新人教版八年级数学下册勾股定理知识点和典型例习题
人教版八年级下册数学 17.1 勾股定理 同步习题(含答案)
17.1 勾股定理同步习题知识点1 勾股定理1.如图,以直角三角形的三边a,b,c为边或直径,分别向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形个数是()A.1B.2C.3D.42.若一个直角三角形的两直角边的长分别为a,b,斜边长为c,则下列关于a,b,c的关系式中不正确的是()A.b2=c2-a2B.a2=c2-b2C.b2=a2-c2D.c2=a2+b23.一直角三角形的两边长分别为3和4,则第三边长为()A.5B. 7C.2D.5或74.如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5B.6C.8D.105.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A.10B.8C.6或10D.8或106.在△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.5知识点2 勾股定理与面积的关系7.如图,字母B所代表的正方形的面积是()A.12B.13C.144D.1948.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,则b的面积为()A.3B.4C. 5D.79.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48B.60C.76D.8010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13B.26C.47D.94易错点考虑问题不全面而漏解(分类讨论思想)11.若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25B.7C.7或25D.9或16提升训练考查角度1 利用勾股定理求直角三角形中的边长12.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AB的长.考查角度2 利用勾股定理求三角形的面积13.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.如图,作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形面积探究培优拔尖角度1 利用勾股定理解非直角三角形问题(倍长中线法)14.如图,在△ABC中,D为AC边的中点,且DB⊥BC,BC=4,CD=5.(1)求DB的长;(2)求△ABC中BC边上的高.拔尖角度2 利用勾股定理解四边形问题(补形法)15.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=4,求: (1)AB的长;(2)四边形ABCD的面积.参考答案解:因为直角三角形的三边为a,b,c,所以应用勾股定理可得a2+b2=c2.第一个图形中,首先根据等边三角形的面积的求法,表示出3个等边三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第二个图形中,首先根据圆的面积的求法,表示出3个半圆形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积,然后根据a2+b2=c2,可得S1+S2=S3.第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积,然后根据a2+b2=c2,可得S1+S2=S3.2.【答案】C3.【答案】D解:当两直角边长分别为3和4时,斜边长为=5;当斜边长为4时,另一条直角边长为=.故选D.4.【答案】C5.【答案】C解:根据题意画出图形,如图①所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD+CD=8+2=10;如图②所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选C.6.【答案】A解:如图,过A点作AF⊥BC于F,连接AP,因为在△ABC中,AB=AC=5,BC=8,所以BF=4,所以在Rt△ABF中,AF2=AB2-BF2=9,所以AF=3,所以×8×3=×5×PD+×5×PE,即12=×5(PD+PE),解得PD+PE=4.8.7.【答案】C8.【答案】D解:利用勾股定理求出正方形的边长为10,阴影部分的面积为正方形面积与直角三角形面积之差.10.【答案】C11.错解:A诊断:容易忽略a,c为直角边长,b为斜边长这种情况,故很容易错选A.正解:C解题策略:解答此题要用分类讨论思想.此题有两种情况:a,b为直角边长,c为斜边长和a,c为直角边长,b为斜边长,利用勾股定理即可求解.12.解:(1)在Rt△BCD中,DC2=BC2-BD2=32-=,所以DC=.(2)在Rt△ACD中,AD2=AC2-CD2=42-=,所以AD=,所以AB=AD+BD=+=5.13.解:在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,所以152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,AD===12.所以S△ABC=BC·AD=×14×12=84.14.解:(1)∵DB⊥BC,BC=4,CD=5,∴BD==3.(2)如图,延长BD至E,使DE=BD,连接AE.∵D是AC的中点,∴AD=DC.在△BDC和△EDA 中,∴△BDC≌△EDA(SAS),∴∠DAE=∠DCB,∴AE∥BC.∵BD⊥BC,∴BE⊥AE.∴BE为△ABC中BC边上的高,∴BE=2BD=6.15.解:(1)如图,延长AD,BC交于点E,在Rt△ABE中,∠A=60°,∴∠E=30°.在Rt△CDE中,CD=4,∴CE=2CD=8,∴BE=BC+CE=6+8=14.设AB=x,则有AE=2x,根据勾股定理得:x2+142=(2x)2,解得x=,则AB=.(2)在Rt△CDE中,∠CDE=90°,∴DE===4.∴S=S△ABE-S△CDE 四边形ABCD =·AB·BE-·CD·DE=××14-×4×4=.。
人教数学八年级下册《勾股定理》典型例题分析.docx
初中数学试卷桑水出品《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短。
二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 14、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
5、在直线l 上依次摆放着七个正方形(如图4所示)。
人教版八年级数学下册 勾股定理 讲义
c b a H G F E D C B A 勾股定理知识点一、勾股定理的概念知识概念:勾股定理是指,直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为“勾股形”, 因此把这个定理称为“勾股定理”。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,因此这个定理也叫做“毕达哥拉斯定理”在Rt △ACB 中,根据勾股定理:222a b c +=中国古代数学家赵爽的证明方法:将四个全等的直角三角形摆成如图所示的图形4AGB S ∆+S 正方形EFGH =ABCD S 正方形,2214()2ab b a c ⨯+-= 化简可证a 2+b 2=c 2例1、在Rt △ABC 中,∠C=90°(1)已知a=3, b=4,求c (2)已知a=9,b=40,求c (3)已知a=6,c=10,求b1、在Rt △ABC 中,∠C=90°(1)已知a=5, b=12,求c (2)已知a=7,b=24,求c (3)已知a=8,c=17,求b2、如图,在ABC Rt ∆中,∠C =90°,a 、b 、c 分别表示A ∠、B ∠、C ∠的对边。
