2分设平面AEC 的法向量为1n =(1x ,1y ,1z ),则110n EA n EC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r⇒1111110102100.2x y z x y z ⎧⋅-+⋅=⎪⎪⎨⎪⋅++⋅=⎪⎩,解得1111x z y =-⎧⎪⎨=⎪⎩∴平面ACE 的一个法向量为1n =(-,1). ………………2分 而平面BCE 的一个法向量为2n =(0,0,1). ∵1212121cos 2n n n n n n ⋅⋅==⋅,………………2分显然,二面角A EC B --为锐角,∴二面角A EC B --的大小为60°.………………2分19.(1)依题意,甲得66分,即答对11道题的概率为111203144P C =119()();………2分 ∵乙答对每一道题的概率都是14,∴乙得54分,即答对9道题的概率为 92201344P C =911()() ………………2分∵1192020C C =,∴12P P =,即甲得66分的概率于乙得54分的概率一样大. ………2分(2)依题意,前两道题甲、乙得分之和不低于18分,即前两道题中甲乙两人一共最多错l 道,所求概率为2221123222222313133116944444444256P C C C C C C =+⋅+⋅⋅=2222()()()()()………………6分 20.解:(Ⅰ)易得112a =.………………2分当2n ≥时,421n n a S -=,……① 11421n n a S ---=……②①-②,得n n n a a a 2441---12n n a a -⇒=.∴12n n a a -=(2n ≥). ∴数列{}n a 是以112a =为首项,2为公比的等比数列.∴22n n a -=.………………2分从而42n b n =-,其前n 项和n n T n 32+-=………………2分(2)∵{}n a 为等比数列、{}n b 为等差数列,2422n n n b n a --=,∴332026242 (112222)n n n n nU -----=+++++......③ 21112026242 (212222)n n n n nU -----=+++++……④ ③-④,得12222422222212421---------=n n n nU Λ∴142n n nU -= ………………4分易知124U U ==,当3n ≥时,13202n n n nU U ----=<.∴当3n ≥时,数列{U n }是递减数列.∴303n U U <≤=.故04n U <≤.………………2分21.解:(Ⅰ)∵y f x =()是奇函数, 由f x f x (-)=-()恒成立,有0b d ==. 从而3f x ax cx =+().c ax x f +='23)( ………………2分又0)2(,6)1(='-='f f ,36120a c a c +=-⎧⎨+=⎩⇒238a c ⎧=⎪⎨⎪=-⎩故23a =,0b =,8c =-,0d =. (2)依题意,).1,0(,34)(22∈-+-='m m mx x x g 令034)(22=-+-='m mx x x g ,得x m =或3x m =.当x 变化时,)(x g '、)(x g 的变化情况如下表:由表可知:当x ∈(∞-,m )时,函数g x ()为减函数;当x ∈(3m ,+∞)时, 函数g x ()也为减函数;当x ∈(m ,3m ),函数g x ()为增函数. ∴函数g x ()的单调递增区间为(m ,3m ),单调递减区间为(∞-,m ),(3m ,+∞).………………………………………………………………………………………………2分(3)由m x g ≤'|)(|,得.3422m m mx x m ≤-+≤-. ∵01m <<,∴12m m +>.2234)(m mx x x g -+-='在[]12m m ++,上为减函数.∴12)1()]([max -=+'='m m g x g ;44)2()]([min -=+'='m m g x g .…………………………2分于是,问题转化为求不等式214m mm m -≤⎧⎨-≥-⎩4的解.解此不等式组,得1m ≤≤45.又01m <<,∴所求m 的取值范围是415⎡⎫⎪⎢⎣⎭,.…2分 22.解:(Ⅰ)∵12ON OA OF =u u u r u u u r u u u r(+),∴N 为AF 中点.∴MN 垂直平分AF .∴MA MF u u u r u u u r =.∴ME MF MA ME AE EF =>u u u r u u u r u u u r u u u r u u u r u u u r+=+=.∴点M 的轨迹C 是以正E 、F 为焦点的椭圆. …………………………2分∴长半轴a =c =∴2221b a c =-=.∴点M 的轨迹方程为2213x y +=.…………………………2分(2)设11()P x y ,,22()Q x y ,,PQ 的中点00()T x y ,.由221122221313x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩012120121201111333x y y y y kx x x x x k y -+⇒=-⋅⇒-=-⋅=-+.又00y k x =(+1),∴032x =-,02ky =-.…………………………2分 ∵中点00()T x y ,在椭圆内部,∴222003111344x k y k +<⇒+<⇒<∴k ∈(-1,0)∪(0,1).