小学奥数精讲第四讲 进位制与位值原理
小学六年级数学竞赛讲座第4讲进位制与位值原理
第四讲进位制与位值原理(二)模块一、进制的互化与计算:一、认识进制n进制:“逢n进一,借一当n”,如:十进制的特点是“逢10进一,借一当十”。
N进制的四则混合运算和十进制一样:先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制转换n进制化十进制:位值原理法。
十进制化n进制:倒取余数法。
n进制化m进制:先把n进制化成十进制,在把十进制化成m进制。
特别地,n进制化n a进制:从低位到高位,取a合一;n a进制化n进制:从低位到高位,取一分a,不足位补0.三、进制判断判断一个式子在何种进制下成立,一般依靠下列两个方法:1.数字特征:在n进制下,每个数字都不能大于(n−1),如在八进制下,每个数字都不能大于7;反过来说,若n进制下出现7这个数字,则n必定大于7,起码为八进制;2.尾数特征:观察这个式子的尾数在十进制下应运算出什么结果,在对比式子结果的尾数,找出进位进了多少,在推断进制。
(1)把下列各数转化为十进制数。
(大写英文字母表示10以上进制中的数,如:A表示10,B表示11,……)例1.(463)8= ;(2BA)12= ;(5FC)16= .(2)(1001101010111100)2=( )4=( )8=( )16.(3)请将十进制数90转化成七进制数是;(125)7转化为八进制数是。
解:(1)(463)8=4×82+6×8+3=307;(2BA)12=2×122+11×12+10=430;(5FC)16=5×162+15*16+12=1532.(2)(1001101010111100)2=(21222330)4=(115274)8=(9ABC)16.(3)90=72+5×7+6=(156)7,(125)7=72+2×7+5=68=82+0×8+4=(104)8.例2.(1)计算:(231)5+(124)5= ,(251)6+(434)6= ;(2)计算:(11000111)2−(10101)2÷(11)2=( )2;(3)计算:(45)8×(12)8−(456)8=( )8.解:(1)(231)5+(124)5=(410)5,(251)6+(434)6=(1125)6.(2)(11000111)2−(10101)2÷(11)2=(11000111)2−(111)2= (11000000)2.(3)(45)8×(12)8−(456)8=(562)8−(456)8=(104)8.例3.(1)算式1534×25=43214是进制的乘法。
小学奥数专题-位值原理.教师版
5-7-1.位值原理教学目标1.利用位值原理的定义进行拆分2.巧用方程解位值原理的题知识点拨位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。
我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。
这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。
既是说,一个数字除了本身的值以外,还有一个“位置值”。
例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲模块一、简单的位值原理拆分【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100。
这个两位数的各位数字的和是。
【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10。
五年级奥数位值原理
位值原理知识框架当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲知识点一:位值原理的认识【例 1】填空:365= ×100+ ×10+ ×1365=36×+5×=2×+3×+a×+b×=203 +×【例 2】ab与ba的和被11除,商等于______与______的和。
五年级数学奥数讲义-位值原理与数的进制(学生版)
“位值原理与数的进制”学生姓名授课日期教师姓名授课时长本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,=1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
【试题来源】【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。
【试题来源】【题目】如果ab×7= ,那么ab等于多少?【试题来源】【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。
(小学奥数)位值原理
5-7-1.位值原理教學目標1.利用位值原理的定義進行拆分2.巧用方程解位值原理的題知識點撥位值原理當我們把物體同數相聯系的過程中,會碰到的數越來越大,如果這種聯繫過程中,只用我們的手指頭,那麼到了“十”這個數,我們就無法數下去了,即使象古代墨西哥尤裏卡坦的瑪雅人把腳趾也用上,只不過能數二十。
我們顯然知道,數是可以無窮無盡地寫下去的,因此,我們必須把數的概念從實物的世界中解放出來,抽象地研究如何表示它們,如何對它們進行運算。
這就涉及到了記數,記數時,同一個數字由於所在位置的不同,表示的數值也不同。
既是說,一個數字除了本身的值以外,還有一個“位置值”。
例如,用符號555表示五百五十五時,這三個數字具有相同的數值五,但由於位置不同,因此具有不同的位置值。
最右邊的五表示五個一,最左邊的五表示五個百,中間的五表示五個十。
但是在奧數中位值問題就遠遠沒有這麼簡單了,現在就將解位值的三大法寶給同學們。
希望同學們在做題中認真體會。
1.位值原理的定義:同一個數字,由於它在所寫的數裏的位置不同,所表示的數值也不同。
也就是說,每一個數字除了有自身的一個值外,還有一個“位置值”。
例如“2”,寫在個位上,就表示2個一,寫在百位上,就表示2個百,這種數字和數位結合起來表示數的原則,稱為寫數的位值原理。
2.位值原理的表達形式:以六位數為例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
3.解位值一共有三大法寶:(1)最簡單的應用解數字謎的方法列豎式(2)利用十進位的展開形式,列等式解答(3)把整個數字整體的考慮設為x,列方程解答例題精講模組一、簡單的位值原理拆分【例 1】一個兩位數,加上它的個位數字的9倍,恰好等於100。
這個兩位數的各位數字的和是。
【例 2】學而思的李老師比張老師大18歲,有意思的是,如果把李老師的年齡顛倒過來正好是張老師的年齡,求李老師和張老師的年齡和最少是________?(注:老師年齡都在20歲以上)【例 3】把一個數的數字順序顛倒過來得到的數稱為這個數的逆序數,比如89的逆序數為98.如果一個兩位數等於其逆序數與1的平均數,這個兩位數是________.【例 4】幾百年前,哥倫布發現美洲新大陸,那年的年份的四個數字各不相同,它們的和等於16,如果十位數字加1,則十位數字恰等於個位數字的5倍,那麼哥倫布發現美洲新大陸是在西元___________年。
小学数学位值原理
