2015年湖南省衡阳市中考数学试题及解析
2015年衡阳市初中毕业学业水平考试数学试卷(附答案)
2015 年衡阳市初中毕业学业水平考试一试卷数学考生注意: 1.本学科试卷共三道大题,满分120 分,考试时量 120 分钟。
2.本试卷的作答一律答在答题卡上,选择题用2B 铅笔按涂写要求将你以为正确的选项涂黑;非选择题用黑色墨水署名笔作答,作答不可以高出黑色矩形边框。
直接在试题卷上作答无效。
一、选择题(本大题共12 个小题,每题3 分,满分 36 分。
在每题给出的四个选项中只有一项为哪一项切合题目要求的。
)D 】01.计算12 的结果是【A .3B .1C.1D.302.以下计算正确的选项是【 A 】2A .a a 2a B.b3gb32b3C.a3 a a3D.a57a 03.以下左图的几何体是由一个圆柱体和一个长方体构成的,则这个几何体的俯视图是【C】A.B.1C. D .04.若分式x2的值为 0 ,则x的值为【C】x1A.2或1B.0C.2D.105.函数y x1中自变量 x 的取值范围为【B】A .x≥0B .x≥1C.x>1 D .x≥1≥206.不等式组B<的解集在数轴上表示为【】x1A .B.C. D .07.若等腰三角形的两边长分别为 5 和 6 ,则这个等腰三角形的周长为【 D 】A .11B.16C.17D.16或1708.若对于x的方程x23x a0 有一个根为1,则另一个根为【A】A .2B .2C.4D.309.以下命题是真命题的是【A】A .对角线相互均分的四边形是平行四边形B .对角线相等的四边形是矩形C.对角线相互垂直的四边形是菱形D.对角线相互垂直均分的四边形是正方形10.在今年全国助残日捐钱活动中,某班级第一小组七名同学踊跃捐出自己的零花费,奉献自己的爱心。
他们捐钱的数额分别是50、20、50、30、25、50、55 (单位:元),这组数据的众数和中位数分别是A.50元,30元B.50元,40元C.50元,50元D.55元,50元【 C】11.绿苑小区在规划设计时准备在两栋楼房之间设置一块面积为900平方米的矩形绿地且长比宽多10米,设绿地的宽为x 米,依据题意,可列方程为【B】A .x x 10900B.x x 10 900C.10 x 10900D.2 x x10900 12.如图,为了测得电视塔的高度AB ,在 D 处用高为 1米的测角仪CD 测得电视塔顶端 A 的仰角为30o,再向电视塔方向行进100米抵达 F处又测得电视塔顶端 A 的仰角为60o,则这个电视塔的高度AB为【 C】A.50 3米B.51米C.503 1 米D.101米二、填空题(本大题共 8 个小题,每题 3 分,满分24 分。
【解析版】2014-2015学年衡阳市衡阳县八年级下期中数学试卷
2014-2015学年湖南省衡阳市衡阳县八年级(下)期中数学试卷一、选择题(本大题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案写在下面的表格内)1.下列各式中,①,②,③,④,其中分式有()个.A. 1个 B. 2个 C. 3个 D. 4个2.点(﹣2,3)在()A. x轴上 B.第四象限内 C.第三象限内 D.第二象限内3.若点A(﹣3,a)与点B(b,4)关于原点成中心对称,则a﹣b的值是()A.﹣4 B.﹣1 C.﹣7 D.﹣34.如果把中的x和y都扩大10倍,那么分式的值()A.不变 B.扩大10倍 C.缩小10倍 D.扩大20倍5.下面哪个点在函数y=﹣2x+3的图象上()A.(﹣5,﹣7) B.(0.5,2) C.(3,0) D.(1,﹣5)6.如果直线y=kx+b经过一、二、四象限,则有()A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<07.若反比例函数y=的图象经过点(3,﹣2),那么这个函数的表达式为()A. y=﹣6x B. y=﹣C. y=6x D. y=8.若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A. m=2 B. m=﹣1 C. m=1 D. m=09.设m+n=mn,则的值是()A.B. 0 C. 1 D.﹣110.函数y1=kx+k,y2=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.11.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=﹣x;③x=;④y=.A. 1个 B. 2个 C. 3个 D. 4个12.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A. 12分钟 B. 15分钟 C. 25分钟 D. 27分钟二、填空题(每小题3分,共24分)13.当x= 时,分式的值等于0.14.约分:= .15.函数y=中自变量x的取值范围是.16.用科学记数法表示:﹣0.000000038= .17.