(3)将y k x =(+1)0k ≠()代入椭圆2213x y +=C:中,整理得 2222136330k x k x k +++-=().设R (3x ,3y ),S (4x ,4y ).则3x +4x =22613k k -+,3x 4x =223313k k -+.∴3y 4y =234k x x (+1)(+1)=23434k x x x x (+++1)=22213k k -+ ……………………2分∴22343439BR BS a x x y y k ⋅-=--u u u r u u u r (-1)(-1)+=34x x 2343439x x y y k ---(+)+1+=22222223362139131313k k k k k k k-++---+++ )]31(331316[310933121022222k k k k k +++-=--+-=143≤-=-103.当且仅当2216331313k k=++(),即219k =∈(0,1)时等号成立.此时,直线l的方程为y=(x+1). …………………………2分。

2020届四川省成都市高三三诊模拟文科数学模拟试题有答案(精品)

2020届四川省成都市高三三诊模拟文科数学模拟试题有答案(精品)

成都第三次高考模拟文科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在一次抛硬币实验中,甲、乙两人各抛一次硬币一次,设命题p 是“甲抛的硬币正面向上”,q 是“乙抛的硬币正面向上”,则命题“至少有一人抛的硬币是正面向下”可表示为( ) A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .()p q ⌝∨2.已知集合{}{}2|02,|10A x x B x x =<<=-<,则A B =U ( ) A . ()1,1- B .()1,2- C .()1,2 D .()0,1 3.若1122aii i+=++,则a =( ) A .5i -- B .5i -+ C .5i - D . 5i +4.设()f x 是定义在R 上周期为2的奇函数,当01x ≤≤时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭( ) A .14-B . 12- C. 14 D .125.某几何体的三视图如图所示,则该几何体的表面积为( )A .3612π+B .3616π+ C. 4012π+ D .4016π+ 6.设D 为ABC ∆中BC 边上的中点,且O 为AD 边的中点,则( )A .3144BO AB AC =-+u u u r u u u r u u u r B . 1144BO AB AC =-+u u u r u u ur u u u rC. 3144BO AB AC =-u u u r u u u r u u u r D .1124BO AB AC =--u u u r u u ur u u u r7.执行如图的程序框图,则输出x 的值是( )A . 2016B .1024 C.12D .-1 8. 函数()()2sin 4cos 1f x x x =-g 的最小正周期是( ) A .23π B . 43π C. π D .2π 9. 等差数列{}n a 中的24030a a 、是函数()3214613f x x x x =-+-的两个极值点,则()22016log a =( )A .2B .3 C. 4 D .510. 已知()00,P x y 是椭圆22:14x C y +=上的一点,12,F F 是C 的两个焦点,若120PF PF <u u u r u u u u r g ,则0x 的取值范围是( ) A .2626⎛ ⎝⎭ B .2323⎛ ⎝⎭ C. 33⎛ ⎝⎭ D .66⎛ ⎝⎭ 11. 已知函数()221f x x ax =-+对任意(]0,2x ∈恒有()0f x ≥成立,则实数a 的取值范围是( ) A .51,4⎡⎤⎢⎥⎣⎦ B .[]1,1- C. (],1-∞ D .5,4⎛⎤-∞ ⎥⎝⎦12.设集合()()()()()()2222436,|34,,|3455A x y x y B x y x y ⎧⎫⎧⎫=-+-==-+-=⎨⎬⎨⎬⎩⎭⎩⎭,(){},|234C x y x y λ=-+-=,若()A B C φ≠U I ,则实数λ的取值范围是( ) A .25652⎤⎤⎥⎥⎣⎦⎣⎦U B .25⎤⎥⎣⎦C. []2524,6⎤⎥⎣⎦U D .{}652⎤⎥⎣⎦U第Ⅱ卷二、填空题:本大题共四小题,每小题5分13.已知向量1,2a b ==r r ,且()21b a b +=r r r g ,则向量,a b r r的夹角的余弦值为 .14.若,m n 满足101040m n a m n n -≥⎧⎪+≤⎨⎪≥⎩,则2u m n =-的取值范围是 .15.直线1y kx =+与曲线3y x ax b =++相切于点()1,2A ,则b a -= .16.已知函数()11,112,1x x x f x x e x +⎧->⎪=-⎨⎪-≤⎩,若函数()()2h x f x mx =--有且仅有一个零点,则实数m 的取值范围是 .三、解答题 (共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知4B π=,cos cos20A A -=.(1)求角C ;(2)若222b c a bc +=-+,求ABC S ∆.18.