位值原理知识框架位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答重难点(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答例题精讲【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5.【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分 【难度】3星 【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.【答案】66岁【巩固】 把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】 设为ab ,即101102b a a b +++=,整理得1981a b =+,3,7a b ==,两位数为37 【答案】37【例 3】 几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】 肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】 小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】 设小明出生那年是,则1+9+a +b =95-10a -b从而11a +2b =85在a ≥8时,11+2b >85;在a ≤6时,11a +2b ≤66+2×9=84,所以必有a =7,b =4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】 一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的 倍.【考点】简单的位值原理拆 【难度】3星 【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】 令这个三位数为0a b ,则由题意可知,10067()a b a b +=+,可得2a b =,而调换个位和百位之后变为:0100102b a b a b =+=,而3a b b +=,则得到的新三位数是它的各位数字之和的102334b b ÷=倍.【巩固】 一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】 abc cba -个位是7,明显a 大于c ,所以10+c -a =7,a -c =3,所以他们的差为297【答案】297【例 5】 三位数abc 比三位数cba 小99,若,,a b c 彼此不同,则abc 最大是________【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与cba 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,-=+--=-=,5ab ba a b b a a b(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】 一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星 【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】 设这个两位数是ab ,则100a+b=8(10a+b)-1,化为20a+1=7b ,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】 一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设第一个2位数为10a +b ;第二个为10b +a ;第三个为100a +b ;由题意:(100a +b )-(10b +a )=( 10b +a )-(10a +b ) ;化简可以推得b =6a ,0≤a ,b ≤9,得a =1,b =6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】 abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd —abc —ab —a =1787,则这四位数abcd = 或 .【考点】简单的位值原理拆分 【难度】3星 【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259推知b =2;则222+11c +d =259,11c +d =37进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba , 因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】 有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设三个数字分别为a 、b 、c ,那么6个不同的三位数的和为:2()1002()102()222()abc acb bac bca cab cba a b c a b c a b c a b c +++++=++⨯+++⨯+++=⨯++ 所以288622213a b c ++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位 数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所 有这样的6个三位数中最小的三位数为139.【答案】139【例 11】 有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 方法三:设两位数为x ,则有(10x +1)-(100+x )=414,解得:x =57.【答案】57【巩固】 有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设三位数为x ,则有(6000+x )+(10x +6)=9999,解得:x =363.【答案】363课堂检测【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】如果把数码5加写在某自然数的右端,则该数增加1111A,这里A表示一个看不清的数码,求这个数和A.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设这个数为x,则10x+5-x=1111A,化简得9x=1106A,等号右边是9的倍数,试验可得A=1,x=1234.【答案】A=1,x=1234复习总结(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答家庭作业【作业1】如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分【难度】3星【题型】解答【解析】设这个巧数为ab,则有ab+a+b=10a+b,a(b+1)=10a,所以b+1=10,b=9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】a,b,c分别是09中不同的数码,用a,b,c共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】由a,b,c组成的六个数的和是222()⨯++.因为223422210a b c++>.a b c>⨯,所以10若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6。
上海版奥数三年级位值原理
【铺垫】5届小机杯 【铺垫】 届小机杯 小明去同学家玩.走进了弄堂,但记不起门牌号码了.怎么办呢?他忽然想 起,这个门牌号码挺有意思,曾经研究过一次.它是一个三位数,个位数字 比百位数字大4,十位数字比个位也大4.根据这点记忆,你能帮助小明找 到同学家吗?如果想到了,就写在下面.门牌号码是( ).
【例1】 (★★) 填空: ⑴ 123=1个( ⑵234=( ( ⑶24=2×( ⑷657=( ⑸( )+2个( )+3个( )
位值原理
知识地图 位值原理的定义: 同 个数字 由于它在所写的数里的位置不同 所表示的数值也不 同一个数字,由于它在所写的数里的位置不同,所表示的数值也不 同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”. 例如 2 ,写在个位上,就表示2个 ,写在百位上,就表示2个百, 例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百, 这种数字和数位结合起来表示数的原则,称为写数的位值原理.
b
a 90807
b
c
d
⑶ abc b
⑷ abcd a ⑸ abcabc a
【例3】(★★★) 计算 1234+2341+3412+4123 计算:
【拓展】(★★★) 【 展】( ) 已知:1234+2345+3456+4567+5678-6543-5432-4321 的计算结果是984. 请问: 1244+2355+3466+4577+5688-6513-5412-4311 的计算结果是多少?