(1)已知c =25,b =15,求a(2)已知a =6,∠A =60°,求b 、c知识概念:满足勾股定理的三个正整数称为勾股数例2、下列属于勾股数的有_________①3,4,5 ②6,8,10 ③9,12,15 ④12,16,20 ⑤5,12,13 ⑥7,24,25 ⑦9,40,41⑧10,24,26 ⑨1,1,2 ⑩0.3,0.4,0.5如果三个数满足勾股定理,那么它们的k 倍也满足勾股定理1、下列哪一组属于勾股数( )A 、0.6,0.8,1B 、112,2,122C 、1,2,3D 、15,20,252、在△ABC中,∠C=90°,若c=10,a:b=3:4,则ab=______3、如图,在等腰△ABC中,AB=AC=10,BC=12,则高AD=______4、已知直角三角形一个锐角为60°,斜边长为2,那么此直角三角形的周长是()A、3B、1C、3+2D、3+35、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里6、请用数轴上表示出代表2的数7、如图所示,数轴上点A所表示的数为a,则a的值是________例3、已知Rt△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若∠B=90°,则()A、a2+b2=c2B、a2+c2=b2C、b2+c2=a2D、a+b=c例4、已知一个直角三角形的两边长分别为3和4,则第三边长是________8、如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是________米.9、如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________.10、在Rt△ABC中,斜边AB=2,则AB2+BC2+CA2=_________11、若一个直角三角形的三边长分别为a,b,c,且a2=9,b2=16,则c2为()A.25 B.7 C.7或25 D.9或1612、如图,△ABC中,∠C=90°,AB的中垂线DE交AB于E,交BC于D,若AB=10,AC=6,则△ACD的周长为()A.14 B.16 C.18 D.2013、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.14、有一只小鸟在一棵高4m的小树梢上捉虫子,它的伙伴在离该树12m,高20m的一棵大树的树梢上发出友好的叫声,它立刻以4m/s的速度飞向大树树梢,那么这只小鸟至少几秒才可能到达大树和伙伴在一起?15、飞机在空中水平飞行,某一时刻刚好飞到小明头顶正上方4000米处,过了20秒,飞机距离小明头顶5000米,求飞机每小时飞行多少千米?16、如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?。
人教版八年级下《17.1.1勾股定理》练习含答案
《勾股定理》练习一、选择——基础知识运用1.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.42.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC 能作出()A.2个B.3个C.4个D.6个3.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4 B.3 C.5 D.4.54.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c25.一个钝角三角形的两边长为3、4,则第三边可以为()A.4 B.5 C.6 D.76.如图所示,三个正方形中两个的面积分别为S1=169,S2=144,则S3=()A.50 B.25 C.100 D.30二、解答——知识提高运用7.在四边形ABCD中(见图),线段BC长5,∠ABC为直角,∠BCD为135°,AC=AD,而且点A到边CD的垂线段AE的长为12,线段ED的长为5,求四边形ABCD的面积。
8.画一个直角三角形,分别以它的三条边为边向外作等边三角形,要求:(1)画出图形;(2)探究这三个等边三角形面积之间的关系,并说明理由。
9.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC 和△ACD拼成一个凸四边形ABCD.(1)画出四边形ABCD;(2)求出四边形ABCD的对角线BD的长。
10.如图所示.从锐角三角形ABC的顶点B向对边作垂线BE.其中AE=3√3,AB=5√3,∠EBC=30°,求BC。
人教版八年级数学下册《勾股定理》(提高)知识点讲解及例题解析
勾股定理(提高)知识点讲解及例题解析【学习目标】1. 1. 掌握勾股定理的内容及证明方法,能够熟练地运用勾股掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.定理由已知直角三角形中的两条边长求出第三条边长. 2. 2. 掌握勾股定理,能够运用勾股定理解决简单的实际问题,掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.会运用方程思想解决问题.3. 3. 熟练应用勾股定理解决直角三角形中的问题,进一步运熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.用方程思想解决问题. 【要点梳理】【勾股定理 知识要点】 要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方直角三角形两直角边的平方和等于斜边的平方..如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系的数量关系. .((2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的来,达到了解决问题的目的. .((3)理解勾股定理的一些变式:)理解勾股定理的一些变式:222a c b =-,222b c a =-, ()222c a b ab =+- 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(方法一:将四个全等的直角三角形拼成如图(11)所示的正方形的正方形. .图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(方法二:将四个全等的直角三角形拼成如图(22)所示的正方形的正方形. .图(图(22)中,所以.方法三:如图(方法三:如图(33)所示,将两个直角三角形拼成直角梯形梯形. .,所以.要点三、勾股定理的作用 1.1. 已知直角三角形的任意两条边长,求第三边;已知直角三角形的任意两条边长,求第三边; 2.2. 用于解决带有平方关系的证明问题;用于解决带有平方关系的证明问题; 3. 3. 利用勾股定理,作出长为利用勾股定理,作出长为的线段的线段..【典型例题】类型一、勾股定理的应用1、如图所示,在多边形ABCD 中,中,AB AB AB==2,CD CD==1,∠,∠A A =4545°,∠°,∠°,∠B B =∠=∠D D =9090°,求多边形°,求多边形ABCD 的面积.的面积.【答案与解析】解:延长AD AD、、BC 相交于点E∵ ∠∠B =9090°,∠°,∠°,∠A A =4545°° ∴ ∠∠E =4545°,∴°,∴°,∴ AB AB AB==BE BE==2 ∵ ∠∠ADC ADC==9090°,∴°,∴°,∴ ∠∠DCE DCE==4545°,°,°, ∴ CD CD==DE DE==1∴ 12222ABE S=´´=△,111122DCE S =´´=△.∴ 13222ABE DCE ABCD S S S =-=-=△△四边形.【总结升华】求不规则图形的面积,关键是将其转化为规则的图形(如直角三角形、正方形、等腰三角形等),转化的方法主要是割补法,然后运用勾股定理求出相应的线段,解决面积问题.