画伯德图
合集下载
如何绘制伯德图PPT课件
G( j ) G1 ( j )G2 ( j )Gn ( j ) G( j ) G1 ( j ) G2 ( j ) Gn ( j ) L( ) 20 lg G( j) 20 lg G1 ( j) 20 lg G2 ( j ) 20 lg Gn ( j)
G( j ) 00
(5-63) (5-64)
100 00
900 1800
10 100 1000
图5-11 放大环节的Bode图
如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G( j) 1 j 1 1 e j90 j
7
当有n个积分环节串联时,即
dB L()
G(
j
)
(
1
j
)n
其对数幅频特性为
20 lg
G(
j )
20 lg
1
பைடு நூலகம்n
40
( 5-70 )
0
(5-71)
0.01 0.1
40 dB / dec
1
10
n 20 lg
G( j ) n 900
(5-72) 度 ()
6
设 ' 10 ,则有
20lg ' 20lg 10 20 20lg
dB L()
可见,其对数幅频特性是一条在
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线 (ω 轴),且以每增加十倍频降 低20分贝的速度(-20dB/dec ) 变化的直线。
40
20dB / dec
1
L() dB
G( j ) 00
(5-63) (5-64)
100 00
900 1800
10 100 1000
图5-11 放大环节的Bode图
如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G( j) 1 j 1 1 e j90 j
7
当有n个积分环节串联时,即
dB L()
G(
j
)
(
1
j
)n
其对数幅频特性为
20 lg
G(
j )
20 lg
1
பைடு நூலகம்n
40
( 5-70 )
0
(5-71)
0.01 0.1
40 dB / dec
1
10
n 20 lg
G( j ) n 900
(5-72) 度 ()
6
设 ' 10 ,则有
20lg ' 20lg 10 20 20lg
dB L()
可见,其对数幅频特性是一条在
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线 (ω 轴),且以每增加十倍频降 低20分贝的速度(-20dB/dec ) 变化的直线。
40
20dB / dec
1
L() dB
如何绘制伯德图PPT课件
900
是一条斜率为-n×20dB/dec,且在 00
ω =1(弧度/秒)处过零分贝线(ω
0.01 0.1
1
轴)的直线。相频特性是一条与ω 900
无关,值为-n×900且与ω 轴平行的 1800 直线。两个积分环节串联的Bode图
如图5-13所示。
图5-13 两个积分环节串联的Bode图
8
(三) 惯性环节
1
L() dB
40
20
0
0.01 0.1
1
-20
-40
( )
90o
45o
0
0.01 0.1
1
-45o
-90o
10
100
10
100
2
用伯德图分析系统有如下优点: (1) 将幅频特性和相频特性分别作图,使系统(或环
节) 的幅值和相角与频率之间的关系更加清晰;
(2) 幅值用分贝数表示,可将串联环节的幅值相乘变为相 加运算,可简化计算;
一阶微分环节的对数幅频特性如图5-16所示,渐近线的转折频
率 为1,转折频率处渐近特性与精确特性的误差为
,
其误20差lg 均2为正3d分B 贝数,误差范围与惯性环节类似。
相频特性是
当 时, G( j ); arctg
(5-78)
0 G( j0) 00
12
当 1 时,G( j 1) 450 ;
成的折线称为对数幅频特性的渐近线。如图5-14所示。
9
惯性环节的相频特性为
G( j ) arctgT (5-75)
当 0时,G( j0) 00;
当 1 时,G( j 1 ) 450;
是一条斜率为-n×20dB/dec,且在 00
ω =1(弧度/秒)处过零分贝线(ω
0.01 0.1
1
轴)的直线。相频特性是一条与ω 900
无关,值为-n×900且与ω 轴平行的 1800 直线。两个积分环节串联的Bode图
如图5-13所示。
图5-13 两个积分环节串联的Bode图
8
(三) 惯性环节
1
L() dB
40
20
0
0.01 0.1
1
-20
-40
( )
90o
45o
0
0.01 0.1
1
-45o
-90o
10
100
10
100
2
用伯德图分析系统有如下优点: (1) 将幅频特性和相频特性分别作图,使系统(或环
节) 的幅值和相角与频率之间的关系更加清晰;
(2) 幅值用分贝数表示,可将串联环节的幅值相乘变为相 加运算,可简化计算;
一阶微分环节的对数幅频特性如图5-16所示,渐近线的转折频
率 为1,转折频率处渐近特性与精确特性的误差为
,
其误20差lg 均2为正3d分B 贝数,误差范围与惯性环节类似。
相频特性是
当 时, G( j ); arctg
(5-78)
0 G( j0) 00
12
当 1 时,G( j 1) 450 ;
成的折线称为对数幅频特性的渐近线。如图5-14所示。
9
惯性环节的相频特性为
G( j ) arctgT (5-75)
当 0时,G( j0) 00;
当 1 时,G( j 1 ) 450;
如何绘制伯德图.ppt
j?