1
【 展】 【拓展】 填空: ⑴ 30300 3 ⑵ 22030 2
2 3 100 10 + b b 1 c c d
【例2】(★★★)
五年级奥数.位值原理(AB级).教师版
位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x ,列方程解答重难点知识框架位值原理【例 1】 一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分【解析】 这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10.【答案】10【巩固】 一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2006年,第4届,希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分 【解析】 设为ab ,10a+b+9a=19a+b=100,a=5,b=5. 【答案】55【例 2】 学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2010年,学而思杯,4年级,第5题【解析】 解设张老师年龄为ab ,则李老师的年龄为ba ,根据题意列式子为:18ba ab -=,整理这个式子得到:()918b a -=,所以2b a -=,符合条件的最小的值是1,3a b ==,但是13和31不符合题意,所以,答案为2a =与4b =符合条件的为:244266+=岁.例题精讲【答案】66岁【巩固】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2009年,学而思杯,5年级,第3题【解析】设为ab,即101102b aa b+++=,整理得1981a b=+,3,7a b==,两位数为37【答案】37【例 3】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2010年,第8届,希望杯,4年级,初赛,10题【解析】肯定是1×××年,16-1=15,百位,十位与个位和是15,十位加1后,数字和是15+1=16,此时十位和个位和是6的倍数,个位不是1,只能是2,十位原来是9,百位是4,所以是在1492年.【答案】1492【巩固】小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】1995年,第5届,华杯赛,初赛,第11题【解析】设小明出生那年是,则1+9+a+b=95-10a-b从而11a+2b=85在a≥8时,11+2b>85;在a≤6时,11a+2b≤66+2×9=84,所以必有a =7,b=4.小明今年是1+9+7+4=21(岁).【答案】21岁【例 4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.【考点】简单的位值原理拆【难度】3星【题型】填空【关键词】2009年,希望杯,第七届,五年级,复赛,第4题,5分【解析】令这个三位数为0a b,则由题意可知,10067()+=+,可得2a b a b=,而调换个位和百位之后a b变为:0100102=+=,而3b a b a ba b b+=,则得到的新三位数是它的各位数字之和的÷=倍.102334b b【答案】34【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,四年级,复赛,第18题,10分【解析】abc cba-个位是7,明显a大于c,所以10+c-a=7,a-c=3,所以他们的差为297【答案】297【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,五年级,初赛,第7题,6分【解析】 由题意,99abc cba +=,有9a c =+,要abc 最大,如果9a =,那么0c =,与c b a 为三位数矛盾;如果8a =,那么9c =,剩下b 最大取7,所以abc 最大是879.【答案】879【巩固】 一个三位数abc 与它的反序数cba 的和等于888,这样的三位数有_________个.【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2008年,希望杯,第六届,六年级,二试,第4题,5分【解析】 显然a c +、b b +都没有发生进位,所以8a c +=、8b b +=,则4b =,a 、c 的情况有1+7、2+6、3+5、4+4、5+3、6+2、7+1这7种.所以这样的三位数有7种.【答案】7个【例 6】 将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.-□□□□□□□□【考点】简单的位值原理拆分 【难度】2星 【题型】填空 【关键词】2010年,希望杯,第八届,六年级,初赛,第5题,6分【解析】 千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取234,所以这两个四位数应该是5987和6234,差为247.【答案】247【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2007年,希望杯,第五届,四年级,复赛,第5题,5分【解析】千位数差1,后三位,大数的尽量取小,小者尽量取大,最大的可以取987,小的可以取123,所以这两个四位数应该是4987和5123,差为136.【答案】136【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【考点】简单的位值原理拆分【难度】2星【题型】填空【关键词】2003年,希望杯,第一届,五年级,初赛,第5题,4分【解析】和的个位为9,不会发生进位,y+w=9,十位明显进位x+z=13,所以x+y+z+w=22【答案】22【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【考点】简单的位值原理拆分【难度】2星【题型】解答【关键词】美国,小学数学奥林匹克【解析】设原来的两位数为ab,交换后的新的两位数为ba,根据题意,ab ba a b b a a b-=+--=-=,5(10)(10)9()45-=,原两位数最大时,十位数字至多为9,即a bb=,原来的两位数中最大的是94.9a=,4【答案】94【例 8】一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______.【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2007年,希望杯,第五届,六年级,初赛,第13题,6分【解析】设这个两位数是ab,则100a+b=8(10a+b)-1,化为20a+1=7b,方程的数字解只有a=1,b=3,原来的两位数是13.【答案】13【巩固】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【考点】复杂的位值原理拆分【难度】3星【题型】解答【解析】设第一个2位数为10a+b;第二个为10b+a;第三个为100a+b;由题意:(100a+b)-(10b+a)=( 10b+a)-(10a+b) ;化简可以推得b=6a,0≤a,b≤9,得a=1,b=6;即每小时走61-16=45 ;(601-106)÷45=11;再行11小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【答案】11小时【例 9】abcd,abc,ab,a依次表示四位数、三位数、两位数及一位数,且满足abcd—abc—ab—a= 1787,则这四位数abcd= 或 .