苏教版八下数学第九章平行四边形--折叠、动点问题

合集下载

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,▱ABCD中,E、F和G、H分别是AD和BC的三等分点,则图中平行四边形的个数是()A.3个B.4个C.5个D.6个2、下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称 C.旋转后能重合的两个图形成中心对称 D.旋转180°后能重合的两个图形成中心对称3、能够构成平行四边形三个内角的度数是()A.85°,95°,85°B.85°,105°,75°C.85°,85°,115°D.85°,95°,105°4、下列地铁标志图形中,属于中心对称图形的是( )A. B. C. D.5、如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD 成为菱形,下列给出的条件不正确的是()A.AB=ADB.AC⊥BDC.AC=BDD.∠BAC=∠DAC6、下列命题正确的是()A.对角线相等的四边形是矩形B.平分弦的直径垂直于弦,并且平分弦所对的弧C.等弧对等弦D.相等的圆周角所对的弧相等,所对的弦也相等7、下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.8、如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为()A. B. C. D.9、如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y 轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(-4,4),(2,1),则位似中心的坐标为()A.(0,3)B.(0,2.5)C.(0,2)D.(0,1.5)10、如图,菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线交于点F,若∠BCF=90°,则∠D的度数为()A.60°B.55°C.45°D.40°11、如图,在矩形OACB中,A(﹣2,0),B(0,﹣1),若正比例函数y=kx的图象经过点C,则k值是()A.﹣2B.C.2D.12、菱形的周长等于高的8倍,则此菱形的较大内角是().A.60°B.90°C.120°D.150°13、下列性质中,矩形具有而一般平行四边形不具有的是()。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图所示,折叠矩形,使点落在边的点处,为折痕,已知,,则的长等于()A. B. C. D.2、如图,在菱形中,点E是的中点,以C为圆心,长为半径作,交于点F,连接,.若,,则阴影部分的面积是()A. B. C. D.3、如图, 与关于点O成中心对称,下列说法:①∠BAC=C,②AC= ,③OA=O ,④ABC与的面积相等,其中正确的有( ).A.1个B.2个C.3个D.4个4、如图正方形ABCD中以CD为边向外作等边三角形CDE,连接AE、AC,则∠CAE度数为( )A.15°B.30°C.45°D.20°5、如图,为平行四边形的对角线,,于E,于F,、相交于H,直线交线段的延长线于G,下面结论:①;②;③;④其中正确的个数是()A.1B.2C.3D.46、在平面直角坐标系中,有一点P绕原点旋转180°后得到点P'的坐标是(2,-5),那么点P的坐标是()A.(5,-2)B.(-2,5)C.(-5,2)D.(-2,-5)7、如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A. πB. πC.2 πD.2π8、若四边形ABCD的顶点坐标分别是A(-2,0),B(0,1),C(2,0),D (0,-1),则四边形ABCD是()A.矩形B.菱形C.正方形D.非平行四边形9、如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y= 与正方形ABCD有公共点,则k的取值范围为()A.1<k<9B.2≤k≤34C.1≤k≤16D.4≤k<1610、如图,在菱形中,,,是的中点.过点作,垂足为.将沿点到点的方向平移,得到.设、分别是、的中点,当点与点重合时,四边形的面积为()A. B. C. D.11、如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=4,则AD的长为()A.2B.3C.3D.212、如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D是AC上一个动点,以AB为对角线的所有平行四边形ADBE中,线段DE的最小值是()A.4B.2C.2D.613、下列命题正确的是()A.圆内接四边形的对角互补B.平行四边形的对角线相等C.菱形的四个角都相等D.等边三角形是中心对称图形14、在▱ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠A+∠B=180°C.AB=ADD.∠A≠∠C15、下列图形既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB 于点E,则AD的长为 ________ .17、如图,点O是矩形纸片ABCD的对称中心,E是BC上一点,将纸片沿AE折叠后,点B恰好与点O重合.若BE=3,则折痕AE的长为________.18、如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°,得到△CBD,若点B的坐标为(4,0),则点C的坐标为________.19、已知△ABC中,AB=AC,cos∠B= ,BC=2,把△ABC绕点C旋转,使点B落在边AB上的点E的位置,则AE=________.20、已知平行四边形ABCD中,∠A+∠C=200°,则∠B的度数是________.21、如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在负半轴、正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y= (x<0)的图象交AB于点N,S=32,tan∠DOE = ,则BN的长为________。

苏教版初二八下期中复习平行四边形折叠问题含答案(非常好)

苏教版初二八下期中复习平行四边形折叠问题含答案(非常好)

综合运用:1、如图,矩形纸片ABCD,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD 上有一点P,PD=3cm,过P作PF⊥AD交BC于,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.解析2、如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG >60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为。