决面积问题. 举一反三:【变式】(20182018•西城区模拟)已知:如图,在△ABC,•西城区模拟)已知:如图,在△ABC,•西城区模拟)已知:如图,在△ABC,BC=2BC=2BC=2,,S △ABC =3=3,∠ABC=135°,求,∠ABC=135°,求AC AC、、AB 的长.的长.【答案】解:如图,过点A 作AD⊥BC 交CB 的延长线于D , 在△ABC 中,∵S △ABC =3=3,,BC=2BC=2,, ∴AD===3=3,,∵∠ABC=135°,∵∠ABC=135°,∴∠ABD=180°﹣135°=45°,∴∠ABD=180°﹣135°=45°, ∴AB=AD=3, BD=AD=3BD=AD=3,,在Rt△ADC 中,中,CD=2+3=5CD=2+3=5CD=2+3=5,, 由勾股定理得,由勾股定理得,AC=AC===.2、已知直角三角形斜边长为2,周长为26+,求此三角形的面积.形的面积.【思路点拨】欲求Rt Rt△的面积,只需求两直角边之积,而由△的面积,只需求两直角边之积,而由已知得两直角边之和为6,结合勾股定理又得其平方和为4,于是可转化为用方程求解. 【答案与解析】解:设这个直角三角形的两直角边长分别为a b 、,则,则2222262a b a b ì++=+ïí+=ïî 即即2264a b a b ì+=ïí+=ïî①②将①两边平方,得2226a ab b ++= ③③ ③-②,得22ab =,所以1122ab =因此这个直角三角形的面积为12.【总结升华】此题通过设间接未知数a b 、,通过变形直接得出12ab 的值,而不需要分别求出a b 、 的值.本题运用了方程思想解决问题.思想解决问题.3、(2018春•黔南州期末)春•黔南州期末)长方形纸片长方形纸片ABCD 中,中,AD=4cm AD=4cm AD=4cm,,AB=10cm AB=10cm,按如图方式折叠,使点,按如图方式折叠,使点B 与点D 重合,折痕为EF EF,,求DE 的长.的长.【思路点拨】在折叠的过程中,在折叠的过程中,BE=DE BE=DE BE=DE.从而设.从而设BE 即可表示AE AE.在直角三角形.在直角三角形ADE 中,根据勾股定理列方程即可求解.中,根据勾股定理列方程即可求解. 【答案与解析】解:设DE=xcm DE=xcm,则,则BE=DE=x BE=DE=x,,AE=AB AE=AB﹣﹣BE=10BE=10﹣﹣x ,△ADE 中,中,DE DE 22=AE 22+AD 22,即x 22=(1010﹣﹣x )22+16+16..∴x=(cm cm)). 答:答:DEDE 的长为cm.思路点拨】其中一只猴子从另一只猴子从B→D→A于是这个问题可化归到直角三角形中利用勾股定理解决.举一反三:【变式】如图①,有一个圆柱,它的高等于12cm ,底面半径等于3cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得:解:如图②所示,由题意可得: 12AA ¢=,12392A B p ¢=´´=在在Rt Rt△△AA AA′′B 中,根据勾股定理得:中,根据勾股定理得: 22222129225AB AA A B ¢¢=+=+=则则AB AB==15cm .所以需要爬行的最短路程是所以需要爬行的最短路程是15cm .。
勾股定理
新人教版八年级下册勾股定理知识点和典型例习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a a b b=+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =,b =a ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 7,24,25等 二、经典例题精讲题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC = 题型二:利用勾股定理测量长度cbaHG F EDCB Abacbac cabcab a bcc baE D CBA CB DA例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?解析:这是一道大家熟知的典型的“知二求一”的题。
人教版八年级下册数学-专题:第18章.勾股定理知识点与常见题型总结
, 4 ⨯ ab + (b - a )2 = c 2 ,化简可证.四个直角三角形的面积与小正方形面积的和为 S = 4 ⨯ ab + c 2 = 2ab + c 2= (a + b ) ⋅ (a + b ) , S = 2 ⋅ ab + c 2 ,化简得证 2 2 2八年级下册 .勾股定理知识点与常见题型总结1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为 c ,那么 a 2 + b 2 = c 2勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较 短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了 “勾 三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的 平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一: 4S + S ∆DHEF bAc方法二:b正方形EFGH= SCGaBa正方形ABCD 1 2accbbccaab四个直角三角形的面积与小正方形面积的和等于大正方形的面积.12大正方形面积为 S = (a + b )2 = a 2 + 2ab + b 2所以 a 2 + b 2 = c 2方法三: S 梯形1 1 1 = 2S + S梯形 ∆ADE ∆ABEA accB bD bE a C3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在∆ABC中,∠C=90︒,则c=a2+b2,b=c2-a2,a=c2-b2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a2+b2与较长边的平方c2作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若a2+b2<c2,时,以a,b,c为三边的三角形是钝角三角形;若a2+b2>c2,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c 满足a2+c2=b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即a2+b2=c2中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:n2-1,2n,n2+1(n≥2,n为正整数);2n+1,2n2+2n,2n2+2n+1(n为正整数)m2-n2,2mn,m2+n2(m>n,m,n为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:CC C30°A B A D B B DACB DA题型一:直接考查勾股定理例1.在∆ABC中,∠C=90︒.⑴已知AC=6,BC=8.求AB的长⑵已知AB=17,AC=15,求BC的长分析:直接应用勾股定理a2+b2=c2解:⑴AB=AC2+BC2=10⑵BC=AB2-AC2=8题型二:应用勾股定理建立方程例2.⑴在∆ABC中,∠ACB=90︒,AB=5cm,BC=3cm,CD⊥AB于D,CD=⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm,斜边长为13cm,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴AC=AB2-BC2=4,CD=ADB C AC⋅BCAB=2.4⑶设两直角边分别为a,b,则a+b=17,a2+b2=289,可得ab=60∴S=ab=30⑵设两直角边的长分别为3k,4k∴(3k)2+(4k)2=152,∴k=3,S=5412例3.