??
其幅频特性为
1
G ( j? ) ? ?
对数幅频特性是
(5-65) (5-66)
1
20 lg G ( j? ) ? 20 lg ? ? 20 lg ? ?
(5-67)
当 ? ? 0 . 1 时,20 lg G ( j 0 . 1 ) ? ? 20 lg 0 . 1 ? 20 ( dB ) ; 当 ? ? 1 时,20 lg G ( j1) ? ? 20 lg 1 ? 0 ( dB ) ;
当 ? ? 10 时,20 lg G ( j10 ) ? ? 20 lg 10 ? ? 20 ( dB ) 。
6
设 ? ' ? 10 ? ,则有
? 20 lg ? ' ? ? 20 lg 10 ? ? ? 20 ? 20 lg ?
可见,其对数幅频特性是一条 在
dB L(? )
60
(5-68)
ω =1(弧度/秒)处穿过零分贝线
(5-73) (5-74)
? ? 20 lg 1 ? T 2? 2
当 ? ?? 1 时, 20 lg G ( j ? ) ? ? 20 lg 1 ? T 2 ? 2 ? 0 ( dB ) ,
T
当 ? ?? 1 时,20 lg G ( j ? ) ? ? 20 lg 1 ? T 2 ? 2 ? ? 20 lg T ? ( dB )
40
(ω 轴),且以每增加十倍频降
20
? 20 dB / dec
低20分贝的速度( -20dB/dec )
0
0.01
0.1
1
10
?
变化的直线。
? 20
积分环节的相频特性是
? G ( j ? ) ? ? 90 0
Matlab画伯德图
我们经常会遇到使用Matlab画伯德图的情况,可能我们我们都知道bode这个函数是用来画bode图的,这个函数是Matlab内部提供的一个函数,我们可以很方便的用它来画伯德图,但是对于初学者来说,可能用起来就没有那么方便了。
譬如我们要画出下面这个传递函数的伯德图:
(这是一个用butter函数产生的2阶的,频率范围为[2020K]HZ的带通滤波器。
)
我们可以用下面的语句:这样,我们就可以得到以下的伯德图
可能我们会对这个图很不满意,第一,它的横坐标是rad/s,而我们一般希望横坐标是HZ;第二,横坐标的范围让我们看起来很不爽;第三,网格没有打开(这点当然我们可以通过在后面加上grid on解决)。
下面,我们来看看如何定制我们自己的伯德图风格:在命令窗口中输入:bodeoptions我们可以看到以下内容:。
如何绘制伯德图
20 lg 10 20(dB)
。
6
设 ' 10 ,则有
20 lg 20 lg 10 20 20 lg
'
(5-68)
dB L( )
可见,其对数幅频特性是一条在 ω =1(弧度/秒)处穿过零分贝线 ( ω 轴),且以每增加十倍频降 低 20 分贝的速度( -20dB/dec ) 变化的直线。 积分环节的相频特性是
对数幅频特性为
20 lg G( j ) 20 lg K
(5-61)
当K>1时,20lgK>0,位于横轴上方;
当K=1时,20lgK=0,与横轴重合;
当K<1时,20lgK<0,位于横轴下方。
4
放大环节的对数幅频特性如图5-11所示,它是一条与角频 率ω 无关且平行于横轴的直线,其纵坐 标为20lgK。
0
100
1000
(5-63)
180
0
放大环节的相频特性是
G( j ) 0
0
图5-11 放大环节的Bode图
(5-64) 如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G ( j ) 1 j j 1
1
e
j 90
2 2 2
(5-85)
相频特性是
G ( j ) arctg 2 1
2 2
dB
40
(5-86)20
0
1 1 10
0
精确特性
40dB / dec
二阶微分环节与振荡节的Bode
1
图关于ω 轴对称,如图5-21 。
。
6
设 ' 10 ,则有
20 lg 20 lg 10 20 20 lg
'
(5-68)
dB L( )
可见,其对数幅频特性是一条在 ω =1(弧度/秒)处穿过零分贝线 ( ω 轴),且以每增加十倍频降 低 20 分贝的速度( -20dB/dec ) 变化的直线。 积分环节的相频特性是
对数幅频特性为
20 lg G( j ) 20 lg K
(5-61)
