24.2.1点和圆的位置关系

合集下载

九年级上数学《24.2.1 点和圆的位置关系》课件

九年级上数学《24.2.1 点和圆的位置关系》课件

r
点P在圆外
点P在圆上
点P在圆内
d>r
d=r
d<r
2. 三点定圆
过已知一点可作无数个圆. 过已知两点也可作无数个圆. 过不在同一条直线上的三点可以作一个圆, A 并且只能作一个圆.
B
C
3. 外接圆、内接三角形
经过三角形的三个顶点可以作一个圆,这个 圆叫做三角形的外接圆,这个三角形叫这个圆的 内接三角形. A
A 3m
C
2m
回顾
画圆的关键是什么?
确定圆心 确定半径的大小
探究
1. 过一点可以作几个圆? 无数个
● ●

O O

A

O

O
O
圆心: 点A以外任意一点 半径: 这点与点A的距离
2. 过两点可以作几个圆?无数个

O ●O


A
O

B

O
圆心:线段AB的垂直平分线上
半径: 这点到A或B的距离
3. 过不在同一条直线上的三点可以作几个圆? A
A 3m
B站在以A为圆心, 以3m为半径的圆上任 意一点即可. 有无数个位置.
2. A站住教室中央,若要求B与A距离等于 3m,B与C距离2m,那么B应站在哪儿?有几个 位置? 有两个位置.
B
A 3m 2m
C B
3. 现在要求B与A距离3m以外,B与C距离 2m以外,那么B应站在哪儿?有几个位置? B应站在⊙A和⊙C的圆外 , 有无数个位置.
反证法
假设命题的结论不成立,由此经过推理得 出矛盾,由矛盾判定所作假设不正确,从而得 到原命题成立,这种方法叫做反证法.

人教版数学九年级上册第二十四章《24.点和圆的位置关系》课件

人教版数学九年级上册第二十四章《24.点和圆的位置关系》课件

三角形外接圆的作法: 1.作三角形任意两边的垂直平分线,确定其交点; 2.以该交点为圆心,交点到三个顶点中任意一点的距离为半径作圆即可.
分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,
视察并叙述各三角形与它的外心的位置关系. A
A
A
●O
●O
B

CB
C
锐角三角形的外心位于三角形内;
课堂练习
1.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关 系只能是( D )
A.点在圆内 C.点在圆心上
B.点在圆上 D.点在圆上或圆内
2.如图,△ABC内接于⊙O,若∠OAB=20°,则∠ACB的度数是__7_0_°__.
解:∵∠OAB=20°,OA=OB, ∴∠OBA=∠OAB=20°, ∴∠AOB=180°-∠OAB-∠OBA=140°, ∴∠ACB=12∠AOB=70°.
A
B
C
PQ R M
2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与 本来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( D )
A.第①块 C.第③块
B.第④块 D.第②块
3.如图,AB,CD是⊙O内非直径的两条弦.
求证:AB与CD不能互相平分.
合作探究
经过同一条直线上的三个点能作出一个圆吗?
如图,假设过同一条直线l上三点A,B,C可以 作一个圆,设这个圆的圆心为P,那么点P既在 线段AB的垂直平分线l1上,又在线段BC的垂直 平分线l2上,即点P为l1与l2的交点,而l1⊥l, l2⊥l 这与我们以前学过的“过一点有且只有一 条直线与已知直线垂直”相矛盾,所以过同一 条直线上的三点不能作圆.

【最新版】九年级数学上册课件:24.2.1 点和圆的位置关系

【最新版】九年级数学上册课件:24.2.1 点和圆的位置关系

知识点 4 反证法
思考:经过同一条直线上的三个点能作出一个圆吗?
P l1
A
B
如图,假设过同一条直线l上三点A、B、C可以作
一个圆,设这个圆的圆心为P.
那么点P既在线段AB的垂直平分线l1上,又在线段
l2
BC的垂直平分线l2上,即点P为l1与l2的交点.
而l1⊥l,l2⊥l这与我们以前学过的“过一点有且 C 只有一条直线与已知直线垂直”相矛盾.
2. 连接AC,作线段AC的垂直平分 B E O M C 线EF,交MN于点O;
3. 以O为圆心,OB为半径作圆.
所以⊙O就是所求作的圆.
探究新知
24.2 点和圆、直线和圆的位置关系/
问题4:现在你知道怎样将一个如图所示的破损的圆盘复原
了吗?
方法: 1. 在圆弧上任取三点A、B、C;
A B
2. 作线段AB、BC的垂直平分线,
3.⊙O的半径r为5cm,O为原点,点P的坐标为(3,4),
则点P与⊙O的位置关系为 (B )
A.在⊙O内
B.在⊙O上
C.在⊙O外 外
D.在⊙O上或⊙O
课堂检测
24.2 点和圆、直线和圆的位置关系/
4.已知:在Rt△ABC中,∠C=90°,AC=6,BC=8,则它
的外接圆半径= 5 .
5.如图,△ABC内接于⊙O,若∠OAB=20°,则∠C的度 数是___7_0_°___.
B
C
A
课堂小结
24.2 点和圆、直线和圆的位置关系/
点与圆的 位置关系
作 圆
点在圆外 点在圆上 点在圆内
d>r d=r d<r
P
r R
过一点可以作无数个圆