某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家里和品种乙)进行田间实验.选取两大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (1)假设2n =,求第一大块地都种植品种甲的概率;(2)试验时每大块地分成8小块,即8n =,试验结束后得到的品种甲和品种乙在个小块地上的每公顷产量(单位:2/kg hm )如下表:品种甲 403 397 390 404 388 400 412 406 品种乙 419 403 412 418 408 423 400 413根据试验结果,你认为应该种植哪一品种? 19. 如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(1)证明:1B C AB ⊥;(2)若011,60AC AB CBB ⊥∠=,1BC =,求三棱柱111ABC A B C -的高.20.如图,椭圆()222210x ya ba b+=>>的左焦点为F,过点F的直径交椭圆于,A B两点.当直线AB经过椭圆的一个顶点时,其倾斜角为60°.(1)求该椭圆的离心率;(2)设线段AB的中点为G,AB的中垂线与x轴和y轴分别交于,D E两点.记GFD∆的面积为1S,OED∆(O为原点)的面积为2S,求12SS的取值范围.21. 已知函数()1lnf x x axa⎛⎫=+-⎪⎝⎭(,0a R a∈≠且).(1)讨论()f x的单调区间;(2)若直线y ax=的图象恒在函数()y f x=图象的上方,求a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在极坐标系下,知圆:cos sinOρθθ=+和直线)2:sin0,0242lπρθρθπ⎛⎫-=≥≤≤⎪⎝⎭.(1)求圆O与直线l的直角坐标方程;(2)当()0,θπ∈时,求圆O和直线l的公共点的极坐标.23.选修4-5:不等式选讲已知函数()2321f x x x=++-.(1)求不等式()5f x≤的解集;(2)若关于x的不等式()1f x m<-的解集非空,求实数m的取值范围.试卷答案一、选择题1-5: ABDCC 6-10: ADAAA 11、12:CA二、填空题13. -14. 1,42⎡⎤-⎢⎥⎣⎦15. 5 16. (]{}{},06m e ∈-∞-U U 三、解答题17. 解:(1)因为cos cos20A A -=,所以22cos cos 10A A --=,解得1cos 2=-,cos 1A =(舍去). 所以23A π=,又4B π=,所以12C π=. (2)因为23A π=,所以222222cos a b c bc A b c bc =+-=++,又222b c a bc +=-+, 所以22a a =+,所以2a =,又因为sin sinsin 12344C πππ⎛⎫==-=⎪⎝⎭,由sin sin c a C A =得c =,所以1sin 12ABC S ac B ∆==g . 18.解:(1)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A = “第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个;()()()1,2,1,3,1,4,()2,3,()2,4,()3,4.而事件A 包含1个基本事件:()1,2.所以()16P A =; (2)品种甲的每公顷产量的样本平均数和样本方差分别为:()14033973904043884004124064008x =+++++++=甲, ()()()()2222222213310412012657.258S =+-+-++-+++=甲, 品种乙的每公顷产量的样本平均数和样本方差分别为:()14194034124184084234004134128x =+++++++=乙, ()()()()22222222217906411121568S =+-+++-++-+=乙, 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.19.解:(1)连接1BC ,则O 为1B C 与1BC 的交点,因为侧面11BB C C 为菱形,所以11B C BC ⊥. 又AO ⊥平面11BB C C ,所以1B C AO ⊥,故1B C ⊥平面ABO .由于AB ⊂平面ABO ,故1B C AB ⊥. (2)作OD BC ⊥,垂足为D ,连接AD .作OH AD ⊥,垂足为H .由于BC AO ⊥,BC OD ⊥,故BC ⊥平面AOD ,所以OH BC ⊥.又OH AD ⊥,所以OH ⊥平面ABC ,因为0160CBB ∠=,所以1CBB ∆为等边三角形,又1BC =,可得4OD =.由于1AC AB ⊥,所以11122OA B C ==. 由OH AD OD OA =g g,且4AD ==,得14OH =. 又O 为1B C 的中点,所以点1B 到平面ABC故三棱柱111ABC A B C -. 20.解:(1)由题意,当直线AB 经过椭圆的顶点()0,b 时,其倾斜角为60°.设(),0F c -,则0tan 60b c ==222a b c -=,所以2a c =.所以椭圆的离心率为12c e a ==. (2)由(1)知,椭圆的方程可表示为2222143x y c c+=.设()()1122,,,A x y B x y .