【考点】简单的位值原理拆分【难度】3星【题型】填空【关键词】2009年,第7届,希望杯,4年级,初赛,16题【解析】 原式可表示成:8898991787a b c d +++=,则知a 只能取:1或2,当1a =时,b 无法取,故此值舍去.当2a =时,0b =,0c =或1,d 相应的取9或0.所以这个四位数是:2009或2010.【答案】2009或2010【巩固】 已知1370,abcd abc ab a abcd +++=求.【考点】简单的位值原理拆分 【难度】3星 【题型】解答 【解析】 原式:1111a +111b +11c +d =1370,所以a =1, 则111b +11c +d =1370-1111=259,111b +11c +d =259 推知b =2;则222+11c +d =259,11c +d =37 进而推知c =3,d =4所以abcd =1234.【答案】1234【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答 【关键词】第五届,希望杯,培训试题【解析】 设这六个不同的三位数为,,,,,abc acb bac bca cab cba ,因为10010abc a b c =++,10010acb a c b =++,……,它们的和是:222()1554a b c ⨯++=,所以15542227a b c ++=÷=,由于这三个数字互不相同且均不为0,所以这三个数中较小的两个数至少为1,2,而7(12)4-+=,所以最大的数最大为4;又12367++=<,所以最大的数大于3,所以最大的数为4,其他两数分别是1,2.【答案】1,2,4【巩固】有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【考点】复杂的位值原理拆分【难度】3星【题型】解答【关键词】迎春杯,决赛【解析】设三个数字分别为a、b、c,那么6个不同的三位数的和为:+++++=++⨯+++⨯+++=⨯++2()1002()102()222() abc acb bac bca cab cba a b c a b c a b c a b c所以288622213++=÷=,最小的三位数的百位数应为1,十位数应尽可能地小,由于十位a b c数与个位数之和一定,故个位数应尽可能地大,最大为9,此时十位数为13193--=,所以所有这样的6个三位数中最小的三位数为139.【答案】139【例 11】有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】方法三:设两位数为x,则有(10x+1)-(100+x)=414,解得:x=57.【答案】57【巩固】有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【考点】巧用方程解位值原理【难度】3星【题型】解答【解析】设三位数为x,则有(6000+x)+(10x+6)=9999,解得:x=363.【答案】363【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【考点】填横式数字谜之复杂的横式数字谜 【难度】3星 【题型】填空 【关键词】2007年,第12届,华杯赛,五年级,决赛,第3题,10分【解析】 由题意知,a ≥d ,由差的个位为7可知,被减数个位上的d 要向十位上的c 借一位,则10+d -a =7,即a -d =3.又因为差的十位及百位均为9,由分析可知b =c ,故被减数的十位要向百位借一位,百位要向千位借一位,即()12a d --=,因此□内应填入2.【答案】2【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 设这三个数字分别为a 、b 、c .由于每个数字都分别有两次作百位、十位、个位,所以六个不同的三位数之和为222×(a +b +c )=3330,推知a +b +c =15.所以,当a 、b 、c 取1、5、9时,它们组成的三位数最小为159,最大为951.【答案】最小为159,最大为951【随练3】 如果把数码5加写在某自然数的右端,则该数增加1111A ,这里A 表示一个看不清的数码,求这个数和A .课堂检测【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数为x ,则10x +5-x =1111A ,化简得9x =1106A ,等号右边是9的倍数,试验可得A =1,x =1234.【答案】A =1,x =1234(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答【作业1】 如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【考点】简单的位值原理拆分 【难度】3星 【题型】解答【解析】 设这个巧数为ab ,则有ab +a +b =10a +b ,a (b +1)=10a ,所以b +1=10,b =9.满足条件的巧数有:19、29、39、49、59、69、79、89、99.【答案】巧数有:19、29、39、49、59、69、79、89、99.【作业2】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 由a ,b ,c 组成的六个数的和是222()a b c ⨯++.因为223422210>⨯,所以10a b c ++>. 家庭作业复习总结若11a b c ++=,则所求数为222112234208⨯-=,但2081011++=≠,不合题意.若12a b c ++=,则所求数为222122234430⨯-=,但430712++=≠,不合题意.若13a b c ++=,则所求数为222132234652⨯-=,65213++=,符合题意.若14a b c ++=,则所求数为222142234874⨯-=,但8741914++=≠,不合题意.若15a b c ++≥,则所求数2221522341096≥⨯-=,但所求数为三位数,不合题意.所以,只有13a b c ++=时符合题意,所求的三位数为652.【答案】652【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.【考点】复杂的位值原理拆分 【难度】3星 【题型】解答【解析】 因为原两位数与得到的三位数之和是原两位数的10倍,所以原两位数的个位数只能是0或5.如果个位数是0,那么无论插入什么数,得到的三位数至少是原两位数的10倍,所以个位数是5.设原两位数是ab ,则b =5,变成的三位数为5ab ,由题意有100a +10b +5=(10a +5)×9,化简得a +b =4.变成的三位数只能是405,315,225,135.【答案】三位数只能是405,315,225,135【作业4】 如果70ab a b ⨯=,那么ab 等于几?【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 将70ab a b ⨯=,展开整理得:(10)71000a b a b ⨯+⨯=⨯++,707100a b a b +=+,306a b =,5a b =,由于位值的性质,每个数位上的数值在0 ~9之间,得出1a =,5b =.【答案】15【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .【考点】巧用方程解位值原理 【难度】3星 【题型】解答【解析】 设这个数码为x ,则有:(10x +3)-x =123450+A ,解得,9x =123447+A ,右边是9的倍数,根据被9整除的数字的特点知道,A =6,故:x =13717.【答案】6教学反馈。