当K>1时,20lgK>0,位于横轴上方;
当K=1时,20lgK=0,与横轴重合;
当K<1时,20lgK<0,位于横轴下方。
4
放大环节的对数幅频特性如图5-11所示,它是一条与角频 率ω 无关且平行于横轴的直线,其纵坐 标为20lgK。
0
100
1000
(5-63)
180
0
放大环节的相频特性是
G( j ) 0
0
图5-11 放大环节的Bode图
(5-64) 如图5-11所示,它是一条与角频率ω无关且与ω轴重合的直线。
5
(二)积分环节 积分环节的频率特性是
G ( j ) 1 j j 1
1
e
j 90
2 2 2
(5-85)
相频特性是
G ( j ) arctg 2 1
2 2
dB
40
(5-86)20
0
1 1 10
0
精确特性
40dB / dec
二阶微分环节与振荡节的Bode
1
图关于ω 轴对称,如图5-21 。
如何绘制伯德图讲诉
0.7
-10
( )
渐近线
40dB / Dec-4
-8
1
1
1
1
2
0.8 1.0
5
10
(deg)0° -30°
10T 5T
2T
T
T
T
T
左图是不同阻尼系数情况下的
-60°
0.1
-90° 0.2
0.3
-120° 0.5
-150° 0.7
1
2T T 2
2
几个特征点: 0,() 0; 1 ,() ; ,() 。
T
2
相频特性曲线在半对数坐标中关于( 0, -90°)点是斜对称的。
这里要说明的是当 (0, 1 ) 时,() (0,90) ,当 ( 1 , )
20log K
() 180
K 1
K 1 log
0 K 1
对数幅频特性:
0
L() 20lg K 0
0
K 0 log 相频特性:
() K 0
180
Thursday, May 02, 2019
K 1 K 1 0 K 1
-20
0°
-45°
-90°
1
1
1
1
1
2
5 10 20
20T 10T 5T
2T T
T
T
T
T
图中,红、绿线分别是低频、高频渐近线,蓝线是实际曲线。
Thursday, May 02, 2019
5
惯性环节的Bode图
波德图误差分析(实际频率特性和渐近线之间的误差):
-10
( )
渐近线
40dB / Dec-4
-8
1
1
1
1
2
0.8 1.0
5
10
(deg)0° -30°
10T 5T
2T
T
T
T
T
左图是不同阻尼系数情况下的
-60°
0.1
-90° 0.2
0.3
-120° 0.5
-150° 0.7
1
2T T 2
2
几个特征点: 0,() 0; 1 ,() ; ,() 。
T
2
相频特性曲线在半对数坐标中关于( 0, -90°)点是斜对称的。
这里要说明的是当 (0, 1 ) 时,() (0,90) ,当 ( 1 , )
20log K
() 180
K 1
K 1 log
0 K 1
对数幅频特性:
0
L() 20lg K 0
0
K 0 log 相频特性:
() K 0
180
Thursday, May 02, 2019
K 1 K 1 0 K 1
-20
0°
-45°
-90°
1
1
1
1
1
2
5 10 20
20T 10T 5T
2T T
T
T
T
T
图中,红、绿线分别是低频、高频渐近线,蓝线是实际曲线。
Thursday, May 02, 2019
5
惯性环节的Bode图
波德图误差分析(实际频率特性和渐近线之间的误差):
开环伯德图绘制
于是有: ω = K ⇒ ω0 = K ν
ν
75
《自动控制原理》电子教案
(5)绘制中频段 首先在横坐标轴上将转折频率按从低到高的顺序标出各转折频率。然后,依次在各转折频率处改变 直线的斜率 ,改变的多少取决于转折处环节的性质,如惯性环节的斜率为 − 20dB dec ,振荡环节为
− 40dB dec ,一阶微分环节为 + 20dB dec ,二阶微分环节为 + 40dB dec 等等。 例:已知单位反馈控制系统的开环传递函数为 GK ( s) = 100( s + 2) s( s + 1)(s + 20) ,试绘制其开环
ω
2
由图可知: 解得wc=4,
小结丗对最小相位系统、幅频特性与相频特性的关系
如果幅频特性的斜率为-1对应的相角为-pi/2; 如果幅频特性的斜率为-k对应的相角为-pi*k/2.
