初中数学压轴题-动点问题复习过程
动点的函数图象问题(压轴题专项讲练)解析版—2024-2025学年九年级数学上册压轴题专项(浙教版)
动点的函数图象问题数形结合思想:所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3所给的等式或代数式的结构含有明显的几何意义。
【典例1】如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD=2,CD⊥AB于点D,点E、F、G分别是边CD、CA、AD的中点,连接EF、FG,动点M从点B出发,以每秒2个单位长度的速度向点A方向运动(点M运动到AB的中点时停止);过点M作直线MP∥BC与线段AC交于点P,以PM为斜边作Rt△PMN,点N在AB 上,设运动的时间为t(s),Rt△PMN与矩形DEFG重叠部分的面积为S,则S与t之间的函数关系图象大致为()A.B.C.D.本题考查几何动点问题的函数图象,正确分段并分析是解题的关键.根据题意先分段,分为0≤t≤0.5,0.5<t≤1,1<t≤2三段,分别列出三段的函数解析式便可解决,本题也可只列出0≤t≤0.5,1<t≤2两段,用排除法解决.解:分析平移过程,①从开始出发至PM与点E重合,由题意可知0≤t≤0.5,如图,则BM=2t,过点M作MT⊥BC于点T,∵∠B=60°,CD⊥AB,∴BC=2BD=4,CD==BT=12BM=t,∵∠ACB=90°,MP∥BC,∴∠ACB=∠MPA=90°,∴四边形CTMP为矩形,∴PM=CT=BC―BT=4―t,∵∠PMN=∠B=60°,PN⊥AB,∴MN=PM2=4―t2,∴DN=MN―MD=MN―BD+BM=3t2,∵E为CD中点,∴DE=CD2=∴S=DE⋅DN=∴S与t的函数关系是正比例函数;②当0.5<t≤1,即从PM与E重合至点M与点D重合,如图,由①可得QN=ED=DM=2―2t,DN=32t,S矩形EDNQ=∵∠PMN=∠B=60°,CD⊥AB,∴SD==,∴ES=ED―SD=∴ER ==2t ―1,∴S =S 矩形EDNQ ―S △ERS =12(2―2t ―1)=―2+此函数图象是开口向下的二次函数;③当1<t ≤2,即从点M 与点D 重合至点M 到达终点,如图,由①可得DN =32t ,MN =4―t 2,∵AD ==6, DG =12AD =3,∴NG =DG ―DN =3―32t ,∴QF =NG =3―32t ,∴PQ==,∴HQ ==1―12t ,∴S =(HQ+MN )×QN 2==―∴S 与t 的函数关系是一次函数,综上,只有选项A 的图象符合,故选:A .1.(2024·四川广元·二模)如图,在矩形ABCD 中,AB =4cm ,AD =2cm ,动点M 自点A 出发沿AB 方向以每秒1cm 的速度向点 B 运动,同时动点N 自点A 出发沿折线AD -DC -CB 以每秒2cm 的速度运动,到达点B 时运动同时停止.设△AMN的面积为y (cm2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A.B.C.D.【思路点拨】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.根据题意,分三段(0<x<1,1≤x<3,3≤x<4)分别求解y与x的解析式,从而求解.【解题过程】解:当0<x<1时,M、N分别在线段AB、AD上,此时AM=x cm,AN=2x cm,y=S△AMN=12×AM×AN=x2,为二次函数,图象为开口向上的抛物线;当1≤x<3时,M、N分别在线段、CD上,此时AM=x cm,△AMN底边AM上的高为AD=2cm,y=S△AMN=12×AM×AD=x,为一次函数,图象为直线;当3≤x<4时,M、N分别在线段AB、BC上,此时AM=x cm,△AMN底边AM上的高为BN=(8―2x)cm,y=S△AMN=12×AM×BN=12x(8―2x)=―x2+4x,为二次函数,图象为开口向下的抛物线;结合选项,只有A选项符合题意,故选:A.2.(22-23九年级上·安徽合肥·期中)如图,在△ABC中,∠C=135°,AC=BC=P为BC边上一动点,PQ∥AB交AC于点Q,连接BQ,设PB=x,S△BPQ=y,则能表示y与x之间的函数关系的图象大致是()A.B.C.D.【思路点拨】过点Q作QE⊥BC交BC延长线于点E,根据S△BPQ=y=12QE⋅BP列出解析式再判断即可.【解题过程】解:如图,过点Q作QE⊥BC交BC延长线于点E,∵AC =BC =∴∠A =∠ABC∵PQ∥AB ,∴∠CQP =∠A,∠CPQ =∠ABC∴∠CQP =∠CPQ∴CQ =CP =―x .∵∠ACB =135°∴∠ECQ =45°在Rt △CEQ 中,∠ECQ =45°,∴QE ==―x )=2―,∴y =12QE ⋅BP =12x 2x =―2+x =――2+∴当x =y 最大值=故选:C.3.(2024·河北石家庄·二模)如图所示,△ABC 和△DEF 均为边长为4的等边三角形,点A 从点D 运动到点E 的过程中,AB 和DF 相交于点G ,AC 和EF 相交于点H ,(S △BGF +S △FCH )为纵坐标y ,点A 移动的距离为横坐标x ,则y 与x 关系的图象大致为( )A .B .C .D .【思路点拨】如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,证明四边形ACFD 为平行四边形,可得AD =CF =x ,BF =4―x ,求解CT =FT =12x ,TH ==,同理可得:GK =―x ),再利用面积公式建立函数关系式即可判断.【解题过程】解:如图,过G 作GK ⊥BC 于K ,过H 作HT ⊥BC 于T ,由题意可得:AD∥CF ,DF∥AC ,∴四边形ACFD 为平行四边形,∴AD =CF =x ,∴BF =4―x ,∵△ABC 和△DEF 均为边长为4的等边三角形,AD∥CF ,∴∠D =∠DFB =60°,而∠B =60°,∴△BGF 为等边三角形,同理:△CFH 为等边三角形,∵HT ⊥BC ,∴CT =FT =12x ,TH ==,同理可得:GK =―x ),∴y =12x +12(4―x )⋅―x )=2―+故选B4.(2023·辽宁铁岭·模拟预测)如图,矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,M 是BC 的中点.P 、Q 两点沿着B→C→D 方向分别从点B 、点M 同时出发,并都以1cm/s 的速度运动,当点Q 到达D 点时,两点同时停止运动.在P 、Q 两点运动的过程中,与△OPQ 的面积随时间t 变化的图象最接近的是( )A .B .C .D .【思路点拨】本题考查了动点问题函数图象.根据矩形的性质求出点O 到BC 的距离等于4,到CD 的距离等于6,求出点Q 到达点C 的时间为6s ,点P 到达点C 的时间为12s ,点Q 到达点D 的时间为14s ,然后分①0≤t ≤6时,点P 、Q 都在BC 上,表示出PQ ,然后根据三角形的面积公式列式计算即可;②6<t ≤12时,点P 在BC 上,点Q 在CD 上,表示出CP 、CQ ,然后根据S ΔOPQ =S ΔCOP +S ΔCOQ ―S ΔPCQ 列式整理即可得解;③12<t ≤14时,表示出PQ ,然后根据三角形的面积公式列式计算即可得解.【解题过程】解:∵矩形ABCD 中,AB =8cm ,AD =12cm ,AC 与BD 交于点O ,∴点O 到BC 的距离=12AB =4,到CD 的距离=12AD =6,∵点M 是BC 的中点,∴CM =12BC =6,∴点Q到达点C的时间为6÷1=6s,点P到达点C的时间为12÷1=12s,点Q到达点D的时间为(6+8)÷1=14s,①0≤t≤6时,点P、Q都在BC上,PQ=6,△OPQ的面积=12×6×4=12;②6<t≤12时,点P在BC上,点Q在CD上,CP=12―t,CQ=t―6,SΔOPQ=SΔCOP+SΔCOQ―SΔPCQ,=12×(12―t)×4+12×(t―6)×6―12×(12―t)×(t―6),=12t2―8t+42,=12(t―8)2+10,③12<t≤14时,PQ=6,△OPQ的面积=12×6×6=18;纵观各选项,只有B选项图形符合.故选:B.5.(2023·江苏南通·模拟预测)如图,在矩形ABCD中,AB=4,BC=6,E为AB中点,动点P从点B开始沿BC方向运动到点C停止,动点Q从点C开始沿CD→DA方向运动,与点P同时出发,同时停止;这两点的运动速度均为每秒1个单位;若设他们的运动时间为x(s),△EPQ的面积为y,则y与x之间的函数关系的图像大致是()A.B.C.D.【思路点拨】先求出点P在BC上运动是时间为6秒,点Q在CD上运动是时间为4秒,再根据中点的定义可得AE =BE =12AB ,然后分①点Q 在CD 上时,表示出BP 、CP 、CQ ,再根据△EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,列式整理即可得解;②点Q 在AD 上时,表示出BP 、AQ ,再根据△EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,列式整理即可得解,再根据函数解析式确定出函数图象即可.【解题过程】解:∵点P 、Q 的速度均为每秒1个单位,∴点P 在BC 上运动的时间为6÷1=6(秒),点Q 在CD 上运动的时间为4÷1=4(秒),∵E 为AB 中点,∴AE =BE =12AB =12×4=2,①如图1,点Q 在CD 上时,0≤x ≤4,则BP =x,CP =6―x,CQ =x ,∴ △EPQ 的面积为y =S 梯形BCQE ―S △BPE ―S △PCQ ,=12(2+x )×6―12×2x ―12(6―x )⋅x =12x 2―x +6=12(x ―1)2+112②如图2,点Q 在AD 上时,4<x ≤6,则BP =x,AQ =6+4―x =10―x ,∴ △EPQ 的面积为y =S 梯形ABPQ ―S △BPE ―S △AEQ ,=12(x +10―x )×4―12×2x ―12(10―x )⋅2=10,综上所述,y =2―x +6(0≤x ≤4)10(4<x ≤6),函数图象为对称轴为直线x =1的抛物线的一部分加一条线段,只有A 选项符合.故选:A .6.(2024·河南开封·一模)如图1,在△ABC 中,∠B =60°,点D 从点B 出发,沿BC 运动,速度为1cm/s .点P 在折线BAC 上,且PD ⊥BC 于点D .点D 运动2s 时,点P 与点A 重合.△PBD 的面积S (cm 2)与运动时间t (s)的函数关系图象如图2所示,E 是函数图象的最高点.当S (cm 2)取最大值时,PD 的长为( )A .B .(1+cm C .(1+cm D .(2+cm【思路点拨】本题考查动点函数图象,二次函数图象性质,三角形面积.本题属二次函数与几何综合题目.先根据点D 运动2s 时,点P 与点A 重合.从而求得PD ==,再由函数图象求得BC =(2+×1=(2+cm ,从而求得DC =BC ―BD =2+2=,得出PD =DC ,然后根据由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.所以当2≤t ≤2+点P 在AC边上,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,根据三角形面积公式求得S △PBD =―12t ―(13)2+2+【解题过程】解:由题意知,点D 运动2s 时,点P ,D 的位置如图1所示.此时,在Rt △PBD 中,BD =2cm ,∠B =60°,PD ⊥BC ,∴PB =2BD =4(cm),∴PD ==.由函数图象得BC =(2+×1=(2+cm ,∴DC =BC ―BD =2+2=,∴PD =DC .由题图2点E 的位置可知,点P 在AC 上时,S △PBD 有最大值.当2≤t ≤2+P 在AC 边上,如图2,此时BD =t ×1=t (cm),PD =DC =(2+―t )cm ,∴S △PBD =12×BD ×PD =12×t ×(2+t )=―12t 2+(1+t .∵S △PBD =――(1+3)2+2+又∵―12<0,∴当t =1+S △PBD 的值最大,此时PD =CD =2+―(1+=(1+cm .故选:B .7.(2024·安徽·一模)如图,在四边形ABCD 中,∠A =60°,CD ⊥AD ,∠BCD =90°, AB =BC =4,动点P ,Q 同时从A 点出发,点Q 以每秒2个单位长度沿折线A ―B ―C 向终点C 运动;点P 以每秒1个单位长度沿线段AD 向终点D 运动,当其中一点运动至终点时,另一点随之停止运动.设运动时间为x 秒,△APQ 的面积为y 个平方单位,则y 随x 变化的函数图象大致为( )A .B .C .D .【思路点拨】分当0≤x <2时,点Q 在AB 上和当2≤x ≤4时,点Q 在BC 上,根据三角形的面积公式即可得到结论.【解题过程】解:过Q 作QN ⊥AD 于N ,当0≤x <2时,点Q 在AB 上,∵∠A =60°,∴∠AQN =90°―60°=30°,∴AN = 12AQ =12×2x =x ,∴QN ==,∴y =12×AP ×NQ =12×x ×=2,当2≤x ≤4时,点Q 在BC 上,过点B 作BM ⊥AD 于点M ,∵BM ⊥AD ,∠A =60°,∴∠ABM =30°,∴AM = 12AB =12×4=2,∴BM ==∵CD ⊥AD ,QN ⊥AD ,∴QN ∥CD ,∴∠BQN =∠BCD =90°,∵BM ⊥AD, CD ⊥AD ,∴四边形BMNQ 是矩形,∴QN =BM = ,y =12AP ⋅QN =12x ×=,综上所述,当0≤x <2时的函数图象是开口向上的抛物线的一部分,当2≤x ≤4时,函数图象是直线的一部分,故选:D .8.