小学奥数数值原理与数的进制docx
5-7位置原理与数的进制教学目标本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
知识点拨一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
进制间的转换:如右图所示。
八进制十进制二进制十六进制例题精讲模块一、位置原理【例 1】某三位数abc和它的反序数cba的差被99除,商等于______与______的差;【巩固】ab与ba的差被9除,商等于______与______的差;【巩固】ab与ba的和被11除,商等于______与______的和。
四年级奥数十进制的数字问题(位值原理)2
四年级奥数十进制的数字问题(位值原理)2数的进制与位值原理知识框架一、位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。
我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。
这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。
既是说,一个数字除了本身的值以外,还有一个“位置值”。
例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。
最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。
但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。
希望同学们在做题中认真体会。
1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。
3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x,列方程解答二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
小学六年级奥数系列讲座:进位制问题(含答案解析)
进位制问题内容概述本讲不着重讨论n进制中运算问题,我们是关心n这个数字,即为几进制.对于进位制我们要注意本质是:n进制就是逢n进一.但是,作为数论的一部分,具体到每道题则其方法还是较复杂的.说明:在本讲中的数字,不特加说明,均为十进制.典型问题1.在几进制中有4×13=100.【分析与解】我们利用尾数分析来求解这个问题:不管在几进制均有(4)10×(3)10=(12)10.但是,式中为100,尾数为0.也就是说已经将12全部进到上一位.所以说进位制n为12的约数,也就是12,6,4,3,2.但是出现了4,所以不可能是4,3,2进制.我们知道(4)10×(13)10=(52)10,因52<100,也就是说不到10就已经进位,才能是100,于是我们知道n<10.所以,n只能是6.2.在三进制中的数12120120110110121121,则将其改写为九进制,其从左向右数第l位数字是几?【分析与解】我们如果通过十进制来将三进制转化为九进制,那运算量很大.注意到,三进制进动两位则我们注意到进动了3个3,于是为9.所以变为遇9进1.也就是九进制.于是,两个数一组,两个数一组,每两个数改写为九进制,如下表:12 12 0l20 11 01 10 12 11 21 3进制5 5 l6 4 1 3 5 47 9进制所以,首位为5.评注:若原为n进制的数,转化为n k进制,则从右往左数每k个数一组化为n k 进制.如:2进制转化为8进制,23=8,则从右往左数每3个数一组化为8进制.10 100 001 101 2进制2 4 1 5 8进制(10100001101)2=(2415)8.3.在6进制中有三位数abc,化为9进制为cba,求这个三位数在十进制中为多少?【分析与解】(abc)6=a×62+b×6+c=36a+6b+c;(cba)9=c×92+b×9+a=81c+9b+a.所以36a+6b+c=81c+9b+a;于是35a=3b+80c;因为35a是5的倍数,80c也是5的倍数.所以3b也必须是5的倍数,又(3,5)=1.所以,b=0或5.①当b=0,则35a=80c;则7a=16c;(7,16)=1,并且a、c≠0,所以a =16,c =7:但是在6,9进制,不可以有一个数字为16.②当b =5,则35a =3×5+80c ;则7a =3+16c ;mod 7后,3+2c ≡0 所以c =2或者2+7k (k 为整数).因为有6进制,所以不可能有9或者9以上的数,于是c =2.于是,35a =15+80×2;a =5.于是(abc )6 =(552)6=5×62+5×6+2=212. 所以.这个三位数在十进制中为212.4.设1987可以在b 进制中写成三位数xyz ,且x y z ++=1+9+8+7,试确定出所有可能的x 、y 、z 及b .【分析与解】 我们注意2()19871987b xyz b x by z x y z ⎧=++=⎨++=+++⎩①②①-②得:(2b -1)x +(b -1)y =1987-25. 则(b -1)(b +1)x +(b -1)y =1962, 即(b -1)[(b +1)x +y ]=1962. 所以,1962是(b -1)的倍数. 1962=2×9×109:当b -1=9时,b =10,显然不满足;当b -1=18时,b =19,则(b -1)[(b +1)x +y ]=18×(20x +y )=1962;则20x +y =109,所以,545,(929911b x x x y y y z ⎧⎪===⎧⎧⎪⎨⎨⎨===⎩⎩⎪⎪=⎩=19不满足),......则 显然,当b =109不满足,b =2×109不满足,当b =9×109也不满足. 于是为(59B)19=(1987)10,B 代表11.5.下面加法算式中不同字母代表不同的数字,试判定下面算式是什么进制,A 、B 、C 、D 的和为多少? 【分析与解】于是,我们知道n =4,所以为4进制,则 A+B+C+D=3+1+2+0=6.6. 一个非零自然数,如果它的二进制表示中数码l 的个数是偶数,则称之为“坏数”.例如:18=(10010)2是“坏数”.试求小于1024的所有坏数的个数. 【分析与解】 我们现把1024转化为二进制: (1024)10=210=(10000000000)2.于是,在二进制中为11位数,但是我们只用看10位数中情况. 并且,我们把不足10位数的在前面补上0,如502111...10000...0⎛⎫ ⎪ ⎪⎝⎭5个1个或以上912111...1⎛⎫ ⎪ ⎪⎝⎭个=9120111...1⎛⎫ ⎪ ⎪⎝⎭个则,10* * * * * * * * * *⎛⎫ ⎪ ⎪⎝⎭个位置可以含2个l ,4个1,6个1,8个l ,10个1.于是为2268101010101010C C C C C ++++ =10910987109876510987654312123412345612345678⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯++++ =45+210+210+45+1=511于是,小于1024的“坏数”有511个.7.计算:2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个26的余数. 【分析与解】2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个=2003331000...01⎛⎫⨯-⎪ ⎪⎝⎭个=20033222...2⎛⎫ ⎪ ⎪⎝⎭个226=(222)3所以,2003333 3...31⎛⎫⨯⨯⨯- ⎪ ⎪⎝⎭个÷26=20033222...2⎛⎫ ⎪ ⎪⎝⎭个2÷(222)3 (222)3整除(222)3,2003÷3:667……2,所以余(22)3=8. 