若方程=+2有增根,则m= .18.函数y=﹣2x﹣4的图象与x轴的交点A坐标为,与y轴的交点B坐标为,直线与坐标轴围成的△AOB的面积为.19.已知点A(﹣3,a),B(﹣1,b),C(3,c)都在反比例函数y=(m为常数,m<0)上,则a,b,c的大小关系为.20.反比例函数y=在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为3,那么k的值是.三、计算题(共7题,共60分)21.(12分)(2015春•衡阳县期中)计算:(1)()0+(﹣)﹣1+(﹣2)2(2)+(3)﹣x.22.解方程:(1)(2).23.已知y是x的正比例函数,且函数图象经过点A(﹣3,6).(1)求y与x的函数关系式;(2)当x=﹣6时,求对应的函数值y;(3)当x取何值时,y=.24.列方程解应用题:从A地到B地的路程是450千米,C地到B地的路程为400千米,甲、乙两汽车分别从A,C两地沿同一条高速公路到达B地,乙车的速度比甲车慢10千米/小时,结果两车同时到达B地,求两车的速度.25.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.26.(10分)(2008•安顺)如图,一次函数y=ax+b的图象与反比例函数的图象交于A(﹣4,2)、B(2,n)两点,且与x轴交于点C.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)根据图象写出一次函数的值<反比例函数的值x的取值范围.27.(10分)(2015春•衡阳县期中)某商场计划购进A,B两种新型节能台灯共100盏,已知一盏A型台灯进价为30元,售价为45元,一盏B型台灯进价为50元,售价为70元,则:(1)若商场预计进货款为3500元,问:这两种台灯各购进了多少盏?(2)若商场规定B型台灯进货数量不超过A型台灯的3倍,应怎样进货才能使商场在销售完了这批台灯时获利最多?此时利润为多少元?2014-2015学年湖南省衡阳市衡阳县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案写在下面的表格内)1.下列各式中,①,②,③,④,其中分式有()个.A. 1个 B. 2个 C. 3个 D. 4个考点:分式的定义.分析:根据分式的定义对各小题进行逐一分析即可.解答:解:①的分母中含有未知数,是分式;②的分母中不含有未知数,是整式;③的分母中含有未知数,是分式;④的分母中含有未知数,是分式.故选C.点评:本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式是解答此题的关键.2.点(﹣2,3)在()A. x轴上 B.第四象限内 C.第三象限内 D.第二象限内考点:点的坐标.分析:根据四个象限内点的坐标符号可判定已知点所在象限.解答:解:点P(﹣2,3)在第二象限.故选:D.点评:此题主要考查了点的坐标,关键是掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.若点A(﹣3,a)与点B(b,4)关于原点成中心对称,则a﹣b的值是()A.﹣4 B.﹣1 C.﹣7 D.﹣3考点:关于原点对称的点的坐标.分析:直接利用关于原点对称点的性质得出a,b的值,进而得出答案.解答:解:∵点A(﹣3,a)与点B(b,4)关于原点成中心对称,∴b=3,a=﹣4,∴a﹣b=﹣4﹣3=﹣7.故选:C.点评:此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.4.如果把中的x和y都扩大10倍,那么分式的值()A.不变 B.扩大10倍 C.缩小10倍 D.扩大20倍考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变,可得答案.解答:解:=,故选:A.点评:本题考查了分式的性质,熟记分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变是解题的关键.5.下面哪个点在函数y=﹣2x+3的图象上()A.(﹣5,﹣7) B.(0.5,2) C.(3,0) D.(1,﹣5)考点:一次函数图象上点的坐标特征.分析:分别将各个点的值代入函数中满足的即在图象上.解答:解:当x=﹣5时,y=13,(﹣5,﹣7)不在函数y=﹣2x+3的图象上;当x=0.5时,y=2,(0.5,2)在函数y=﹣2x+3的图象上;当x=3时,y=﹣3,(3,0)不在函数y=﹣2x+3的图象上;当x=1时,y=﹣7,(1,﹣5)不在函数y=﹣2x+3的图象上;故选B点评:本题考查一次函数问题,关键是根据在这条直线上的各点的坐标一定适合这条直线的解析式.6.如果直线y=kx+b经过一、二、四象限,则有()A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0考点:一次函数图象与系数的关系.