如图∆ABC中,∠C=90︒,∠1=∠2,CD=1.5,BD=2.5,求AC的长CD1cm2A2E B分析:此题将勾股定理与全等三角形的知识结合起来解:作DE⊥AB于E,∠1=∠2,∠C=90︒∴DE=CD=1.5在∆BDE中∠BED=90︒,BE=BD2-DE2=2Rt∆ACD≅Rt∆AED∴AC=AE在Rt∆ABC中,∠C=90︒∴AB2=AC2+BC2,(A E+EB)2=AC2+42∴AC=3例4.(2014安徽省,第8题4分)如图,△Rt ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在△Rt ABC中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在△Rt ABC中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.例5.已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点△E,将ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。
人教版八年级下册专项训练专题02 勾股定理逆定理及应用(学生版)
专题02 勾股定理逆定理及应用一、知识点勾股定理的逆定理:两个边平方之和等于第三边的平方的三角形是直角三角形。
第三边即为直角三角形的斜边。
勾股定理逆定理的应用:证明直角三角形二、标准例题:例1:如图,一个零件的形状如图所示,按规定这个零件中∠A 与∠DBC 都应为直角.工人师傅量的这个零件各边的尺寸如图所示.(1)这个零件符合要求吗?(2)求这个四边形的面积.例2:课堂上学习了勾股定理后,知道“勾三、股四、弦五”.王老师给出一组数让学生观察:3、4、5;5、12、13;7、24、25;9、40、41;…,学生发现这些勾股 数的勾都是奇数,且从 3 起就没有间断过,于是王老师提出以下问题让学生解决.(1)请你根据上述的规律写出下一组勾股数:11、________、________;(2)若第一个数用字母a (a 为奇数,且a ≥3)表示,那么后两个数用含a 的代数式分别怎么表示?小明发现每组第二个数有这样的规律4=32−12,12=52−12,24=72−12……,于是他很快表示了第二数为a 2−12,则用含a 的代数式表示第三个数为________;(3)用所学知识证明你的结论.三、练习1.将下列长度的三根木棒首尾顺次连接,能构成直角三角形的是( )A .1,2,3B .4,5,6C .5,12,15D .1,√3,22.下列几组数中,不能作为直角三角形三边长度的是( ) A .a=23 ,b=2 , c=54; B .a=1.5 ,b=2 , c=2.5 C .a=6 ,b=8 , c= 10; D .a= 15,b=8 , c=173.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是 ( ) A .∠A =∠C -∠B B .a 2=b 2-c 2 C .a:b:c =2:3:4 D .a =34,b =54,c =14.以下列数组为边长,能构成直角三角形的是( ) A .2 ,3,4 B .1,12,13 C .1,√2,√3 D .0.2,0.5,0.6 5.下列说法中,正确的有( )①如果∠A+∠B -∠C=0,那么△ABC 是直角三角形; ②如果∠A:∠B:∠C=5:12:13,则△ABC 是直角三角形; ③如果三角形三边之比为√7:√10:√17,则△ABC 为直角三角形;④如果三角形三边长分别是n 2−4、4n 、n 2+4(n >2),则△ABC 是直角三角形; A .1个 B .2个 C .3个 D .4个6.已知△ABC 的三边长a 、b 、c 满足√a −1+|b −1|+(c −√2)2=0,则△ABC 一定是( )三角形。
八年级数学下册 勾股定理应用第二课时的类型题 人教版
勾股定理应用第二课时的类型题知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。
2. 在理解的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
初二数学下册知识点《勾股定理》150题及解析
初二数学下册知识点《勾股定理》经典例题及解析一、选择题(本大题共50小题,共150.0分)1.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C. 5D. 4【答案】A【解析】【分析】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形=是解此题的关键.ABCD根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选A.2.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A. 10B. 8C. 6或10D. 8或10【答案】C【解析】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD-CD=8-2=6,则BC的长为6或10.故选:C.分两种情况考虑,如图所示,分别在直角三角形ABD与直角三角形ACD中,利用勾股定理求出BD与CD的长,即可求出BC的长.此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.3.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B. 2C.D. 10-5【答案】B【解析】解:如图,延长BG交CH于点E,在△ABG和△CDH中,,∴△ABG≌△CDH(SSS),AG2+BG2=AB2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG和△BCE中,,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在RT△GHE中,GH===2,故选:B.延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.4.如图,矩形纸片ABCD中,,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若,则AB的长为()A. 6cmB. 7cmC. 8cmD. 9cm【答案】C【解析】【分析】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可.【解答】解:根据折叠前后角相等可知∠BAC=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∴∠BAC=∠ACD,∴∠EAC=∠ACD,∴AO=CO=5cm,在直角三角形ADO中,DO==3cm,AB=CD=DO+CO=3+5=8cm.故选C.5.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A. (,1)B. (2,1)C. (1,)D. (2,)【答案】D【解析】【分析】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确地识别图形是解题的关键.由已知条件得到AD'=AD=2,AO=AB=1,根据勾股定理得到OD'==,于是得到结论.【解答】解:∵AD'=AD=2,AO=AB=1,∴OD'==,∵C'D'=2,C'D'∥AB,∴C'(2,),故选D.6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A. 0.7米B. 1.5米C. 2.2米D. 2.4米【答案】C【解析】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.7.