角边角和角角边判定

合集下载

《 “角边角”和“角角边”判定三角形全等》课件(3套)

《 “角边角”和“角角边”判定三角形全等》课件(3套)

(4)射线A′D与B′E交于一点,记为C′. 即可得到△A′B′C′. 将△A′B′C′与△ABC重叠,发现两三角形全等. [师]
于是我们发现规律: 两角和它们的夹边分别相等的两三角形全等.(可以 简写成“角边角”或“ASA”) 这又是一个判定两个三角形全等的条件.
2.出示探究问题: 如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E, BC=EF,△ABC与△DEF全等吗?能利用角边角条件证 明你的结论吗?
例 如下图,点D在AB上,点E在AC上,AB=AC,∠B= ∠C.求证:AD=AE.
[师生共析]AD 和 AE 分别在△ADC 和△AEB 中,所
以要证 AD=AE,只需证明△ADC≌△AEB 即可.
学生写出证明过程.
证明:在△ADC 和△AEB 中,
∠A=∠A, AC=AB, ∠C=∠B, ∴△ADC≌△AEB(ASA). ∴AD=AE.
(1)求证:AE=CD; (2)若AC=12 cm,求BD的长.
解:(1)由ASA证△ACE≌△CBD (2)BD=6 cm
14.如图,在四边形ABCD中,点P是对角线BD上任意一点,∠1=∠2, ∠3=∠4.求证:PA=PC.
解:先证△ABD≌△CBD(ASA),再证△ABP≌△CBP(SAS)或 △ADP≌△CDP(SAS)
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°,
∠A=∠D,∠B=∠E,
∴∠A+∠B=∠D+∠E. ∴∠C=∠F.
在△ABC 和△DEF 中,
∠B=∠E, BC=EF, ∠C=∠F, ∴△ABC≌△DEF(ASA). 于是得规律: 两角和其中一个角的对边分别相等的两个三角形全 等.(可以简写成“角角边”或“AAS”)
A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD

三角形全等的判定:角边角、角角边

三角形全等的判定:角边角、角角边
居安思危
——洪水未到先筑堤,豺狼未来先磨刀. 一只野狼卧在草上勤奋地磨牙,狐狸看到了,就对它说:天气这么好,大 家在休息娱乐,你也加入我们队伍中吧!野狼没有说话,继续磨牙,把它的牙 齿磨得又尖又利.狐狸奇怪地问道:森林这么静,猎人和猎狗已经回家了,老 虎也不在近处徘徊,又没有任何危险,你何必那么用劲磨牙呢?野狼停下来回 答说:我磨牙并不是为了娱乐,你想想,如果有 一天我被猎人或老虎追逐,到 那时,我想磨牙也来不及了.而平时我就把牙磨好,到那时就可以保护自己了.
等。(可以简写成“边角边”或“SAS”)
用符号语言表达为:
A D
在△ABC与△DEF中 AC=DF
∠C=∠F BC=EF
B
C F E
∴△ABC≌△DEF(SAS)
知识回顾:
A
B SSA不能 判定全等
A
C A
B
D
C
B
D
1.若AB=AC,则添加一个什么条件可得 A △ABD≌ △ACD?
△ABD≌ △ACD
在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能吗?
B A
AB=DE可以吗?
×
C
F
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。 ∠B=∠E AB ∥DE (ASA)
E
F
在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
两角及一角的对边对应相等的 你能从上题中得到什么结论? 两个三角形全等(AAS)。
如 何 用 符 号 语 言 来 表 达 呢