九年级数学上册课件:24.2.1点和圆的位置关系

九年级数学上册课件:24.2.1点和圆的位置关系
24.2.1点和圆的位置关系
阿依古丽 阿勒玛勒镇中学
一、查学诊断
▪ 1、圆上的点到圆心的距离都 。
2.如图,若AC=BC,则点C在______.
二、示标导入
我国射击运动员在奥运 会上屡获金牌,为我国 赢得荣誉,右图是射击 靶的示意图,它是由许 多同心圆(圆心相同, 半径不等的圆)构成的, 你知道击中靶上不同位 置的成绩是如何计算的 吗?
设⊙O的半径为r,点P 到圆心的距离OP = d,则有: P
点和圆 点P在圆内
的位置 点P在圆上
关系 点P在圆外
d<r;
d = r;
d>r .
P
P

r
符号
读作“等价
A
于”,它表示从符号
的左端可以得到右端从右端
也可以得到左端.
点与圆的位置关系
例:如图已知矩形ABCD的边AB=3厘米,
AD=4厘米
过三点 2、若三点不共线,则过这三点不能作直线,
但过任意其中两点一共可作三条直线.
AB
C
A
B
C
对于一个圆来说,过几个点能 作一个圆,并且只能作一个圆?
归纳结论:
不在同一条直线上的三个点确定一个圆。
经过三角形三个顶点可以画一个圆,并且只能画一
个.
A
经过三角形三个顶点的圆叫做三
角形的外接圆。
三角形外接圆的圆心叫做这个 三角形的外心。
2. 三点在同一直线上, 另一点不在这条 直线上不能作圆;
3. 四点中任意三点不在一条直线可能作圆也 可能作不出一个圆.
A
A
A
B
B
A
B
B
D
C
D
C
D

24.2.1点和圆的位置关系课件

24.2.1点和圆的位置关系课件

典型例题
如图,已知等边三角形ABC中,边长为 6cm,求它的外接圆半径。
A
E O B D C
C 90 1、如图,已知 Rt⊿ABC 中 ,
若 AC=12cm,BC=5cm, 求的外接圆半径。
B
C
A
如图,等腰⊿ABC中, AB AC 13cm,
BC 10cm ,求外接圆的半径。
方法,领会其思想。心的距离为d。则 位置 数量


O

点在圆内

d﹤r d=r d>r
点在圆上 点在圆外
练习:1、已知圆的半径等于5厘米,点到圆心的距离是:
A、8厘米
B、4厘米
C、5厘米。
请你分别说出点与圆的位置关系。
自学效果检测
2.⊙O的半径10cm,A、B、C三点到圆心的距离分别为 8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是: 点A在⊙O内 ;点B在 ⊙O上 ;点C在⊙O外。 3.正方形ABCD的边长为 3 cm,以A为 圆心2cm为半径作⊙A,则点C( C ) A.在⊙A上 B.在⊙A内
A A

A

O C B ┐
O C

O
B
B
C
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.
1、判断下列说法是否正确 (1)任意的一个三角形一定有一个外接圆( √ ). (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × ) (4)三角形的外心到三角形各顶点的距离相等( √ ) 2、若一个三角形的外心在一边上,则此三角形的 形状为( B ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、等腰三角形

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》

人教版数学九年级上册说课稿24.2.1《点和圆的位置关系》一. 教材分析《点和圆的位置关系》是人教版数学九年级上册第24章《圆》的第二节内容。

本节主要介绍点和圆之间的位置关系,包括点在圆内、点在圆上、点在圆外三种情况。

通过学习,使学生能够理解并掌握点和圆的位置关系,为后续学习圆的性质和应用打下基础。

二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形的性质和概念有一定的理解。

但对于点和圆的位置关系,可能还存在一定的模糊认识。

因此,在教学过程中,要注重引导学生通过观察、思考、交流等方式,自主探索点和圆的位置关系,提高他们的空间想象能力和思维能力。

三. 说教学目标1.知识与技能:使学生掌握点和圆的位置关系,能够判断一个点在圆内、圆上还是圆外。

2.过程与方法:通过观察、思考、交流等,培养学生自主探索和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于尝试、积极思考的良好学习习惯。

四. 说教学重难点1.重点:点和圆的位置关系的判断。

2.难点:理解和掌握点和圆位置关系的内在联系。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。

2.教学手段:多媒体课件、黑板、粉笔、几何模型等。

六. 说教学过程1.导入新课:通过展示一些生活中的圆形象,如硬币、篮球等,引导学生关注圆的特点,激发学生学习兴趣。

2.自主探索:让学生观察和思考,通过动手画图、讨论等方式,探索点和圆的位置关系。

3.引导发现:教师引导学生发现点和圆位置关系的规律,总结出点和圆的判断方法。

4.巩固练习:设计一些具有针对性的练习题,让学生运用所学知识解决问题。

5.课堂小结:教师和学生一起总结本节课的主要内容和收获。

6.布置作业:设计一些拓展性的作业,让学生课后继续思考和探索。

七. 说板书设计板书设计要简洁明了,突出重点。

可以采用流程图、图示、列表等形式,展示点和圆的位置关系。

八. 说教学评价教学评价可以从学生的学习态度、课堂表现、练习成绩等方面进行。

人教版九年级数学上册24.2.1《点和圆的位置关系》教学设计

人教版九年级数学上册24.2.1《点和圆的位置关系》教学设计

人教版九年级数学上册24.2.1《点和圆的位置关系》教学设计一. 教材分析人教版九年级数学上册24.2.1《点和圆的位置关系》是圆的相关知识的一个重要内容。

本节内容通过探讨点和圆的位置关系,引导学生理解点到圆心的距离与圆的半径之间的关系,从而掌握判断点与圆的位置关系的依据。

教材通过丰富的实例和生动的语言,让学生在探究中发现规律,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识和判断能力有所提高。

但是,对于点和圆的位置关系的理解,部分学生可能会感到抽象和难以理解。

因此,在教学过程中,教师需要关注学生的认知水平,通过生动的实例和直观的图形,帮助学生建立正确的空间观念,引导学生主动探究和发现规律。

三. 教学目标1.理解点到圆心的距离与圆的半径之间的关系。

2.学会判断点与圆的位置关系。

3.培养学生的逻辑思维能力和空间想象能力。

4.提高学生运用数学知识解决实际问题的能力。

四. 教学重难点1.教学重点:点到圆心的距离与圆的半径之间的关系,判断点与圆的位置关系的依据。

2.教学难点:理解和运用点到圆心的距离与圆的半径之间的关系判断点与圆的位置关系。

五. 教学方法1.启发式教学:通过提问和引导,激发学生的思考,让学生在探究中发现规律。

2.直观教学:利用图形和实例,帮助学生建立正确的空间观念,提高学生的直观想象力。

3.合作学习:鼓励学生分组讨论和交流,培养学生的团队合作能力和沟通能力。

六. 教学准备1.教学课件:制作精美的课件,包括相关的图形和实例。

2.教学道具:准备一些圆形的道具,以便在课堂上进行直观演示。

3.练习题库:准备一些有关点和圆的位置关系的练习题,以便进行课堂巩固和拓展。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的几何知识,如直线、圆等,为学生建立新的知识联系打下基础。