(23-24九年级上·浙江温州·期末)某兴趣小组开展综合实践活动:在Rt △ABC 中,∠C =90°,CD =,D 为AC 上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C→B→A 匀速运动,到达点A 时停止,以DP 为边作正方形DPEF ,设点P 的运动时间为t s ,正方形DPEF 的面积为S ,当点P 由点C 运动到点A 时,经探究发现S 是关于t 的二次函数,并绘制成如图2所示的图象,若存在3个时刻t 1,t 2,t 3(t 1<t 2<t 3)对应的正方形DPEF 的面积均相等,当t 3=5t 1时,则正方形DPEF 的面积为( )A .3B .349C .4D .5【思路点拨】由题意可得:CD =CP =t ,当点P 在BC 上运动时S =t 2+2,由图可得,当点P 与点B 重合时,S =6,求出t=2,即BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,求出抛物线解析式为S=(t―2)2+2,从两个函数表达式看,两个函数a相同,都为1,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,t1+t2=4①,t2+t3=8②,结合t3=5t1③,求出t的值即可得出答案.【解题过程】解:由题意可得:CD=CP=t,当点P在BC上运动时,S=DP2=CP2+CD2=t2+2,由图可得,当点P与点B重合时,S=6,∴t2+2=6,∴t=2或t=―2(不符合题意,舍去),∴BC=2,当P在BA上时,由图可得抛物线过点2,6,顶点为4,2,则抛物线的表达式为S=a(t―4)2+2,将2,6代入得:a(2―4)2+2=6,∴a=1,∴抛物线的表达式为:S=(t―4)2+2,从两个函数表达式看,两个函数a相同,都为1,若存在3个时刻t1,t2,t3(t1<t2t3)对应的正方形DPEF的面积均相等,则从图象上看t1,t2关于x=2对称,t2,t3关于x=4对称,∴t1+t2=4①,t2+t3=8②,∵t3=5t1③,由①③③解得t1=1,∴S=t2+2=1+2=3,故选:A.9.(22-23九年级上·浙江嘉兴·期中)如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC=6,点O为AC 中点,点D为线段AB上的动点,连接OD,设BD=x,OD2=y,则y与x之间的函数关系图像大致为( )A .B .C .D .【思路点拨】如图:过O 作OE ⊥AB ,垂足为E ,先根据直角三角形的性质求得AB =12,AC =OA =12AC =AE ==92可得DE =152―x ,然后再根据勾股定理求得函数解析式,最后确定函数图像即可.【解题过程】解:如图:过O 作OE ⊥AB ,垂足为E∵∠C =90°,∠ABC =60°∴∠A =30°∵BC =6∴AB =2BC =12∴AC ===∵点O 为AC 中点∴OA =12AC =∵∠A =30°∴OE =12AO =∴AE ===92∴DE =|152―x |∴OD 2=OE 2+DE 2,即y =+―x 2=x +274当x =0时,y =0―+274=63当x =152时,y =―+274=274当x =12时,y =12+274=27则函数图像为.故选C .10.(2024·广东深圳·三模)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =8,点D 和点E 分别是AB 和AC 的中点,点M 和点N 分别从点A 和点E 出发,沿着A→C→B 方向运动,运动速度都是1个单位/秒,当点N 到达点B 时,两点间时停止运动.设△DMN 的面积为S ,运动时间为t ,则S 与t 之间的函数图象大致为( )A .B .C .D .【思路点拨】本题主要考查动点问题,依托三角形面积考查二次函数的图象和分类讨论思想,取BC 的中点F,连接DF 根据题意得到DF 和DE ,分三种情况讨论三角形的面积:(1)当0<t ≤6时,得MN =AE =6,结合三角形面积公式求解即可;(2)当6<t ≤12时,得AM ,MC ,CN 和BN ,结合S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN ;(3)当12<t ≤14时,点M 、N 都在BC 上,结合DF 和MN 求面积即可.【解题过程】解:如图,取BC 的中点F ,连接DF ,∴DF ∥AC ,DF =12AC =6∵点D 、E 是中点,∴DE =12BC =4,DF ∥CB ,∵∠C =90°,∴四边形DECF 为矩形,当0<t ≤6时,点M 在AE 上,点N 在EC 上,MN =AE =6,∴S =12MN ⋅DE =12×6×4=12;如图,当6<t ≤12时,点M 在EC 上,点N 在BC 上,∵AM =t ,∴MC =12―t ,CN =t ―6,BN =14―t ,∴S =S ΔABC ―S ΔADM ―S ΔBDN ―S ΔCMN=12×8×12―12×4t ―12×6(14―t)―12(12―t)(t ―6)=12t 2―8t +42;如图,当12<t ≤14时,点M 、N 都在BC 上,∴S =12MN ⋅DF =12×6×6=18,综上判断选项A 的图象符合题意.故选:A .11.(2024·河南南阳·二模)如图是一种轨道示意图,其中A 、B 、C 、D 分别是菱形的四个顶点,∠A =60°.现有两个机器人(看成点)分别从A ,C 两点同时出发,沿着轨道以相同的速度匀速移动,其路线分别为A→B→C 和C→D→A .若移动时间为t ,两个机器人之间距离为d .则 d²与t 之间的函数关系用图象表示大致为( )A .B .C .D .【思路点拨】设菱形的边长为2,根据菱形的性质求出关于两个机器人之间的距离d2的解析式,再利用二次函数的性质即可解答.【解题过程】解:①设AD=2,如图所示,∵移动时间为t,∠A=60°,∴CK=1,FT=KB=∴AE=t,CF=2―t,∴FK=2―t―1=1+t,∴ET=2―t―(1+t)=1+2t,∴在Rt△EFT中,EF2=ET2+FT2=(1+2t)2+2=4t2+4t+4;②设AD=2,如图所示,∵移动时间为t,∠A=60°,∴BM=t―2,CM=2―(t―2)=4―t,CP=1,PD=LQ=∴MQ=CM―CQ=(4―t)―1=―t,∴在Rt△LMQ中,ML2=MQ2+LQ2=(3―t)2+2=t2―6t+12,∴函数图像为两个二次函数图象;③当从A出发的机器人在B点,从C出发的机器人在D点,此时距离是BD;从A出发的机器人在A点,从C出发的机器人在C点,此时距离是AC;∵设AD=2,∠A=60°,∴BD=2,AE=∴AC=2AE=∴BD<AC,∴函数图象的起点和终点高于中间点;综上所述:A项符合题意;故选A.12.(2024·山东聊城·二模)如图,等边△ABC与矩形DEFG在同一直角坐标系中,现将等边△ABC按箭头所指的方向水平移动,平移距离为x,点C到达点F为止,等边△ABC与矩形DEFG重合部分的面积记为S,则S关于x的函数图象大致为()A.B.C.D.【思路点拨】本题主要考查了动点问题的函数图象,二次函数的图象,等腰三角形的性质等知识,如图,作AQ⊥BC于点Q,可知AQ=0<x≤1或1<x≤2或2<x≤3三种情形,分别求出重叠部分的面积,即可得出图象.【解题过程】解:如图①,设AC与DE交于点H,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=BC=AC=2,BC=1,过点A作AQ⊥BC于点Q,则BQ=CQ=12∴AQ===∵四边形DEFG 是矩形,∴∠DEF =90°,DE =AQ ==OF ―OE =5―2=3,当0<x ≤1时,在Rt △HCE 中,∠ACE =60°,EC =x,∴∠CHE =30°,∴HC =2x ,∴HE ===∴S =12EC ×HE =12x ×=2,所以,S 关于x 的函数图象是顶点为原点,开口向上且在0<x ≤1内的一段;当1<x ≤2时,如图,设AB 与DE 交于点P ,∵EC =x,BC =2,∴BE =BC ―EC =2―x,同理可得,PE =x ―2),∴S =S △ABC ―S △PBE =12×2―12(2―x )⋅―x )=―x ―2)2+所以,图象为1<x ≤2时开口向下的一段抛物线索;当2<x ≤3时,如图,S =12×2×=此时的函数图象是在2<x≤3范围内的一条线段,即S=<x≤3),故选:C13.(2024·河南·模拟预测)如图,在等腰直角三角形ABC中,∠ABC=90°,BD是AC边上的中线,将△BCD 沿射线BA方向匀速平移,平移后的三角形记为△B1C1D1,设△B1C1D1与△ABD重叠部分的面积为y,平移距离为x,当点B1与点A重合时,△B1C1D1停止运动,则下列图象最符合y与x之间函数关系的是()A.B.C.D.【思路点拨】本题考查了二次函数与几何图形的综合,涉及等腰直角三角形,平移的性质,二次函数的性质等知识,解题的关键是灵活运用这些性质,学会分类讨论.过点D作DM⊥AB于M,由△ABC为等腰直角三角形,∠ABC=90°,可设AB=BC=2,可得AD=CD=BD=DM=AM=BM=1,然后分情况讨论:当0<x≤1时,当1<x≤2时,分别求出关于S、x的函数,再数形结合即可求解.【解题过程】解:过点D作DM⊥AB于M,∵△ABC为等腰直角三角形,∠ABC=90°,∴ AB =BC ,设AB =BC =2,∴ AD =CD =BD =DM =AM =BM =1,当0<x ≤1时,设B 1D 1交AC 于点G ,B 1C 1交BD 于N ,∴ AB 1=AB ―BB 1=2―x ,由平移知B 1G ∥BD ,∠AB 1G =∠ABD ,∴ △AB 1G 是等腰直角三角形,∴ S △AB 1G =12AB 1·12AB 1=14(2―x )2,又∵ S △ABD =12×12×2×2=1,S △BB 1N =12x 2∴ S =S △ABD ―S △AB 1G ―S △BB 1N =1―14(2―x )2―12x 2=―34x 2+x ,当x =―=23时取得最大值,故排除A 、B 选项当1<x ≤2时,B 1D 1交AC 于点G ,B 1C 1交AC 于点H ,∵ B 1H ∥BC ,∴ ∠B 1HG =∠ACB =45°,又∵ ∠D 1B 1C 1=45°,∴ △B 1GH 为等腰三角形,∵ ∠AB 1D 1=∠ABD =45°=∠A ,∴ AB 1G 为等腰三角形,∴ B 1G =1=―x ),∴ S =S △B 1GH =12·―x )―x )=14(2―x )2,即当1<x ≤2时,函数图像为开口向上的抛物线,故排除C 选项故选:D .14.(23-24九年级上·安徽滁州·期末)如图,菱形ABCD的边长为3cm,∠B=60°,动点P从点B出发以3cm/ s的速度沿着边BC―CD―DA运动,到达点A后停止运动;同时动点Q从点B出发,以1cm/s的速度沿着边BA 向A点运动,到达点A后停止运动.设点P的运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象为()A.B.C.D.【思路点拨】根据题意可知分情况讨论,分别列出当点P在BC上时,点P在CD上时,点P在AD上时表达式,再画图得到函数解析式,即可得到本题答案.【解题过程】解:设点P的运动时间为x(s),△BPQ的面积为y(cm2),①当0≤x≤1时,点P在BC上时,过点P作PE⊥BA,,∵根据题知:∠B =60°,PB =3x,BQ =x ,∴BE =32x ,PE =,∴y =12BQ·PE =12x·=2;②当1<x ≤2时,点P 在CD 上时,过点P 作PH ⊥BA ,,∵根据题知:∠B =60°,BC =3,BQ =x ,∴PH =∴y =12BQ·PH =12x·=;③当2<x ≤3时,点P 在AD 上时,过点P 作PF ⊥BA 交DA 延长线于F ,,∵根据题知:∠B =60°,即∠FAD =60°,∵BC +CD +AD =3+3+3=9cm ,BC +CD +DP =3x ,∴AP =(9―3x)cm ,∴PF =9―3x 2·∴y =12BQ·PF =12x·9―3x 2·=―2;∴结合三种情况,图像如下所示:,故选:D.15.(2023·辽宁盘锦·中考真题)如图,在平面直角坐标系中,菱形ABCD的顶点A在y轴的正半轴上,顶点B、C在x轴的正半轴上,D,P(―1,―1).点M在菱形的边AD和DC上运动(不与点A,C重合),过点M作MN∥y轴,与菱形的另一边交于点N,连接PM,PN,设点M的横坐标为x,△PMN的面积为y,则下列图象能正确反映y与x之间函数关系的是()A.B.C.D.【思路点拨】先根据菱形的性质求出各点坐标,分M的横坐标x在0∼1,1∼2,2∼3之间三个阶段,用含x的代数式表示出△PMN的底和高,进而求出分段函数的解析式,根据解析式判断图象即可.【解题过程】解:∵菱形ABCD 的顶点A 在y 轴的正半轴上,顶点B 、C 在x 轴的正半轴上,∴ AB =AD =2,OA=∴ OB===1,∴ OC =OB +BC =1+2=3,∴ A ,B (1,0),C (3,0),设直线AB 的解析式为y =kx +b ,将A ,B (1,0)代入,得:k +b = ,解得k =b =∴直线AB 的解析式为y =―+∵ MN∥y 轴,∴N 的横坐标为x ,(1)当M 的横坐标x 在0∼1之间时,点N 在线段AB 上,△PMN 中MN 上的高为1+x ,∴ N (x,―+,∴ MN=(―+=,∴ S △PMN =12MN ⋅(1+x )=⋅(1+x)=2+,∴该段图象为开口向上的抛物线;(2)当M 的横坐标x 在1∼2之间时,点N 在线段BC 上,△PMN 中MN =MN 上的高为1+x ,∴ S △PMN =12MN ⋅(1+x)=(1+x)=∴该段图象为直线;(3)当M 的横坐标x 在2∼3之间时,点N 在线段BC 上,△PMN 中MN 上的高为1+x ,由D ,C (3,0)可得直线CD 的解析式为y =―+∴ M (x,―+,N (x,0),∴ MN =―+∴ S △PMN =12MN ⋅(1+x )=12(+⋅(1+x )=―2∴该段图象为开口向下的抛物线;观察四个选项可知,只有选项A 满足条件,故选A .16.(22-23九年级上·安徽蚌埠·期末)如图,在平面直角坐标系中,点A (2,0),点B,点C (―,点P从点O出发沿O→A→B路线以每秒1个单位的速度运动,点Q从点O出发沿O→C→B的速度运动,当一个点到达终点时另一个点随之停止运动,设y=PQ2,运动时间为t秒,则正确表达y与t 的关系图象是()A.B.C.D.【思路点拨】先分析各个线段的长,在Rt△OAB中,可知,OA=2,OB AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,易得△OBC是等边三角形,OC=BC=OB P在OA上运动用时2s,在AB上运动用时4s,点Q在OC上运动用时2s,在OC上运动用时2s,则点P和点Q共用时4s,可排除D选项;再算出点P在OA上时,y的函数表达式,结合选项可得结论.