所以余数为8.8.一个10进制的三位数,把它分别化为9进制和8进制数后,就又得到了2个三位数.老师发现这3个三位数的最高位数字恰好是3、4、5,那这样的三位数一共有多少个?【分析与解】 我们设(3ab )10=(4cd )9=(5ef )8;我们知道(4cd )9 在(400)9~(488)9之间,也就是4×92~5×92-1,也就是324~406;还知道(5ef )8 在(500)8~(577)8之间,也就是5×82~6×82-1,也就是320~383;又知道(3ab )10 在(300)10~(399)10之间.所以,这样的三位数应该在324~383之间,于是有383-324+1=60个三位数满足条件.9. 一袋花生共有2004颗,一只猴子第一天拿走一颗花生,从第二天起,每天拿走的都是以前各天的总和.①如果直到最后剩下的不足以一次拿走时却一次拿走,共需多少天? ②如果到某天袋里的花生少于已拿走的总数时,这一天它又重新拿走一颗开始,按原规律进行新的一轮.如此继续,那么这袋花生被猴子拿光的时候是第几天?【分析与解】①我们注意到每天 1 2 3 4 8 16 32 64 …前若干天的和…210<2004<211前1天为1,前2天为21,前3天是22,所以前11天为210,前12天是211,也就是说不够第11天拿的,但是根据题中条件知.所以共需12天.②每天 1 1 2 4 8 16 32 64 …前若干天的和1 2 4 8 16 32 64 128 …改写为2进制111010001000100000100000010000000…2004=(11111010100)2,(10+1)+(9+1)+(8+1)+(7+1)+(6+1)+(4+1)+(2+1) =11+10+9+8+7+5+3=53天.。
五年级奥数位值原理(AB级)
位值原理当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会.1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理.2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f.3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答重难点知识框架位值原理例题精讲【例 1】一个两位数,加上它的个位数字的9倍,恰好等于100.这个两位数的各位数字的和是 .【巩固】一个两位数,加上它的十位数字的9倍,恰好等于100.这个两位数是 .【例 2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上)【巩固】把一个数的数字顺序颠倒过来得到的数称为这个数的逆序数,比如89的逆序数为98.如果一个两位数等于其逆序数与1的平均数,这个两位数是________.【例 3】几百年前,哥伦布发现美洲新大陆,那年的年份的四个数字各不相同,它们的和等于16,如果十位数字加1,则十位数字恰等于个位数字的5倍,那么哥伦布发现美洲新大陆是在公元___________年.【巩固】小明今年的年龄是他出生那年的年份的数字之和.问:他今年多少岁?【例 4】一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.【巩固】一个三位数,个位和百位数字交换后还是一个三位数,它与原三位数的差的个位数字是7,试求它们的差.a b c彼此不同,则abc最大是________【例 5】三位数abc比三位数cba小99,若,,【巩固】一个三位数abc与它的反序数cba的和等于888,这样的三位数有_________个.【例 6】将2,3,4,5,6,7,8,9这八个数分别填入下面的八个方格内(不能重复),可以组成许多不同的减法算式,要使计算结果最小,并且是自然数,则这个计算结果是__________.□□□□□□□□【巩固】用1,2,3,4,5,7,8,9组成两个四位数,这两个四位数的差最小是___________.【例 7】xy,zw各表示一个两位数,若xy+zw=139,则x+y+z+w= .【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少?【例 8】一个两位数的中间加上一个0,得到的三位数比原来两位数的8倍小1,原来的两位数是______. 【巩固】一辆汽车进入高速公路时,入口处里程碑上是一个两位数,汽车匀速行使,一小时后看到里程碑上的数是原来两位数字交换后的数.又经一小时后看到里程碑上的数是入口处两个数字中间多一个0的三位数,请问:再行多少小时,可看到里程碑上的数是前面这个三位数首末两个数字交换所得的三位数.【例 9】 abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd —abc —ab —a =1787,则这四位数abcd = 或 .【解析】 已知1370,abcd abc ab a abcd +++=求.【例 10】 有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是多少?【巩固】 有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数的最小值.【例 11】 有一个两位数,如果把数码1加写在它的前面,那么可以得到一个三位数,如果把1写在它的后面,那么也可以得到一个三位数,而且这两个三位数相差414,求原来的两位数.【解析】 有一个三位数,如果把数码6加写在它的前面,则可得到一个四位数,如果把6加写在它的后面,则也可以得到一个四位数,且这两个四位数之和是9999,求原来的三位数.【随练1】 在下面的等式中,相同的字母表示同一数字, 若abcd dcba -=□997,那么□中应填 .【随练2】 从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数.若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几?【随练3】 如果把数码5加写在某自然数的右端,则该数增加1111A ,这里A 表示一个看不清的数码,求这课堂检测个数和A .(1)最简单的应用解数字谜的方法列竖式(2)利用十进制的展开形式,列等式解答(3)把整个数字整体的考虑设为x ,列方程解答【作业1】 如果一个自然数的各个数码之积加上各个数码之和,正好等于这个自然数,我们就称这个自然数为“巧数”.例如,99就是一个巧数,因为9×9+(9+9)=99.可以证明,所有的巧数都是两位数.请你写出所有的巧数.【作业2】 a ,b ,c 分别是09中不同的数码,用a ,b ,c 共可组成六个三位数,如果其中五个三位数之和是2234,那么另一个三位数是几?【作业3】 在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数,有些两位数中间插入某个数码后变成的三位数,恰好是原来两位数的9倍.求出所有这样的三位数.家庭作业复习总结【作业4】 如果70ab a b ⨯=,那么ab 等于几?【作业5】 如果把数码3加写在某自然数的右端,则该数增加了12345A ,这里A 表示一个看不清的数码,求这个数和A .学生对本次课的评价○特别满意○满意 ○一般家长意见及建议家长签字:教学反馈。
小学数学竞赛:位值原理.学生版解题技巧 培优 易错 难
【例 32】9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数.那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有对.