2.呈现(15分钟)教师通过课件展示点和圆的位置关系,引导学生观察和分析点到圆心的距离与圆的半径之间的关系。

点和圆的位置关系课件人教版九年级上册

点和圆的位置关系课件人教版九年级上册

当OP
时点P在圆内;当OP
点 P 不在圆外.
; 时,
初中数学
课后作业
3. 已知 AB =6 cm,画半径为4 cm的圆,使它经过A, B 两点. 这样的圆能画出多少个?如果半径为3 cm, 2 cm呢?
4. 思考:经过三个已知点 A,B ,C 作圆.
初中数学
同学们,再见!
已知 AB =6 cm,画半径为4 cm的圆,使它经过A,B 两点.
点和圆的位置关系
E 点到圆心的距 经过一个已知点 A 作圆.
点在圆上 点 P3 在圆内 d3<r .
r O 离等于半径 (2)若PO=4,则点P在

过一点可以画无数个圆.
A 如图,已知矩形ABCD的边AB=3 cm,AD=4 cm.
初中数学
巩固练习
2. 体育课上,小明和小丽的铅球成绩分别是6.4 m 和 5.1 m ,他们投出的铅球分别落在图中哪个 区域内? 小明
ቤተ መጻሕፍቲ ባይዱ小丽
初中数学
巩固练习
3. 已知⊙O的面积为25π: (1)若PO=5.5,则点P在 圆外 ; (2)若PO=4,则点P在 圆内 ; (3)若PO= 5 ,则点P在圆上; (4)若点P不在圆外,则PO__≤__5______.
A
D
(B在圆上,D在圆外,C在圆外)
B
C
初中数学
巩固练习
4. 如图,已知矩形ABCD的边AB=3 cm,AD=4 cm.
(2)以点A为圆心,4 cm 为半径作圆A,则点B、C、 D与圆A的位置关系如何?
A
D
(B在圆内,D在圆上,C在圆外)
B
C
初中数学
巩固练习
4. 如图,已知矩形ABCD的边AB=3 cm,AD=4 cm.

人教版数学九年级上册24.2.1《点与圆的位置关系》说课稿

人教版数学九年级上册24.2.1《点与圆的位置关系》说课稿

人教版数学九年级上册24.2.1《点与圆的位置关系》说课稿一. 教材分析《点与圆的位置关系》是人教版数学九年级上册第24章第2节的一部分。

这部分内容主要介绍了点与圆的位置关系的判定及其应用。

在教材中,通过生活中的实例引入点与圆的位置关系,然后引导学生通过观察、思考、探究,总结出点与圆的位置关系的判定方法。

教材内容由浅入深,逐步引导学生掌握点与圆的位置关系的判定及其应用,培养学生的观察能力、思考能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识,对圆的基本概念和性质有一定的了解。

但是,对于点与圆的位置关系的判定及其应用,可能还比较陌生。

因此,在教学过程中,需要结合学生的实际情况,从他们的认知水平出发,引导学生逐步理解和掌握点与圆的位置关系。

三. 说教学目标1.知识与技能目标:让学生掌握点与圆的位置关系的判定方法,并能够运用点与圆的位置关系解决实际问题。

2.过程与方法目标:通过观察、思考、探究,培养学生的观察能力、思考能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作精神。

四. 说教学重难点1.教学重点:点与圆的位置关系的判定方法及其应用。

2.教学难点:点与圆的位置关系的判定方法的推导和理解。

五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、合作学习法等,引导学生主动参与,积极思考。

2.教学手段:利用多媒体课件、几何画板等教学辅助工具,直观展示点与圆的位置关系,帮助学生理解和掌握。

六. 说教学过程1.导入:通过生活中的实例,引导学生关注点与圆的位置关系,激发学生的学习兴趣。

2.新课导入:介绍点与圆的位置关系的判定方法,引导学生进行观察和思考。

3.探究活动:分组讨论,让学生通过实际操作,总结出点与圆的位置关系的判定方法。

4.讲解与演示:教师对点与圆的位置关系的判定方法进行讲解,并用几何画板进行演示。

5.练习与解答:学生进行练习,教师进行解答和指导。

人教版数学九年级上册教学设计24.2.1《点和圆的位置关系》

人教版数学九年级上册教学设计24.2.1《点和圆的位置关系》

人教版数学九年级上册教学设计24.2.1《点和圆的位置关系》一. 教材分析《点和圆的位置关系》是人教版数学九年级上册第24章第2节的内容,本节课主要探讨点与圆的位置关系,包括点在圆内、点在圆上和点在圆外三种情况。

通过本节课的学习,学生能够理解点与圆的位置关系,并能运用其解决实际问题。

二. 学情分析九年级的学生已经掌握了平面几何的基本知识,对图形的性质和位置关系有一定的了解。

但学生在学习过程中,可能对点与圆的位置关系的理解存在一定的困难,因此需要通过实例和操作,帮助学生加深对知识点的理解。

三. 教学目标1.知识与技能:理解点与圆的位置关系,并能运用其解决实际问题。

2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.重点:点与圆的位置关系的理解和运用。

2.难点:对点与圆的位置关系的深入理解和灵活运用。

五. 教学方法1.情境教学法:通过生活实例,激发学生的学习兴趣,引导学生主动探究。

2.直观教学法:利用图形和模型,帮助学生直观地理解点与圆的位置关系。

3.合作学习法:引导学生分组讨论,培养学生的团队合作意识和问题解决能力。

六. 教学准备1.准备相关的图形和模型,以便于教学演示和学生的操作。

2.准备练习题,以便于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个生活实例,引出点与圆的位置关系的问题,激发学生的学习兴趣。