【解题过程】解:如图,∵点A(2,0),点B(0,∴OA=2,OB∴AB=4,∠BAO=60°,过点C作CM⊥y轴于点M,则OM =BM CM =3,∴OC =BC ∴△OBC 是等边三角形,∠BOC =60°,∴点P 在OA 上运动用时2s ,在AB 上运动用时4s ,点Q 在OC 上运动用时2s ,在OC 上运动用时2s ,即点P 和点Q 共运动4s 后停止;由此可排除D 选项.当点P 在线段OA 上运动时,点Q 在线段OC 上运动,过点Q 作QN ⊥x 轴于点N ,由点P ,点Q 的运动可知,OP =t ,OQ ,∴QN =12OQ ==32t,∴PN =52t,∴y =PQ 2=(52t)2+2=7t 2.即当0<t <2时,函数图象为抛物线,结合选项可排除A ,C .故选:B .17.(2022·辽宁·中考真题)如图,在等边三角形ABC 中,BC =4,在Rt △DEF 中,∠EDF =90°,∠F =30°,DE =4,点B ,C ,D ,E 在一条直线上,点C ,D 重合,△ABC 沿射线DE 方向运动,当点B 与点E 重合时停止运动.设△ABC 运动的路程为x ,△ABC 与Rt △DEF 重叠部分的面积为S ,则能反映S 与x 之间函数关系的图象是( )A.B.C.D.【思路点拨】分三种情形∶①当0<x≤2时,△CDG,②当2<x≤4时,重叠部分为四边形AGDC,③当4<x≤8时,重叠部分为△BEG,分别计算即可.【解题过程】解:过点A作AM⊥BC,交BC于点M,在等边△ABC中,∠ACB=60°,在Rt△DEF中,∠F=30°,∴∠FED=60°,∴∠ACB=∠FED,∴AC∥EF,在等边△ABC中,AM⊥BC,BC=2,AM=∴BM=CM=12BC•AM=∴S△ABC=12①当0<x≤2时,设AC与DF交于点G,此时△ABC与Rt△DEF重叠部分为△CDG,由题意可得CD=x,DGCD•DG2;∴S=12②当2<x≤4时,设AB与DF交于点G,此时△ABC与Rt△DEF重叠部分为四边形AGDC,由题意可得:CD=x,则BD=4﹣x,DG4﹣x),×(4﹣x)4﹣x),∴S=S△ABC﹣S△BDG=﹣12∴S=2﹣x﹣4)2③当4<x≤8时,设AB与EF交于点G,过点G作GM⊥BC,交BC于点M,此时△ABC与Rt△DEF重叠部分为△BEG,由题意可得CD =x ,则CE =x ﹣4,DB =x ﹣4,∴BE =x ﹣(x ﹣4)﹣(x ﹣4)=8﹣x ,∴BM =4﹣12x在Rt △BGM 中,GM 4﹣12x ),∴S =12BE •GM =12(8﹣x )4﹣12x ),∴S x ﹣8)2,综上,选项A 的图像符合题意,故选:A .18.(2023·山东聊城·三模)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ―ED ―DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/秒,设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系图像如图(2)(曲线OM 为抛物线的一部分),则下列结论不正确的是( )A .AB:AD =4:5B .当t =2.5秒时,PQ =C .当t =294时,BQ PQ =53D .当△BPQ 的面积为4cm 2时,t 或475秒【思路点拨】先由图2中的函数图像得到当t =5时,点Q 到达点C ,即BC =5cm ,然后由5<t <7时,y =10可知△BPQ的面积是定值10cm 2、BE =5cm,ED=2cm ,当t =7时点P 到达点D ,AE ==4cm ,可以判定A ;当0<t ≤5时,根据y =25t 2得到y =2.5cm 2,过点P 作PH ⊥BC 于点H ,根据y =12BQ·PH =12×2.5cm ×PH =2.5cm 2求得PH =2,设QH =x cm ,根勾股定理计算QH =1cm ,可计算PQ =根据AB =CD =4cm ,得到再运动4秒到达C 点即H (11,0),N (7,10),确定直线HN 或475秒;当t =294>284=7时,故点Q 在DC 上,把t =294代入直线HN 的解析式计算BQ PQ =43.【解题过程】解:设抛物线的解析式为y =at 2,当t =5时,y =10,∴10=25a ,解得a =25,∴y =25t 2,由图2中的函数图像得当t =5时,点Q 到达点C ,即BC =BE =5cm ,∵5<t <7时,y =10,∴△BPQ 的面积是定值10cm 2且BE =5cm,ED=2cm ,当t =7时点P 到达点D ,∴AE =5―2==4cm,AD=BC =5cm ,∴AB:AD =4:5,故A 正确,不符合题意;当0<t ≤5时,∵y =25t 2,t =2.5,∴BP =BQ =2.5cm ,y =2.5cm 2,过点P 作PH ⊥BC 于点H ,∴y =12BQ·PH =12×2.5cm ×PH =2.5cm 2解得PH =2,设QH =x cm ,则BH =BQ ―QH =(2.5―x )cm ,∴2.52=22+(2.5―x )2,解得x =1,x =4(舍去),∴QH =1cm ,∴PQ==故B 正确,不符合题意;根据AB =CD =4cm ,∴再运动4秒到达C 点即H (11,0),N (7,10),设直线HN 的解析式为y =kt +b ,根据题意,得11k +b =07k +b =10 ,解得k =―52b =552 ,∴直线HN 的解析式为y =―52t +552,∵△BPQ 的面积为4cm 2,故4=25t 2或4=―52t +552解得t==―t =475,故D 正确,不符合题意;∵t =294>284=7时,故点Q 在DC 上,当t =294时,y =―52×294+552=758,12PQ·BC =758解得PQ=154∴BQ PQ =5154=43.故C错误,符合题意.故选:C.19.(2023·辽宁·中考真题)如图,∠MAN=60°,在射线AM,AN上分别截取AC=AB=6,连接BC,∠MAN 的平分线交BC于点D,点E为线段AB上的动点,作EF⊥AM交AM于点F,作EG∥AM交射线AD于点G,过点G作GH⊥AM于点H,点E沿AB方向运动,当点E与点B重合时停止运动.设点E运动的路程为x,四边形EFHG与△ABC重叠部分的面积为S,则能大致反映S与x之间函数关系的图象是()A.B.C.D.【思路点拨】分三种情况分别求出S与x的函数关系式,根据函数的类型与其图象的对应关系进行判断即可.【解题过程】解:∵∠MAN=60°,AC=AB=6,∴△ABC是边长为6的正三角形,∵AD平分∠MAN,∴∠MAD=∠NAD=30°,AD⊥BC,CD=DB=3,①当矩形EFGH全部在△ABC之中,即由图1到图2,此时0<x≤3,∵EG∥AC,∴∠MAD=∠AGE=30°,∴∠NAD=∠AGE=30°,∴AE=EG=x,在Rt△AEF中,∠EAF=60°,∴EF==,∴S=2;②如图3时,当AE+AF=GE+AF=AF+CF=AC,x=6,解得x=4,则x+12由图2到图3,此时3<x≤4,如图4,记BC,EG的交点为Q,则△EQB是正三角形,∴EQ=EB=BQ=6―x,∴GQ=x―(6―x)=2x―6,而∠PQG=60°,∴PG==2x―6),∴S=S矩形EFHG―S△PQG=2x 2―12×(2x ―6)×2x ―6)=―2― ③如图6时,x =6,由图3到图6,此时4<x ≤6,如图5,同理△EKB 是正三角形,∴EK =KB =EB =6―x ,FC =AC ―AF =6―12x ,EF =, ∴S =S 梯形EKCF=―x +6―12x 2=―2, 因此三段函数的都是二次函数关系,其中第1段是开口向上,第2段、第3段是开口向下的抛物线, 故选:A .20.(22-23九年级上·安徽滁州·期末)如图,在平面直角坐标系中,菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,现将菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,设平移时间为t (秒),菱形ABCD 位于y 轴右侧部分的面积为S ,则S 关于t 的函数图像大致为( )A .B .C .D .【思路点拨】过点B 作x 轴的垂线,垂足为点E ,如图所示,由菱形ABCD 沿x 轴以每秒1个单位长度的速度向右平移,分①当0≤t ≤2时;②当2<t <4时;③当4≤t ≤6时;④当t >6时;四种情况,作图求解S 关于t 的函数解析式,作出图像即可得到答案.【解题过程】解:过点B 作x 轴的垂线,垂足为点E ,如图所示:∵菱形ABCD 的边长为4,且点A 与原点O 重合,边AD 在x 轴上,点B 的横坐标为―2,∴OE =2,OB =4,∴∠OBE =30°,∴∠BOE =60°,BE =①当0≤t ≤2时,如图(1)所示:S =12OA ⋅OF =12×t ×=2;②当2<t <4时,如图(2)所示:S =S △ABE +S 矩形OEBG =12AE ⋅BE +BE ⋅OE =12×2×t ―2)=―③当4≤t ≤6时,如图(3)所示:∵∠C =60°,OD =OA ―AD =t ―4,∴∠KDO =60°,OK=t ―4),∵HO =BE =∴HK =HO ―OK =―t ―4)=―+∵HB =OE =OA ―AE =t ―2,∴CH =BC ―HB =4―(t ―2)=―t +6,S =S 菱形ABCD ―S △CHK =AD ⋅BE ―12CH ⋅HK =4×―12(―t +6)(―+=―2―+=―2―当t >6时,S =S 菱形ABCD =AD ⋅BE=综上所述S =20≤t ≤2―2<t <4t2+―4≤t ≤6t >6 ,∴第一段二次函数部分,开口向上;第二段一次函数部分;第三段二次函数部分,开后向下;第四段平行于x轴的射线,故选:A.。
专题09 线段上动点问题压轴题的四种考法(原卷版)-2024年常考压轴题攻略(7年级上册人教版)
专题09线段上动点问题压轴题的的四种考法类型一、线段之间数量关系问题(1)如图①,当点N与点B重合时,求线段PQ的长度(用含(2)如图②,当线段MN运动到点B,M重合时,求线段AN(1)如图2,当B与N重合时,AM=,BC=;a (2)在图2的基础上,将线段AB沿直线MN向左移动(0①若3a=,求AM和BC的长;类型二、定值问题类型三、时间问题【变式训练1】如图,点,A B 在数轴上分别表示有理数,a b ,且,a b 满足2|2|(5)0a b ++-=.(1)点A 表示的数是___________,点B 表示的数是____________.(2)若动点P 从点A 出发以每秒3个单位长度向右运动,动点Q 从点B 出发以每秒1个单位长度向点A 运动,到达A 点即停止运动,P Q 两点同时出发,且Q 点停止运动时,P 也随之停止运动,求经过多少秒时,,P Q 第一次相距3个单位长度?(3)在(2)的条件下整个运动过程中,设运动时间为t 秒,若AP 的中点为,M BQ 的中点为N ,当t 为何值时,3BM AN PB +=?【变式训练2】如图,点A 、点B 是数轴上原点O 两侧的两点,其中点A 在原点O 的左侧,且满足6AB =,2OB OA =.(1)点A 、B 在数轴上对应的数分别为______和______.(2)点A 、B 同时分别以每秒1个单位长度和每秒2个单位长度的速度向左运动.①经过几秒后,3OA OB =;②点A 、B 在运动的同时,点P 以每秒1个单位长度的速度从原点向右运动,经过几秒后,点A 、B 、P 中的某一点成为其余两点所连线段的中点?类型四、求值(1)若AB =11cm ,当点C 、D 运动了课后训练(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)-和40,点C是线段(2)(问题解决)如图二,点A和B在数轴上表示的数分别是20点,求点C在数轴上表示的数.(3)(应用拓展)在(2)的条件下,动点P从点A处,以每秒2个单位的速度沿AB速运动,同时动点Q从点B出发,以每秒4个单位的速度沿BA向点A匀速运动,当其中一点到达中点时,两个点运动同时停止,当A、P、Q三点中,其中一点恰好是另外两点为端。
中考数学压轴题二次函数动点问题
中考数学压轴题二次函数动点问题题目:一个二次函数的抛物线图象如下,过y轴的点为A(x,0),过x 轴的点为B(0,y),请问点A、B的坐标分别是多少?解答:首先,我们先观察题目给出的抛物线图象。
由于抛物线图象是一个二次函数的图象,所以我们设函数的一般式为y=ax^2+bx+c。
接下来,我们需要寻找点A(x,0)的坐标。
根据题目给出的图象,我们可以看出点A是与x轴交于一点的坐标,也就是说y=0,即我们需要找到满足y=ax^2+bx+c=0的x的值。
考虑到点A位于y轴上,所以x=0。
代入方程y=ax^2+bx+c=0中,我们得到c=0。
因此,点A的坐标是A(0,0)。
接下来,我们寻找点B(0,y)的坐标。
根据题目给出的图象,我们可以看出点B是与y轴交于一点的坐标,也就是说x=0,即我们需要找到满足y=ax^2+bx+c=0的y的值。
考虑到点B位于x轴上,所以y=0。
代入方程y=ax^2+bx+c=0中,我们得到c=0。
因此,点B的坐标是B(0,0)。
综上所述,点A的坐标是A(0,0),点B的坐标是B(0,0)。
然而,这个解答是不正确的。
为了解决这个问题,我们需要重新分析题目给出的二次函数的抛物线图象。
首先,我们观察到抛物线经过y轴的点,那么通过y轴的点的横坐标一定是0,即x=0。
因此,点A的横坐标是0。
接着,我们观察到抛物线经过x轴的点,那么通过x轴的点的纵坐标一定是0,即y=0。
因此,点B的纵坐标是0。
接下来,我们需要寻找点A的纵坐标。
根据题目给出的抛物线图象,我们可以看出点A的纵坐标即为抛物线的顶点的纵坐标。
我们将顶点的纵坐标记为k。
由于抛物线的对称轴是与y轴垂直的,所以顶点的横坐标为x=0。
代入一般式y=ax^2+bx+c中,我们得到k=0^2*a*0+b*0+c=c。
因此,点A的坐标是A(0,c)。
接下来,我们需要寻找点B的横坐标。
根据题目给出的抛物线图象,我们可以看出点B的横坐标即为抛物线与x轴的交点的横坐标。
你知道初中动点问题的公式和答题思路以及过程吗
你知道初中动点问题的公式和答题思路以及过程吗
动点问题一直是近几年中考的高频考点,也是中考试题中的难点。
图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
现在数学测试卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.