77
L(ω ) = 20 lg K − 20 ×ν × lg ω ω =1 = 20 lg K
③低频段直线(或其延长线)与零分贝线(横轴)的交点频率为 ω0 = K ,对于 I 型系统交点频
ν
1
率为 ω0 = K ,II 型系统交点频率为 ω0 =
1
K ;这是因为由低频段的幅频方程,可得到
L(ω ) = 20 lg K − 20 ×ν × lg ω = 0 ⇒ 20 lg K = 20 ×ν × lg ω = 20 lg ων
⎧ L (ω ) = −20 lg 1 + ω 2 − 20 lg lg 1 + 4ω 2 ⎧ϕ (ω ) = arctgω − arctg 2ω ⎪ 1 1 ,⎨ ⎨ 2 2 ⎩ϕ 2 (ω ) = −arctgω − arctg 2ω ⎪ L2 (ω ) = −20 lg 1 + ω − 20 lg lg 1 + 4ω ⎩
ν
75
《自动控制原理》电子教案
(5)绘制中频段 首先在横坐标轴上将转折频率按从低到高的顺序标出各转折频率。然后,依次在各转折频率处改变 直线的斜率 ,改变的多少取决于转折处环节的性质,如惯性环节的斜率为 − 20dB dec ,振荡环节为
− 40dB dec ,一阶微分环节为 + 20dB dec ,二阶微分环节为 + 40dB dec 等等。 例:已知单位反馈控制系统的开环传递函数为 GK ( s) = 100( s + 2) s( s + 1)(s + 20) ,试绘制其开环
ω
2
由图可知: 解得wc=4,
小结丗对最小相位系统、幅频特性与相频特性的关系
如果幅频特性的斜率为-1对应的相角为-pi/2; 如果幅频特性的斜率为-k对应的相角为-pi*k/2.
77
L(ω ) = 20 lg K − 20 ×ν × lg ω ω =1 = 20 lg K
③低频段直线(或其延长线)与零分贝线(横轴)的交点频率为 ω0 = K ,对于 I 型系统交点频
ν
1
率为 ω0 = K ,II 型系统交点频率为 ω0 =
1
K ;这是因为由低频段的幅频方程,可得到
L(ω ) = 20 lg K − 20 ×ν × lg ω = 0 ⇒ 20 lg K = 20 ×ν × lg ω = 20 lg ων
⎧ L (ω ) = −20 lg 1 + ω 2 − 20 lg lg 1 + 4ω 2 ⎧ϕ (ω ) = arctgω − arctg 2ω ⎪ 1 1 ,⎨ ⎨ 2 2 ⎩ϕ 2 (ω ) = −arctgω − arctg 2ω ⎪ L2 (ω ) = −20 lg 1 + ω − 20 lg lg 1 + 4ω ⎩
开环系统的频率特性绘制伯德图
1
s(1 s)(1 5s)
G(s)
10
s(1 s)(1 5s)
[具有积分环节的系统的频率特性的特点]:
m
频率特性可表示为:G(
j )
(
1
j )
i 1 n
(1 i s)
(1 Tj s)
j 1
m
其相角为: ( ) tg 1i
i 1
2
n j 1
tg 1Tj
当
0 时,(0)
,G(0)
比较开环系统极坐标方法,用伯德图表示的频率特性有如下优点: (1)把幅频特性的乘除运算转变为加减运算。
(2)在对系统作近似分析时,一般只需要画出对数幅频特性曲线的渐近线,从 而大大简化了图形的绘制。
(3)在采用实验方法时,可将测得系统(或环节)频率响应的数据画在半对 数坐标纸上。
开环系统频率特性为:
j )
K
1 1
jT2 jT1
两个系统的幅频特性完全相同。而它们的相频特性则有很大的区
别。由系统a、b的相频表达式:
a ( ) tan 1 T2 tan 1 T1 b ( ) tan 1 T2 tan 1 T1
40 35 30 25 20
0
a
-90
b
180
10-1
100
101
(K=100,T1=1,T2=0.1)
且有: (0)
2
, ()
(n
m)
2
。n
n1
2n2 ,
m
m1
2m2
由以上的分析可得到开环系统对数频率特性曲线的绘制方 法:先画出每一个典型环节的波德图,然后相加。
[例]:开环系统传递函数为:G(s) 画出该系统的波德图。
3.1.2波特图的绘制(精)
图 1 波特图的横坐标和纵坐标
�����/��,即横轴对lg�将是等分的,如图 1 横轴对照图所示。 ����与����的对应关系如图 1 纵轴对照图所示。
由于习惯上都以频率�作为自变量,因此横轴为对数坐标,标以自变量 而波特图纵轴以等分坐标来标定����, 其单位是分贝����, 而且是20lgM���, 由图可见, 波特图是画在纵轴位等分坐标、 横轴为对数坐标的特殊Байду номын сангаас标纸上,
波特图的绘制
波特图(Bode 图)又叫伯德图。 引入对数幅频特性����,可以使串联环节的幅值相乘转化为对数幅频特性
的相加;而����或它的渐近线大多与���成线性关系,因此,若以����为纵轴, 单位长度, �将变化 10 倍[以后称这个为一个 “10 倍频程” (decade) , 记为 dec]。 波特图的横坐标和纵坐标示意图如图 1 所示。 ���为横轴,则其图线将为直线。另一方面,若以���为横轴,则���每变化一个