2.呈现(10分钟)利用多媒体展示点与圆的位置关系的图形,引导学生观察和描述各种情况。

3.操练(10分钟)学生分组讨论,每组选取一个点,通过移动点的位置,观察点与圆的位置关系的变化,并记录下来。

4.巩固(10分钟)学生独立完成教材中的练习题,教师巡回指导,帮助学生巩固所学知识。

5.拓展(10分钟)引导学生思考:在实际生活中,点与圆的位置关系有哪些应用?学生分组讨论,展示自己的思考成果。

人教版九年级数学上册:24.2.1 点和圆的位置关系

人教版九年级数学上册:24.2.1 点和圆的位置关系

24.2.1点和圆的位置关系知识点1.点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:点P在⊙O内⇔d<r;点P在⊙O上⇔d=r;点P在⊙O外⇔d>r.2.圆的确定(1)平面上,经过一点的圆有________个.(2)平面上,经过两点的圆有________个.(3)不在同一直线上的三个点确定__________圆.3.三角形的外接圆经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.外接圆的圆心是三角形__________________________的交点,叫做这个三角形的外心,它到三角形_______________________.4.反证法假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.这种证明方法叫做反证法.一、选择题1.下列说法正确的是()A.过一点A的圆的圆心可以是平面上任意点B.过两点A、B的圆的圆心在一条直线上C.过三点A、B、C的圆的圆心有且只有一点D.过四点A、B、C、D的圆不存在2.若△ABC的外接圆的圆心在△ABC的内部,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定3.在Rt△ABC中,∠C=90°,AC=6 cm,BC=8 cm,则它的外心与顶点C的距离为( ) A.5 cm B.6 cm C.7 cm D.8 cm 4.如图,一圆弧过方格的格点A、B、C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),则该圆弧所在圆的圆心坐标是()A .(-1,2)B .(1,-1)C .(-1,1)D .(2,1)5.Rt △ABC 中,∠C=90°,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A ,那么斜边中点D 与⊙O 的位置关系是( )A .点D 在⊙A 外B .点D 在⊙A 上C .点D 在⊙A 内 D .无法确定6.若⊙A 的半径为5,点A 的坐标为(3,4),点P 的坐标为(5,8),则点P 的位置为( )A .在⊙A 内B .在⊙A 上C .在⊙A 外D .不确定7.如图,⊙O 是△ABC 的外接圆,若∠B=30°,O 的直径为( )A .1 BD .8.用反证法证明“三角形中至少有一个内角小于或等于60°”时,首先应假设这个三角形中( )A .有一个内角小于60°B .每一个内角都小于60°C .有一个内角大于60°D .每一个内角都大于60°二、填空题9.点A 在以O 为圆心,3 cm 为半径的⊙O 内,则点A 到圆心O 的距离d 的范围是________.10.如图,在△ABC 中,∠ACB=90°,AC=2 cm ,BC=4 cm ,CM 为中线,以C 为半径作圆,则A 、B 、C 、M 四点在圆外的有_________,在圆上的有_________,在圆内的有_________.11.若AB=4cm ,则过点A 、B 且半径为3cm 的圆有______个.12.在△ABC 中,BC=24cm ,外心O 到BC 的距离为6cm ,则△ABC 的外接圆半径是____________.13.一个点与定圆上最近点的距离为4cm ,最远点的距离为9cm ,则此圆的半径是________.14.阅读下面材料:对于平面图形A ,如果存在一个圆,使图形A 上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A 被这个圆所覆盖.回答下列问题:(1)边长为1 cm 的正方形被一个半径为r 的圆所覆盖,r 的最小值是________ cm ;(2)边长为1 cm 的等边三角形被一个半径为r 的圆所覆盖,r 的最小值是________ cm .15.已知Rt △ABC 的两直角边为a 和b ,且a 、b 是方程2310x x -+=的两根,则Rt △ABC 的外接圆面积是__________________.三、解答题16.已知圆的半径等于5 cm ,根据下列点P 到圆心的距离:(1)4 cm ;(2)5 cm ;(3)6 cm ,判定点P 与圆的位置关系,并说明理由.17.在Rt △ABC 中,∠C=90°,BC=3m ,AC=4m ,以B 为圆心,以BC 为半径作⊙B ,D 、E 是AB 、AC 中点,A 、C 、D 、E 分别与⊙O 有怎样的位置关系?(画出图形,写过程)18.如图,△ABC 中,AB=AC=10,BC=12,求△ABC 的外接圆⊙O 的半径.19.如图,AD 为△ABC 外接圆的直径,AD ⊥BC ,垂足为点F ,∠ABC 的平分线交AD 于点E ,连接BD ,CD .(1)求证:BD=CD ;(2)请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.20.某公园有一个边长为4米的正三角形花坛,三角形的顶点A、B、C上各有一棵古树.现决定把原来的花坛扩建成一个圆形或平行四边形花坛,要求三棵古树不能移动,且三棵古树位于圆周上或平行四边形的顶点上.以下设计过程中画图工具不限.(1)按圆形设计,利用图(1)画出你所设计的圆形花坛示意图;(2)按平行四边形设计,利用图(2)画出你所设计的平行四边形花坛示意图;(3)若想新建的花坛面积较大,选择以上哪一种方案合适?请说明理由.24.2.1点和圆的位置关系知识点2.无数 无数 一个3.三条边垂直平分线 三个顶点的距离相等.一、选择题1.B2.B3.A4.C5.A6.A7.D8.D二、填空题9.0≤d <310.点B ; 点M ; 点A 、C11.两个12.13.2.5cm 或6.5cm14.(1)22(2)3315.47三、解答题16.解:(1)当d=4 cm 时,∵d <r ,∴点P 在圆内;(2)当d=5 cm 时,∵d=r ,∴点P 在圆上;(3)当d=6 cm 时,∵d >r ,∴点P 在圆外.17.解:∵BC=3=R∴点C 在⊙B 上∵AB=5>3∴点A 在⊙B 外∵D 为BA 中点 ∴12.532BD AB ==<∴点D 在⊙B 内∵E 为AC 中点 ∴114222CE AC ==⨯=连结BE ∴BE BC CE m =+=+=>222232133∴E 在⊙B 外18.解:如图,过点A 作AD ⊥BC ,垂足为D ,则O 在AD 上,∵AB=AC∴BD=6∴8AD =设OA=r ,连接OB则Rt △ABC 中,222OB OD BD =+即222(8)6r r =-+ 解得254r =.19.解:(1)证明:∵AD 为直径,AD ⊥BC∴BD=CD(2)B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上理由:由(1)知:BD=CD∴∠BAD=∠CBD∴∠DBE=∠CBD+∠CBE ,∠DEB=∠BAD+∠ABE∵∠CBE=∠ABE∴∠DBE=∠DEB∴BD=DE由(1)知:BD=CD∴DB=DE=DC∴B ,E ,C 三点在以D 为圆心,以DB 为半径的圆上.20.解:(1)作图工具不限,只要点A 、B 、C 在同一圆上,图(1).(2)作图工具不限,只要点A 、B 、C 在同一平行四边形顶点上,例如图(2).(3)如图(3),∵r OB ==∴21616.753O S r ππ==≈e212413.862ABCS S ∆==⨯⨯⨯=≈平行四边形又∵O S S e 平行四边形>∴选择建圆形花坛面积较大.。