常见方法
1.特殊探究,一般推证。
2.动手实践,操作确认。
3.建立联系,计算说明。
解题关键:动中求静。
人教版八年级下册数学期末复习:动点问题压轴题
人教版八年级下册数学期末复习: 动点压轴题1. 如图, 在四边形ABCD中, ∠A=∠B=∠BCD=90°, AB=DC=3, AD=BC=7. 延长BC 到E, 使CE=4, 连接DE, 由直角三角形的性质可知DE=5. 动点P从点B出发, 以每秒2个单位的速度沿BC−CD−DA向终点A运动, 设点P运动的时间为t秒. (t>0)(1)当时, ______;(用含的代数式表示)(2)请用含t的代数式表示ABP△的面积S;(不包括点P与点A重合的情况)(3)当点在BC边上时, 直接写出点到四边形ABED任意相邻两边距离相等时的值.2. 如图, 在正方形ABCD中, E是边AB上的一动点(不与点A, B重合), 连接DE, 点A关于直线DE的对称点为F, 连接EF并延长交BC于点G, 且∠CGD=∠DGE, 连接DG, 过点E作EH⊥DE交DG的延长线于点H, 连接BH.(1)猜想: △DEH的形状, 并说明理由.(2)猜想BH与AE的数量关系, 并证明.3. 如图, 在中, , , AB=8cm, 动点从点开始以的速度向点运动, 动点从点开始以的速度向点运动, 两点同时运动, 同时停止, 运动时间为.(1)当为何值时, 是等边三角形?(2)当为何值时, 是直角三角形?(3)过点作交于点, 连接, 求证:四边形是平行四边形.4. 已知正方形, 点F是射线上一动点(不与C, D重合), 连接并延长交直线于点E, 交于点H, 连接, 过点C作交于点G.(1)若点F在边上, 如图1.①证明:⑤猜想线段CG与EF的数量关系并说明理由(2)取中点M, 连结, 若, 正方形边长为6, 求的长5. 已知: 如图, 在菱形ABCD中, ∠B=60°, 点E、F分别是AB.AD上的动点, 且BE=AF.(1)求证: △ECF是等边三角形(2)已知M为CD的中点, 仅用无刻度的直尺作出最短的EF(不写作法, 保留作图痕迹)6. 如图, 在矩形ABCD中, AB=9, 点E在边AB上, 且AE=5. 动点P从点A出发, 以每秒1个单位长度, 沿折线AD—DC运动, 到达点C后停止运动. 连接PE, 作点A关于直线PE的对称点F, 设点P的运动时间为t秒(t>0).(1)如图1, 在点P的运动过程中, 当F与点C重合时, 求BC的长;(2)如图2, 如果BC=4, 当点F落在矩形ABCD的边上时, 求t的值.7. 如图, 已知长方形的边AD=8, AB=4, 动点M从点A出发, 以每秒2个单位长度的速度沿A→D→A的路径匀速运动, 同时, 动点N从点C出发, 沿C→B方向以每秒1个单位长度的速度匀速运动, 当其中一个动点到达终点时, 另一点也随之停止运动, 设运动时间为t秒.(1)如(图一), 当运动时间为1秒时, 求MN的长度;(2)当0≤t≤4时, 直接写出AMN为直角三角形时的运动时间t的值;(3)如(图二), 当4<t<8时, 判断AMN的形状, 并说明理由.8. 如图1, 是正方形边上一点, 过点作, 交的延长线于点.(1)求证: ;(2)如图2, 若正方形边长为6, 线段上有一动点从点出发, 以1个单位长度每秒沿向运动. 同时线段上另一动点从点出发, 以2个单位长度每秒沿向运动, 当点到达点后点也停止运动. 连接, 点的运动时间为, 的面积为, 求关于的函数关系式;(3)如图3, 连接, 连接交于点, 连接并延长, 交于点, 已知, , 求的长.9. 在菱形中, , , 点E是边的中点, 点M是边上一动点(不与点A重合), 连接并延长交射线于点N, 连接、,(1)求证: 四边形是平行四边形;(2)当_______时, 四边形是矩形;(3)四边形能否成为菱形?若能, 求出的值, 若不能, 请说明理由.10. 已知正方形ABCD, 点F是射线DC上一动点(不与C.D重合), 连接AF并延长交直线BC于点E, 交BD于H, 连接CH, 过点C作CG⊥HC交AE于点G.(1)若点F在边CD上, 如图1.①证明: ∠DAH=∠DCH;②猜想GFC的形状并说明理由.(2)取DF中点M, 连结MG.若MG=5, 正方形边长为8, 求BE的长.11. 如图, 在△ABC中, ∠BAC=90°, AB=AC, 点D是直线BC上一动点(不与端点重合), 以AD为边在AD右侧作正方形ADEF, 连接CF.(1)如图1, 当点D在线段BC上时, 求证: CF⊥BC;(2)如图2, 当点D在线段BC延长线上时, CF⊥BC还成立吗?如成立请证明, 如不成立请说明理由;(3)在图1、图2中, 选择一个图形证明:BD2+CD2=2AD2.12. 如图, 在直角梯形中, , , , , , 动点P从点A开始沿AD边向点D以速度运动, 动点Q从点C开始沿CB边向点B以的速度运动. 点P、Q分别从点A.C同时出发, 当其中一点到达端点时, 另一点随之停止运动. 设运动时间为t秒. 求:(1)t为何值时, 四边形PQCD为平行四边形?(2)t为何值时, 四边形ABQP为矩形?(3)是否存在, 使梯形ABQP的面积为?若存在请求出, 若不存在请说明理由.13. 在中, 为锐角, 点D为射线BC上一动点, 连接AD, 以AD为一边且在AD的右侧作正方形ADEF. 解答下列问题:(1)如果,①如图1, 当点D在线段BC上时(与点B不重合), 线段CF、BD之间的位置关系为;数量关系为;②如图2, 当点D在线段BC的延长线上时, ①中的结论是否仍然成立, 并说明理由;(2)如图3, 如果, 点D在线段BC上运动(与点B不重合).试探究:当时, (1)中的CF, BD之间的位置关系是否仍然成立, 并说明理由.14. 如图, 在平面直角坐标系中, 点O是坐标原点, 四边形OABC是平行四边形, 点A的坐标为(14, 0), 点B的坐标为.(1)填空: 点C的坐标为;平行四边形OABC的对称中心的点的坐标为;(2)动点P从点O出发, 沿OA方向以每秒1个单位的速度向终点A匀速运动, 动点Q 从点A出发, 沿AB方向以每秒2个单位的速度向终点B匀速运动, 一点到达终点时, 另一点停止运动. 设点P运动的时间为t秒, 求当t为何值时, △PQC的面积是平行四边形OABC面积的一半?(3)当△PQC的面积是平行四边形OABC面积的一半时, 在平面直角坐标系中找到一点M, 使以M、P、Q、C为顶点的四边形是平行四边形, 请直接写出点M的坐标.15. 如图, 已知O是坐标原点, 点A的坐标是(5, 0), 点B是y轴正半轴上一动点, 以OB, OA为边作矩形OBCA, 点E, H分别在边BC和边OA上, 将△BOE沿着OE对折, 使点B落在OC上的F点处, 将△ACH沿着CH对折, 使点A落在OC上的G点处.(1)求证: 四边形OECH是平行四边形;(2)当点B运动到使得点F, G重合时, 求点B的坐标, 并判断四边形OECH是什么四边形?说明理由;(3)当点B运动到使得点F, G将对角线OC三等分时, 直接写出点B的坐标.16. 如图, 把矩形OABC放入平面直角坐标系xOy中, 使分别落在x, y轴的正半轴上, 其中, 对角线AC所在直线解析式为, 将矩形OABC沿着BE折叠, 使点A落在边OC 上的D处.(1)求点B的坐标;(2)求EA的长度;(3)点P是y轴上一动点, 是否存在点P使得△PBE的周长最小, 若存在, 请求出点P的坐标, 如不存在, 请说明理由.17. 【情境】某校数学兴趣小组尝试自制数学学具进行自主合作探究. 图①是一块边长为的等边三角形学具, 是边上一个动点, 由点向点运动, 速度为, 是边延长线上一动点, 与点同时以相同的速度由点向延长线方向运动, 连接, 交于点, 设点运动的时间为.(1)【问题】填空: _____;(2)【问题】当时, 求的值;(3)【探究】如图②, 过点作, 垂足为, 在点, 点运动过程中, 线段的长度是否发生变化?若不变, 请求出的长度;若变化, 请说明理由.18. 在长方形ABCD中, AB=4, BC=8, 点P、Q为BC边上的两个动点(点P位于点Q的左侧, P、Q均不与顶点重合), PQ=2(1)如图①, 若点E为CD边上的中点, 当Q移动到BC边上的中点时, 求证: AP=QE;(2)如图②, 若点E为CD边上的中点, 在PQ的移动过程中, 若四边形APQE的周长最小时, 求BP的长;(3)如图③, 若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合), 当BP=3, 且四边形PQNM的周长最小时, 求此时四边形PQNM的面积.19. 如图, 长方形ABCD中, AB=4cm, BC=6cm, 现有一动点P从A出发以2cm/秒的速度, 沿矩形的边A—B—C—D—A返回到点A停止, 点P的运动时间为t秒.(1)当t=3秒时, BP=cm;(2)当t为何值时, 连结CP, DP, △CDP为等腰三角形;(3)Q为AD边上的点, 且DQ=5, 当t为何值时, 以长方形的两个顶点及点P为顶点的三角形与△DCQ全等.20. 在矩形ABCD中, AB=6, BC=8, 点E是射线BC上一个动点, 连接AE并延长交射线DC于点F, 将△ABE沿直线AE翻折到△AB'E, 延长AB'与直线CD交于点M.(1)求证: AM=MF;(2)当点E是边BC的中点时, 求CM的长;(3)当CF=4时, 求CM的长.参考答案:1. (1)2t−7;(2)S=;(3)点到四边形ABED任意相邻两边距离相等时的值为1.5秒或3秒.2. (1)等腰直角三角形,(2), 证明见解析3. (1)(2)4t=或8 5(3)见解析4. (1)①证明见解析;②结论,(2)BE的长为6+6-6. (1)BC的长为3;(2)t的值为6秒或12秒或14秒.7. (1)(2)83或4(3)⑤AMN是锐角三角形8. (2)(3)2.49. (2)1;(3)210. (1)②GFC是等腰三角形;(2)BE的长为14或2.11. (2)成立12. (1)6(2)13 2(3)不存在13. (1)①, ;②成立(2)成立14. (1), ;(2)当t为0或4时, △PQC的面积是平行四边形OABC面积的一半(3)或(10, -4)或或(18, 0)或或15. (2)B(0, );四边形OECH是菱形(3)点B的坐标是(0, )或(0, )16.(1)B(6, 10)(2)103 AE=(3)400,13 P⎛⎫ ⎪⎝⎭17. (1)24(2)4(3)线段DE的长度不改变, DE=618. (2)4(3)419. (1)2;(2)或或;(3)2.5或4.5或7.5或9.5 20.(2)8 3(3)215或21。
中考数学压轴专题训练——动态(动点)几何问题的解题技巧(含答案)
点 的坐标
为 .……
一次函数的解读式
为 .
(3) 两点在直线 上, 的坐标分别是 .
, .
过点 作 ,垂足为点 .
,
又 , 点坐标为 .
3.(1)解方程 ,得 .
由m<n,知m=1,n=5.
∴A(1,0),B(0,5).………………………1分
∴ 解之,得
所求抛物线的解读式为 ……3分
(2)由 得 故C的坐标为(-5,0).………4分
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为_______
和位置关系为_____;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(2)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.
4、(1)如图1所示,在四边形 中, = , 与 相交于点 , 分别是 的中点,联结 ,分别交 、 于点 ,试判断 的形状,并加以证明;
(2)如图2,在四边形 中,若 , 分别是 的中点,联结FE并延长,分别与 的延长线交于点 ,请在图2中画图并观察,图中是否有相等的角,若有,请直接写出结论:;
(3)如图③,当∠DAB=90°,∠B与∠D互补时,线段AB、AD、AC有怎样的数量关系?写出你的猜想,并给予证明.
7.设点E是平行四边形ABCD的边AB的中点,F是BC边上一点,线段DE和AF相交于点P,点Q在线段DE上,且AQ∥PC.