利用“角边角”“角角边”判定三角形全等课件

利用“角边角”“角角边”判定三角形全等课件
评价方式:自评、互评 评价标准:能说明全等的理由得1❤
能通过同学的讲解理解全等的理由得1❤
拓展创新 (针对目标3) 如图∠ABC=∠DCB, 试添加一个条件,使得△ ABC≌△DCB,这个条件 可以是 ∠A=∠D 或∠ACB=∠DBC . 并选择其中一个条件加以证明.
评价方式:自评、互评 评价标准:每添加一个条件得1❤
问题解决
2.如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片 到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?
你能说明其中理由吗?
1
2
3
当堂检测 (针对目标3) 3.已知:∠C=∠E,∠1=∠2,AB=AD,BC和DE相等吗?为什么?
评价方式:自评 评价标准:能独立得出正确答案得1❤
B
∴△ABC ≌△ A′B′ C′(ASA).
A C B'
A' C'
探索新知
(针对目标1)
问题1. 画线段AB=10cm,再画∠BAP=60°,∠ABQ=80°,AP与BQ相交于 点C. 剪下所画的△ABC在小组内进行比较. 你能得到什么结论?用语言描述 你们的发现.
时间:3分钟 展示:以小组为单位进行展示 评价方式:自评、互评 评价标准:参判定方法
文字语言 两角及其夹边分别相等的两个三角形全等,简写为“角边角”或“ASA”.
基本事实
几何语言
在△ABC和△DEF中 ∵ ∠___B_=∠___E_
_B__C_=_E_F__ ∠___C_=_∠__F_ ∴△ABC ≌△DEF( ASA )
运用新知
(针对目标3)
能得出结论得1❤
探索新知
(针对目标1)
问题2. 画线段 AB=16cm,再∠BAP=40°∠ABQ=30°,AP与BQ相交于点C. 剪下所画的△ABC在小组内进行比较.你能得到什么结论?用语言描述你们 的发现.

全等三角形的判定3-角边角和角角边(asaaas)定理

全等三角形的判定3-角边角和角角边(asaaas)定理

例3、已知:点D在AB上,点E在AC上,
AB=AC,∠B=∠C。
求证: AD=AE
A
证明:在△ABE和△ACD中 ∠A=∠A(公共角) D
∵ AB=AC(已知) ∠B=∠C(已知) B
∴ △ABE≌△ACD(ASA) ∴AD=AE
E C
1、要使下列各对三角形全等,需要增加 什么条件?
∠ A=∠ D , ∠ B=∠ F, _________;
三角形全等的判定(3)--角边角 和角角边定理(ASA、AAS)
A E
B
FC
判定两个三角形全等有哪些方法? 边边边(SSS)
三边对应相等的两个三角形全等
边角边(SAS)
有两边和它们夹角对应相等的 两个三角形全等。
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
∠ A=∠ D, A B =D E , _________;
练一练
3、如图,要测量河两岸相对的两点A,B 的距离,可以在AB的垂线BF上取两点 C,D,使BC=CD,再定出BF的垂线 DE,使A, C,E在一条直线上,这时 测得DE的长就是AB的长。为什么?
A
B CD F
E
练习2
如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
D
∠1=∠2 (已知)
∠D=∠C(已知)
A
1 2
B
AB=AB(公共边)
∴△ABD≌△ABC (AAS)
C
∴AC=AD (全等三角形对应 边相等)
本节课我们学习了判定两个三角形 全等的两种方法:

三角形全等的判定1-第3课时-“角边角”、“角角边”

三角形全等的判定1-第3课时-“角边角”、“角角边”
三角形全等的判定1-第3课时“角边角”、“角角边”
目录
CONTENTS
• 引言 • 角边角判定 • 角角边判定 • 课堂练习与解析 • 总结与回顾
01 引言
CHAPTER
课程目标
掌握“角边角”和“ 角角边”两种三角形 全等的判定方法。
理解三角形全等在几 何学中的重要性和应 用。
能够运用这两种判定 方法解决实际问题。
在下节课中,我们将深入探讨三角形 全等的各种判定方法,并学习如何运 用这些判定方法解决更复杂的几何问 题。
谢谢
THANKS
04 课堂练习与解析
CHAPTER
基础练习题
总结词:巩固基础
详细描述:基础练习题主要涉及三角形全等判定中的“角边角”和“角角边”定 理的基本应用,通过简单的题目帮助学生理解并掌握这两种判定方法的基本概念 和条件。
进阶练习题
总结词:提升难度
详细描述:进阶练习题在基础练习题的基础上增加了一些难度,题目中可能涉及到一些复杂的图形和 条件,需要学生灵活运用“角边角”和“角角边”定理进行解答,以提高学生的解题能力和思维灵活 性。
应用示例
在解决实际问题时,如测量、工程设计等,经常需要证明两个三角形是否全等, 此时可以使用角边角判定定理进行证明。
03 角角边判定
CHAPTER
定义与性质
定义
角角边判定是指两个三角形中,两个角和一边分别相等,则这两个三角形全等。
性质
角角边判定是三角形全等判定的一种,它具有传递性、对称性和不可分解性。
判定定理及证明
判定定理
如果两个三角形中,两角和一边分别相等,则这两个三角形 全等。
证明
首先,根据已知条件,两个三角形有两个角分别相等,则第 三个角也必然相等(角的和定理)。其次,已知一边相等, 结合前面的三个角分别相等,根据全等三角形的判定定理, 可以证明两个三角形全等。