【解答】解:连接BH,如图,∵沿直线EG将纸片折叠,使点B落在纸片上的点H处,∴∠1=∠2,EB=EH,BH⊥EG,而∠1>60°,∴∠1≠∠AEH,∵EB=EH,∴∠EBH=∠EHB,又∵点E是AB的中点,∴EH=EB=EA,∴EH=AB,∴△AHB为直角三角形,∠AHB=90°,∠3=∠4,∴∠1+∠EBH=90°,∠EBH+∠4=90°,∴∠1=∠4,∴∠1=∠3,∴∠1=∠2=∠3=∠4.则与∠BEG相等的角有3个.故答案为:3.3、如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ 折叠,若点C恰好落在MN上的点P处,则PQ的长为()A.B.C.D.4、如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE 沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE 的长为________.5、小明尝试着将矩形ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B 点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为。

本题主要考查图形变换的应用。

如图所示,连接,根据折叠的性质可得,,,所以为等腰直角三角形。

专题9.16四边形与动点问题(重难点培优30题,八下苏科)

专题9.16四边形与动点问题(重难点培优30题,八下苏科)

【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【苏科版】专题9.16四边形与动点问题大题提升训练(重难点培优30题)班级:___________________ 姓名:_________________ 得分:_______________一、解答题1.(2022春·江苏连云港·八年级校考阶段练习)如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P、Q的速度都是1cm/s,连接PQ,AQ,CP,设点P、Q运动的时间为t(s).(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,四边形AQCP是菱形?(3)分别求出(2)中菱形AQCP的周长和面积.2.(2022春·江苏无锡·八年级校考阶段练习)已知,如图,O为坐标原点,四边形OABC为矩形,A(20,0),C(0,8),点D是OA的中点,动点P在线段BC上以每秒2个单位长的速度由点C向B运动.设动点P的运动时间为t秒.(1)当t为何值时,四边形PODB是平行四边形?(2)在直线CB上是否存在一点Q,使得O、D、Q、P四点为顶点的四边形是菱形?若存在,求t的值,并求出Q点的坐标;若不存在,请说明理由.(3)在线段PB上有一点M,且PM=10,当P运动秒时,四边形OAMP的周长最小, 并在图②画出点M的位置.3.(2022春·江苏苏州·八年级苏州市立达中学校校考期中)如图,▱ABCD中,∠B=2∠A,动点P、Q、M、N分别从点A、B、C、D同时出发,沿平行四边形的边,分别向点B、C、D、A匀速运动,运动时间记为t,当其中一个点到达终点时,其余各点均停止运动,连接PQ,QM,MN,NP.已知AB=6cm,BC=4.5cm,动点P、M的速度均是2cm/s,动点Q、N的速度均是1cm,(1)AP=_______cm,CQ=_______cm(用含t的代数式表示)(2)在点P、Q、M、N的整个运动过程中,四边形PQMN一定会是一种特殊的四边形吗?如果是,指出并证明你的结论,如果不是,说明理由.(3)在点P、Q、M、N的运动过程中,四边形PQMN能成为菱形吗?如果能,求出t的值,如果不能,说明理由.4.(2022春·江苏扬州·八年级校联考期中)如图,在平面直角坐标系中,四边形AOCB的点O在坐标原点上,点A在y轴上,AB∥OC,点B的坐标为(15,8),点C的坐标为(21,0),动点M从点A沿AB方向以每秒1个长度单位的速度运动,动点N从C点沿CO的方向以每秒2个长度单位的速度运动.点M、N 同时出发,一点到达终点时,另一点也停止运动,设运动时间为t秒.(1)当t=2时,点M的坐标为,点N的坐标为;(2)当t为何值时,四边形AONM是矩形?5.(2022春·江苏徐州·八年级校考阶段练习)如图,在长方形ABCD中,AB=6cm,BC=12cm,点P从A点出发沿A-B-C-D移动,且点P的速度是2cm/s,设运动的时间为t秒,若点P与点A、点D连线所围成的三角形PAD的面积表示为S1.(1)当t=2秒时,求S1 =______cm2;(2)当S1=12cm2时,则t=______秒;(3)如图2,若在点P运动的同时,点Q也从C点同时出发,沿C-B运动,速度为1cm/s,若点Q与点C、点D连线所围成的三角形QCD的面积表示为S2,当|S1-S2|=18时,求t的值.6.(2021秋·江苏常州·八年级常州实验初中校考阶段练习)如图,在矩形ABCD中,∠B=∠C=90°,AB =DC=20cm,BC=15cm,点E为AB的中点.如果点P在线段BC上以5cm/秒的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,且P、Q两点仍然同时出发,当点Q的运动速度为多少时,△BPE与△CQP全等?7.(2021春·江苏无锡·八年级统考期中)已知,如图,在矩形ABCD中,AB=1,BC=2,点P是直线BC上一个动点,连接AP,作DQ⊥AP于点Q.(1)AP•DQ=;(2)以AP、AD为邻边作平行四边形APMD,当平行四边形APMD是菱形时,求PQ的长;(3)连接DP,以AP、DP为邻边作平行四边形APDN,当对角线PN取得最小值时,求DQ的长.8.(2021春·江苏苏州·八年级常熟市第一中学校考阶段练习)在四边形ABCD中,AD//BC,BC⊥CD,AD =6cm,BC=10cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发,以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t.(1)t取何值时,四边形EFCD为矩形?(2)M是BC上一点,且BM=4,t取何值时,以A、M、E、F为顶点的四边形是平行四边形?9.(2021春·江苏连云港·八年级统考期中)如图所示,AD//BC,∠BAD=90°,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C作CF⊥BE于点F.(1)线段BF与图中哪条线段相等?写出来并加以证明:(2)若AB=8,BC=10,P从E沿直线ED方向运动,Q从C出发沿直线CB方向运动,两点同时出发且速度均为每秒1个单位.①求出当t为何值时,四边形EPCQ是矩形;②求出当t为何值时,四边形EPCQ是菱形.10.(2021春·江苏镇江·八年级统考阶段练习)如图,O为坐标原点,四边形OABC为矩形,A(10,0),C (0,4),点D是线段OA的中点,点P在线段BC上以每秒1个单位长的速度由点C向点B运动.(1)当t为何值时,四边形PODB是平行四边形?(2)在直线BC上是否存在一点Q,使得点O、点D、点P、点Q构成菱形,若存在,求t的值;若不存在,请说明理由.11.(2020·江苏苏州·八年级统考期中)如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.(1)求DM的长;(2)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;(3)在(2)的条件下,当点P在边AB上运动时,是否存在这样的t的值,使∠MPB与∠BCD互为余角?若存在,求出t的值;若不存在,请说明理由.12.(2021秋·江苏扬州·八年级校考阶段练习)如图1,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/s的速度沿BC向点C运动(点P运动到点C处时停止运动),设点P的运动时间为t s.(1)PC=_____________cm.(用含t的式子表示)(2)当t为何值时,△ABP≌△DCP?(3)如图2,当点P从点B开始运动,同时,点Q从点C出发,以v cm/s的速度沿CD向点D运动(点Q 运动到点D处时停止运动,P,Q两点中有一点停止运动后另一点也停止运动),是否存在这样的υ值使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.13.(2020秋·江苏扬州·八年级校考阶段练习)如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,①则当t为何值时,△PAE为等腰三角形?