如图,菱形ABCD的对角线AC,BD的长分别为6cm,8cm,则这个菱形的周长为( ).A. 5cmB. 10cmC. 14cmD. 20cm【答案】D【解析】【分析】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,需熟记.根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC,OB=BD,再利用勾股定理列式求出AB,然后根据菱形的四条边都相等列式计算即可得解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=AC=×6=3cm,OB=BD=×8=4cm,根据勾股定理得,AB===5cm,所以,这个菱形的周长=4×5=20cm.故选D.8.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A. 1B. 2C. 3D. 4【答案】D【解析】解:(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上可得,面积关系满足S1+S2=S3图形有4个.故选D.根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.(3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.(4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握9.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A. 2B.C.D.【答案】D【解析】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,∴点A在BE的垂直平分线上.∵DE=DB=DC,∴点D在BE的垂直平分线上,△BCE是直角三角形,∴AD垂直平分线段BE,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选:D.如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.10.如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A. 6B. 8C. 10D. 12【答案】C【解析】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.11.已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是()A. B. 3 C. 6 D. 9【答案】B【解析】【分析】此题主要考查了根与系数的关系有关知识,根据根与系数的关系,求出两根之积与两根之和的值,再根据勾股定理列出直角三角形三边之间的关系式,然后将此式化简为两根之积与两根之和的形式,最后代入两根之积与两根之和的值进行计算.【解答】解:设直角三角形的斜边为c,两直角边分别为a与b.∵直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,∴a+b=4,ab=3.5;根据勾股定理可得:c2=a2+b2=(a+b)2-2ab=16-7=9,∴c=3,故选B.12.如图,正方形ABCD的对角线AC,BD相交于点O,AB=3,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A. B. C. D.【答案】A【解析】【分析】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE==,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,∴△BFG∽△BOE,∴=,即=,解得,BF=.故选A.13.如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A. B. C. 2 D.【答案】A【解析】【分析】本题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的难点是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度,如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.【解答】解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又∵BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x =2∴△ACD的面积是:AD•DF=x×x=×22=,故选:A.14.如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是()A. 20cmB. 18cmC. 2cmD. 3cm【答案】C【解析】解:设运动时间为ts,∵AP=CQ=t,∴CP=6-t,∴PQ===,∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是2,故选:C.根据已知条件得到CP=6-t,得到PQ===,于是得到结论.本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.15.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为()A. x2-6=(10-x)2B. x2-62=(10-x)2C. x2+6=(10-x)2D. x2+62=(10-x)2【答案】D【解析】解:如图,设折断处离地面的高度为x尺,则AB=10-x,BC=6,在Rt△ABC中,AC2+BC2=AB2,即x2+62=(10-x)2.故选:D.根据题意画出图形,设折断处离地面的高度为x尺,再利用勾股定理列出方程即可.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图,领会数形结合的思想的应用.16.如图,Rt△ABC中,∠B=90°,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD.若BD=1,则AC的长是()A.B. 2C.D. 4【答案】A【解析】解:∵在Rt△ABC中,∠B=90°,∠A=30°,∴∠ACB=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠ACD=∠A=30°,∴∠DCB=60°-30°=30°,在Rt△DBC中,∠B=90°,∠DCB=30°,BD=1,∴CD=2BD=2,由勾股定理得:BC==,在Rt△ABC中,∠B=90°,∠A=30°,BC=,∴AC=2BC=2,故选A.求出∠ACB,根据线段垂直平分线的性质求出AD=CD,推出∠ACD=∠A=30°,求出∠DCB,即可求出BD、BC,根据含30°角的直角三角形性质求出AC即可.本题考查了三角形内角和定理,等腰三角形的性质,勾股定理,含30度角的直角三角形性质的应用,解此题的关键是求出BC的长,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.17.如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别叫BD,CD于G,F两点。
八年级数学下册-第17章 勾股定理(学生版)