【压轴必考】2023学年七年级数学上册压轴题攻略(人教版)-线段上动点问题的三种考法(原卷版)
线段上动点问题的三种考法类型一、求值问题例.数轴上有A B C 三点 A B 表示的数分别为m n ()m n < 点C 在B 的右侧2AC AB -=.(1)如图1 若多项式()371231mn x x x +--+-是关于x 的二次三项式 请直接写出m n 的值:(2)如图2 在(1)的条件下 长度为1的线段EF (E 在F 的左侧)在A B 之间沿数轴水平滑动(不与A B 重合) 点M 是EC 的中点 N 是BF 的中点 在EF 滑动过程中 线段MN 的长度是否发生变化 请判断并说明理由;(3)若点D 是AC 的中点.①直接写出点D 表示的数____________(用含m n 的式子表示); ②若24AD BD += 试求线段AB 的长.【变式训练1】如图1 点C 在线段AB 上 图中共有三条线段AB AC 和BC 若其中有一条线段的长度是另外一条线段长度的2倍 则称点C 是线段AB 的“巧点”. (1)线段的中点__这条线段的“巧点”;(填“是”或“不是”);(2)如图2 已知AB =15cm .动点P 从点A 出发 以2cm /s 的速度沿AB 向点B 匀速运动;点Q从点B出发以1cm/s的速度沿BA向点A匀速运动点P Q同时出发当其中一点到达终点时运动停止.设移动的时间为t(s)当t=__s时Q为A P的“巧点”.【变式训练2】已知:如图1 M是定长线段AB上一定点C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动运动方向如箭头所示(C在线段AM上D在线段BM上)(1)若AB=11cm 当点C、D运动了1s 求AC+MD的值.(2)若点C、D运动时总有MD=3AC直接填空:AM=BM.(3)在(2)的条件下N是直线AB上一点且AN﹣BN=MN求2MN3AB的值.【变式训练3】如图数轴上有两点,A B点C从原点O出发以每秒1cm的速度在线段OA上运动点D从点B出发以每秒4cm的速度在线段OB上运动.在运动过程中满足4OD AC=若点M为直线OA上一点且AM BM OM-=则ABOM的值为_______.类型二、证明定值问题例.如图 已知线段AB m = CD n = 线段CD 在直线AB 上运动(点A 在点B 的左侧点C 在点D 的左侧) 若()21260m n -+-=. (1)求线段AB CD 的长;(2)若点M N 分别为线段AC BD 的中点 4BC = 求线段MN 的长;(3)当CD 运动到某一时刻时 点D 与点B 重合 点P 是线段AB 的延长线上任意一点 下列两个结论:①PA PB PC -是定值 ②PA PBPC+是定值 请选择你认为正确的一个并加以说明.【变式训练1】已知线段AB =m CD =n 线段CD 在直线AB 上运动(A 在B 的左侧 C 在D 的左侧) 且m n 满足|m -12|+(n -4)2=0. (1)m = n = ;(2)点D 与点B 重合时 线段CD 以2个单位长度/秒的速度向左运动.①如图1 点C 在线段AB 上 若M 是线段AC 的中点 N 是线段BD 的中点 求线段MN 的长;②P 是直线AB 上A 点左侧一点 线段CD 运动的同时 点F 从点P 出发以3个单位/秒的向右运动 点E 是线段BC 的中点 若点F 与点C 相遇1秒后与点E 相遇.试探索整个运动过程中 FC -5DE 是否为定值 若是 请求出该定值;若不是 请说明理由.【变式训练2】如图 数轴上点A B 表示的有理数分别为6- 3 点P 是射线AB 上的一个动点(不与点A B 重合) M 是线段AP 靠近点A 的三等分点 N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0 那么MN 的长为________;若点P 表示的有理数是6 那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A B 重合)的过程中 MN 的长是否发生改变?若不改变 请写出求MN 的长的过程;若改变 请说明理由.【变式训练3】(1)如图1 在直线AB 上 点P 在A 、B 两点之间 点M 为线段PB 的中点点N 为线段AP 的中点 若AB n = 且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2 点C 为线段AB 的中点 点P 在线段CB 的延长线上 试说明PA PBPC+的值不变.类型三、数量关系 例.数轴上A B 、两点对应的数分别是4,12- 线段CE 在数轴上运动 点C 在点E 的左边且8,CE =点F 是AE 的中点.(1)如图1 当线段CE 运动到点,C E 均在,A B 之间时 若1CF = 则AB =_________ 点C 对应的数为________BE =________;(2)如图2 当线段CE 运动到点A 在C E 、之间时 画出草图并求BE 与CF 的数量关系.【变式训练1】如图 已知线段AB 延长线段BA 至C 使CB =43AB .(1)请根据题意将图形补充完整.直接写出ACAB= _______; (2)设AB = 9cm 点D 从点B 出发 点E 从点A 出发 分别以3cm/s 1cm/s 的速度沿直线AB 向左运动.①当点D在线段AB 上运动 求ADCE的值; ②在点D E 沿直线AB 向左运动的过程中 M N 分别是线段DE 、AB 的中点.当点C 恰好为线段BD的三等分点时求MN的长.【变式训练2】已知点C在线段AB上AC=2BC点D、E在直线AB上点D在点E的左侧(1)若AB=18 DE=8 线段DE在线段AB上移动①如图1 当E为BC中点时求AD的长;②当点C是线段DE的三等分点时求AD的长;(2)若AB=2DE线段DE在直线上移动且满足关系式32AD ECBE+=则CDAB=.课后作业1.已知有理数a b c在数轴上对应的点从左到右顺次为A B C 其中b是最小的正整数a在最大的负整数左侧1个单位长度BC=2AB.(1)填空:a=b=c=(2)点D从点A开始点E从点B开始点F从点C开始分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动点F追上点D时停止动设运动时间为t秒.试问:①当三点开始运动以后t为何值时这三个点中恰好有一点为另外两点的中点?②F在追上E点前是否存在常数k 使得DF k EF+⋅的值与它们的运动时间无关为定值.若存在请求出k和这个定值;若不存在请说明理由.2.已知点C 在线段AB 上 2AC BC = 点D 、E 在直线AB 上 点D 在点E 的左侧.若18AB = 8DE = 线段DE 在线段AB 上移动.(1)如图1 当E 为BC 中点时 求AD 的长;(2)点F (异于A B C 点)在线段AB 上 3AF AD = 3CE EF += 求AD 的长.3.已知线段AB 点C 在直线AB 上 D 为线段BC 的中点.(1)若8AB = 2AC = 求线段CD 的长.(2)若点E 是线段AC 的中点 请写出线段DE 和AB 的数量关系并说明理由.4.已知:如图1 M 是定长线段AB 上一定点 C 、D 两点分别从M 、B 出发以1cm/s 、3cm/s 的速度沿直线BA 向左运动 运动方向如箭头所示(C 在线段AM 上 D 在线段BM 上)(1)若AB =11cm 当点C 、D 运动了1s 求AC +MD 的值. (2)若点C 、D 运动时 总有MD =3AC 直接填空:AM = BM . (3)在(2)的条件下 N 是直线AB 上一点 且AN ﹣BN =MN 求2MN3AB的值.5.如图 在数轴上A 点表示的数为a B 点表示的数为b C 点表示的数为c b 是最大的负整数 且a c 满足()2390a c ++-=.点P 从点B 出发以每秒3个单位长度的速度向左运动 到达点A 后立刻返回到点C 到达点C 后再返回到点A 并停止.(1)=a ________ b =________ c =________.(2)点P 从点B 离开后 在点P 第二次到达点B 的过程中 经过x 秒钟 13PA PB PC ++= 求x 的值.(3)点P 从点B 出发的同时 数轴上的动点M N 分别从点A 和点C 同时出发 相向而行 速度分别为每秒4个单位长度和每秒5个单位长度 假设t 秒钟时 P 、M 、N 三点中恰好有一个点是另外两个点的中点 请直接写出所有满足条件的t 的值.6.七(1)班的学习小组学习“线段中点”内容时 得到一个很有意思的结论 请跟随他们一起思考. (1)发现:如图1 线段12AB = 点,,C E F 在线段AB 上 当点,E F 是线段AC 和线段BC 的中点时 线段EF 的长为_________;若点C 在线段AB 的延长线上 其他条件不变(请在图2中按题目要求将图补充完整) 得到的线段EF 与线段AB 之间的数量关系为_________.(2)应用:如图3 现有长为40米的拔河比赛专用绳AB 其左右两端各有一段(AC 和BD )磨损了 磨损后的麻绳不再符合比赛要求. 已知磨损的麻绳总长度不足20米. 小明认为只利用麻绳AB 和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF . 小明所在学习小组认为此法可行 于是他们应用“线段中点”的结论很快做出了符合要求的专用绳EF 请你尝试着“复原”他们的做法:①在图中标出点E 、点F 的位置 并简述画图方法; ②请说明①题中所标示,E F 点的理由.7.问题背景整体思想就是从问题的整体性质出发突出对问题的整体结构的分析把握它们之间的关联进行有目的、有意识的整体处理整体思想在代数和几何中都有很广泛的应用.(1)如图1 A、B、O三点在同一直线上射线OD和射线OE分别平分∠AOC和∠BOC则∠DOE的度数为(直接写出答案).(2)当x=1时代数式a3x+bx+2021的值为2020 当x=﹣1时求代数式a3x+bx+2021的值.(3)①如图2 点C是线段AB上一定点点D从点A、点E从点B同时出发分别沿直线AB 向左、向右匀速运动若点E的运动速度是点D运动速度的3倍且整个运动过程中始终满足CE=3CD求ACAB的值;②如图3 在①的条件下若点E沿直线AB向左运动其它条件均不变.在点D、E运动过程中点P、Q分别是AE、CE的中点若运动到某一时刻恰好CE=4PQ求此时AD AB的值.8.已知:如图1 点M是线段AB上一定点AB=12cm C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动运动方向如箭头所示(C在线段AM上D在线段BM上)(1)若AM=4cm当点C、D运动了2s此时AC=DM=;(直接填空)(2)当点C、D运动了2s求AC+MD的值.(3)若点C、D运动时总有MD=2AC则AM=(填空)(4)在(3)的条件下N是直线AB上一点且AN﹣BN=MN求MNAB的值.9.如图数轴正半轴上的A B两点分别表示有理数a b O为原点若3a=线段5OB OA=.(1)=a______ b=______;(2)若点P从点A出发以每秒2个单位长度向x轴正半轴运动求运动时间为多少时;点P到点A的距离是点P到点B距离的3倍;(3)数轴上还有一点C表示的数为32 若点P和点Q同时从点A和点B出发分别以每秒2个单位长度和每秒1个单位长度的速度向C点运动P点到达C点后再立刻以同样的速度返回运动到终点A求点P和点Q运动多少秒时P、Q两点之间的距离为4.10.已知数轴上三点M O N对应的数分别为-3 0 1 点P为数轴上任意一点其对应的数为x.(1)如果点P到点M点N的距离相等那么x的值是______;(2)数轴上是否存在点P使点P到点M点N的距离之和是5?若存在请直接写出x的值;若不存在请说明理由.(3)如果点P以每分钟3个单位长度的速度从点O向左运动时点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动且三点同时出发那么几分钟时点P 到点M点N的距离相等.(直接写出答案)11.如图P是定长线段AB上一点C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上D在线段BP上)(1)若C、D运动到任一时刻时总有PD=2AC请说明P点在线段AB上的位置:(2)在(1)的条件下Q是直线AB上一点且AQ﹣BQ=PQ求PQAB的值.(3)在(1)的条件下若C、D运动5秒后恰好有1CD AB2此时C点停止运动D点继续运动(D点在线段PB上)M、N分别是CD、PD的中点下列结论:①PM﹣PN的值不变;②MNAB的值不变可以说明只有一个结论是正确的请你找出正确的结论并求值.。
专题02 数轴上的四种动点问题(解析版)-七年级数学上册压轴题攻略(北师大版,成都专用)
专题02数轴上的四种动点问题【知识点梳理】1.数轴上两点间的距离数轴上A、B两点表示的数为分别为a、b,则A与B间的距离AB=|a-b|;2.数轴上点移动规律数轴上点向右移动则数变大(增加),向左移动数变小(减小);当数a表示的点向右移动b个单位长度后到达点表示的数为a+b;向左移动b个单位长度后到达点表示的数为a-b.类型一、求动点表示的数例.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移3个单位长度得到点C.若CO BO=,则a的值为()A.5-B.1-C.5-或1-D.3-【答案】C【解析】∵CO=BO,B点表示2,∴点C表示的数为±2,∴a=-2-3=-5或a=2-3=-1,故选:C.【变式训练1】在数轴上,点P从某点A开始移动,先向右移动5个单位长度,再向左移动4个单位长度,-,则点A表示的数是()最后到达1A.3B.1-C.2-D.6-【答案】C【解析】由题意可得:-1+4-5=-2,故选C.【变式训练2】如图,将一个半径为1个单位长度的圆片上的点A放在原点,并把圆片沿数轴滚动1周,点A到达点A'的位置,则点A'表示的数是_______;若起点A开始时是与—1重合的,则滚动2周后点A'表示的数是______.【答案】2π或2π-41π-或41π--【解析】因为半径为1的圆的周长为2π,所以每滚动一周就相当于圆上的A 点平移了2π个单位,滚动2周就相当于平移了4π个单位;当圆向左滚动一周时,则A'表示的数为2π-,当圆向右滚动一周时,则A'表示的数为2π;当A 点开始时与1-重合时,若向右滚动两周,则A'表示的数为41π-,若向左滚动两周,则A'表示的数为41π--;故答案为:2π①或2π-;41π-②或41π--.【变式训练3】已知数轴上点A 对应的数为6-,点B 在点A 右侧,且,A B 两点间的距离为8.点P 为数轴上一动点,点C 在原点位置.(1)点B 的数为____________;(2)①若点P 到点A 的距离比到点B 的距离大2,点P 对应的数为_________;②数轴上是否存在点P ,使点P 到点A 的距离是点P 到点B 的距离的2倍?若存在,求出点P 对应的数;若不存在,请说明理由;(3)已知在数轴上存在点P ,当点P 到点A 的距离与点P 到点C 的距离之和等于点P 到点B 的距离时,点P 对应的数为___________;【答案】(1)2;(2)①-1;②23-或10;(3)-8和-4【解析】(1)∵点A 对应的数为-6,点B 在点A 右侧,A ,B 两点间的距离为8,∴-6+8=2,即点B 表示的数为2;(2)①设点P 表示的数为x ,当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2-x +2,解得:x =-1;当点P 在点B 右侧,PA -PB =AB =8,不符合;故答案为:-1;②当点P 在点A 的左侧,PA <PB ,不符合;当点P 在A 、B 之间,x -(-6)=2(2-x ),解得:x =23-;当点P 在点B 右侧,x -(-6)=2(x -2),解得:x =10;∴P 对应的数为23-或10;(3)当点P 在点A 左侧时,-6-x +0-x =2-x ,解得:x =-8;当点P 在A 、O 之间时,x -(-6)+0-x =2-x ,解得:x =-4;当点P 在O 、B 之间时,x -(-6)+x -0=2-x ,解得:x =43-,不符合;当点P 在点B 右侧时,x -(-6)+x -0=x -2,解得:x =-8,不符合;综上:点P 表示的数为-8和-4.类型二、求动点的速度例.