特性����也画在与����完全相同的半对数坐标纸上,其横轴的取值与对数幅频 特性坐标相同,画在半对数坐标纸上的����称为对数相频特性。
这种坐标纸叫“半对数坐标纸” 。 注意: 1、对数坐标是不均匀坐标,是由疏到密周期性变化排列的,因此,不能像 等分坐标那样任意取值、任意移动,在对数坐标上的取值和移动是以“级”为单 位的。 2、对数坐标的每一级代表 10 倍频程,即每个等分的级的频率差 10 倍,若 第一个“1”处为 0.1,则以后的“1”处便分别为 1、10、100、1000 等。究 竟第一个“1”处的频率值取为多少,要视研究的系统所需要的频率段而定。在 一般的调速系统和随动系统中,第一个“1”处的频率值通常在 0.01、0.1、1 三个数值中取值。 由于对数幅频特性����是画在半对数坐标纸上的,为便于比较对照,相频
如何绘制伯德图
低频高频渐近线的交点为:20log K 20log K 20logT ,得:
T 1,o
1 T
,称为转折频率或交换频率。
T可uesd以ay,用Mar这ch 3两1, 2段020渐近线近似的表示惯性环节的对数幅频特性。 4
惯性环节的Bode图
10 渐近线
0
-10
20dB / Dec
-20
0°
-45°
T T T 20T 10T 5T
112 2T T T
5 10 20 TTT
一阶微分环节的波德图
惯性环节的波德图
Tuesday, March 31, 2020
17
二阶微分环节的频率特性
③ 二阶微分环节: G(s) T 2s2 2Ts 1
幅频和相频特性为:
A()
(1
T
2
2
)2
(2T
)2,
(
)
tg 1
第三节 典型环节的频率特性 之一 波德图
Tuesday, March 31, 2020
1
比例环节的bode图
二、典型环节的波德图
⒈ 比例环节:G(s) K, (K 0),G( j) K 幅频特性:A() K;相频特性:() 0
L() / dB
20log K
20log K
20log K
()
频率特性分别为:
G( j) j G( j) 1 jT G( j) 1 T 2 2 j2T
Tuesday, March 31, 2020
14
纯微分环节的波德图
① 纯微分: A( )
L( )(dB)
20
L( ) 20 log A( ) 20 log
如何绘制伯德图.
20 log K
20 log K
? (? )
180?
K ?1
K ? 1 log ?
0? K?1
K ? 0 log ?
? 180?
Sunday, October 07, 2018
对数幅频特性:
?? 0
L(? ) ? 20 lg K ? ??? 0
??? 0
K ?1 K ?1 0? K ?1
相频特性:
? (? ) ? ? K ? 0?
?( ? ) -63.4 -71.5 -76 -78.7 -81.9 -84.3 -87.1 -88.9 -89.4
当? ? 0时,? (0) ? 0;当? ? 1 时,? ( 1) ? ? ? ;当? ? ? 时,? (? ) ? ? ? 。
T
T4
2
由图不难看出相频特性曲线在半对数坐标系中对于(? 0, -45°)
当? ? 0时,对数幅频曲线趋近于低频渐近线,当? ? ? 时,趋近于高频渐近线。
低频高频渐近线的交点为:20 log K ? 20 log K ? 20 log T? ,得:
T?
? 1,? o
?
1 T
,称为转折频率或交换频率。
S可und以ay, O用cto这ber两07,段201渐8 近线近似的表示惯性环节的对数幅频特性。 4
点是斜对称的,这是对数相频特性的一个特点。
当时间常数T 变化时,对数幅频特性和对数相频特性的形状
都不变,仅仅是根据转折频率1/T 的大小整条曲线向左或向
右平移即可。而当增益改变时,相频特性不变,幅频特性上
下平移。
Sunday, October 07, 2018
7
振荡环节的频率特性
20 log K
? (? )
180?
K ?1
K ? 1 log ?
0? K?1
K ? 0 log ?
? 180?
Sunday, October 07, 2018
对数幅频特性:
?? 0
L(? ) ? 20 lg K ? ??? 0
??? 0
K ?1 K ?1 0? K ?1
相频特性:
? (? ) ? ? K ? 0?
?( ? ) -63.4 -71.5 -76 -78.7 -81.9 -84.3 -87.1 -88.9 -89.4
当? ? 0时,? (0) ? 0;当? ? 1 时,? ( 1) ? ? ? ;当? ? ? 时,? (? ) ? ? ? 。
T
T4
2
由图不难看出相频特性曲线在半对数坐标系中对于(? 0, -45°)
当? ? 0时,对数幅频曲线趋近于低频渐近线,当? ? ? 时,趋近于高频渐近线。
低频高频渐近线的交点为:20 log K ? 20 log K ? 20 log T? ,得:
T?