②当t为何值时,△PAE为直角三角形,直接写出答案.14.(2020秋·江苏扬州·八年级校考期中)在小学,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以acm/s向终点C运动,运动的时间为ts.(1)当t=3时,①线段CE的长为______;②当EP平分∠AEC时,求a的值;(2)若a=1,且△CEP是以CE为腰的等腰三角形,求t的值.15.(2020秋·江苏镇江·八年级统考期中)如图,在长方形ABCD中,AD=3cm,AB=7cm,E为边AB上任一点(不与A、B重合),从点B出发,以1cm/s向终点A运动,同时动点F从点D出发,以x cm/s向终点C运动,运动的时间为t s.(注:长方形的对边平行且相等,每个角都是90°)(1)若t=4,则CE= ;(2)若x=2,当t为何值时点E在CF的垂直平分线上;(3)连接BF,直接写出点C与点E关于BF对称时x与t的值.16.(2020春·江苏·八年级校考阶段练习)如图,在▱ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当t=5时,AP=________.(2)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(3)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记△APQ的面积为S.求S与t之间的函数关系式.(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′∥BC时t的值.17.(2022春·江苏无锡·八年级宜兴市树人中学校考阶段练习)如图,在平面直角坐标系中,点A的坐标为(﹣6,0),点B在y轴正半轴上,∠ABO=30°,动点D从点A出发沿着射线AB方向以每秒3个单位的速度运动,过点D作DE⊥y轴,交y轴于点E,同时,动点F从定点C (1,0)出发沿x轴正方向以每秒1个单位的速度运动,连结DO,EF,设运动时间为t秒.(1)当点D运动到线段AB的中点时.①t的值为 ;②判断四边形DOFE是否是平行四边形,请说明理由.(2)点D在运动过程中,若以点D,O,F,E为顶点的四边形是矩形,求出满足条件的t的值.18.(2020春·江苏连云港·八年级统考期中)在矩形ABCD中,AB=3,BC=4,点E为BC延长线上一点,且BD=BE,连接DE,Q为DE的中点,有一动点P从B点出发,沿BC以每秒1个单位的速度向E点运动,运动时间为t秒.(1)如图1,连接DP、PQ,则S△DPQ= (用含t的式子表示);(2)如图2,M、N分别为AD、AB的中点,当t为何值时,四边形MNPQ为平行四边形?请说明理由;(3)如图3,连接CQ,AQ,试判断AQ、CQ的位置关系并加以证明.19.(2019春·江苏连云港·八年级阶段练习)如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.20.(2020春·江苏徐州·八年级统考期中)如图,平面直角坐标系xOy中,点O为坐标原点,四边形OABC 为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.(1)直接写出坐标:D( , );(2)当四边形PODB是平行四边形时,求t的值;(3)在平面直角坐标系内是否存在点Q,使得以O、P、D、Q为顶点四边形为菱形,若存在,请直接写出Q点坐标;若不存在,请说明理由.21.(2022春·江苏镇江·八年级丹阳市第八中学校考阶段练习)如图所示,菱形ABCD的顶点A,B在x轴上,点A在点B的左侧,点D在y轴的正半轴上.点C的坐标为.动点P从点A出发,以每秒1个单位长度的速度,按照A→D→C→B→A的顺序在菱形的边上匀速运动一周,设运动时间为t秒.(1)①点B的坐标.②求菱形ABCD的面积.(2)当t=3时,问线段AC上是否存在点E,使得PE+DE最小,如果存在,求出PE+DE最小值;如果不存在,请说明理由.(3)若点P到AC的距离是1,则点P运动的时间t等于.22.(2020春·江苏扬州·八年级校考期中)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为1cm/s.(1)当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)若BD=8cm,AC=12cm,当运动时间t为何值时,以D、E、B、F为顶点的四边形是矩形? 23.(2021春·江苏苏州·八年级常熟市第一中学校考阶段练习)如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm.点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为xcm/s.当点F到达点C(即点F与点C 重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB'F,设点E,F,G运动的时间为t(单位:s).(1)当t=s时,四边形EBFB'为正方形;(2)当x为何值时,以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形可能全等?(3)是否存在实数t,使得点B'与点O重合?若存在,求出t的值;若不存在,请说明理由.24.(2020秋·江苏淮安·八年级统考期末)如图,在平面直角坐标系中,长方形OABC的顶点A,B的坐标分别为A(6,0),B(6,4),D是BC的中点,动点P从O点出发,以每秒1个单位长度的速度,沿着O→A→B→D运动,设点P运动的时间为t秒(0<t<13).(1)点D的坐标是______;(2)当点P在AB上运动时,点P的坐标是______(用t表示);(3)求△POD的面积S与t之间的函数表达式,并写出对应自变量t的取值范围.25.(2019秋·江苏常州·八年级校联考期中)综合探究题在之前的学习中,我们已经初步了解到,长方形的对边平行且相等,每个角都是90°.如图,长方形ABCD中,AD=9cm,AB=4cm,E为边AD上一动点,从点D出发,以1cm/s向终点A运动,同时动点P从点B出发,以a cm/s向终点C运动,运动的时间为t s.(1)当t=3时,①则线段CE的长=______;②当EP平分∠AEC时,求a的值;(2)若a=1,且ΔCEP是以CE为腰的等腰三角形,求t的值;(3)连接DP,直接写出点C与点E关于DP对称时a与t的值.26.(2019春·江苏南通·八年级校联考阶段练习)如图,平行四边形ABCD中,AD=8,CD=4,∠D=60°,点P与点Q是平行四边形ABCD边上的动点,点P以每秒1个单位长度的速度,从点C运动到点D,点Q以每秒2个单位长度的速度从点A→点B→点C运动.当其中一个点到达终点时,另一个随之停止运动.点P与点Q同时出发,设运动时间为t,ΔCPQ的面积为S.(1)求S关于t的函数关系式;(2)t为何值时,将ΔCPQ以它的一边为轴翻折,翻折前后的两个三角形所组成的四边形为菱形.27.(2019春·江苏南京·八年级校联考期末)如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形.(2)当点E从A点运动到C点时;①求证:∠DCG的大小始终不变;②若正方形ABCD的边长为2,则点G运动的路径长为.28.(2019春·江苏泰州·八年级校考期末)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.29.(2019春·江苏苏州·八年级校联考期中)如图,将一三角板放在边长为4cm的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.设点P从A向C运动的速度为2cm/s,运动时间为x秒.探究:(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想:(2)当点Q在边CD上且x=1s时,四边形PBCQ的面积是 ;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x值;如果不可能,试说明理由.30.(2018·江苏无锡·八年级校联考期末)如图,在菱形ABCD中,AB=4cm,∠BAD=60°.动点E、F分别从点B、D同时出发,以1cm/s的速度向点A、C运动,连接AF、CE,取AF、CE的中点G、H,连接GE、FH.设运动的时间为t s(0<t<4).(1)求证:AF∥CE;(2)当t为何值时,四边形EHFG为菱形;(3)试探究:是否存在某个时刻t,使四边形EHFG为矩形,若存在,求出t的值,若不存在,请说明理由.。