北师大版七年级下册数学“角边角”“角角边”判定课件

北师大版七年级下册数学“角边角”“角角边”判定课件
5cm
60°
80°
60°
80°
你画的三角形与同伴画的一定全等吗?
[活动2] 两角及其中一角的对边
若三角形的两个内角分别是60°和45°,且45°所对的边为 3cm,你能画出这个三角形吗?
60°
45°
分析:
这里的条件与1中的条件有什么相同点与不同点? 你能将它转化为1中的条件吗?
60°
75°
归纳:
补充练习
1﹑请在下列空格中填上适当的条件,使△ABC≌△DEF。
在△ABC和△DEF中
A
D
∠AAB==∠DDE
∵ ∠AB∠ABCBCC==BD∠E=EFFD∠EFF
∠AB∠BBCCAC===C=∠DEEBDFFF=E∠FF
B
EC
F
∴△ABC ≌△DEF(SAASSASAS)
A
2﹑如图,已知,∠C=∠E,∠1=∠2,
两角和它们的夹边对应相等的两个三角形全等, 简写成“角边角”或“ASA”
两角和其中一角的对边对应相等的两个三角形 全等,简写成“角角边”或“AAS”
三、小试牛刀
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则△ABC≌△DEF的 理由是: 角边角(ASA)
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则△ABC≌△DEF的理 由是: 角角边(AAS)
C
F
A
BD
E
四、巩固提高
1、完成下列推理过程:
在△ABC和△DCB中,
A
∠A3=BC∠=4∠DCB
3
∵ ∠B2C==C∠B1 (公共边 )
∠C2B==∠B1CB1∴△ABC源自△DCB( AAASSA)D
4

4.3.2 用“角边角、角角边”判定三角形全等

4.3.2   用“角边角、角角边”判定三角形全等
边,情况会怎样呢?你能将它转化为“做一做”中的 条件吗?
(来自《教材》)
知2-导


两角分别相等且其中一组等角的对边相等的两个 三角形全等,简写成 “角角边”或“AAS”.
(来自《教材》)
知2-讲
1.判定方法三:两角分别相等且其中一组等角的对边相
等的两个三角形全等(简写成“角角边”或“AAS”).
(来自《点拨》)
知1-练
1
如图,已知△ABC的六个元素,则下列甲、乙、丙 三个三角形中一定和△ABC全等的是( A.甲、乙 )
B.甲、丙
C.乙、丙 D.乙
(来自《典中点》)
知1-练
2
如图,某同学不小心把一块三角形玻璃打碎成三块, 现在要到玻璃店配一块与原来完全相同的玻璃,最 省事的方法是( A.带①和②去 )
B.只带②去
C.只带③去 D.都带去
(来自《典中点》)
知1-练
3
如图,已知AD是△ABC的BC边上的高,下列能使 △ABD≌△ACD的条件是( A.∠BAD=∠CAD B.∠BAC=99° )
C.BD=AC
D.∠B=45°
(来自《典中点》)
知2-导
知识点
议一议
2
三角形全等的条件:角角边
如果“两角及一边”条件中的边是其中一角的对
2.利用“角角边“判定两三角形全等:
1.必做: 完成教材P102习题4.7T1-4 2.补充: 请完成《典中点》剩余部分习题
其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.
试说明:△ABC与△DEC全等.
(来自《点拨》)
知2-讲
解:如图,因为∠BCE=∠ACD=90°, 所以∠3+∠4=∠4+∠5. 所以∠3=∠5. 在△ACD中,∠ACD=90°, 所以∠2+∠D=90°. 因为∠BAE=∠1+∠2=90°,

教学课件:第3课时-“角边角”、“角角边”

教学课件:第3课时-“角边角”、“角角边”