? 1,? o
?
1 T
,称为转折频率或交换频率。
S可und以ay, O用cto这ber两07,段201渐8 近线近似的表示惯性环节的对数幅频特性。 4
点是斜对称的,这是对数相频特性的一个特点。
当时间常数T 变化时,对数幅频特性和对数相频特性的形状
都不变,仅仅是根据转折频率1/T 的大小整条曲线向左或向
右平移即可。而当增益改变时,相频特性不变,幅频特性上
下平移。
Sunday, October 07, 2018
7
振荡环节的频率特性
第五章 伯德图与那奎斯特图的画法
横坐标取值范围:最小转角频率左边两个十倍频程,最大转角 频率右边两个十倍频程,注意取整。所以实际范围是多少?
0.01 1000 rad s 1
9
5.2.3 绘制系统伯德图的一般步骤
80
L( ) dB
-80
②
20 0 -20 90 0 -90 -180 -270 -360
G ( j )
20dB / dec
/ rad s 1
通常每90°作为一个基本单位,其值尽可能大。
-180
3
5.2.3 绘制系统伯德图的一般步骤
幅频曲线叠加时的要点 首先:典型曲线绘制要标准、要清楚。幅频图各曲线斜率应按 参考斜率平移绘制。各转角频率相互位置取值要准确。 其次:幅频图叠加时起始段主要是比例环节和积分 ( 或微分 ) 环 节起作用,应先将它们进行叠加;叠加方法:过比例环节中ω=1
段 ( 频率趋于无穷大 ) 的位置,可用所有典型环节的相频特性求 和来判断(演草纸中完成)。
( ) G1 ( j ) G2 ( j ) Gn ( j )
0
lim ( ) ?
lim ( ) ?
6
5.2.3 绘制系统伯德图的一般步骤
22 3
1
j 1) 3 G ( j ) j ( j )2 j j ( 1)[ 1] 2 2 2 7.5(
④
100
①
rad s 1
0.01
20
1000
( )
2
0.01 1 2 3
⑤
③
④
③
100
1 ① rad s
1000
⑤
G ( j )
②
绘制伯德图
900 1800 2700
0.1
0.27
1
2
39.7
5
1tan 0.1x 0.2x arg tan 1800 1 1 1 1 900 arctan x arg tan x 1800 10 5 1 1 0 arctan x 90 arg tan x 10 5 1 1 tan arctan x tan 900 arg tan x 10 5
G1 ( s ) 180 1 1 s s 1 s 1 6 2
, G2 ( s)
180(1 1.28s ) 1 s s 1 64 s 1 (0.01s 1) 6
试绘制两系统的开环伯德图
即 x 6.85 请参照上述例子,完成以下 2 题: 1、已知两系统的开环传递函数分别为
G1 ( s ) 10 , 10(0.456s 1) G2 ( s ) s s 1 s s 1 (0.114s 1)
试绘制两系统的开环伯德图 2、已知两系统的开环传递函数分别为
L3 () 60lg 20 20lg150
60 40 20 0
令 L3 () 0 ,有 30
lg 20 20lg150 1.05 60
从而, 11.45 计算(5) 因为 100
G1 ( j) 1800
0.01 0.024
G2 ( j 0.01) arctan 3.7 0.01 900 arctan 0.1 0.01 arctan 0.2 0.01 arctan 41 0.01 2.12 90 0.06 0.12 22.29 110.350 G2 ( j 0.05) arctan 3.7 0.05 900 arctan 0.1 0.05 arctan 0.2 0.05 arctan 41 0.05 10.48 90 0.29 0.57 64 144.380 G2 ( j 0.1) arctan 3.7 0.1 900 arctan 0.1 0.1 arctan 0.2 0.1 arctan 41 0.1 20.3 90 0.57 1.15 76.29 147.710 G2 ( j 0.27) arctan 3.7 0.27 900 arctan 0.1 0.27 arctan 0.2 0.27 arctan 41 0.27 44.97 90 1.55 3.09 84.84 134.510 G2 ( j1) arctan 3.7 1 900 arctan 0.1 1 arctan 0.2 1 arctan 41 1 74.87 90 5.71 11.31 88.6 120.750 G2 ( j 2.67) arctan 3.7 2.67 900 arctan 0.1 2.67 arctan 0.2 2.67 arctan 41 2.67 82.22 90 14.95 28.1 89.47 140.30 G2 ( j 6.85) arctan 3.7 6.85 900 arctan 0.1 6.85 arctan 0.2 6.85 arctan 41 6.85 87.74 90 34.41 53.87 89.80 180.34 0