【最新】苏科版八年级数学下册第九章《9.3 平行四边形(第2课时)》公开课课件.ppt

【最新】苏科版八年级数学下册第九章《9.3 平行四边形(第2课时)》公开课课件.ppt

四边形ABDE、BCDE为平行四边形
ED
ABC
探索活动
在四边形ABCD中,AB=CD,AD=BC.四边形ABCD是平行四
边形吗?证明你的结论. 证明: 连结AC
在△ABC和△CDA中
AB=CD(已知) AD=CB (已知) AC=CA (公共边)
∴△ABC≌△CDA(SSS)
A B
D C
∴∠1=∠2,∠3=∠4(全等三角形的对应角相等) ∴ AB∥CD,AD∥BC (内错角相等,两直线平行)
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
(3)一组对边平行且一组对角相等的四边形是平行
边形;
( √)
(4)一组对边平行,一组邻角互补的四边形是平行
四边形;
( ×)
(5)两组邻角互补的四边形是平行四边形. ( × )
新知应用
已知:如图,在□ABCD中,点E、F分别在AD、BC上,
且AE=CF.
求证:四边形BFDE是平行四边形.
证明:∵四边形ABCD是平行四边形, ∴AD=BC,AD∥BC(平行四边形的 对边平行且相等). ∵AE=CF, ∴AD-AE=BC-CF, 即 DE=BF. ∴四边形BFDE是平行四边形(一组对边平行且相等 的四边形是平行四边形).