《24.2.1 点和圆的位置关系》教学设计教学反思-2023-2024学年初中数学人教版12九年级上

《24.2.1 点和圆的位置关系》教学设计教学反思-2023-2024学年初中数学人教版12九年级上

《点和圆的位置关系》教学设计方案(第一课时)一、教学目标:1. 理解点和圆的位置关系与数量之间的关系,掌握判断点在圆内的基本方法。

2. 通过观察、分析和讨论,培养学生的观察能力和解决问题的能力。

3. 体会数学在实际生活中的应用,增强学生学以致用的意识。

二、教学重难点:1. 教学重点:掌握点和圆的位置关系判断方法,能够解决相关问题。

2. 教学难点:灵活运用点和圆的位置关系解决实际问题,提高数学应用能力。

三、教学准备:1. 准备教学用具:黑板、白板、圆规、三角板、图片等。

2. 准备教学资料:设计相关问题、练习题和案例,以便于学生理解和应用。

3. 复习引入:通过回顾点和圆的位置关系在日常生活中的应用,引导学生进入本节课的主题。

四、教学过程:(一)复习引入1. 提问:同学们,你们能说出点和圆的位置关系有哪些吗?2. 回答:点在圆内,点在圆上,点在圆外。

3. 教师总结并引入新课:那么我们如何来判定点和圆的位置关系呢?这就是我们今天要学习的内容。

(二)新课教学1. 演示:在屏幕上动态展示点从不同的位置进入圆内、圆上、圆外的情况,并引导学生观察。

2. 讲解:引导学生发现点和圆的位置关系与点到圆心的距离有关。

3. 探究:引导学生探究点与圆的位置关系与点到圆心的距离和半径长度的关系。

4. 总结:教师引导学生总结出点与圆相交、相切、相离的不同情况。

(三)课堂练习1. 完成课本上的相关练习题,学生独立完成,然后教师公布答案。

2. 针对学生的完成情况,进行点评和讲解。

(四)小结作业1. 小结:教师对本节课的内容进行总结,强调点和圆的位置关系及其判定方法。

2. 作业:布置与点和圆的位置关系相关的课后作业,以巩固和提高学生对本节课内容的掌握程度。

五、教学反思本节课通过动态的演示和探究,让学生更加直观地了解了点和圆的位置关系及其判定方法,同时通过课堂练习和课后作业,巩固了学生的掌握程度。

在教学过程中,要注意引导学生探究点和圆的位置关系与点到圆心的距离和半径长度的关系,并注意总结和强调本节课的重点内容。

24.2.1点和圆的位置关系(教案)

24.2.1点和圆的位置关系(教案)