0.1
0.27
1
2
39.7
5
1tan 0.1x 0.2x arg tan 1800 1 1 1 1 900 arctan x arg tan x 1800 10 5 1 1 0 arctan x 90 arg tan x 10 5 1 1 tan arctan x tan 900 arg tan x 10 5
G1 ( s ) 180 1 1 s s 1 s 1 6 2
, G2 ( s)
180(1 1.28s ) 1 s s 1 64 s 1 (0.01s 1) 6
试绘制两系统的开环伯德图
即 x 6.85 请参照上述例子,完成以下 2 题: 1、已知两系统的开环传递函数分别为
G1 ( s ) 10 , 10(0.456s 1) G2 ( s ) s s 1 s s 1 (0.114s 1)
试绘制两系统的开环伯德图 2、已知两系统的开环传递函数分别为
L3 () 60lg 20 20lg150
60 40 20 0
令 L3 () 0 ,有 30
lg 20 20lg150 1.05 60
从而, 11.45 计算(5) 因为 100
G1 ( j) 1800
0.01 0.024
G2 ( j 0.01) arctan 3.7 0.01 900 arctan 0.1 0.01 arctan 0.2 0.01 arctan 41 0.01 2.12 90 0.06 0.12 22.29 110.350 G2 ( j 0.05) arctan 3.7 0.05 900 arctan 0.1 0.05 arctan 0.2 0.05 arctan 41 0.05 10.48 90 0.29 0.57 64 144.380 G2 ( j 0.1) arctan 3.7 0.1 900 arctan 0.1 0.1 arctan 0.2 0.1 arctan 41 0.1 20.3 90 0.57 1.15 76.29 147.710 G2 ( j 0.27) arctan 3.7 0.27 900 arctan 0.1 0.27 arctan 0.2 0.27 arctan 41 0.27 44.97 90 1.55 3.09 84.84 134.510 G2 ( j1) arctan 3.7 1 900 arctan 0.1 1 arctan 0.2 1 arctan 41 1 74.87 90 5.71 11.31 88.6 120.750 G2 ( j 2.67) arctan 3.7 2.67 900 arctan 0.1 2.67 arctan 0.2 2.67 arctan 41 2.67 82.22 90 14.95 28.1 89.47 140.30 G2 ( j 6.85) arctan 3.7 6.85 900 arctan 0.1 6.85 arctan 0.2 6.85 arctan 41 6.85 87.74 90 34.41 53.87 89.80 180.34 0
频率特性法-奈氏图和伯德图画法
基本原理
频率特性法基于控制系统的频率响应,即系统对不同频率正弦输入信号的响应 特性。通过分析系统的频率响应,可以了解系统的幅频特性和相频特性,进而 评估系统的稳定性、动态性能和稳态精度。
频率特性法在控制系统分析中应用
稳定性分析
通过频率特性法可以判断控制系 统的稳定性。例如,通过奈奎斯 特稳定判据,可以根据开环频率
性能指标
从伯德图中还可以提取出系统的性能指标,如带宽、相位裕度、幅值裕度等。这些指标对于控制系统的设计和分 析具有重要意义。
04 奈氏图和伯德图在控制系 统设计中的应用
根据性能指标要求进行参数调整
01
幅值裕度和相角裕度
通过奈氏图或伯德图可以直观地看出系统的幅值裕度和相角裕度,进而
判断系统的稳定性和性能。根据性能指标要求,可以通过调整系统参数
03 伯德图绘制方法与步骤
确定开环传递函数并转换为标准形式
写出开环传递函数
首先,需要写出控制系统的开环传递函数。这通常是一个关 于复数变量s的有理函数频率响应的 形式。这通常涉及到将传递函数转换为极坐标形式,并分离 出幅值和相位信息。
绘制幅频特性和相频特性曲线
来改变幅值裕度和相角裕度,以满足设计要求。
02
截止频率和带宽
截止频率和带宽是控制系统的重要性能指标。通过奈氏图或伯德图可以
确定系统的截止频率和带宽,进而根据性能指标要求进行参数调整,以
优化系统性能。
03
系统型别和稳态误差
控制系统设计中,通常需要考虑系统型别和稳态误差。通过奈氏图或伯
德图可以确定系统的型别和稳态误差系数,进而根据性能指标要求进行