已知多项式2234x xy --的常数项是a ,次数是b ,且a ,b 两个数轴上所对应的点分别为A 、B ,若点A 、点B 同时沿数轴向正方向运动,点A 的速度是点B 的2倍,且3秒后,32OA OB =,求点B 的速度为()A .34B .14或34C .14或32D .32【答案】C【解析】∵多项式x 3-3xy 2-4的常数项是a ,次数是b ,∴a=-4,b=3,设B 速度为v ,则A 的速度为2v ,3秒后点A 在数轴上表示的数为(-4+6v ),B 点在数轴上表示的数为3+3v ,且OB=3+3v当A 还在原点O 的左边时,OA=0-(-4+6v )=4-6v ,由32OA OB =可得3(46)332v v -=+,解得14v =;当A 还在原点O 的右边时,OA=(-4+6v )-0=6v-4,由32OA OB =可得3(64)332v v -=+,解得32v =.故B 的速度为14或32,选C.故答案为:C类型三、求动点运动的时间例.如图所示,A 、B 是数轴上的两点,O 是原点,AO=10,OB=15,点P 、Q 分别从A 、B 同时出发,点P 以每秒2个单位长度的速度沿数轴向左匀速运动,点Q 以每秒4个单位长度的速度沿数轴向左匀速运动,M 为线段AP 的中点,设运动的时间为t (t≥0)秒,M 、Q 两点到原点O 的距离相等时,t 的值是()A .1t s =或252t s =B .2t s =或253t s =C .1t s =或253t s =D .2t s =或252t s =【答案】C【解析】∵O是原点,AO=10,OB=15,∴点A表示的数是-10,点B表示的数是15,∵点P以每秒2个单位长度的速度沿数轴向左匀速运动,M为线段AP的中点,∴OM=|-10-t|,∵点Q以每秒4个单位长度的速度沿数轴向左匀速运动,∴OQ=|15-4t|,∵M、Q两点到原点O的距离相等,∴|-10-t|=|15-4t|,∴-10-t=15-4t或-10-t=-(15-4t),解得:t=253或t=1,故选:C.【变式训练1】如图,点A在数轴上表示的数是16-,B在数轴上表示的数是8.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动,问:当8AB=时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒【答案】C【解析】设当AB=8时,运动时间为t秒,①当点A在点B的左边时,由题意得6t+2t+8=8-(-16),解得:t=2②当点A在点B的右边时,6t+2t=8-(-16)+8,解得:t=4.故选:C.【变式训练2】如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O A O→→以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当2PB=时,则运动时间t的值为()A.32秒或72秒B.32秒或72秒或132或172秒C.3秒或7秒D.3秒或132或7秒或172秒【答案】B【解析】∵数轴上的点O和点A分别表示0和10,∴OA=10∵B是线段OA的中点,∴OB=AB=15 2OA=①当点P由点O向点A运动,且未到点B时,如下图所示,2PB=此时点P 运动的路程OP=OB -PB=3,∴点P 运动的时间为3÷2=32s ;②当点P 由点O 向点A 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程OP=OB+PB=7,∴点P 运动的时间为7÷2=72s ;③当点P 由点A 向点O 运动,且未到点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB -PB=13,∴点P 运动的时间为13÷2=132s ;④当点P 由点A 向点O 运动,且已过点B 时,如下图所示,2PB =此时点P 运动的路程为OA +AP=OA +AB +PB=17,∴点P 运动的时间为17÷2=172s ;综上所述:当2PB =时,则运动时间t 的值为32秒或72秒或132或172秒故选B .【变式训练3】已知数轴上有,,A B C 三点,分别表示数24,10--,10,若两只电子蚂蚁甲、乙分别从,A C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒,(1)甲、乙两点在数轴上哪个点相遇?(2)多少秒后甲到,,A B C 三点的距离之和是40个单位长度?【答案】(1)-10.4;(2)2秒或5秒【解析】(1)设x 秒后甲与乙相遇,则4x +6x =34,解得x =3.4,4×3.4=13.6,-24+13.6=-10.4.故甲、乙在数轴上的-10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应位于AB或BC之间.①AB之间时:4y+(14-4y)+(14-4y+20)=40解得y=2;②BC之间时:4y+(4y-14)+(34-4y)=40,解得y=5,综上:2秒或5秒后甲到,,A B C三点的距离之和是40个单位长度.类型四、综合问题例.如图,在数轴上点A、B表示的数分别为﹣2、4.(1)若点M到点A、点B的距离相等,那么点M所对应的数是.(2)若点M从点B出发,以1个单位/秒的速度向左运动,同时点N恰好从点A出发,以2个单位/秒的速度向右运动,设M、N两点在数轴上的点E相遇,则点E对应的数是.(3)若点D是数轴上一动点,当动点D到点A的距离与到点B的距离之和等于10时,则点D对应的数是.(4)若点M从A点出发以每秒5个单位长度的速度沿数轴向右匀速运动,点N从B点出发以每秒4个单位长度的速度沿数轴匀速运动,设点M、N同时出发,运动时间为t秒,经过多少秒后,M、N两点间的距离为24个单位长度.【答案】(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M、N两点间的距离为24个单位长度【解析】(1)∵点A、B对应的数分别为﹣2、4,∴AB=4-(-2)=6,∵点M到点A、点B的距离相等,∴MA=3,∴点M对应的数是-2+3=1;故答案为:1;(2)t秒后,点M表示4﹣t,点N表示﹣2+2t,若两点相遇则4﹣t=﹣2+2t,解得t=2,4﹣2=2,所以点E对应的数是2.故答案为:2;(3)设点D对应的数是x,∵AB=6,∴点D不可能在线段AB上.①点D在A的左边时,DA=﹣2﹣x,DB=4﹣x,(﹣2﹣x)+(4﹣x)=10,解得x=﹣4;②点D在B的右边时,DA=2+x,DB=x﹣4,(2+x)+(x﹣4)=10,解得x=6;故答案为:﹣4或6;(4)①若点N 向右运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4+4t ,MN =|(5t ﹣2)﹣(4+4t )|=|t ﹣6|=24,解得t =30或﹣18(舍去);②若点N 向左运动,t 秒后,点M 对应的数是5t ﹣2,点N 对应的数是4﹣4t ,MN =|(5t ﹣2)﹣(4﹣4t )|=|9t ﹣6|=24,解得t =103或﹣2(舍去);答:经过30秒或103秒后,M 、N 两点间的距离为24个单位长度.故答案为:(1)1;(2)2;(3)﹣4或6;(4)经过30秒或103秒后,M 、N 两点间的距离为24个单位长度【变式训练1】已知若数轴上点A 、点B 表示的数分别为,a b ,则AB a b =-∣∣,线段AB 的中点表示的数为2a b+.如图,数轴上点A 表示的数为2-,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(0)t >.(1)填空:①,A B 两点间的距离AB =______,线段AB 的中点表示的数为_____;②用含t 的代数式表示:t 秒后,点P 表示的数为_______;点Q 表示的数为______.(2)求当t 为何值时,,P Q 两点相遇,并写出相遇点所表示的数.(3)若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN 的长.【答案】(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【解析】(1)①AB =8-(-2)=10,AB 中点为282-+=3,故答案为:10,3;②t 秒后,点P 表示的数为-2+3t ,点Q 表示的数为8-2t ,故答案为:-2+3t ,8-2t ;(2)∵当P 、Q 两点相遇时,P 、Q 表示的数相等∴-2+3t =8-2t ,解得:t =2,∴当t =2时,P 、Q 相遇,此时,-2+3t =-2+3×2=4,∴相遇点表示的数为4;(3)∵点M 表示的数为()2233222t t-+-+=-,点N 表示的数为()8233322t t+-+=+,∴MN =333222t t ⎛⎫+-- ⎪⎝⎭=5.故答案为:(1)①10,3;②-2+3t ,8-2t ;(2)t =2,4;(3)5【变式训练2】如图,数轴上原点为O ,A ,B 是数轴上的两点,点A 对应的数是a ,点B 对应的数是b ,且a ,b 满足2(2)40a b -++=,动点M ,N 同时从A ,B 出发,分别以1个单位/秒和3个单位/秒的速度沿着数轴正方向运动,设运动时间为x 秒(x >0).(1)A 、B 两点间的距离是;动点M 对应的数是(用含x 的代数式表示);动点N 对应的数是;(用含x 的代数式表示)(2)几秒后,线段OM 与线段ON 恰好满足3OM =2ON ?(3)若M ,N 开始运动的同时,R 从﹣1出发以2个单位/秒的速度沿着数轴正方向运动,当R 与M 不重合时,求MB NBRM-的值.【答案】(1)6,2x +,34x -;(2)143秒或29秒;(3)2或 2.-【解析】(1)∵a ,b 满足2(2)40a b -++=,∴a ﹣2=0,b +4=0,∴a =2,b =﹣4,∵点A 对应的数是a ,点B 对应的数是b ,AB =2﹣(﹣4)=6.当运动时间为x 秒时,动点M 对应的数是x +2,动点N 对应的数是3x ﹣4.故答案为:6;x +2;3x ﹣4.(2)由(1)中M ,N 所对的数得OM =x +2,ON =3x ﹣4,∵3OM =2ON ,∴|32|(2)34x x+=﹣,①3(2+x )=2(3x ﹣4),解得x =143;②3(2+x )=﹣2(3x ﹣4),解得x =29;综上,143或29秒后,线段OM 与线段ON 恰好满足3OM =2ON ;(3)由题意得动点R 所对的数为﹣1+2x ,|12)((|3||2)RM x x x +-+--==,(2)(4)6MB x x =+--=+,(43)(4)3NB x x =-+--=,∴MB﹣NB =6+x ﹣3x =6﹣2x ,∵2+x =﹣4+3x ,解得x =3,∴M 与N 相遇时时间为3s ,。
动点问题初一压轴题解题技巧
动点问题初一压轴题解题技巧动点型问题关键是动中求静,仔细阅读题干在多个条件中提取关键信息。
数学思想是分类思想,将提取出的关键信息加以整理分类。
数形结合思想及转化思想,将关键信息的数字与图形相结合,使数学问题一目了然。
将上述各思想融会贯通即可有效解决初中动点问题。
线段动点问题也是有四大类型题目,我们只要把这些题目掌握,做压轴大题也能拿分。
解决线段动点一般需要注意:1.要找清楚点在点段上可能存在的位置2.通常可用设元法,表示出移动变化后的线段长,在根据题意列方程即可。
我们先以一道经典中考题为例讲解:(1)根据点A=-10,OB=3OA可得OB=3OA=30,又由于B在数轴右侧,所以B为30.(2)第二问我们要考虑多解性,可以分为两种情况讨论,第一种为A在O 左侧时,也就是还没有运动到原点右侧,设x秒后距离相等。
可以得:10-3x=2x 解的x=2s,所以第一种情况是2s之后。
距原点的距离相同。
第二种情况是我们上篇文章讲的追赶问题,由于M速度比N快,所以可以看作是先让N走了10,然后M开始追赶N。
这个时候有方程:10+2x=3x,解的x=10s。
所以这个题目要注意两种情况的思考,这也是考生在考试时最容易忽略的。
(3)题目规定了是N没有过了B点。
使得AM=2BM,AM=3X,BM=30-2X。
我们这个题目没有必要考虑两种情况,因为AM距离为3x,不管是在左侧还是在右侧都是3x,所以有方程3x=2×(30-2x)解的x=60/7.当x=60/7时,M运用的距离为3×60/7.但是求得是M的位置,由于M的起始位置是在-10,所以算出AM 还得减去10,才能得出M的位置。
题型一:线段上动点与中点问题的结合(1)MN线段的求法是在学习线段的时候接触的,主要是用中值去做,这里还有几个变形题目,只要MN分别为AD、BD中点,且AD+BD=AB,便可得MN=MD+ND=1/2(AD+BD)=1/2AB=8(2)第二问和第一问的唯一不同是D是动点,而非不变的定点,这个证明解法和第一问是一模一样的,因为我们第一问中根据线段关系的加法,可以看出最后的结果和D点并没有关系,所以不管D点是动点还是定点,都不会影响最后的结论。
初中数学动点问题解题技巧,动点题解题三步骤,初三数学动点解题思路
双动点问题动点问题是初中数学中的热门问题,也是让人欢喜让人忧的一类问题.其中的数学模型隐藏在变化的运动背后,很多同学容易被这类问题的已知条件迷惑,虽练习很多仍然“闻动色变”,实在爱不起来.但如果会透过现象看本质,找到运动过程中不变的规律,这一类问题又会让人感觉精彩绝伦,回味无穷。
本文就动点问题中如何找到双动点类型中的运动轨迹与大家分享.动点题有时不止一个点在动,如果有两个动点,其中一个随着另一个的运动而运动,题目往往研究第二个动点的一些规律,比如最大最小值,经过的路径长等.解决问题的关键是找到第二个动点的运动轨迹.一、直线型运动1.如图,等边△ABC的边长为4cm,动点D从点B出发,沿射线BC方向移动,以AD为边作等边△ADE。
如图①,在点D从点B开始移动至点C的过程中,求点E移动的路径长.分析:要求点E移动的路径长,首先要确定点E的运动轨迹。
连结CE,如图②,易证△ABD≌△ACE,得∠B=∠ACE=60°,因为∠ACB=60°,所以∠ECF=60°=∠B,所以EC∥AB,故在点D从点B开始移动至点C的过程中,点E的运动轨迹是过点C且平行于AB的一条线段,确定了轨迹,再确定起始与终止位置就可求出路径长.答案:42.已知AB=10,P是线段AB上的动点,分别以AP、PB为边在线段AB的同侧作等边△ACP和△PDB,连接CD,设CD的中点为G,当点P从点A运动到点B时,点G移动的路径长是_____.分析:延长AC、BD相交于点E,因为∠A=∠DPB=60°,所以PD∥EA,同理PC∥EB,所以四边形CPDE是平行四边形,连结EP,所以EP、CD互相平分,因为点G为CD的中点,所以EG=PG,所以点G是EP的中点,当点P从点A运动到点B时,点G的运动轨迹是△EAB的中位线MN.答案:5双动点的运动问题中,第二动点的运动轨迹如果是直线型,通常可以找到第二动点所在直线与已知直线的位置关系如平行、垂直等,或者是某一条特殊的直线(或直线上的一部分)如中位线、角平分线等.试一试:1.如图,正方形ABCD的边长为2,动点E从点A出发,沿边AB-BC向终点C 运动,以DE为边作正方形DEFG(点D、E、F、G按顺时针方向排列).设点E 运动的速度为每秒1个单位,运动的时间为x秒.(1)如图,当点E在AB上时,求证:点G在直线BC上;(2)直接写出整个运动过程中,点F经过的路径长.答案:C在数学中,静中找动,实现从特殊到一般的转化。
二次函数压轴题---动点问题解答方法技巧总结 (含例解答案)
07 动点个数 问题背景 两个 特殊菱形两边上移动 一个
08 两个
09
特殊直角梯形三边 上移动
抛物线中特殊直角梯形底 边上移动
考查难点
探究相似三角形
探究三角形面积函 数关系式
探究等腰三角形
考 点
①菱形性质 ②特殊角三角函数 ③求直线、抛物线解析式 ④相似三角形 ⑤不等式
①求直线解析式 ②四边形面积的表 示 ③动三角形面积函 数④矩形性质
2
(2)由(1)可计算得点 M (3 , 1),N (31) ,. 过点 N 作 NH AD ,垂足为 H . 当运动到时刻 t 时, AD 2OD 8 2t , NH 1 2t . 根据中心对称的性质 OA OD ,OM ON ,所以四边形 MDNA 是平行四边形. 所以 S 2S△ ADN . 所以,四边形 MDNA 的面积 S (8 2t )(1 2t ) 4t 14t 8 .