24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系【知识与技能】1•掌握点与圆的三种位置关系及数量间的关系.2.探求过点画圆的过程,掌握过不在同一直线上三点画圆的方法.3.了解运用“反证法〃证明命题的思想方法.【过程与方法】通过生活中的实例探求点和圆的三种位置关系,并提炼出数量关系,从而渗透数形结合,分类讨论等数学思想.【情感态度】形成解决问题的一些根本策略,体验解决问题策略的多样性,开展实践能力与创新精神.【教学重点】〔1〕点与圆的三种位置关系.〔2〕过三点作圆.【教学难点】点与圆的三种位置关系及其数量关系反证法一、情境导入,初步认识射击是奥运会的一个正式体育工程,我国运发动在奥运会上屡获金牌,为我国赢得了荣誉,如下图是射击靶的示意图,它是由假设干个同心圆组成的,射击成绩是由击中靶子不同位置所决定的•图中是一位运发动射击10发子弹在靶上留下的痕迹.你知道如何计算运发动的成绩吗?点在圆外.解*.*OB=4cm, 从数学的角度来看,这是平面上的点与圆的位置关系,我们今天这节课就来研究这一问题,引出课题.【教学说明】随着现在经济科技的开展,奥运会越来越被人们所重视.本节通过学生熟悉的射击比赛成绩的算法,使学生在开拓知识视野的同时,感知点与圆的几种位置关系,体会数学在生活中应用.二、思考探究,获取新知1•点与圆的位置关系我们取刚刚射击靶上的一局部图形来研究点与圆存在的几种位置关系. 议一议如下列图,O O 的半径为4cm,0A=2cm,0B=4cm,0C=5cm ,那么,点A 、B 、C 与©O 有怎样的位置关系?°・°OA=2cm V 4cm ,・°・点A 在©O 内.•・・OC=5cm >4cm ,・・・点C 在©O 夕卜.【教学说明】由前面所学的“圆上的点到圆心的距离都等于半径〃,反之“到圆心的距离都等于半径的点都在圆上〃可知点B 一定在©O 上.然后引导学生看图形,初步体会并认识到点与圆的位置关系可以转化为数量关系•为下面得出结论作铺垫.点在圆【归纳结论】点与圆的三种位置关系及其数量间的关系:设©0的半径为r,点P到圆心0的距离为d.则有:点P在©0外d>r点P在©0上d=r点P在©0内d V r注:①“〃表示可以由左边推出右边的结论,也可由右边推出左边结论.读作“等价于〃.②要明确“d〃表示的意义,是点P到圆心0的距离.2•圆确实定探究〔1〕如图〔1〕,作经过点的圆,这样的圆你能作出多少个?〔2〕如图〔2〕,作经过点A、B的圆,这样的圆能作多少个?它们的圆心分布有什么特点?学生动手探究,作图,交流,得出结论,教师点评并总结.解:〔1〕过点A画圆,可作无数个圆.这些圆的圆心分布于平面的任意一点,半径是任意长的线段〔仅过点A,既不能确定圆心,也不能确定半径.〕〔2〕过的两点A、B也可作无数个圆.这些圆的圆心分布在线段AB的垂直平分线上•因为线段垂直平分线上的点到线段两端点的距离相等.〔注:仅过点A、B,同样不能确定圆心,也不能确定半径.〕思考在平面上有不共线的三点A、B、C,过这三个点能画多少个圆?圆心在哪里?解:经过A、B两点的圆,圆心在线段AB的垂直平分线上.经过A、C两点的圆,圆心在线段AC的垂直平分线上,那么这两条垂直平分线一定相交,设交点为0,则OA=OB=OC,于是以O为圆心,以OA为半径的圆,必过B、C两点,所以过不在同一直线上的A、B、C三点有且仅有一个圆.【归纳结论】不在同一直线上的三点确定一个圆.由此结论要延伸到:经过三角形三个顶点可以作一个圆,并且只能作一个,这个圆叫做三角形的外接圆.三角形的外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心一一三角形三边垂直平分线的交点.它到三角形三个顶点的距离相等.【教学说明】这段中心问题是过点作圆,在帮助学生分析这一问题时,紧紧抓住圆心和半径来研究.在三点共圆的问题上,一定要强调“不共线的三点〃.这里学生实际动手作图的内容很多,可以充分调动学生学习的主动性和积极性,通过学生的动手操作和动脑思考,增强学生对知识的理解和领悟.议一议如果A、B、C三点在同一直线上,能画出经过这三点的圆吗?为什么?f\1 1.4B(:解:如图,假设过同一直线l上的三点A、B、C能作一个圆,圆心为P,则点P既在线段AB的垂直平分线11上,又在线段BC的垂直平分线12上,即点P 是直线11与直线12的交点,由此可得:过直线l外一点P作直线l的垂线有两条1]和12,这与以前学的“过一点有且仅有一条直线与直线垂直〃相矛盾,•:过同一直线上的三点不能作圆.【教学说明】所有学生都会看出这问题一定不能作圆,但如何证明呢这是一个事实,直接证明有些困难,于是引入了反证法.反证法是间接证明问题的一种方法.它不是直接从命题的得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,从矛盾断定所作的假设不成立,从而得出原命题成立,这种方法叫做反证法•阶段接触的较为简单.三、典例精析,掌握新知例1©0的半径为10cm,根据点P到圆心的距离:⑴8cm,⑵10cm,⑶13cm,判断点P与©O的位置关系?并说明理由.解:由题意可知:r=10cm.(1)d=8cm V10cm,d V r点P在©O内;(2)d=10cm,d=r点P在©O上;(3)d=13cm>10cm,d>r点P在©O夕卜.例2如图,在A地往北90m处的B处,有一栋民房,东120m的C处有一变电设施,在BC的中点D处有一古建筑.因施工需要必须在A处进行一次爆破,为使民房,变电设施,古建筑都不遭破坏,问爆破影响的半径应控制在什么范围之内?解:由题设可知:AB=90m,AC=120m,Z BAC=90°,由勾股定理可得:BC=JAB2+AC2^.'902+1202=150〔m〕.又T D是BC的中点,・・・AD=1/2BC=75〔m〕.・•・民房B,变电设施C,古建筑D到爆破中心的距离分别为:AB=90m,AC=120m,AD=75m.要使B、C、D三点不受到破坏,即B、C、D三点都在©A 外,•:©A的半径要小于75m.即:爆破影响的半径控制在小于75m的范围,民房、变电设施,古建筑才能不遭破坏.【教学说明】例1可让学生独立思考,尝试写出过程;教师点评,并标准书写格式•例2是对本节知识的实际应用,教师引导学生分析问题,使学生学会将实际问题转化为数学问题,从而认识到问题的本质,也让学生体会到数学是与实际生活紧密相连的.四、运用新知,深化理解1.如图,在Rt A ABC中,Z C=90°,AC=4,BC=3,D、E分别为AB、AC的中点,现以点B为圆心,BC的长为半径作©B,试问A、C、D、E四点分别与©B的位置关系?2.如图,①0是厶ABC的外接圆,且AB=AC=13,BC=24,求©0的半径.3.如图,有一个三角形鱼塘,在它的3个顶点A、B、C三处均有一棵大白杨树,现设想把三角形鱼塘扩建成圆形养鱼场,但必须保持白杨树不动,请问能否实现这一设想?假设能,请设计画出示意图;假设不能,说明理由.【教学说明】上述三道题,教师可先给出提示,再让学生自主探究,或分组讨论,最后加以评析.题1是有关点和圆的位置关系,意在帮助学生加深理解新知,题2是外接圆的知识,题3是确定圆的知识的实际应用.【答案】1.解:连接EB.VZ C=90°,AC=4,BC=3,A AB=5.V E>D分别为AC、AB的中点,・・・DB=1/2AB=2.5,EC=1/2AC=2,EB=.EC2+BC2•・・AB=5>3,・・・点A在©B夕卜;•・・CB=3,・・・点C在©B上;V DB=2.5<3,・••点D在©B内;・.・EB=33>3,・・・点E在©B夕卜.2.解:・.・AB=AC,・•・AB二AC,即A是BC的中点.故连接OB,0A,则0A丄BC,设垂足为D.在Rt A ABD中,AD=\;'AB2-BD2=032-122=5.设©O的半径为r,则在Rt^OBD中,r2=(r-5)2+122,解得r=16.9.3.只要作厶ABC的外接圆即可.五、师生互动,课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流•【教学说明】学生自主发言,教师进行点评和补充,要向学生强调反证法和数形结合的数学思想.1.布置作业:从教材“习题24.2〃中选取.2.完成练习册中本课时练习的“课后作业〃局部.本节课通过复习圆的定义入手,通过学生操作,总结出了点与圆的三种位置关系,其中渗透着分类讨论的思想,经过探讨过一点、两点、三点作圆,得出了不在同一直线上三点确定一个圆,从而自然引出三角形外接圆、外心及圆内接三角形的定义,此外还学习了用反证法证明命题的方法和步骤•这些定理都是从学生实践中得出的,培养了学生动手的能力.。