初二数学《平行四边形中的动点问题》(附练习及答案)

初二数学《平行四边形中的动点问题》(附练习及答案)

四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。

解决这类问题关键是动中求静,灵活运用有关数学知识。

数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。

这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。

选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。

解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。

动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。

1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。

初二数学四边形的折叠问题技巧

初二数学四边形的折叠问题技巧

初二数学四边形的折叠问题技巧【实用版3篇】目录(篇1)1.初二数学四边形折叠问题的背景介绍2.四边形折叠问题的解决方法3.解决四边形折叠问题的方法和技巧4.总结正文(篇1)一、初二数学四边形折叠问题的背景介绍四边形折叠问题是初二数学几何知识中的重要内容,旨在帮助学生掌握四边形的性质和几何变换。

通过解决这类问题,学生可以更好地理解几何概念,提高空间想象能力。

二、四边形折叠问题的解决方法1.确定折叠后图形的形状2.确定对应边、对应角的关系3.利用几何变换的性质解决问题三、解决四边形折叠问题的方法和技巧1.确定折叠后图形的形状:首先,需要明确折叠后四边形的形状,可以通过已知条件进行分析或通过几何变换得到。

2.确定对应边、对应角的关系:在确定形状的基础上,需要找到折叠前后的边、角之间的关系。

可以利用全等或相似三角形的性质,或通过几何变换得到。

3.利用几何变换的性质解决问题:在解决四边形折叠问题时,可以利用几何变换的性质,如平移、旋转、对称等,将问题转化为简单的几何问题。

四、总结四边形折叠问题是初二数学几何知识中的难点,需要学生掌握几何变换的性质和对应边、角的关系。

目录(篇2)1.初二数学四边形折叠问题的概述2.四边形折叠问题的技巧和方法3.运用技巧和方法解决实际问题4.总结正文(篇2)一、初二数学四边形折叠问题的概述四边形折叠问题是初二数学几何知识中的重要内容,旨在培养学生的空间想象能力和逻辑思维能力。

该问题通过折叠四边形,让学生在观察、比较和推理中理解四边形的性质和特征。

二、四边形折叠问题的技巧和方法1.观察和分析:通过观察四边形的形状和特点,分析其边长、角度和周长等几何性质。

2.归纳和演绎:通过对已知的四边形折叠问题的归纳,运用演绎法推导出新的结论。

3.归纳法:通过对大量四边形折叠问题的观察和分析,归纳出解决问题的方法和规律。

4.类比法:将已知的四边形折叠问题中的条件和结论进行类比,推导出新的结论。

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章 中心对称图形——平行四边形 含答案

苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿QC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()A. B.2 C. D.32、如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC于点F,则DF:( )A.1:4B.1:3C.1:2D.2:13、剪纸是中国特有的民间艺术,在如图所示的四个剪纸图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4、已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是()A.OE= DCB.OA=OCC.∠BOE=∠OBAD.∠OBE=∠OCE5、在▱ABCD中,∠A=50°,则∠C=()A.130°B.50°C.40°D.25°6、正方形具有而菱形不具有的性质是( )A.四边相等B.对角线互相垂直C.对角线相等D.对角线互相平分7、下列说法中不正确的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.四个角都相等的四边形是矩形D.对角线互相垂直平分的四边形是正方形8、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰直角三角形有()A.4个B.6个C.8个D.10个10、下列图形中,是中心对称图形的是()A. B. C. D.11、如图,在菱形ABCD中,∠A=60°,AD=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E'F',设点P、P'分别是EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为()A.7B.6C.8D.8 ﹣412、如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOCB.∠AODC.∠AOBD.∠BOC13、下列图案中,不是中心对称图形的是()A. B. C. D.14、已知△ABC的面积为36,将△ABC沿BC的方向平移到△A'B 'C '的位置,使B '和C重合,连结AC '交A'C于D,则△C'DC的面积为()A.6B.9C.12D.1815、菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分 D.对角线互相垂直二、填空题(共10题,共计30分)16、如图,已知反比例函数y= (x>0)与正比例函数y=x(x≥0)的图象,点A(1,5)、点A′(5,b)与点B′均在反比例函数的图象上,点B在直线y=x上,四边形AA′B′B是平行四边形,则B点的坐标为________.17、如图,在平面直角坐标系中,,,,,…,以为对角线作第一个正方形,以为对角线作第二个正方形,以为对角线作第三个正方形,…,如果所作正方形的对角线都在轴上,且的长度依次增加1个单位长度,顶点都在第一象限内(,且为整数)那么的纵坐标为________;用的代数式表示的纵坐标________.18、已知菱形 ABCD的边长是4cm,对角线 AC=4cm,则菱形的面积是________cm2.19、如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别是2 m和4m,上部是圆心为0的劣弧CD,圆心角∠COD=120°.现欲以B点为支点将拱门放倒;放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示记拱门上的点到地面的最大距离hm,则h的最大值为________m。