02 奈氏图绘制方法与步骤
确定开环传递函数
写出开环传递函数
根据系统方框图或信号流图,写 出开环传递函数。
频率特性法基于控制系统的频率响应,即系统对不同频率正弦输入信号的响应 特性。通过分析系统的频率响应,可以了解系统的幅频特性和相频特性,进而 评估系统的稳定性、动态性能和稳态精度。
频率特性法在控制系统分析中应用
稳定性分析
通过频率特性法可以判断控制系 统的稳定性。例如,通过奈奎斯 特稳定判据,可以根据开环频率
性能指标
从伯德图中还可以提取出系统的性能指标,如带宽、相位裕度、幅值裕度等。这些指标对于控制系统的设计和分 析具有重要意义。
04 奈氏图和伯德图在控制系 统设计中的应用
根据性能指标要求进行参数调整
01
幅值裕度和相角裕度
通过奈氏图或伯德图可以直观地看出系统的幅值裕度和相角裕度,进而
判断系统的稳定性和性能。根据性能指标要求,可以通过调整系统参数
03 伯德图绘制方法与步骤
确定开环传递函数并转换为标准形式
写出开环传递函数
首先,需要写出控制系统的开环传递函数。这通常是一个关 于复数变量s的有理函数频率响应的 形式。这通常涉及到将传递函数转换为极坐标形式,并分离 出幅值和相位信息。
绘制幅频特性和相频特性曲线
来改变幅值裕度和相角裕度,以满足设计要求。
02
截止频率和带宽
截止频率和带宽是控制系统的重要性能指标。通过奈氏图或伯德图可以
确定系统的截止频率和带宽,进而根据性能指标要求进行参数调整,以
优化系统性能。
03
系统型别和稳态误差
控制系统设计中,通常需要考虑系统型别和稳态误差。通过奈氏图或伯
德图可以确定系统的型别和稳态误差系数,进而根据性能指标要求进行
02 奈氏图绘制方法与步骤
确定开环传递函数
写出开环传递函数
根据系统方框图或信号流图,写 出开环传递函数。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理
ZIDONGKONGZHI
总目录 章目录 返回 上一页 下一页
第五章 线性系统的频域分析
5.4 系统开环频率特性的绘制
④ 以后每遇到一个交接频率,就改变一次渐近线斜率。
每当遇到
1 jT j 1
环节的交接频率时,渐近线斜率
增加-20dB/十倍频;
每当遇到 ( jTi 1) 环节的交接频率时,斜率增加
自动控制原理
ZIDONGKONGZHI
总目录 章目录 返回 上一页 下一页
第五章 线性系统的频域分析
5.4 系统开环频率特性的绘制
⑥ 画出各串联典型环节相频特性,将它们相加后得到 系统开环相频特性。
绘制开环系统对数相频特性时,可分环节绘 出各分量的对数相频特性,然后将各分量的纵坐 标相加,就可以得到系统的开环对数相频特性。
自动控制原理
ZIDONGKONGZHI
总目录 章目录 返回 上一页 下一页
第五章 线性系统的频域分析
例5-12 已知系统的开环传递函数为
L L ( )
G( s) H ( s) K (1 s)
dB
1 1 1 (T1 T2 ) 2 s T1 s 1 T2 s 2T2 s 1
第五章 线性系统的频域分析
5.4 系统开环频率特性的绘制 二、绘制系统开环频率特性伯德图的步骤
① 确定交接频率w1、w2、w3……,标在角频率w轴上。 ② 在w=1处,量出幅值20lgK,其中K为系统开环放大系数。 (在图中标出相应的字母,如A点) ③ 通过A点作一条-20NdB/十倍频的直线,其中N为系统的 无差阶数,直到第一个交接频率w1。如果w1<1,则低频渐 近线的延长线经过A点。
B
渐近特性
( )
20 log K
0
1
/ dec
1 20 dBT1 dec /
1 T2
C
40 dB / dec
40 dB / dec 20 dB / dec D 20 dB / dec
开环系统对数幅频特性图
自动控制原理
ZIDONGKONGZHI
+20dB/十倍频;
2 n 每当遇到 2 环节的交接频率时, ( j ) 2 2 n j n 斜率增加-40dB/十倍频。
自动控制原理
ZIDONGKONGZHI
总目录 章目录 返回 上一页 下一页
第五章 线性系统的频域分析
5.4 系统开环频率特性的绘制
⑤ 绘出用渐近线表示的对数幅频特性以后,如果需要,可以进 行修正。通常只需修正交接频率处以及交接频率的二倍频和 1/2倍频处的幅值就可以了。 对于一阶项,在交接频率处的修正值为±3dB; 在交接频率的二倍频和1/2倍频处的修正值为±1dB。 1 对于二阶项,在交接频率处的修正值可由公式 20 lg 2 求出。 系统开环对数幅频特性L(ω)通过0分贝线,即 L( c ) 0 或 A( c ) 1 c c 时的频率 称为穿越频率。穿越频率 是开环对数相 频特性的一个很重要的参量。
60 dB / dec
总目录 章目录 返回 上一页 下一页