【例 29】有一个两位数,如果把数码3加写在它的前面,则可得到一个三位数,如果把数码3加写在它的后面,则可得到一个三位数,如果在它前后各加写一个数码3,则可得到一个四位数.将这两个三位数和一个四位数相加等于 .求原来的两位数.
【例 30】将4个不同的数字排在一起,可以组成24个不同的四位数( ).将这24个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的第五个与第二十个的差在3000~4000之间.求这24个四位数中最大的那个.
1.利用位值原理的定义进行拆分
2.巧用方程பைடு நூலகம்位值原理的题
位值原理
当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。既是说,一个数字除了本身的值以外,还有一个“位置值”。例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。希望同学们在做题中认真体会。
小学数学奥数专题 位值原理 PPT+课后作业 带答案
综上,原来的两位数为17、71、26、62、35、53、79、97
例题3
已知在一个三位数的百位和十位之间加入5 后,得到的四位数恰好是原 三位数的9 倍,求这个三位数。
1.用位值原理将数进行逐位分 拆的话会出现三个未知数,后 续的分析比较麻烦。
由末位分析可得c+a=4或14 由首位相加有进位可得c+a=14 那么b等于0 三位数可能为509、608、707、806、905 依次验证是否是8的倍数,可得原三位数为608
例题6
用2,4,6,8 这四个数字组成两个没有重复数字的四位数,使得这两 个四位数的差是5616。请问:这两个数中较大的数可能是多少?
70a 7b 100a b 6b 30a b 5a
a 1,b 5 这个两位数是15
总结:这类问题的基本方法是用位值原理将数进行分拆,之后利用题目所给条件列出等 式进行分析。
练习1
已知在一个两位数的两个数字中间加一个2,所得的三位数是原数的11 倍,求这个两位数。
设这个两位数为ab ,则三位数为a2b ab 11 a2b
这样的四位数中,最小的是1089
总结:位值原理的问题经常和整除性质联系在一起,要熟记各种特殊数的整除特征。
练习4
已知一个四位数能被9 整除,去掉末位数字后所得的三位数又能被8 整 除,求这样的四位数中的最大数。
设四位数为abcd ,则去掉末位数字后为abc 9 | abcd , 8 | abc
要求四位数中的最大数,首先满足高位数字尽量大。 能被8整除的最大的三位数为992 992d 能被9整除,d 7 满足条件的最大四位数为9927
小学五年级奥数课件 进位制与位值原理
②原式=(11000111)2-(111)2 =(11000000)2
例题【三】(★ ★ ★)
① (101) 2 ×(1011)2-(11011)2-(11011)2=(11100)2 ② (11000111)2-(10101)2÷(11)2=(11000000)2 ③ (3021)4 +(605)7 =(500)10 ④ (63121)8 -(1247)8 -(16034)8-(26531)8-(1744)8 =(13121)8
2、n进制计算: ⑴ 同进制下,可以直接计算. (2)不同进制,借助十进制转换计算 3、位值原理 ⑴ 借助数位,按数位进行计算. ⑵ 根据具体位置特征进行估算.
(2)(2BA)12=2×122-B×121+A×12 =2×144+11×12+10×1 =288+132+10 =288+142 =(430)10
(1) 4×82+6×81+3×8 =4×64+6×8+3×1 =256+45+3 =256+51
=(307)10
例题【二】(★ ★ ★)
把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16.
例题【一】(★ ★ )
⑴将(2009)10写成二进制数 ⑵把十进制数 2008转化为十六进制数
(2009)10=(111110011001)2
例题【一】(★ ★ )
⑴将(2009)10写成二进制数 ⑵把十进制数 2008转化为十六进制数
例题【二】(★ ★ ★)
把下列各数转化成十进制数: ⑴ (463)8;⑵ (2BA)12;⑶ (5FC)16.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 进位制与位值原理(二)
同步练习: 1. 计算:102(2014)()= 210(101110)(
)=
【答案】见解析
【解析】倒取余数法:102(2014)(11111011110)=
位值原理法:210(101110)(46)=
2. 八进制的1234567化成四进制后,前两位是多少? 【答案】11
【解析】先八进制化为二进制:一位变三位:82(1234567)(1010011100101110111)=;再把二进制化为四进制:两位合一位:24(1010011
100101110111)(1103211313)=.可见,前两位为11.
3. 在几进制中有12512516324⨯=? 【答案】7
【解析】注意101010(125)(125)(15625)⨯=,因为1562516324<,所以一定是不到10就已经进位,才能得到16324,所以10<n .再注意尾数分析,101010(5)(5)(25)⨯=,而16324的末位为4,于是25421-=进到上一位.所以说进位制n 为21的约数,又小于10,也就是可能为7或
3.因为出现了6,所以n 只能是7.
4. 已知100(1)3=+-÷bab b a ,则b =_____. 【答案】7
【解析】10110=+bab b a ;100(1)1001003+=+-÷b b a .得313300+=a b .(a ,b )= (9,7),b =7.
5. 将6个灯泡排成一行,用○和●表示灯亮和灯不亮,下图是这一行灯的五种情况,分别表示五个数字:1,2,3,4,5.那么●○○●○●表示的数是______.