人教版数学九年级上册24.2.1点和圆的位置关系教案

人教版数学九年级上册24.2.1点和圆的位置关系教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了点和圆位置关系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这个知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
学生小组讨论的环节,大家表现得都很积极。通过讨论,学生们对点和圆位置关系在实际生活中的应用有了更深入的认识。但在引导讨论时,我发现有些问题设置得还不够明确,导致学生的思考方向出现了一些偏差。在以后的课堂上,我需要更精准地设置问题,引导学生进行有针对性的思考和讨论。
五、教学反思
今天我们在课堂上探讨了点和圆的位置关系,整体来看,学生们对这一概念的理解还是不错的。我发现,通过引入日常生活中的例子,学生们能够更直观地感受到数学知识的应用,这有助于提高他们对数学的兴趣。在讲授过程中,我注意到有些学生对点到圆心的距离计算还不够熟练,特别是在涉及到非直角三角形的情况。针对这一点,我打算在下一节课前复习一下勾股定理和相似三角形的性质,帮助学生巩固基础知识。
在实践活动环节,学生分组讨论和实验操作都进行得相当顺利。他们能够将理论知识运用到实际问题中,并尝试自己解决问题。不过,我也观察到一些小组在讨论时,个别成员参与度不高,可能是因为他们对问题还不够理解,或者是学生,鼓励他们积极参与,勇于表达自己的观点。
2.教学难点
-理解并掌握点到圆心的距离的计算方法,特别是在非标准情况下的计算;
-在实际问题中,识别和利用点和圆的位置关系,解决更为复杂的几何问题;
-对于一些特殊情况的处理,如点在圆的切线上时的判断。
举例:
a.难点一:计算点到圆心的距离。学生需要掌握勾股定理,在直角三角形中计算斜边(即点到圆心的距离)。对于非直角三角形,需要运用相似三角形或解直角坐标系中的距离公式。

人教版数学九年级上册24.2.1《点与圆的位置关系》教学设计

人教版数学九年级上册24.2.1《点与圆的位置关系》教学设计

人教版数学九年级上册24.2.1《点与圆的位置关系》教学设计一. 教材分析《点与圆的位置关系》是人民教育出版社九年级上册数学教材第24章第2节第1课时的一节内容。

这部分内容主要让学生了解点与圆的位置关系,学会通过圆心到点的距离与圆的半径之间的关系来判断点与圆的位置关系,并能够运用这一关系解决实际问题。

教材通过引入、探究、总结的过程,使学生掌握点与圆的位置关系,为后续学习圆的方程和圆的应用打下基础。

二. 学情分析九年级的学生已经学习了初中阶段的大部分数学知识,对几何图形的认识有一定的基础。

但是,对于点与圆的位置关系的理解和运用还需要加强。

此外,学生对于抽象几何图形的理解还需要进一步培养。

因此,在教学过程中,需要结合学生的实际情况,采取合适的教学方法,引导学生主动探究,提高学生的几何思维能力。

三. 教学目标1.让学生了解点与圆的位置关系,理解并掌握圆心到点的距离与圆的半径之间的关系。

2.培养学生通过图形直观判断点与圆的位置关系的能力。

3.提高学生运用点与圆的位置关系解决实际问题的能力。

四. 教学重难点1.教学重点:点与圆的位置关系的判断,圆心到点的距离与圆的半径之间的关系。

2.教学难点:点与圆的位置关系的理解与应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究点与圆的位置关系。

2.利用几何画板等教学工具,直观展示点与圆的位置关系,帮助学生理解。

3.通过例题和练习题,巩固所学知识,提高学生的应用能力。

六. 教学准备1.准备教学PPT,包括教材内容的呈现、图片、动画等。

2.准备几何画板等教学工具,用于展示点与圆的位置关系。

3.准备相关练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,如“已知一个圆的半径为5cm,判断圆上任意一点到圆心的距离是否大于5cm?”引导学生思考点与圆的位置关系。