2023-2024学年人教版数学八年级下册章节知识讲练1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.知识点01:勾股定理【高频考点精讲】1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段. 知识点02:勾股定理的逆定理【高频考点精讲】a b 、c 222a b c +=1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长,满足,那么这个三角形是直角三角形.应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为;(2)验证与是否具有相等关系,若,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形.3.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)知识点03:勾股定理与勾股定理逆定理的区别与联系【高频考点精讲】区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.检测时间:120分钟 试题满分:100分 难度系数:0.49a b c 、、222a b c +=c 2c 22a b +222a b c +=222x y z +=x y z 、、a b c 、、at bt ct 、、a b c 、、a b c <<2a b c =+2729一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023秋•惠安县期末)如图,△ABC中,∠C=90°,AD是∠CAB的平分线,交BC于点D,若CD =5,BD=13,则AC的长为()A.7.5 B.8 C.10 D.122.(2分)(2023秋•简阳市期末)如图,表格中是直角三角形的是()A.①B.②C.③D.①②3.(2分)(2023秋•青山区期末)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.b2=(a+c)(a﹣c)B.∠A=∠B+∠CC.∠A:∠B:∠C=3:4:5 D.a=6,b=8,c=104.(2分)(2023秋•嘉定区期末)满足下列条件的三角形中,不是直角三角形的是()A.三边长之比为3:4:5B.三内角之比为3:4:5C.三内角之比为1:2:3D.三边长的平方之比为1:2:35.(2分)(2023秋•大东区期末)下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=5:12:13C.a2=(b+c)(b﹣c)D.∠A:∠B:∠C=3:4:56.(2分)(2023秋•如皋市期末)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=2,BC=1,将四个直角三角形中边长为2的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.B.C.D.7.(2分)(2023秋•临渭区期末)如图,在平面直角坐标系中,点A坐标为(6,4),以点O为圆心,OA的长为半径画弧,交x轴的正半轴于点B,则点B的横坐标介于()A.5和6之间B.7和8之间C.10和11之间D.8和9之间8.(2分)(2023春•庄浪县期中)如图,字母A所代表的正方形的面积为()A.4 B.16 C.36 D.649.(2分)(2023秋•衡阳期末)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EA的长是()km.A.4 B.5 C.6 D.10.(2分)(2023秋•凤城市期末)勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.如图,秋千静止时,踏板离地的垂直高度BE=1m,将它往前推6m至C处时(即水平距离CD=6m),踏板离地的垂直高度CF=4m,它的绳索始终拉直,则绳索AC的长是()m.A.B.C.6 D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023秋•南安市期末)如图,在△ABC中,∠ACB=90°,分别以AC,AB为边向外作正方形,面积分别为S1,S2,若S1=3,S2=7,则BC=.12.(2分)(2023秋•莱州市期末)如图,网格中每个小正方形的边长均为1,以A为圆心,AB为半径画弧,交最上方的网格线于点N,则MN的长是.13.(2分)(2023秋•武昌区期末)四个全等的直角三角形可以拼成两个正方形,有两种拼法,如图所示,两直角边长分别为a,b,图中空白部分的面积分别为S1,S2,若S1=2S2,则=.14.(2分)(2023秋•衡阳期末)勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为.15.(2分)(2023秋•惠安县期末)如图是2×4正方形网格图,点A、B、C、D、E都是格点,则∠BAC﹣∠BDE=°.16.(2分)(2023秋•龙岗区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=16,AB=20,动点D从点A出发,沿线段AB以每秒2个单位的速度向B运动,过点D作DF⊥AB交BC所在的直线于点F,连接AF,CD.设点D运动时间为t秒.当△ABF是等腰三角形时,则t=秒.17.(2分)(2023秋•巴中期末)在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB长度为1尺.将它往前水平推送10尺,即A'C=10尺,则此时秋千的踏板离地距离A'D就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA长为尺.18.(2分)(2023秋•惠安县期末)2002年国际数学家大会在北京召开,大会的会标是由我国古代数学家赵爽的“弦图”演变而来,体现了数学研究中的继承和发展.如图是用八个全等的直角三角形拼接而成的“弦图”.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为,则S1+S2+S3=.19.(2分)(2022•锡山区校级三模)“勾股图”有着悠久的历史,欧几里得在《几何原本》中曾对它做了深入研究.如图,在△ABC中,∠ACB=90°,分别以△ABC的三条边为边向外作正方形.连接EB,CM,DG,CM分别与AB,BE相交于点P,Q.若∠AMP=30°,则∠ABE=°,的值为.20.(2分)(2022春•莘县期末)如图,“赵爽弦图”由4个完全一样的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为60,小正方形的面积为10,则(a+b)2的值为.三.解答题(共8小题,满分60分)21.(6分)(2023秋•常州期末)防火安全无小事,时时处处需留心.一天晚上,某居民楼的点A处着火,消防大队派出云梯消防车展开紧急救援.已知点A离地面28米,消防车的云梯底部(点B)与地面的垂直距离是4米,与居民楼的水平距离是10米.云梯需要伸长多少米才能到达着火处?22.(6分)(2023秋•临渭区期末)如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,DA=1.(1)求∠DAB的度数;(2)求四边形ABCD的面积.23.(8分)(2023秋•衡山县期末)勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.(1)应用场景1——在数轴上画出表示无理数的点.如图1,在数轴上找出表示3的点A,过点A作直线l垂直于OA,在l上取点B,使AB=2,以原点O为圆心,OB为半径作弧,则弧与数轴的交点C表示的数是.(2)应用场景2——解决实际问题.如图2,秋千静止时,踏板离地的垂直高度BE=1m,将它往前推6m至C处时,水平距离CD=6m,踏板离地的垂直高度CF=4m,它的绳索始终拉直,求绳索AC的长.24.(8分)(2023秋•岳阳楼区校级期末)如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.6m,将秋于AD往前推送3m,到达AB的位置,此时,秋千的踏板离地的垂直高度为1.6m,秋千的绳索始终保持拉直的状态.