证明与推导
总结词
掌握“角边角”定理的证明与推导过 程是深入理解该定理的关键。
详细描述
“角边角”定理的证明可以通过构造 辅助线,利用已知条件和三角形的基 本性质进行推导。具体证明过程可以 参考数学教材或相关资料。
应用实例
总结词
通过应用实例,可以更好地理解和运用“角边角”定理。
详细描述
应用“角边角”定理可以解决一些实际问题,例如在几何图 形中证明两个三角形全等,或者在解题过程中利用全等关系 简化计算。
教学课件:第3课时-“角边角” 、“角角边”
目录
• 引言 • “角边角”定理 • “角角边”定理 • 习题与解答 • 总结与回顾
01 引言
主题简介
01
角边角(ASA)和角角边(AAS) 是三角形全等的两种重要判定方法。
02
通过学习这两种判定方法,学生 将能够理解三角形全等的条件, 并能够在实际问题中应用这些条 件。
学生还需要注意理解和掌握定理的证 明过程,了解数学证明的基本方法和 思路,提高自己的数学素养和逻辑思 维能力。
在学习过程中,学生需要积极思考和 参与课堂讨论,通过实际操作和探究, 培养自己的数学思维能力和解决问题 的能力。
THANKS FOR WATCHING
感谢您的观看
答案3
由于$angle A = 45^circ$,$angle B = 30^circ$,所以$angle C = 180^circ - 45^circ - 30^circ = 105^circ$。根据三角形内角和定理, 我们可以得到$triangle ABC$是等腰 三角形。因此,三角形的高等于底边 的一半,即$h = frac{BC}{2} = 1$。 所以,三角形$ABC$的面积为 $frac{1}{2} times BC times h = fra04 习题与解答

人教版八年级数学上册-三角形全等的判定“角边角”、“角角边”课件.ppt

人教版八年级数学上册-三角形全等的判定“角边角”、“角角边”课件.ppt
C
A
B
E
D
C
C′
A
B
A′B′作法:源自(1)画 A'B'=AB;
(2)在A'B'的同旁画 ∠DA'B '=∠A,∠EB'A '=∠B,
A'D,B'E相交于点 C'.
想一想: 从中你能发现什么规律?
知识要点
“角边角”判定方法
?文字语言: 有两角和它们夹边对应相等的两个三 角形全等(简写成“角边角”或“ ASA”).A
第十二章 全等三角形
12.2三角形全等的判定
第3课时 “角边角”、“角角边”
学习目标 1.探索三角形全等的“角边角”和“角角边”的条件 2.应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角相等. 学习重点:应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角 相等. 学习难点:理解,掌握三角形全等的条件:“ASA”“AAS”
60°
45°
思考: 这里的条件与 1中的条件有什么相同点与不同点?
你能将它转化为 1中的条件吗?
60°
75°
归纳总结
两角和其中一角的对边对应相等的两个三角形全等 . 简写成“角角边”或“ AAS”.
A
在△ABC和△A′B′C′中,
∠A=∠A′(已知),
∠B=∠B′ (已知),
B
C
A′
AC=A′C ′(已知),
1 2 3
讲授新课
一 三角形全等的判定(“角边角”定理)
问题:如果已知一个三角形的 两角及一边 ,那么有
几种可能的情况呢? A
它们能判定两个
三角形全等吗? A
B

三角形全等的判定:角边角和角角边_课件

三角形全等的判定:角边角和角角边_课件
由三角形内角和定理可知,∠C =∠F. 这样一来,AAS→ASA △ABC ≌△DEF
结论
两角和其中一角对边对应相等的两个三角形全等 简写为“角角边”或“AAS”.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC与△DEF 中
∠B =∠E ∠A =∠D
一定要按“角,角, 边”的顺序列举条件
AC =DF
已知:点E 是正方形ABCD 的边CD上一点,点F 是CB 的延长 线上一点,且EA⊥AF,求证:DE=BF.
提示:证明△ABF ≌△ADE.
已知△ABC 中,BE ⊥AD 于E,CF⊥AD 于F,且BE =CF, 那么BD与DC 相等吗?
提示:证明△BDE ≌△CDF.
补充题 如图,AB∥CD,AD∥BC,那么 AB =CD 吗?为什么 ?AD 与BC 呢?
2.如图,要测量池塘两岸相对的两点A,B 的距离,可以在 池塘外取AB 的垂线BF上的两点C,D,使BC=CD,再画BF 的 垂线DE,使E与A,C在一条直线上,这时测得DE 的长就是 AB 的长.为什么?
如图,小明、小强一起踢球,不小心把一块三角形的装饰玻 璃踢碎了,摔成了3 块,两人决定赔偿.你能告诉他们只带其 中哪一块去玻璃店,就可以买到一块完全一样的玻璃吗?
结论
两角及夹边对应相等的两个三角形全等 简写为“角边角”或“ASA”.
结论 一张教学用的三角形硬纸板不小心被撕坏了,如图,你能 制作一张与原来同样大小的新教具吗?能恢复原来三角形 的原貌吗?
这利用的是什么原理呢?
ASA可以判定三角形全等.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC 与△DEF 中
八年级数学
精品 课件
第十二章 全等三角形:三角形全等的判定