2.呈现(10分钟)利用PPT展示教材内容,引导学生了解点与圆的位置关系,并通过几何画板展示点与圆的位置关系,让学生直观地感受。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A N
作法:1、连结AB,作线段AB的
F 垂直平分线MN;
2、连接AC,作线段AC的垂直平
B
EO
M
C
分线EF,交MN于点O; 3、以O为圆心,OB为半径作圆。
所以⊙O就是所求作的圆.
问题4:现在你知道怎样将一个如图所示的破损的圆盘
复原了吗?
方法: 1、在圆弧上任取三点A、
A B
B、C;
2、作线段AB、BC的垂
A
D
B
C
变式:如图,在直角坐标系中,点A的坐标为(2,1),
P是x轴上一点,要使△PAO为等腰三角形,满足条件的
P有几个?求出点P的坐标.
y
A x
P2 O P4 P1 P3
P1( 5, 0)
P2 ( 5, 0) P3 (4, 0)
5 P4 ( 4 , 0)
二 过不共线三点作圆
合作探究
问题1如何过一个点A作一个圆? 过点A可以作多少个圆?
反过来,由d与r的数量关系,怎样判定点与圆的位置关系呢?
P
d
d
Pd
r
r
P
r
点P在⊙O内 点P在⊙O上 点P在⊙O外
d <r d= r d>r
练一练:
1.⊙O的半径为10cm,A、B、C三点到圆心的距离 分别为8cm、10cm、12cm,则点A、B、C与⊙O的
位置关系是:点A在 圆内 ;点B在 圆上 ;点 C在 圆外 .
方法总结:图形中求三角形外接圆的面积时,关键是 确定外接圆的直径(或半径)长度.
例3 如图,在△ABC中,O是它的外心,BC=24cm, O到BC的距离是5cm,求△ABC的外接圆的半径.
以不与A点重合的任意一点 为圆心,以这个点到A点的 距离为半径画圆即可; 可作无数个圆.
· A ··
· ·
问题2:如何过两点A、B作一个圆?过两点可以作多少 个圆?
作线段AB的垂直平分线,以其
上任意一点为圆心,以这点和
·
点A或B的距离为半径画圆即可;
可作无数个圆.
A ·· B
·
问题3:过不在同一直线上的三点能不能确定一个圆?
导入新课
情境引入
你玩过飞镖吗?它的靶子是由一些圆组成的, 你知道击中靶子上不同位置的成绩是如何计算的吗?
想一想
视频引入
一 点和圆的位置关系 问题1:观察下图中 C
点与圆的位置关系有三种: 点在圆内,点在圆上,点在圆外.
问题2:设点到圆心的距离为d,圆的半径为r,量一量在 点和圆三种不同位置关系时,d与r有怎样的数量关系?
C
B●

三 三角形的外接圆及外心
试一试: 已知△ABC,用直尺与圆规作出过A、
B、C三点的圆. A
O C
B
要点归纳
A
1. 外接圆
⊙O叫做△ABC的_外__接__圆___,
B
△ABC叫做⊙O的_内__接__三__角__形___.
●O C
2.三角形的外心: 定义:三角形外接圆的圆心叫做三角形的外心.
A
A
A
●O
●O
●O
B

CB
C
B
C
锐角三角形的外心位于三角形内,
直角三角形的外心位于直角三角形斜边的中点,
钝角三角形的外心位于三角形外.
要点归纳
经过三角形的三个顶点的圆叫做三角形的外接 圆;外接圆的圆心叫三角形的外心;三角形的外心 到三角形的三个顶点的距离相等.
典例精析
例2:如图,将△AOB置于平面直角坐标系中,O为 原点,∠ABO=60°,若△AOB的外接圆与y轴交于 点D(0,3). (1)求∠DAO的度数; (2)求点A的坐标和△AOB外接圆的面积.
直平分线,其交点O即为 圆心;
C O
3、以点O为圆心,OC长
为半径作圆.
⊙O即为所求.
针对训练
某一个城市在一块空地新建了三个居民小区,它们 分别为A、B、C,且三个小区不在同一直线上,要想 规划一所中学,使这所中学到三个小区的距离相等。 请问同学们这所中学建在哪个位置?你怎么确定这个 位置呢?
●A
解:(1)∵∠ADO=∠ABO=60°, ∠DOA=90°, ∴∠DAO=30°;
(2)求点A的坐标和△AOB外接圆的面积.
(2)∵点D的坐标是(0,3),∴OD=3. 在直角△AOD中, OA=OD·tan∠ADO= 3 3, AD=2OD=6, ∴点A的坐标是( 3 3 ,0). ∵∠AOD=90°,∴AD是圆的直径, ∴△AOB外接圆的面积是9π.
作图:三角形三边中垂线的交点. 性质:到三角形三个顶点的距离相等.
判一判: 下列说法是否正确
(1)任意的一个三角形一定有一个外接圆( √ ) (2)任意一个圆有且只有一个内接三角形( × ) (3)经过三点一定可以确定一个圆( × ) (4)三角形的外心到三角形各顶点的距离相等( √ )
画一画:分别画一个锐角三角形、直角三角形和钝 角三角形,再画出它们的外接圆,观察并叙述各三 角形与它的外心的位置关系.
2.圆心为O的两个同心圆,半径分别为1和2,若
OP= 3 ,则点P在( D )
A.大圆内
B.小圆内
o
C.小圆外
D.大圆内,小圆外
要点归纳 点和圆的位置关系
P
P
d
d Pd
r
r
r
P
r
R
点P在⊙O内 d<r 点P在⊙O上 d=r
点P在⊙O外 d>r 点P在圆环内 r≤d≤R
数形结合:位置关系
数量关系
例1:如图,已知矩形ABCD的边AB=3,AD=4.
第二十四章 圆
24.2 点和圆、直线和圆 的位置关系
24.2.1 点和圆的位置关系
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解并掌握点和圆的三种位置关系.(重点) 2.理解不在同一直线上的三个点确定一个圆及其运用. (重点) 3.了解三角形的外接圆和三角形外心的概念. 4.了解反证法的证明思想.
(1)以A为圆心,4为半径作⊙A,则点B、C、D与
⊙A的位置关系如何?
A
D
解:AD=4=r,故D点在⊙A上
AB=3<r,故B点在⊙A内
AC=5>r,故C点在⊙A外
B
C
(2)若以A点为圆心作⊙A,使B、C、D三点中至少有 一点在圆内,且至少有一点在圆外,求⊙A的半径r的取 值范围?(直接写出答案)
3<r<5
经过A,B两点的圆的圆心在线段
AB的垂直平分线上.
F
经过B,C两点的圆的圆心在线段
A
BC的垂直平分线上.
B ●
经过A,B,C三点的圆的圆心应该在
o
C
这两条垂直平分线的交点O的位置.
G
归纳总结
位置关系
定理: 不在同一直线上的三个点确定
一个圆.
B 有且只有
F A

o
C
G
练一练 已知:不在同一直线上的三点A、B、C. 求作: ⊙O,使它经过点A、B、C.
相关文档
最新文档