(1)求秋千的长度.(2)如果想要踏板离地的垂直高度为2.6m时,需要将秋千AD往前推送m.25.(8分)(2022秋•薛城区期末)洋洋与林林进行遥控赛车游戏,终点为点A,洋洋的赛车从点C出发,以4米/秒的速度由西向东行驶,同时林林的赛车从点B出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,AC=40米,AB=30米.出发3秒钟时,遥控信号是否会产生相互干扰?26.(8分)(2023秋•岱岳区期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=3m,若秋千的绳索始终拉得很直,求绳索AD的长度.27.(8分)(2023秋•蒲城县期末)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB 为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.28.(8分)(2023春•通榆县期末)如图所示,A、B两块试验田相距200米,C为水源地,AC=160m,BC=120m,为了方便灌溉,现有两种方案修筑水渠.甲方案:从水源地C直接修筑两条水渠分别到A、B;乙方案;过点C作AB的垂线,垂足为H,先从水源地C修筑一条水渠到AB所在直线上的H处,再从H 分别向A、B进行修筑.(1)请判断△ABC的形状(要求写出推理过程);(2)两种方案中,哪一种方案所修的水渠较短?请通过计算说明.。
新人教版八年级数学下册勾股定理知识点和典型例习题1 (2)
新人教版八年级下册勾股定理全章知识点和典型例习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为22()2S a b a a b b =+=++ 所以22a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长cbaHG F ED CBAbacbac ca bcab a bc cbaED CB A边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:AB C30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
人教版八年级下学期《勾股定理》知识点归纳和题型归类
勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b2222. ①②方142⨯四个4S =大正方形面积为222()2S a b a ab b =+=++,所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边=,22b c =,那”来确若它们b ,c 为三a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数: 丢番图发现的:式子n m n m mn n m >+-(,2,2222的正整数)(n 线)求解.8.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =,,是① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用 例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =。
2021年人教版八年级下册第十七章第一节勾股定理知识点复习(含例题与课堂练习)
5/6
6/6
得到如图所示的梯形:
直角梯形的面积可以表示为:
;
三个直角三角形的面积和可以表示为:
;
利用“直角梯形的面积”与“三个直角三角形的面积和”的关系,可以得到:
=
+
+
∴
=
即
=
∴
2
2
2 (用字母表示)
【例 3】利用代数的计算方法探索勾股定理:
探索一:如图一,观察图中用阴影画出的三个正方形(每一个小方格的边长为 1)
②若 a=15,c=25,则 b=___________;
③若 c=61,b=60,则 a=__________;
④若 a∶b=3∶4,c=10 则 SRt△ABC=________
【例题 2】 直角三角形两直角边长分别为 5 和 12,则它斜边上的高为__________.
【例题 3】.在 Rt△ABC 中,∠C=90°,AB=4, 则 AC2+BC2+AB2=
A
10、如图,滑杆在机械槽内运动,∠ACB 为直角,已知滑杆 AB 长 100cm,
E
3/6
C
B
D
顶端 A 在 AC 上运动,量得滑杆下端 B 距 C 点的距离为 60cm,当端点 B 向右移动 20cm 时, 滑杆顶端 A 下滑多长?
11、已知等腰三角形腰长是 10,底边长是 16,求这个等腰三角形的面积。
考点 1:勾股定理证明,网]
勾股定理
【例 1】利用几何图形的性质探索勾股定理:
探索一:剪 4 个与图 1 完全相同的直角三角形,
再将它们拼成如图 2 所示的图形。
大正方形的面积可以表示为:
;
又可以表示为
人教版初中数学八年级下册勾股定理知识点与常见题型总结
勾股定理一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8.勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB ==⑵8BC题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC ==, 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB CD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD =答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形题型五:勾股定理与勾股定理的逆定理综合应用例8.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:D CB AAD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=, 90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=.。
人教八年级数学下册-勾股定理(附习题)
凭经验认为c 一定是斜边,事实上,题目并无明 确c 是斜边还是直角边,故需要分类讨论.
课堂小结
即c2=a2+b2.
拓展延伸
如图,已知长方形ABCD沿直线BD折叠,使点C落 在C′处,BC′交AD于E,AD=8,AB=4,求DE的长.
解:∵∠A=∠C′=∠C=90°, ∠AEB=∠C′ED,AB=C′D, ∴△AEB≌△C′ED.∴AE=C′E,
解:根据图形正方形E 的边长为:
122 162 92 122 =25,
故E的面积为:252=625.
知识点 2 勾股定理的证明
命题 如果直角三角形两直角边
长分别为a,b,斜边长为c,那 么a2+b2=c2.
如何证明呢?
如图我国古代证明该命题 的“赵爽弦图”.
赵爽指出:按弦图,又可
以勾股相乘为朱实二,倍之为
课堂小结
勾股定理 的应用
化非直角三角形为直角三角形 将实际问题转化为直角三角形模型
拓展延伸
思考 这是我们刚上课时提出的问题,现在你会算了吗?
解:设水深为h尺. 由题意得:AC=3,BC=2,OC=h,
OB OA OC AC h 3.
由勾股定理得:
OB2 OC 2 BC 2 ,即(h 3)2 h2 62 ,
5.如图,要从电线杆离地面5 m处向地面拉一条长 为7 m的钢缆.求地面钢缆固定点A到电线杆底部B 的距离(结果保留小数点后一位).
解:由图可知大正方形的边长为:a+b则面积为
(a+b)2,图中把大正方形的面积分成了四部分,
分别是:边长为a的正方形,边长为b的正方形,
还有两个长为b,宽为a的长方形.