苏科版八年级下册第9章--中心对称图形 平行四边形章末重难点提优练习(动点常考题型总结归纳)

苏科版八年级下册第9章--中心对称图形  平行四边形章末重难点提优练习(动点常考题型总结归纳)

专题1 中心对称图形—平行四边形章末重难点题型【苏科版】专题一平行四边形中的热点问题【类型一折叠问题】1.如图,将▱ABCD沿对角线AC折叠,使点B落在点B′处。

若∠1=∠2=44°,则∠B为( )A. 124°B. 114°C. 104°D. 66°2.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为 .3.(2017·十堰张湾区模拟)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和是___.4.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角a的度数应为___.5.如图,将边长为6cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是___cm.6.(2017·西宁)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=8,则AE的长为___.7.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.(1)求证:四边形BCED′是平行四边形;(2)若BE平分∠ABC,求证:AB2=AE2+BE2.8.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长为___.【类型二平移、旋转问题】1.(2017春·扬州邗江区期中)如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长( )A. 7B. 8C. 9D. 102.(2017·苏州)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点。

初二数学四边形的折叠问题技巧

初二数学四边形的折叠问题技巧

初二数学四边形的折叠问题技巧一、引言在初二数学的学习中,四边形是一个重要的知识点,而四边形的折叠问题又是四边形中的一个难点。

很多同学在解决这类问题时感到无从下手,其实只要掌握了相应的技巧,就能轻松解决这类问题。

本文将详细介绍解决四边形折叠问题的技巧,帮助同学们更好地理解和掌握这一知识点。

二、技巧一:明确折叠前后的图形关系在解决四边形折叠问题时,首先要明确折叠前后的图形关系。

通常,折叠后会有折痕,而折叠前后的图形可以通过折痕进行重合。

因此,要仔细分析折叠前后的图形,找出它们之间的联系和区别。

三、技巧二:利用轴对称性解题四边形是轴对称图形,而折叠问题通常可以利用轴对称性来解题。

通过分析折叠前后的图形,找出轴对称性,可以帮助我们快速找到解题思路。

四、技巧三:掌握常见折叠问题的解决方法四边形的折叠问题通常有几种常见题型,如折叠后一个角的大小变化、折叠后四边形的形状变化等。

对于这些常见题型,我们需要掌握相应的解决方法。

例如,可以通过计算折叠后各角度的大小,来判断四边形的形状;可以通过比较折叠前后的边长关系,来判断折叠后是否重叠。

五、技巧四:善于运用辅助线在解决四边形折叠问题时,有时候需要添加辅助线来帮助解题。

辅助线的添加需要根据题目的具体情况来决定,但只要善于运用,就能帮助我们更快地找到解题思路。

六、例题解析通过以下例题,我们可以更好地掌握上述技巧。

【例题】:如图,在四边形ABCD中,AB//CD,对角线AC、BD相交于点E,点F在BD上,将四边形ABFC沿BD折叠,点A、C恰好落在点F处,已知∠ABC=60°,BD=8cm。

求:沿BD折叠后四边形ABFC的形状。

分析:首先需要明确折叠前后的图形关系,即BD是折痕。

根据题意可知,沿BD折叠后点A、C落在点F处,因此可以得出∠AFB=∠ABC=60°。

另外,根据已知条件可知BD=8cm,因此可以通过计算各角度的大小来得出四边形ABFC的形状。

八年级数学下册动点问题构成平行四边形解题技巧(一)

八年级数学下册动点问题构成平行四边形解题技巧(一)

八年级数学下册动点问题构成平行四边形解题技巧(一)八年级数学下册动点问题构成平行四边形解题技巧什么是动点问题?动点问题是数学中经常遇到的一类问题,它通常涉及到平行四边形的性质和特点。