【答案】26
【解析】从图中数字1、2、4的表示可知:自右向左第一个灯亮表示1,第二个灯亮表示2,第三个灯亮表示4,第四个灯亮表示8,第五个灯亮表示16,第六个灯亮表示32.因此问题当中的表示168226++=
5
4321●○○○
●○○●○○●●●●●●●●●●●●●●●●●●●●
6. 在宇宙中有一个使用三进制的星球.小招移居到这个星球后更换身份证,要把年龄从十进制数变为三进制数表示.小招发现,只要在原来十进制年龄末尾添个“0”,就是三进制下的年龄.请问小招多少岁? 【答案】21岁
【解析】①设小招为a 岁,得(10)(3)0=a a ,又10
(3)(10)03033=⨯+⨯=a a a ,解得0=a ,不合题
意,所以小招的年龄不可能是一位数.
②设小招是ab 岁,由题意得:(10)(3)0=ab ab .
因为(10)10=+ab a b ,(3)0930193=⨯+⨯+⨯=+ab a b a b ,所以1093+=+a b a b ,即2=a b . 又因为0ab 是三进制数,a ,b 都小于3,所以2=a ,1=b .所以,小招为21岁. ③设小招为abc 岁,由题意有,(10)(3)0=abc abc ,因为(10)10010=++abc a b c , 32(3)03332793=⨯+⨯+⨯=++abc a b c a b c ,所以100102793++=++a b c a b c .
即732+=a b c .又a 、b 、c 都小于3,所以上述等式不成立. 综上可知小招的年龄是21岁.
7. abcd ,abc ,ab ,a 依次表示四位数、三位数、两位数及一位数,且满足abcd -abc -ab -a = 1787,则这四位数=______或______. 【答案】2009或2010
【解析】原式可表示成:8898991787+++=a b c d ,则知a 只能取:1或2,当1=a 时,b 无法取,故此值舍去.当2=a 时,0=b ,0=c 或1,d 相应的取9或0.所以这个四位数是:2009或2010.
8. 十进制计算中,逢10必须进位,有保密员之间采用r 进位制方式计算,在他们的运算中: 10(166)(133)(24)-=r r ,则r =______.
【答案】7
【解析】(166)(133)(33)33247-==⨯+=⇒=r r r r r .
9. 一个三位数A 的三个数字所组成的最大三位数与最小三位数的差仍是数A ,这个三位数A 是_____. 【答案】495
【解析】设这个最大三位数为abc ,那么最小三位数为cba ,于是99()=-=-A abc cba a c ,三位数A 是99的倍数,所有可能值如下:198、297、396、495、594、693、792、891.代入题中检验,得A =495.
10. 记号(75)k 表示k 进制的数,如果(70)k 在m 进制中表示为(56)m ,又m 、k 均小于等于10,求k 和m 的值.
【答案】8,10==k m
【解析】由于()()107077=⨯=k k k ,()()10565656=⨯+=+m m m ;所以567+=m k ,求得8,10==k m .
深化练习
11. 正整数3、5、6、15可以分别表示为121⨯+,2121⨯+,21212⨯+⨯,321212121⨯+⨯+⨯+,他们的上述表示(又称之为二进制)中1的个数分别是2,2,2,4,都是偶数,像3、5、6、15…这样的数,称为魔数,前10个魔数(从小到大)的和是______. 【答案】115
【解析】魔数从小到大排列:11,101,110,1001,1010,1100,1111,10001,10010,10100,……,前10个有5个1在末位,5个1在倒数第二位,5个1在倒数第三位,4个1在倒数第4位,3个1在倒数第5位,和为23451
52524232115⨯⨯⨯⨯⨯++++=.
12. 四位数1234可通过下面的变换变成1541:
现在有一个四位数,通过以上方法变换成3779,那么原来的这个四位数是______. 【答案】3271
【解析】设原来这个四位数是,则有37++=a b ,79++=c d ,即11237+=a b ,11279+=c d ,解得3,2,7,1====a b c d ,所以原来这个四位数是3271.
13. 一个人今年的年龄恰好等于他出生年的数字和,那么这个人今年的年龄是______. 【答案】5或23
【解析】(1)设这个人的出生年为19ab ,根据题意
19201719+++=-a b ab
102017190010++=---a b a b
化简得:112107+=a b .
所以111072=-a b 因为9≤b ,所以111071889≥-=a .从而9≥a 推出9=a ,4=b .这个人的年龄为2017199423-=(岁).
(2)设这个人的出生年月为20ab ,根据题意 20201720+++=-a b ab , 11215+=a b
12==,a b .
这个人的年龄为201720125-=(岁).
14. 四位数及其逆序数的和是35的倍数,求满足条件的四位数一共有多少个? 【答案】238
【解析】()()1001110+=+++abcd dcba a d b c ,可以知道+a d 是5的倍数,+b c 是7的倍数,其中a ,d 不为0,有5/10/15+=a d ,0/7/14+=b c ,(),a d 一共有17组,(),b c 一共有14组,那么一共有1714238⨯=.
12+1+21541
1234
15.a、b、c是0~9中不同的数字,用a、b、c共可组成六个数,如果其中五个数之和不小于2009,也不大于2012,那么另一个数是______.
【答案】208
【解析】这六个数的总和为222(a+b+c).
若a+b+c=10,那么六个数总和为2220,所求的数不小于208,不大于211,只有208满足条件;
若a+b+c=11,那么六个数总和为2442,所求的数不小于430,不大于433,都不符合条件;
若a+b+c=12,那么六个数总和为2664,所求的数不小于652,不大于655,都不符合条件;
若a+b+c=13,那么六个数总和为2886,所求的数不小于874,不大于877,都不符合条件;
若a+b+c≥14,那么六个数总和不小于3108,那么另一个数超过1000,不符合题意.
综上可得,另一个数必是208.。