初二数学下册勾股定理知识点及常考题型
初二数学下册勾股定理知识点及常考题型初二数学下册:勾股定理知识点及常考题型_三角形_关系_方法《勾股定理》知识点1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。
其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。
2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。
运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC是以∠C为直角的直角三角形(若c²>a²+b²,则△ABC是以∠C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
人教版初中八年级数学下册第十七章《勾股定理》知识点总结(含答案解析)
一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠B .AB BD =C .AC AD = D .CAB DAB ∠=∠3.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°4.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 5.如图,AD 平分BAC ∠交BC 于点D ,DE AB ⊥于点E ,DF AC ⊥于点F ,若ABC S 12=,DF 2=,AC 3=,则AB 的长是 ( )A .2B .4C .7D .96.下列四个命题中,真命题是( )A .如果 ab =0,那么a =0B .面积相等的三角形是全等三角形C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等7.如图,ABC 的面积为26cm ,AP 垂直B 的平分线BP 于P ,则PBC 的面积为( )A .21cmB .22cmC .23cmD .24cm 8.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等9.在以下图形中,根据尺规作图痕迹,能判定射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图3 10.对于ABC 与DEF ,已知∠A=∠D ,∠B=∠E ,则下列条件:①AB=DE ;②AC=DF ;③BC=DF ;④AB=EF 中,能判定它们全等的有( )A .①②B .①③C .②③D .③④ 11.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 12.如图,OB 平分∠MON ,A 为OB 的中点,AE ⊥ON ,EA=3,D 为OM 上的一个动点,C 是DA 延长线与BC 的交点,BC //OM ,则CD 的最小值是( )A .6B .8C .10D .12 13.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OB B .AC =BC C .∠A =∠BD .∠1=∠2 14.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b 15.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题16.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.17.如图,ABC 中,D 是AB 上的一点,DF 交AC 于点E ,AE CE =,//CF AB ,若四边形DBCF 的面积是26cm ,则ABC 的面积为______2cm .18.如图,△ABE ≌△ADC ≌△ABC ,若∠1=130°,则∠α的度数为________.19.如图,两根旗杆间相距22米,某人从点B沿BA走向点A,一段时间后他到达点M,=.已知旗杆此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM DMBD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是________秒.20.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=_____.P m m-,当m=____时,点P在二、四象限的角平分线上.21.已知点(2,1)△的面积是22.如图,ABC中,∠C=90°,AD平分∠BAC, AB=5,CD=2,则ABD______23.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.24.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)25.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .26.如图,已知AB AC =,D 为BAC ∠的角平分线上面一点,连接BD ,CD ;如图,已知AB AC =,D 、E 为BAC ∠的角平分线上面两点,连接BD ,CD ,BE ,CE ;如图,已知AB AC =,D 、E 、F 为BAC ∠的角平分线上面三点,连接BD ,CD ,BE ,CE ,BF ,CF ;…,依此规律,第n 个图形中有全等三角形的对数是______.三、解答题27.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF 于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.28.已知:MON α∠=,点P 是MON ∠平分线上一点,点A 在射线OM 上,作180APB α∠=︒-,交直线ON 于点B ,作PC ON ⊥于点C .(1)观察猜想:如图1,当90MON ∠=︒时,PA 和PB 的数量关系是______.(2)探究证明:如图2,当60MON ∠=︒时,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请直接写出PA ,PB 之间另外的数量关系.(3)拓展延伸:如图3,当60MON ∠=︒,点B 在射线ON 的反向延长线上时,请直接写出线段OC ,OA 及BC 之间的数量关系:______.29.如图,AD 是ABC 的角平分线,AB AC >,求证:AB AC BD CD ->-.30.命题:有两个内角相等的三角形必有两条高线相等,写出它的逆命题,并判断逆命题的真假,若是真命题,给出证明;若是假命题,请举反例.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版八年级下册勾股定理全章知识点和典型例习题基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 (②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围 |勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等cb a HG FED CBAbacbaccab cab a bcc baE D CBA7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADC10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
/*】【题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:利用勾股定理测量长度 `例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米例题2 如图(8),水池中离岸边D 点米的C 处,直立长着一根芦苇,出水部分BC 的长是米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC.…题型三:勾股定理和逆定理并用——例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41=那么△DEF 是直角三角形吗为什么:注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。
题型四:利用勾股定理求线段长度——F ,求CE 的长.,题型五:利用勾股定理逆定理判断垂直——例题5 有一个传感器控制的灯,安装在门上方,离地高米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高米的学生,要走到离门多远的地方灯刚好打开题型六:旋转问题:例题6 如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.-变式 如图,△ABC 为等腰直角三角形,∠BAC=90°,E 、F 是BC 上的点,且∠EAF=45°, 试探究222BE CF EF 、、间的关系,并说明理由.题型七:关于翻折问题 *例题7 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式 如图,AD 是△ABC 的中线,∠ADC=45°,把△ADC 沿直线AD 翻折,点C 落在点C ’的位置,BC=4,求BC ’的长.题型八:关于勾股定理在实际中的应用::例1、如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少-题型九:关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A处,它发现在自己的正上方油罐上边缘的B处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路程才能捕到害虫(π取,结果保留1位小数,可以用计算器计算)。
变式:如图为一棱长为3cm的正方体,把所有面都分为9个小正方形,其边长都是1cm,假设一只蚂蚁每秒爬行2cm,则它从下地面A点沿表面爬行至右侧面的B点,最少要花几秒钟$三、课后训练: 一、填空题1.如图(1),在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.|图(1)2.种盛饮料的圆柱形杯(如图),测得内部底面半径为㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出㎝,问吸管要做㎝。
3.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。
另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_____________________米。
5.如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________. 二、选择题@1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( ) A 、121 B 、120 C 、132 D 、不能确定3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A 、60∶13 B 、5∶12 C 、12∶13 D 、60∶1694.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( ) A 、24cm2 B 、36cm2 C 、48cm2 D 、60cm2 5.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 —6.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元 } OA B D EF第3题图 D BC A 第4题图2032A BBC7.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ) :A 、6cm2B 、8cm2C 、10cm2D 、12cm2 8.在△ABC 中,AB=15,AC=13,高AD=12,则△ABC 的周长为 A .42 B .32 C .42或32 D .37或33 9. 如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( ) (A )直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对三、计算 |1、如图,A 、B 是笔直公路l 同侧的两个村庄,且两个村庄到直路的距离分别是300m 和500m ,两村庄之间的距离为d(已知d2=400000m2),现要在公路上建一汽车停靠站,使两村到停靠站的距离之和最小。