八年级数学第3课时 “角边角”、“角角边”

八年级数学第3课时  “角边角”、“角角边”
证明:∵AD∥CB , ∴∠A =∠C. ∵AE =CF , ∴AF =CE. 在△ADF 和△CBE 中,
∴△ADF ≌△CBE(AAS).∴DF =BE.
变式 若将条件“∠B =∠D”变为“DF∥BE”,那么原结论还成立吗?若成立,请证明;若不成立,请说明理由.
成立.证明:∵AD∥CB , ∴∠A =∠C. ∵AE =CF , ∴AF =CE. ∵DF∥BE, ∴∠DFE =∠BEF. ∴∠DFA =∠BEC. 在△ADF 和△CBE 中,
A
用“角角边”判定三角形全等
文字语言:两角和其中一角的对边对应相等的两个三角形全等.简写成“角角边”或“AAS”.
几何语言:
如图,AD是△ABC的中线,过C,B分别作AD及 AD的延长线的垂线CF,BE.求证:BE=CF.
导引:要证明BE=CF,可根据中线及垂线的定义和 对顶角的性质来证明△BDE和△CDF全等.证明:∵AD是△ABC的中线,∴BD=CD. ∵CF⊥AD,BE⊥AE,∴∠CFD=∠BED=90°. 在△BDE和△CDF中, ∠BED=∠CFD, ∠BDE=∠CDF, BD=CD, ∴△BDE≌△CDF(AAS).∴BE=CF.
C
4、已知:如图, AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.
证明: ∵ AB⊥BC,AD⊥DC,
∴ ∠ B=∠D=90 °.
在△ABC和△ADC中,
∴ △ABC≌△ADC(AAS),
∴AB=AD.
5、如图,E,F 在线段AC上,AD∥CB,AE = CF.若∠B =∠D,求证:DF =BE.
能力提升:已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并用一句话说出你的发现.

人教版八年级数学上册第12章:“角边角”、“角角边”

人教版八年级数学上册第12章:“角边角”、“角角边”

D
∴ △ABC≌△ADC(AAS),
∴AB=AD.
C
随堂即练
【学以致用】如图,小明不慎将一块三角形模具打 碎为三块,他是否可以只带其中的一块碎片到商店 去,就能配一块与原来一样的三角形模具? 如果 可以,带哪块去合适?你能说明其中理由吗?
答:带1去,因为有两角且 夹边相等的两个三角形全 等.
1 23
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B',∠ABD=∠A'B'D',AB=AB,
所以△ABD≌△A'B'D'.所以AD=A'D'.
发现:全等三角形对应边上的高也相等.
内容
课堂总结
边角边 角 角 边 应用
为证明线段和角相等 提供了新的证法
A
▼几何语言:
在△ABC和△A′ B′ C′中, ∠A=∠A′ ,
B
C
A′
AB=A′ B′ ,
∠B=∠B′ ,
B′
C′
∴ △ABC≌△ A′ B′ C′ (ASA).
新课讲解
例1 已知:∠ABC=∠DCB,∠ACB= ∠DBC, 求证:△ABC≌△DCB.
证明:在△ABC和△DCB中,
A
D
∠ABC=∠DCB,
能力提升
【拓展】已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′
分别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并
用一句话说出你的发现.

三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)

三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)