根据题意,设直线AB 的方程为()y k x c =+,将其带入2223412x y c +=,整理得()2222224384120k x ck x k c c +++-=,则()21212122286,24343ck ckx x y y k x x c k k -+=+=++=++,22243,443ck ck G k k ⎛⎫- ⎪+⎝⎭. 因为GD AB ⊥,所以2223431443Dckk k ckx k +⨯=---+,2243D ck x k -=+.因为GFD OED ∆∆:,所以2122299GD S S k OD ==+,由题意,()0,k ∈∞,∴()290,k ∈∞,所以12S S 的取值范围是()9,+∞. 21.解:(1)()f x 的定义域为1,a ⎛⎫-+∞ ⎪⎝⎭,且()2111a x f x a ax x a'=-=-++. ①当0a <时,∵1x a >-,∴1ax <-,∴()0f x '>,函数在1,a ⎛⎫-+∞ ⎪⎝⎭是增函数; ②当0a >时,10ax +>,在区间1,0a ⎛⎫- ⎪⎝⎭上,()0f x '>;在区间()0,+∞上,()0f x '<. 所以()f x 在区间1,0a ⎛⎫-⎪⎝⎭上是增函数;在区间()0,+∞上是减函数.(2)当0a <时,取1x e a=-,则1111201f e a e ae ae a e a a a ⎛⎫⎛⎫⎛⎫-=--=->>-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不合题意.当0a >时,令()()h x ax f x =-,则()12ln h x ax x a ⎛⎫=-+ ⎪⎝⎭. 问题转化为()0h x >恒成立时a 的取值范围.由于()1212211a x a h x a x x a a ⎛⎫+ ⎪⎝⎭'=-=++,所以在区间11,2a a ⎛⎫-- ⎪⎝⎭上,()0h x '<;在区间1,2a ⎛⎫-+∞ ⎪⎝⎭上,()0h x '>.所以()h x 的最小值为12h a ⎛⎫-⎪⎝⎭,所以只需102h a ⎛⎫-> ⎪⎝⎭,即1112ln 022a a a a ⎛⎫⎛⎫---+> ⎪ ⎪⎝⎭⎝⎭g ,所以1ln12a <-,所以2ea >. 22.解:(1)圆:cos sin O ρθθ=+,即2cos sin ρρθρθ=+,故圆O 的直角坐标方程为:220x y x y +--=,直线:sin 4l πρθ⎛⎫-= ⎪⎝⎭sin cos 1ρθρθ-=,则直线的直角坐标方程为:10x y -+=.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得22010x y x y x y ⎧+--=⎨-+=⎩解得01x y =⎧⎨=⎩.即圆O 与直线l 的在直角坐标系下的公共点为()0,1,转化为极坐标为1,2π⎛⎫⎪⎝⎭.23.解:(1)原不等式为:23215x x ++-≤, 当32x ≤-时,原不等式可转化为425x --≤,即7342x -≤≤-; 当3122x -<<时,原不等式可转化为45≤恒成立,所以3122x -<<; 当12x ≥时,原不等式可转化为425x +≤,即1324x ≤≤. 所以原不等式的解集为73|44x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)由已知函数()342,2314,22142,2x x f x x x x ⎧--≤-⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩,可得函数()y f x =的最小值为4,所以24m ->,解得6m >或2m <-.。

四川省成都七中2020届高三高中毕业班三诊模拟数学(文科)试题与答案

四川省成都七中2020届高三高中毕业班三诊模拟数学(文科)试题与答案

e1
,
e2
的夹角为
2π 3
,则
e1
2e2Leabharlann (A)3(B)7(C) 3
(D) 7
5.
已知双曲线 x2 a2
y2
b2
1(a 0, b 0) 的渐近线方程为 y 3x ,则双曲线的离心率是
(A) 10
10
(B)
3
(C)10
10
(D)
9
第1页
6. 在等比数列{an} 中, a1 0, 则“ a1 a4 ”是“ a3 a5 ”的
11. 已知一个四面体的每一个面都是以 3,3,2 为边长的锐角三角形,则这个四面体的外接球的
表面积为
11π
(A)
4
11π
(B)
2
(C)11π
(D) 22π
12. 已知 P 是椭圆 x2 y2 1上一动点, A(2,1), B(2,1) ,则 cos PA, PB 的最大值是 4
6 2
(A)
4
17
有两个不同的交点,则实数 a 的取值范围是
A
B
三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12 分)
在 ABC 中,内角 A, B, C 的对边分别为 a, b, c. 已知 2a b . tan A sin B
(1)求角 A 的大小;
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
(D)既不充分也不必要条件
7. 如图所示的程序框图,当其运行结果为 31 时,则图中判断框①处应填入的是
(A) i 6 ?
(B) i 5?
(C) i 4 ?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档