解决动点问题需要一定的技巧和方法。

动点问题解题技巧以下是一些解决八年级数学下册动点问题的技巧:•确定动点的位置和性质在解决动点问题时,首先要确定动点的位置和性质。

根据问题所给条件,我们可以确定动点在平行四边形内部、边界上还是延长线上。

这些信息有助于我们确定动点的坐标。

•确定平行四边形的特点平行四边形有一些独特的性质,利用这些性质可以解决动点问题。

例如,平行四边形的对角线相互平分,对角线长相等等。

通过确定平行四边形的特点,我们可以推断出关于动点的一些性质。

•运用向量法或坐标法求解在解决动点问题时,我们可以运用向量法或坐标法来求解。

向量法常用于证明或推导问题,而坐标法常用于具体计算。

具体选择使用哪种方法要根据问题的特点和要求来决定。

•画图辅助解题绘制图形是解决动点问题的重要步骤。

通过画图,我们可以更好地理解问题,并帮助我们找到解题的思路。

画图时,注意要准确绘制出平行四边形的形状和各个元素的位置关系。

•通过推理和运算得出答案在完成前面步骤后,我们可以通过推理和运算来得出最终的答案。

根据题目所要求的内容,进行逻辑推理和数学运算,得出问题的解答。

总结解决八年级数学下册动点问题需要我们熟悉平行四边形的性质和特点,并掌握相应的解题技巧。

通过确定动点的位置和性质、确定平行四边形的特点、运用向量法或坐标法、画图辅助解题以及通过推理和运算得出答案,我们可以有效地解决动点问题。

希望以上技巧能帮助到你解决八年级数学下册动点问题,在数学学习中取得更好的成绩!对于八年级数学下册动点问题构成平行四边形解题,下面给出了更具体的步骤和实例来帮助你更好地理解和应用这些技巧。

1.确定动点的位置和性质首先,从题目中找出关于动点的相关信息,然后根据这些信息来确定动点的位置和性质。

苏科版八年级数学下册第九章《9.3平行四边形(1)》优课件

苏科版八年级数学下册第九章《9.3平行四边形(1)》优课件

两组对边分别平行的四边形叫做平行四边形。
探索活动:
平行四边形有哪些性质呢? A
1、边
B
平行四边形的对边平行且相等;
2、角
平行四边形的对角相等;
3、对角线
平行四边形的对角线互相平分。
D C
平行四边形真的是中心对称图形吗?
AA
DD
OO ● 学科网
BB
CC
结论:平行四边形是中心对称图形, 对角线的交点是它的对称中心。
求∠B的度数。
例3:如图,□ABCD的对角线相交于点O,
BC=7cm,BD=10cm,AC=6cm.求△AOD的周长。 NhomakorabeaA
D
O
学科网
B
C
变式1:已知:如图,□ABCD的对角线相交于点O, 变AB式=25:,已△O知C:D如的图周,长□为A18B,C求D的□对A角BC线D相的交两于条点对O角,
A线B的=5和,。△AOD与 △OCD 的周长差为3,
初中数学 八年级(下册)
9.3 平行四边形
复习提问:
中心对称的性质:
A
1、 具有图形旋转的一切性质;
A’ O
A
2、成中心对称的两个图形中, B
C
对应点的连线经过对称中心,
B’
O
且被对称中心平分.
A’
C’
成中心对称与中心对称图形有哪些相同点与不同点?
9.3 平行四边形
什么是平行四边形?
A
D
B
C
定义:
例1:如图,点A、B、E分别在△DCF的
各边上,且AB∥CD,BE∥DF,AE∥CF,
求证:A、B、E分别是△DCF各边的中点。
图中,△ABE与△DCF的内角分别相等吗?为什么? 你还能得到什么结论?

2020年春苏科版八年级下册第9章中心对称图形—《平行四边形》压轴题动点专题(无答案)

2020年春苏科版八年级下册第9章中心对称图形—《平行四边形》压轴题动点专题(无答案)

2020年苏科版八年级下册《平行四边形》压轴题动点专题(无答案)三角形1、如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR//BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?2、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?AQ CDBP3、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.4、如图,在Rt △ABC 中,已知AB =BC =CA =4cm ,AD ⊥BC 于D ,点P 、Q 分别从B 、C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为1cm/s ;点P 沿CA 、AB 向终点B 运动,速度为2cm/s ,设它们运动的时间为x(s)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

折叠问题【矩形折叠问题】1、矩形折叠问题:如图所示,把一张矩形纸片沿对角线折叠,重合部分是什么图形,试说明理由.2、(1)若AB=4,BC=8,求AF .3、(2)若对折使C 在AD 上,AB=6,BC=10,求AE ,DF 的长.2、在矩形ABCD 中,AB=4,BC=8,将图形沿着AC 对折,如图所示: (1)请说明△ABF ≌△CEF (2)求CEF S3、在矩形ABCD 中,AB=3,BC=5,将图形沿着EF 对折,使得B 点与D 点重合。

(1)说明DE=DF (2)、求DEG S △ (3)求EF 的长度。

4、如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点M 处,点C 落在点N 处,MN 与CD 交于点P ,连接EP . (1)如图②,若M 为AD 边的中点,①△AEM 的周长= cm ;②求证:EP=AE+DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.能力训练1、如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形。

则展开后三角形的周长是。

2、如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为。

3、如图所示,把一长方形纸片MN折叠,点D、C分别落在D′,C′的位置。

若∠AMD′=36°,则∠NFD′= 。

4、如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,折痕为DG,记与点A重合的点为A′,则△A′BG的面积与该矩形面积的比为。

5、如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B'处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5 B.2 C.2.25 D.2.56、如图,在矩形纸片ABCD中,AB=12,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A′、D′处,则整个阴影部分图形的周长为()A.18cm B.36cm C.40cm D.72cm7、如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是()A.3cm B.4cm C.5cm D.6cm8、小明尝试着将矩形ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M 处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为。