三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。

“角边角”和“角角边”判定三角形全等 公开课一等奖课件

 “角边角”和“角角边”判定三角形全等  公开课一等奖课件

学生活动:自己动手操作,然后与同伴交流,发现规律. 教师活动:检查指导,帮助有困难的同学. 活动结果展示: 以小组为单位将所得三角形重叠在一起,发现完全重合, 这说明这些三角形全等. 提炼规律: 两角和它们的夹边分别相等的两个三角形全等.(可以简 写成“角边角”或“ASA”)
[师]我们刚才做的三角形是一个特殊三角形,随意画一个 △ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B= ∠B′,AB=A′B′呢?
? 想一想
今后我们应该怎样做?
公共场合,我们应该安静有序地排队等候。
课堂上我们应该静静的倾听,静静的思考
讨论问题的时候,我们要认真倾听 别人的意见,有序地发表自己的见解。
到室外或功能室上课前,迅速有序 列队,安静轻步走到上课地点,上下楼 梯靠右行。
让我们读一读
• 铃声响 速静心 进教室 坐端正 • 上下楼 靠右行 走廊里 步要轻 • 不追逐 不吵闹 休息好 讲文明 • 早操时 快静齐 课间时 也安静 • 管理班 守纪律 惜时间 勤学习 • 排路队 守秩序 不推挤 慢慢行 • 寻清静 现文明 好习惯 能养成
(4)射线A′D与B′E交于一点,记为C′. 即可得到△A′B′C′. 将△A′B′C′与△ABC重叠,发现两三角形全等. [师]
于是我们发现规律: 两角和它们的夹边分别相等的两三角形全等.(可以 简写成“角边角”或“ASA”) 这又是一个判定两个三角形全等的条件.
2.出示探究问题: 如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E, BC=EF,△ABC与△DEF全等吗?能利用角边角条件证 明你的结论吗?
我们可以安静一点吗?(节选)
• 德国摄影记者在东京旅行,拍下一辑东京地铁挤拥的照 片。许多日本人默默承受挤拥,不论西装笔挺,脸孔压在车 厢门的玻璃上,鼻扁嘴凸,面容扭曲,就是一副死忍,绝不 吭声半句。这个照片系列,成为日本国民性格的代表作。 • 日本人乘搭公共交通工具,不论地铁还是飞机,其恬静 是一大景观。手机不会响,为他人着想,固不必说,车厢里 鲜有交谈,即使有,声音也自觉低下来,令西方记者称奇。 • 日本火车与瑞士和欧洲各国的火车类似,就是乘客自觉 恬静,读书看报,或者上网工作。这方面,难怪日本早身在 西方文明国家之列,公共交通,首重一个“公”字,国民无 公德,国家再强,GDP再高,没有人心中真正看得起你。

第3课时 “角边角”和“角角边”判定三角形全等

第3课时  “角边角”和“角角边”判定三角形全等

∠B=∠E,
在△ABC和△DEF中, BC=EF,
∠C=∠F, ∴ △ABC≌△DEF(其中一组等角的对边相等 的两个三角形全等(可以简写成“角角边”或 “AAS”).
例:如下图,点D在AB上,点E在AC上,
AB=AC,∠B=∠C.求证:AD=AE.
分析:
AD和AE分别在△ADC
∴DE=AB
图中的两个三角形全等吗?请说明理由.
(1)
△ADC≌△ABC(ASA)
图中的两个三角形全等吗?请说明理由.
29°
29°
(2)
△AEC与△BCD不一定全等
判定两个三角形 全等的方法
五种
1.全等三角形的定义

2.边边边( SSS )

3.边角边
( SAS )

4.角边角
( ASA )
想一想: 三角形中已知两角一边有几种可能?
(1)两角和它们的夹边; (2)两角和其中一角的对边.
做一做:
三角形的两个内角分别是60°和80°,它们的 夹边为 4 cm,你能画出一个三角形同时满足这些条 件吗?将你画的三角形剪下,与同伴比较,观察它 们是不是全等的,你能得出什么规律?
探究新知
发现规律:
和△ AEB中,所以要证AD=AE,
只需证明△ADC≌△AEB即可.
例:如下图,点D在AB上,点E在AC上,
AB=AC,∠B=∠C.求证:AD=AE.
证明: 在△ADC和△AEB中,
∠A=∠A, AC=AB, ∠C=∠B, ∴ △ADC≌△AEB(ASA). ∴ AD=AE .
思考:学习了哪些判定 两个三角形全等的方法?
这又是一个判定两个三角 形全等的条件.