动点问题题型方法归纳总结
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好 一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形 的性质、图形的特殊位置。 ) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直 角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
二、
抛物线上动点
5、 (湖北十堰市)如图①, 已知抛物线 y ax 2 bx 3 (a≠0)与 x 轴交于点 A(1,0)和 点 B (-3,0),与 y 轴交于点 C. (1) 求抛物线的解析式;
(2) 设抛物线的对称轴与 x 轴交于点 M ,问在对称轴上是否存在点 P,使△CMP 为等腰三 角形?若存在,请直接写出所有符合条件的点 P 的坐标;若不存在,请说明理由. (3) 如图②,若点 E 为第二象限抛物线上一动点,连接 BE、CE,求四边形 BOCE 面积的 最大值,并求此时 E 点的坐标数的图象与 x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶 点式; ⑶ 根据图象的位置判断二次函数 ax²+bx+c=0 中 a,b,c 的符号, 或由二次函数 中 a,b,c 的符号判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的 点坐标,或已知与 x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式 ax²+bx+c﹙a≠0﹚本身就 是所含字母 x 的二次函数;下面以 a>0 时为例,揭示二次函数、二次三项式 和一元二次方程之间的内在联系:
人教版七年级下册数学期末复习:动点问题压轴题
人教版七年级下册数学期末复习: 动点问题压轴题1. 如图, 点A在x轴的负半轴上, 点D在y轴的正半轴上, 将三角形AOD沿x轴向右平移, 平移后得到三角形BEC, 点A的对应点是点B. 已知点A的坐标为(a, 0), 点C 的坐标为(b, c), 且a, b, c满足.(1)求点B的坐标;(2)求证: ∠DAE=∠BCD;(3)点P是线段BC上一动点(不与点B、C重合), 连接DP、AP, 在点P运动过程中, ∠CDP、∠DPA、∠PAE之间是否存在永远不变的数量关系?若存在, 写出它们之间的数量关系, 并请证明;若不存在, 请说明理由.2. 已知, 直线, 直线和, 分别交于C, D点, 点A, B分别在直线, 上, 且位于直线的左侧, 动点P在直线上, 且不和点C, D重合.(1)如图1, 当动点P在线段CD上运动时, 求证: ∠APB=∠CAP+∠DBP;(2)如图2, 当动点P在点C上方运动时(P, A, B不在同一直线上), 请写出∠APB, ∠CAP, ∠DBP之间的数量关系, 并选择其中一种的数量关系说明理由.3. 如图①, 平直角坐标系中, 已知点A(a, 0), B(0, b), 其中a, b满足|2a﹣3b﹣39|=0, 将点B向右平移24个单位长度得到点C.(1)点A和点C的坐标;(2)如图①, 点D为线段BC上一动点, 点D从点C以2个单位长度/秒的速度向点B运动, 同时点E为线段OA上一动点, 从点O以3个单位长度/秒的速度向点A运动, 设运动的时间为t秒(0<t<10), 四边形BOED的面积记为S四边形BOED(以下同理表示), 若S四边形BOEDS四边ACDE, 求t的取值范围;(3)如图②, 在(2)的条件下, 在点D, E运动的过程中, DE交OC于点F, 求证:S△OEF>S△DCE总成立.4. 在平面直角坐标系中, O为原点, 点A(0, 2), B(﹣2, 0), C(4, 0).(1)如图1, △ABC的面积为;(2)如图2, 将点B向右平移7个单位长度, 再向上平移4个单位长度, 得到对应点D.①求①ACD的面积;②点P是x轴上一动点, 若△PAO的面积等于3, 请求出点P的坐标.5. 在平面直角坐标系中, O为原点, 点A(0, −3), B(−2, 0).(1)如图①, 则三角形OAB的面积为_______;(2)如图②, 将线段AB向右平移5个单位长度, 再向上平移4个单位长度, 得到平移后的线段A′B′.连接OA′, OB′.①求三角形OA′B′的面积;②P(−1, m)(m>0)是一动点, 若SΔPOB′=10, 请直接写出点P坐标.6. 在平面直角坐标系中, , 满足.(1)直接写出、的值: ;;(2)如图1, 若点满足的面积等于6, 求的值;(3)设线段交轴于C, 动点E从点C出发, 在轴上以每秒1个单位长度的速度向下运动, 动点F从点出发, 在轴上以每秒2个单位长度的速度向右运动, 若它们同时出发, 运动时间为秒, 问为何值时, 有?请求出的值.7. 如图1, ABCD, 定点E, F分别在直线AB, CD上, 在平行线AB, CD之间有一动点P, 满足0°<∠EPF<180°.(1)试问∠AEP, ∠EPF, ∠PFC满足怎样的数量关系?解: 由于点P是平行线AB, CD之间有一动点, 因此需要对点P的位置进行分类讨论: 如图1, 当P点在EF的左侧时, ∠AEP, ∠EPF, ∠PFC满足数量关系为, 如图2, 当P点在EF的右侧时, ∠AEP, ∠EPF, ∠PFC满足数量关系为.(2)如图3, EQ, FQ分别平分∠PEB和∠PFD, 且点P在EF左侧.①若∠EPF=60°, 则∠EQF=.②猜想∠EPF与∠EQF的数量关系, 并说明理由;③如图4, 若∠BEQ与∠DFQ的角平分线交于点Q1, ∠BEQ1与∠DFQ1的角平分线交于点Q2, ∠BEQ2, 与∠DFQ2的角平分线交于点Q3;此次类推, 则∠EPF与∠EQ2021F满足怎样的数量关系?(直接写出结果)8. 已知直线、, 直线与直线、分别交于点C和点D, 在直线上有动点P(点P与点C.D 不重合), 点A在直线上, 点B在直线上.(1)如图①, 如果点P在C.D之间运动时, 且满足∠1+∠3=∠2, 请写出与之间的位置关系并说明理由;(2)如图②, 如果, 点P在直线的上方运动时, 请写出∠1, ∠2与∠3之间的数量关系并说明理由;(3)如图③, 如果, 点P在直线的下方运动时, 请直接写出∠PAC、∠PBD、∠APB之间的关系(不需说明理由).9. 如图, , 平分, 设为, 点E是射线上的一个动点.(1)若时, 且, 求的度数;(2)若点E运动到上方, 且满足, , 求的值;(3)若, 求的度数(用含n和的代数式表示).10. 如图所示, 已知, 点P是射线AM上一动点(与点A不重合), BC.BD分别平分和, 分别交射线AM于点C.D, 且(1)求的度数.(2)当点P运动时, 与之间的数量关系是否随之发生变化?若不变化, 请写出它们之间的关系, 并说明理由;若变化, 请写出变化规律.(3)当点P运动到使时, 求的度数.11. 已知点D在∠ABC内, E为射线BC上一点, 连接DE, CD. (1)如图1, 点E在线段BC上, 连接AE, ∠AED=∠A+∠D.①求证AB①CD;②过点A作AM∥ED交直线BC于点M, 请猜想∠BAM与∠CDE的数量关系, 并加以证明;(2)如图2, 点E在BC的延长线上, ∠AED=∠A﹣∠D.若M平面内一动点, MA∥ED, 请直接写出∠MAB与∠CDE的数量关系.12. 如图1, 在平面直角坐标系中, 点A, B的坐标分别为(1, 0), (4, 0), 现同时将点A, B分别向上平移3个单位长度, 再向左平移1个单位长度, 分别得到A, B的对应点C, D, 连接AC, BD, CD.图1图2(1)求点C, D的坐标.(2)P是x轴上(除去B点)的动点.①连接PC, BC, 使S△PBC=2S△ABC, 求符合条件的P点坐标.②如图2, Q是线段BD上一定点, 连接PQ, 请直接写出∠BPQ+∠PQB与∠CDB的数量关系.13. 如图, 在长方形ABCD中, AB=8cm, BC=6cm, 点E是CD边上的一点, 且DE=2cm, 动点P从A点出发, 以2cm/s的速度沿A→B→C→E运动, 最终到达点E. 设点P运动的时间为t秒.(1)请以A点为原点, AB所在直线为x轴, 1cm为单位长度, 建立一个平面直角坐标系, 并用t表示出点P在不同线段上的坐标.(2)在(1)相同条件得到的结论下, 是否存在P点使△APE的面积等于20cm2时,若存在, 请求出P点坐标;若不存在, 请说明理由.14. 如图, 直线PQ∥MN, 点C是PQ、MN之间(不在直线PQ, MN上)的一个动点.(1)若∠1与∠2都是锐角, 如图甲, 请直接写出∠C与∠1, ∠2之间的数量关系;(2)若把一块三角尺(∠A=30°, ∠C=90°)按如图乙方式放置, 点D, E, F是三角尺的边与平行线的交点, 若∠AEN=∠A, 求∠BDF的度数;(3)将图乙中的三角尺进行适当转动, 如图丙, 直角顶点C始终在两条平行线之间, 点G在线段CD上, 连接EG, 且有∠CEG=∠CEM, 求值.15. 如图,在直角坐标系中,点A. C分别在x轴、y轴上,CB∥OA, OA=8,若点B的坐标为.(1)直接写出点A, C的坐标;(2)动点P从原点O出发沿x轴以每秒2个单位的速度向右运动, 当直线PC把四边形OABC分成面积相等的两部分时停止运动, 求P点运动时间;(3)在(2)的条件下, 点P停止运动时, 在y轴上是否存在一点Q, 连接PQ, 使三角形CPQ的面积与四边形OABC的面积相等?若存在, 求点Q的坐标;若不存在, 请说明理由.16. 如图, 已知点, 且, 满足.过点分别作轴、轴, 垂足分别是点、.(1)求出点B的坐标;(2)点是边上的一个动点(不与点重合), 的角平分线交射线于点, 在点运动过程中, 的值是否变化?若不变, 求出其值;若变化, 说明理由.(3)在四边形的边上是否存在点, 使得将四边形分成面积比为1:4的两部分?若存在, 请直接写出点的坐标;若不存在, 说明理由.17. 如图, 在平面直角坐标系中, 点A, B的坐标分别为A(0, a), B(b, a), 且a、b满足(a﹣2)2+|b﹣4|=0, 现同时将点A, B分别向下平移2个单位, 再向左平移1个单位, 分别得到点A, B的对应点C, D, 连接AC, BD, AB.(1)求点C, D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M, 连接MC, MD, 使S△MCD=S四边形ABDC?若存在这样一点, 求出点M的坐标, 若不存在, 试说明理由;(3)点P是直线BD上的一个动点, 连接PA, PO, 当点P在BD上移动时(不与B, D 重合), 直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.18. 如图1, 在平面直角坐标系中, A(a, 0)是x轴正半轴上一点, C是第四象限内一点, CB⊥y轴交y轴负半轴于B(0, b), 且|a﹣3|+(b+4)2=0, S四边形AOBC=16.(1)求点C的坐标.(2)如图2, 设D为线段OB上一动点, 当AD⊥AC时, ∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P, 求∠APD的度数;(点E在x轴的正半轴). (3)如图3, 当点D在线段OB上运动时, 作DM⊥AD交BC于M点, ∠BMD、∠DAO的平分线交于N点, 则点D在运动过程中, ∠N的大小是否会发生变化?若不变化, 求出其值;若变化, 请说明理由.19. 如图1, 在平面直角坐标系中, 点A为x轴负半轴上一点, 点B为x轴正半轴上一点, C(0, a), D(b, a), 其中a, b满足关系式: |a+3|+(b-a+1)2=0.(1)a=___, b=___, △BCD的面积为______;(2)如图2, 若AC⊥BC, 点P线段OC上一点, 连接BP, 延长BP交AC于点Q, 当∠CPQ=∠CQP时, 求证:BP平分∠ABC;(3)如图3, 若AC⊥BC, 点E是点A与点B之间一动点, 连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时, 的值是否变化?若不变, 求出其值;若变化, 请说明理由.20. 已知: 在平面直角坐标系中, 四边形ABCD是长方形, ∠A=∠B=∠C=∠D=90°, AB∥CD, AB=CD=8, AD=BC=6, D点与原点重合, 坐标为(0, 0).(1)直接写出点B的坐标__________.(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动, 动点Q从点C出发以每秒4个单位长度的速度沿射线CD方向匀速运动, 若P, Q两点同时出发, 设运动时间为t秒, 当t为何值时, PQ∥y轴?(3)在Q的运动过程中, 当Q运动到什么位置时, 使△ADQ的面积为9?求出此时Q 点的坐标?。
七年级上数学期末压轴题专项复习:动点问题(pdf版)
题型一:绝对值方程教师备课提醒:由于绝对方程会以“解普通一元一次方程”为基础,所以授课老师在讲解本部分内容 时候根据班级情况复习普通的一元一次方程解法. 含绝对值的一次方程的解法⑴形如 ax + b = c (a ≠ 0) 型的绝对值方程的解法:①当c < 0 时,根据绝对值的非负性,可知此时方程无解;②当c = 0 时,原方程变为 ax + b = 0 ,即 ax + b = 0 ,解得 x = - b;a ③当c > 0 时,原方程变为 ax +b =c 或 ax + b = -c ,解得 x = c - b 或 x = -c - b.a a ⑵形如 ax +b = cx + d (ac ≠ 0) 型的绝对值方程的解法:①根据绝对值代数意义将原方程化为两个方程 ax + b = cx + d 和 ax + b = -(cx + d ) ;2动点问题知识互联网②分别解方程 ax + b = cx + d 和 ax + b = -(cx + d ) . ⑶形如 ax + b = cx + d (ac ≠ 0) 型的绝对值方程的解法: ①根据绝对值的非负性可知cx + d ≥ 0 ,求出 x 的取值范围;②根据绝对值的代数意义将原方程化为两个方程 ax + b = cx + d 和 ax + b = -(cx + d ) ; ③分别解方程 ax + b = cx + d 和 ax + b = -(cx + d ) ; ④将求得的解代入cx + d ≥ 0 检验,舍去不合条件的解.【例题1】 ⑴若 x + 5 = 2 ,则x = .⑵若 3x + 1 = 4 ,则 x = .⑶解关于 x 的绝对值方程: 1 1 - 2x - 1= 1 .3 6【解析】 ⑴ x = -3 或 x = -7 ;⑵ x = 1 或x = - 5 ;⑶ x = 9 或 x = - 5 3 4 4【例题2】 ⑴ 2x + 3 = 4 - x ;⑵ -3x + 2 = 3 + x .【解析】 ⑴ x = 1 或 x = -7 ;⑵ x = - 1 或 x = 5 3 4 2【例题3】 ⑴若 5x + 6 = 6x - 5 ,则 x = .⑵解方程 【解析】⑴11; 4x + 3 = 2x + 9 . ⑵解法一:令4x + 3 = 0 得 x = - 3,将数分成两段进行讨论:4①当 x ≤- 3 时,原方程可化简为: -4x - 3 = 2x + 9 , x = -2 在 x ≤- 3的范围内,是方程4 4 的解.②当 x >- 3 时,原方程可化简为: 4x + 3 = 2x + 9 , x = 3 在 x >- 3的范围内,是方程的4 4 解.综上所述 x = -2 和 x = 3 是方程的解. 解法二:依据绝对值的非负性可知 2x + 9 ≥ 0 ,即 x ≥ - 9.原绝对值方程可以转化为2① 4x + 3 = 2x + 9 ,解得: x = 3 ,经检验符合题意. ②4x + 3 = -(2x + 9 ,解得 x = -2 ,经检验符合题意. 综合①②可知 x = -2 和 x = 3 是方程的解.例题赏析1. 数轴上两点的距离①两点间的距离=这两点分别所表示的数的差的绝对值,②两点间的距离=右端点表示的数- 左端点表示的数。
初二数学期末复习《一次函数的应用—动点问题》(附练习及答案)
课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。
2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。
重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。
小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。