9、如图,矩形纸片ABCD ,AB=5cm ,BC=10cm ,CD 上有一点E ,ED=2cm ,AD 上有一点P ,PD=3cm ,过P 作PF ⊥AD 交BC 于,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是 cm .10、如图,将矩形纸片ABCD 沿对角线AC 折叠,使点B 落到点B'的位置,AB ′与CD 交于点E . (1)试找出一个与△AED 全等的三角形,并加以证明;(2)若AB=8,DE=3,P 为线段AC 上的任意一点,PG ⊥AE 于G ,PH ⊥EC 于H ,试求PG+PH 的值,并说明理由。

思维拓展: 1、如图,折叠矩形的一边AD ,折痕为AE ,点E 在边CD 上,折叠后点D 落在BC 边的点F 处,已知AB=8cm ,AD=10cm ,求AE 的长。

2、如图,四边形OABC 是一张放在平面之间坐标系中的矩形纸片,点A 在x 轴上,将边BC 折叠,使点B 落在边OA 的点D 处.已知折痕55=CE ,且43tan =∠EDA . (1)判断△OCD 与△ADE 是否相似?请说明理由; (2)求直线CE 与x 轴交点P 的坐标.3、已知:在矩形AOBC 中,OB=4,OA=3。

分别以OB ,OA 所在直线x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B ,C 重合),过F 点的反比例函数xky(k >0)的图象与AC 边交于点E .(1)求证:△AOE 与△BOF 的面积相等;(2)记S=S △OEF-S △ECF ,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.4、如图,在矩形ABCD 中,AB=33,BC=9,点P 是边CD 上的动点(点P 不与点C 、点D 重合),过点P 作直线PQ ∥AC ,交AD 边于点Q ,再把△DPQ 沿着动直线PQ 对折,点D 的对应点是点E ,设DP 的长度为x ,△EPQ 与矩形ABCD 重叠部分的面积为y . (1)求∠DQP 的度数;(2)当x 取何值时,点E 落在矩形ABCD 的边BC 上? (3)求y 与x 之间的函数关系式.5、如图所示,在矩形ABCD 中,AB=6,AD=32,点P 是边BC 上的动点(点P 不与点B ,C 重合),过点P 作直线PQ ∥BD ,交CD 边于Q 点,再把△PQC 沿着动直线PQ 对折,点C 的对应点是R 点.设CP=x ,△PQR 与矩形ABCD 重叠部分的面积为y . (1)求∠CPQ 的度数.(2)当x 取何值时,点R 落在矩形ABCD 的边AB 上?(3)当点R 在矩形ABCD 外部时,求y 与x 的函数关系式.并求此时函数值y 的取值范围.动点问题1、如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠. 动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动; 动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动. 设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.2. 梯形ABCD 中,AD∥BC,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm , 动点P 从点A 开始,沿AD 边,以1厘米/秒的速度向点D 运动; 动点Q 从点C 开始,沿CB 边,以3厘米/秒的速度向B 点运动。

已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时, 另一点也随之停止运动。

假设运动时间为t 秒,问: (1)t 为何值时,四边形PQCD 是平行四边形?(2)在某个时刻,四边形PQCD 可能是菱形吗?为什么? (3)t 为何值时,四边形PQCD 是直角梯形? (4)t 为何值时,四边形PQCD 是等腰梯形?3. 如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点P 从A 开始沿折线A —B —C —D 以4cm/s 的速度运动,点Q 从C 开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时 出发,当其中一点到达点D 时,另一点也随之停止运动,设运动 时间为t(s),t 为何值时,四边形APQD 也为矩形?4. 如图,在等腰梯形ABCD 中,AB ∥DC ,cm BC AD 5==,AB =12cm,CD =6cm , 点P 从A 开始沿AB 边向B 以每秒3cm 的速度移动,点Q 从C 开始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。

设运动时间为t 秒。

(1)求证:当t =23时,四边形APQD 是平行四边形; (2)PQ 是否可能平分对角线BD ?若能,求出当t 为何值时PQ 平分BD ;若不能,请说明理由; (3)若△DPQ 是以PQ 为腰的等腰三角形,求t 的值。

A B CD PQA DCNABCDQP动点专题三角形1、如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?2、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?3、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.364y x =-+A B 、P Q 、O A Q OA P O B A A B 、Q t OPQ △S S t 485S =P O P Q 、、MxAOQP ByAQ DBP4、如图,在Rt △ABC 中,已知AB =BC =CA =4cm ,AD ⊥BC 于D ,点P 、Q 分别从B 、C 两点同时出发,其中点P 沿BC 向终点C 运动,速度为1cm/s ;点P 沿CA 、AB 向终点B 运动,速度为2cm/s ,设它们运动的时间为x(s)。

⑴求x 为何值时,PQ ⊥AC ;⑵设△PQD 的面积为y(cm 2),当0<x <2时,求y 与x 的函数关系式; ⑶当0<x <2时,求证:AD 平分△PQD 的面积;⑷探索以PQ 为直径的圆与AC 的位置关系。

相关文档
最新文档