角边角和角角边判定

角边角和角角边判定

C

A
B
三角形全等的判定方法三: 两角和它们的夹边分别相等的两个三角形 (可简写成“角边角”或 全等. A′ A “ASA”)
B
授 课 教 师 王 兴 建
C
B′
C′
符号语言表示:
在△ABC和△ A'B'C'中


∠A= ∠A' AB= A'B' ∠B= ∠B'
∴ △ABC≌△ A'B'C'
(ASA)
C
E
F

三角形全等的判定方法四: 两角分别相等且其中一组等角的对边相等 练习1 如图,在△ABC和△DEF中, ∠A= ∠D, (简写成“角角边”或“ AAS 的两个三角形全等 . ABC ∠ B=∠E.AC=EF.求证:△ ≌△ DEF.
A
D
授 课 教 师 王 兴 建
B
C
E
F
符号语言表示:


在△ABC和△ DEF中 ∠A= ∠D ∠B= ∠E BC= EF
△ABC≌△ DEF

(AAS)
课堂练习:
2、如图∠ACB=∠DFE,BC=EF, ∠A=∠D。求证∠B=∠E 。
B
A
授 课 教 师 王 兴 建
C
F D E

课堂练习
3 如图,小明、小强一起踢球,不小心把一 块三角形 的装饰玻璃踢碎了,摔成了3 块,两人决定赔 偿.你能告诉 他们只带其中哪一块去玻璃店,就可以买 到一块完全一的 玻璃吗?
例1.已知:点D在AB上,点E在AC上,BE
和CD相交于点O,AB=AC,∠B=∠C。 求证:AD=AE
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
授 课 教 师 王 兴 建
1
(A)带3去
2

3(C)带Biblioteka 去(B)带2去课堂小结
(1)本节课学习了几种判断两个三角形全 等的方法?分别是什么?它们之间有什么共同点 和区别? (2)本节课学习的两种方法能否用“两角一 边相等, 则三角形全等” 来代替?
授 课 教 师 王 兴 建

授 课 教 师 王 兴 建
△ABC≌△ DEF

(AAS)
课堂练习:
2、如图∠ACB=∠DFE,BC=EF, ∠A=∠D。求证∠B=∠E 。
B
A
授 课 教 师 王 兴 建
C
F D E

课堂练习
3 如图,小明、小强一起踢球,不小心把一 块三角形 的装饰玻璃踢碎了,摔成了3 块,两人决定赔 偿.你能告诉 他们只带其中哪一块去玻璃店,就可以买 到一块完全一的 玻璃吗?
例1.已知:点D在AB上,点E在AC上,BE
和CD相交于点O,AB=AC,∠B=∠C。 求证:AD=AE
A
授 课 教 师 王 兴 建
D O B
E

C
课堂练习: 1 如图,在△ABC和△DEF中, ∠A=
∠D, ∠B= ∠E.AC=EF.求证:△ABC≌△ DEF.
A
授 课 教 师 王 兴 建
D
B

3、两边及一角对应相等
1)两边和它们的夹角对应相等(SAS) 2)两边和其中一边所对的角对应相等(SSA)

探究:
先任意画出一个△ABC,再画一个 把画好的 △ A'B'C'剪下来,放到△ABC上,它 授 们能够重合吗?
课 教 师 王 兴 建
△ A'B'C',使A'B'=AB, ∠A'=∠A, ∠B'=∠B 。
C
E
F

三角形全等的判定方法四: 两角分别相等且其中一组等角的对边相等 练习1 如图,在△ABC和△DEF中, ∠A= ∠D, (简写成“角角边”或“ AAS 的两个三角形全等 . ABC ∠ B=∠E.AC=EF.求证:△ ≌△ DEF.
A
D
授 课 教 师 王 兴 建
B
C
E
F
符号语言表示:


在△ABC和△ DEF中 ∠A= ∠D ∠B= ∠E BC= EF
授 课 教 师 王 兴 建

知识回顾: 1、判断两个三角形全等至少要有几个条件?
2、两个三角形满足三个条件有哪些可能的情况? A
A′
它们都能判定两 个三角形全等吗?
授 课 教 师 王 兴 建
B
C
B′
C′
{
1、三边对应相等(SSS) 2、三角对应相等 (AAA)
×

{ × 1)两角和它们的夹边对应相等(ASA) 4、两角及一边对应相等 { 2)两角和其中一角的对边对应相等(AAS)
C

A
B
三角形全等的判定方法三: 两角和它们的夹边分别相等的两个三角形 (可简写成“角边角”或 全等. A′ A “ASA”)
B
授 课 教 师 王 兴 建
C
B′
C′
符号语言表示:
在△ABC和△ A'B'C'中


∠A= ∠A' AB= A'B' ∠B= ∠B'
∴ △ABC≌△ A'B'C'
(ASA)
相关文档
最新文档