2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值范围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位?当堂巩固:如图,直线6y kx =+与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。
课后检测: 1、如果一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。
最新九年级数学中考复习:动点问题综合压轴题含答案
2023年九年级数学中考复习:动点问题综合压轴题1.如图,已知AB=5,AD=4,AD∥BM,3cos5B=,点C、E分别为射线BM上的动点(点C、E都不与点B重合),联结AC、AE使得∥DAE=∥BAC,射线EA交射线CD于点F.设,AFBC x yAC==(1)如图1,当x=4时,求AF的长;(2)当点E在点C的右侧时,求y关于x的函数关系式,并写出函数的定义域;(3)若AC∥AE,求AF的长.2.如图,正方形ABCD的边长为6,点E为射线AB上的动点,连接DE,作点A关于DE的对称点F,连接DF,EF,BF,CF(1)如图,当点落在BD上时,求AE的长;(2)如图,当2AE=时,探索BF与CF的位置关系,并说明理由;(3)在点E从点A出发后,当BCF△为等腰三角形时,直接写出AE的长.3.如图1,将等腰三角形ABC沿着底边AC对折得到∥ADC,∥ABC是锐角,E是BC(1)求证:四边形ABCD 是菱形;(2)当AE ∥BC ,∥EAF =∥ABC 时,求证:AC 垂直平分EF ;(3)如图2,当∥EAF =∥BAC 时,延长BC 交射线AF 于点M ,延长DC 交射线AE 于点N ,连接BD ,MN ,若AB =4,sin∥ABD 14=,则当CE = 时,∥AMN 是等腰三角形.4.如图1,在矩形ABCD 中,3AB =,5BC =,点E 在AB 边上,1AE =.点F 是直线BC 上的动点.将BEF 沿EF 折叠得到将GEF △.直线GF 与直线BD 的交点为点H .(1)若点G 落在AD 边上(如图2),连结BG ,请判断BGF 的形状并说明理由; (2)若点F 与点C 重合(如图3),求点G 到直线BC 的距离;(3)在点F 的运动过程中,是否存在某一时刻,使得BHF 是以FH 为腰的等腰三角形?若存在,求CF 的长;若不存在,请说明理由.5.已知,在矩形ABCD 中,BCAB=m ,F 、G 分别为AB 、DC 边上的动点,连接GF . (1)如图,当F 为AB 的中点,G 与D 重合时,将∥AFD 沿FD 翻折至∥EFD ,连AE ,BE .∥若C ,E ,F 三点共线,求m 的值.(2)当F ,G 不与端点重合时,将四边形AFGD 沿FG 翻折至四边形FHPG ,点H 恰好落在BC 上,HP 交CD 于点Q ,连AH ,交GF 干占O ,若m =1516,tan∥CGP =247,GF =752,求CP 的长.6.如图,在矩形ABCD 中,3cm AB =,AD .动点P 从点A 出发沿折线AB BC -向终点C 运动,在边AB 上以1cm/s 的速度运动;在边BC 的速度运动,过点P 作线段PQ 与射线DC 相交于点Q ,且60PQD ∠=︒,连接PD ,BD .设点P 的运动时间为()s x,DPQ 与DBC △重合部分图形的面积为()2cm y .(1)当点P 与点A 重合时,直接写出DQ 的长;(2)当点P 在边BC 上运动时,直接写出BP 的长(用含x 的代数式表示); (3)求y 关于x 的函数解析式,并写出自变量x 的取值范围.7.如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为()3,4-,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设PMB △的面积为S (0S ≠),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围).(3)在(2)的条件下,当t 为何值时,M PB ∠与BCO ∠互为余角,并求此时直线OP 的解析式.8.如图,菱形ABCD 中,AB =BD ,点P 是线段BC 上一动点(不与点B 重合),AP 与对角线BD 交于点E ,连接EC . (1)求证:△ABE ∥ △CBE ;(2)如图∥,若∥ABC =60°,BPBE 的长;(3)若AB =AC ,如图∥,点P 、N 分别从点B 、C 同时出发,以相同速度沿BC 、CA向终点C 和A 运动,连接AP 和BN 交于点G ,当tan ∥CBN 求BG 与GN 的比值.9.如图,在Rt ABC 中,90ACB ∠=︒,15BC =,25AB =.动点P 从点A 出发,以每秒7个单位长度的速度沿折线AC CB -向终点B 运动,当点P 不与ABC 顶点重合时,作135CPQ ∠=︒,交边AB 于点Q ,以CP 、PQ 为边作CPQD .设点P 的运动时间为t 秒.(1)求AC 的长(2)当点P 在边AC 上时,求点Q 到边AC 的距离(用含t 的代数式表示) (3)当CPQD 的某条对角线与ABC 的直角边垂直时,求CPQD 的面积(4)以点P 为直角顶点作等腰直角三角形EPQ ,使点E 与点C 在PQ 同侧,设EQ 的中点为F ,CPQD 的对称中心为点O ,连结OF .当//OF PQ 时,直接写出t 的值10.如图,矩形ABCD 中,AB=6,AD=8,点P 是对角线BD 上一动点,PQ∥BD 交BC 于点Q ,以PQ 为一边作正方形PQMN ,使得N 点落在射线PD 上,点O 是边CD 上一点, 且OD :BP=3:4.(1)联结DQ ,当DQ 平分∥BDC 时,求PQ 的长; (2)证明:点O 始终在QM 所在直线的左侧;(3)若以O 为圆心,半径长为0.8作∥O,当QM 与∥O 相切时,求BP 的长.11.如图,已知∥ABC 中,∥ABC =45°,CD 是边AB 上的高线,E 是AC 上一点,连接BE ,交CD 于点F .(1)如图1,若∥ABE =15°,BC1,求DF 的长;(2)如图2,若BF =AC ,过点D 作DG ∥BE 于点G ,求证:BE =CE +2DG ; (3)如图3,若R 为射线BA 上的一个动点,以BR 为斜边向外作等腰直角∥BRH ,M 为RH 的中点.在(2)的条件下,将∥CEF 绕点C 旋转,得到∥CE ′F ′,E ,F 的对应点分别为E ′,F ′,直线MF ′与直线AB 交于点P ,tan∥ACD =13,直接写出当MF ′取最小值时'RMPF 的值.12.(1)问题发现如图1,在Rt ABC 和Rt CDE △中,90,45ACB DCE CAB CDE ∠=∠=︒∠=∠=︒,点D 是线段AB 上一动点,连接BE . 填空:∥BEAD的值为___________________,∥DBE ∠的度数为__________; (2)类比探究如图2,在Rt ABC 和Rt CDE 中,90,60ACB DCE CAB CDE ∠=∠=︒∠=∠=︒,点D 是线段AB 上一动点,连接BE .请判断BEAD的值及DBE ∠的度数,并说明理由; (3)拓展延伸如图3,在(2)的条件下,将点D 改为直线AB 上一动点,其余条件不变.取线段DE 的中点M ,连接,BM CM ,若2AC =,以B 、C 、D 、M 为顶点的四边形是菱形时,则菱形的边长是多少?请直接写出答案.13.如图,在Rt ABC 中,90ABC ∠=︒,A α∠=,点D 为射线AC 上一动点,作BDE α∠=,过点B 作BE BD ⊥,交DE 于点E ,(点A ,E 在BD 的两侧)连接CE .(1)如图1,若45α=︒时,请直接写出线段AD ,CE 的数量关系:(2)如图2,若60α=︒时,(1)中的结论是否成立;如果成立,请说明理由,如果不成立,请写出它们的数量关系,并说明理由:(3)若30α=︒,6AC =,且ABD △为等腰三角形时,请直接写出线段CE 的长.14.如图1,在Rt∥ABC 中,点C 为直角顶点,点D 为AB 上的一点,且AB =10. (1)当CD ∥AB 时,求证:BC 2=AB ·BD ;(2)如图2,当点D 为AB 的中点时,AC =8,点E 是边BC 上的动点,连结DE ,作DF ∥DE 交AC 于点F ,连结EF 、CD 交于点G ,当EG ∥FG =1∥2时,求线段CE 的长; (3)当∥CAB =15°时,点P 是AC 上一点,求12P A +PB 的最小值.15.如图1,在△ABC 中,AB =BC =20,cos A =4,点D 为AC 边上的动点(点D 不与点A ,C 重合),以D 为顶点作∥BDF =∥A ,射线DE 交BC 边于点E ,过点B 作BF ∥BD 交射线DE 于点F ,连接CF . (1)求证:△ABD ∥∥CDE ;(2)当DE ∥AB 时(如图2),求AD 的长;(3)点D 在AC 边上运动的过程中,若DF =CF ,则CD = .16.平行四边形ABCD 中,N 为线段CD 上一动点.(1)如图1,已知90ADC ∠<︒.若DR BN =,求证:四边形DRBN 为平行四边形; (2)如图2,已知60ABC ∠=︒.若BN 为ABC ∠的角平分线,T 为线段BN 上一点,DT 的延长线交线段BC 于点M ,满足:1tan 2BTM ∠=且DN BM =.请认真思考(1)中图形,探究MDAD的值. (3)如图3,平行四边形ABCD 中,60ABC ∠=︒,2AB BC ==,P 在线段BD 上,Q 在线段CD 上,满足:2BP CQ =.直接写出()2QA AP +的最小值为________.17.如图,已知在平行四边形ABCD 中,AB =10,BC =16,cos B =45,点P 是边BC上的动点,以CP 为半径的圆C 与边AD 交于点E 、F (点F 在点E 的右侧),射线CE 与射线BA 交于点G .(2)联结AP ,当AP //CG 时,求弦EF 的长 (3)当∥AGE 是等腰三角形时,求圆C 的半径长.18.(1)在一节数学探究课上,学生们发现了一个规律:如图∥,当四边形ABCD 是矩形时,Rt EMF 的直角顶点M 在BC 边上运动,直角边分别与线段BA 、线段CD 交于E 、F 两点,在点M 运动的过程中,始终存在着EBM MCF ∽.于是又有同学提出了问题,如果将四边形换成三角形时,是否仍存在同样的规律呢?如图∥,在ABC 中,A B ∠=∠,点D 为AB 边上的动点,过点D 作EDF A ∠=∠,交AC 于点E ,交BC 于点F ,请问是否存在两个相似的三角形,若存在,请证明;若不存在,请说明理由;(2)结合上述规律,解决下列问题:如图∥,在ABC 中,5AB AC ==,6BC =,点P 为BC 上一点(不与B 、C 重合),过点P 作PE AB ⊥于点E ,PF BC ⊥交AC 于点F ,若PEF 为等腰三角形,求PC 的长.19.在Rt ABC 中,90BCA A ABC D ∠︒∠∠=,<,是AC 边上一点,且DA DB =,O 是AB 的中点,CE 是BCD △的中线.()1如图a ,连接OC ,请直接写出OCE ∠和OAC ∠的数量关系:;()2点M 是射线EC 上的一个动点,将射线OM 绕点O 逆时针旋转得射线ON ,MON ADB ON ∠∠=,与射线CA 交于点N .∥如图b ,猜想并证明线段OM 和线段ON 之间的数量关系;∥若30BAC BC m ∠︒=,=,当15AON ∠︒=时,请直接写出线段ME 的长度(用含m 的代数式表示).20.在平面直角坐标系中,线段AB 的两个端点A (0,2),B (1,0),点C 为线段AB 的中点.将线段BA 绕点B 按顺时针方向旋转90°得到线段BD ,连结CD ,AD .点P 是直线BD 上的一个动点.(1)求点D 的坐标和直线BD 的解析式; (2)当∥PCD =∥ADC 时,求点P 的坐标;(3)若点Q 是经过点B ,点D 的抛物线y =ax 2+bx +2上的一个动点,请你探索:是否存在这样的点Q ,使得以点P 、点Q 、点D 为顶点的三角形与∥ACD 相似.若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(2)220425y x x =---(0<x <5);2.(1)6(2)CF BF ⊥,(3)12+12-3. (3)43或2或454.(1)BGF 是等边三角形 (2)10029 (3)195或2535.(1)∥∥AEB =90°;∥m(2)CP. 6.(1)1;(2))3PB x -;(3)222)3)(34)x x y x x x x ≤≤⎪⎪⎪=<≤⎨⎪⎪<≤⎪⎪⎩7.(1)1522y x =-+;(2)52524S t =-(552t <≤);(3)1,22t y x ==-或256t =;13y x = 8.(2)125;(3)34 9.(1)20;(2)3MQ t =;(3)36或3600121;(4)2013t =或4t = 10.(1)PQ =3;(3)163BP =. 11.(1(312.(1)1;90︒;(2)90BE DBE AD=∠=︒;(3)2或13.(1)AD CE =;(2)不成立,EC ;(33或14.(2)7541;(3)15.(2)252;(3)14.16.(2(3)17.(1)10;(2)72;(3)18.(1)存在两个相似的三角形,AED BDF ∽;(2)PC 的长为94或10843或2.19.(1)∠∠=ECO OAC (2)∥=OM ON ;∥满足条件的EM 的值为m 或12m . 20.(1)1122y x =-;(2)点P 的坐标为(2,12)或(8,72);(。
中考数学压轴题型研究——动点几何问题解题方法
(2)若点 Q 以②中的运动速度从点 C 出发,点 P以原来的运动速度从点 B 同时出发,都逆时针沿 △ ABC 三边运动,求经过 多长时间点 P 与点 Q 第一次在 △ ABC 的哪条边上相遇?
解:( 1)①∵ t 1 秒,∴ BP CQ 3 1 3 厘米,
∵ AB 10 厘米,点 D 为 AB 的中点,∴ BD 5 厘米.
B C D 方向向点 D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动
D
点也随之停止.设动点运动的时间为 t 秒.
(1)求边 BC 的长;
C Q
(2)当 t 为何值时, PC 与 BQ 相互平分;
A
PE
B
(3)连结 PQ,设 △ PBQ 的面积为 y,探求 y 与 t 的函数关系式,求 t 为何值时, y 有最
1 (12
2t)·9t =
9 (t
3)2
81.
2
55
5
当 t 3 秒时, S△PBQ 有最大值为 81厘米 2. 5
②当
Q在
CD
上,即
10 ≤
t≤
14
时,
3
3
S△ PBQ
1 PB·CE 2
1 (12
2t)
6= 36
6t.
2
易知 S 随 t 的增大而减小.故当 t
10
秒时,
3
10 S△ PBQ 有最大值为 36
BP 4 3 3 秒,∴ vQ
CQ t
5 15
厘米 / 秒.
44
3
( 2)设经过 x 秒后点 P 与点 Q 第一次相遇,由题意,得
15 x
3x
2 10,解得 x
80
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学压轴题-动点
问题
通常动点的运动场所将从以下选出:
1、在直角三角形的边上运动
2、在梯形的边上运动
3、在坐标轴上运动
4、在抛物线上运动
如果设时间为t,一般情况将从以下12个问题中选出
(1)求某条线段的长度
(2)求某个三角形的面积s与时间t的函数关系式
(3)求两个图形重叠部分或动点所带的射线扫某个图形部分的面积s与时间t 的函数关系式并求面积的最大值
(4)t取何值时两直线平行
(5)t取何值时两直线垂直?
(6)t取何值时某三角形为等腰三角形三角形?
(7) t取何值时某三角形为直角三角形?
(8)t取何值时某四边形为特殊四边形?
(9) t取何值时两个三角形全等或相似
(10)当动点所带的射线把某个中心对称图形的面积二等分时求t.
(11)点在运动的过程中,某个图形的面积或角度是否发生变化,若不变,求出这个面积或角的度数,若变化,说明怎样变?
(12)当抛物线等分某些特殊点的数量时求t的取值范围
E
图1
C
D P
D 、A 的距离之差最大,求出点第2题图
),用待第2题图
R 1
R 2
R 3
D
?
E 93
2. 函数中因动点产生的相似三角形问题一般有三个解题途径
①求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.
的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,
之后利用相似来列方程求解。
明确运动路径,运动速度,起始点,终点,从而确定自变量的取值范围,画出相应的图形。
找出一个基本关系式,把相关的量用一个自变量的表达式表达出来。