分析:根据一次函数y=kx+b图象在坐标平面内的位置关系先确定k,b的取值范围,从而求解.解答:解:由一次函数y=kx+b的图象经过第一、二、四象限,又由k<0时,直线必经过二、四象限,故知k<0.再由图象过一、二象限,即直线与y轴正半轴相交,所以b>0.故选C.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y =kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.7.若反比例函数y=的图象经过点(3,﹣2),那么这个函数的表达式为()A. y=﹣6x B. y=﹣C. y=6x D. y=考点:待定系数法求反比例函数解析式.分析:直接把点(3,﹣2)代入y=计算出m的值即可.解答:解:把点(3,﹣2)代入y=,得m=3×(﹣2)=﹣6,所以反比例函数解析式为y=﹣.故选B.点评:本题考查了待定系数法求反比例函数解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.8.若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A. m=2 B. m=﹣1 C. m=1 D. m=0考点:反比例函数的定义.分析:根据反比例函数的定义得到:|m|﹣2=﹣1且m﹣1≠0,由此求出m的值.解答:解:依题意得:|m|﹣2=﹣1且m﹣1≠0,解得m=﹣1.故选:B.点评:本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.9.设m+n=mn,则的值是()A.B. 0 C. 1 D.﹣1考点:分式的化简求值.专题:计算题.分析:原式通分并利用同分母分式的加法法则计算,将已知等式代入计算即可求出值.解答:解:∵m+n=mn,∴原式==1,故选C点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.10.函数y1=kx+k,y2=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.解答:解:若k>0时,反比例函数图象经过一、三象限;一次函数图象经过一、二、三象限,所给各选项没有此种图形;若k<0时,反比例函数经过二、四象限;一次函数经过二、三、四象限,故选:C.点评:考查反比例函数和一次函数图象的性质;若反比例函数的比例系数大于0,图象过一三象限;若小于0则过二四象限;若一次函数的比例系数大于0,常数项大于0,图象过一二三象限;若一次函数的比例系数小于0,常数项小于0,图象过二三四象限.11.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=﹣x;③x=;④y=.A. 1个 B. 2个 C. 3个 D. 4个考点:反比例函数的性质;一次函数的性质;正比例函数的性质.分析:根据一次函数的性质可得①y随x的增大而减小,根据正比例函数的性质可得②y随x的增大而减小;根据反比例函数的性质可得③y随x的增大而增大,④1y随x的增大而减小.解答:解:①y=﹣2x+1y随x的增大而减小;②y=﹣xy随x的增大而减小;③x=y随x的增大而增大;④y=y随x的增大而减小.故选:C.点评:此题主要考查了正比例函数、一次函数和反比例函数的性质,关键是掌握一次函数y=kx+b (k、b为常数,k≠0)k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.反比例函数y=,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.12.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()A. 12分钟 B. 15分钟 C. 25分钟 D. 27分钟考点:一次函数的应用.专题:压轴题;数形结合.分析:依据图象分别求出平路、上坡路和下坡路的速度,然后根据路程,求出时间即可.解答:解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),所以他从单位到家门口需要的时间是(分钟).故选:B.点评:本题通过考查一次函数的应用来考查从图象上获取信息的能力.二、填空题(每小题3分,共24分)13.当x= ﹣3 时,分式的值等于0.考点:分式的值为零的条件.分析:根据分式的值为零的条件,分子等于0,分母不等于0,列式计算即可得解.解答:解:根据题意得,x+3=0且x﹣1≠0,解得x=﹣3且x≠1,所以,当x=﹣3时,分式的值等于0.故答案为:﹣3.点评:本题考查了分式的值为零的条件,(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.约分:= .考点:约分.分析:将分式的分子与分母的公因式约去,即可求解.解答:解:=.故答案为.点评:本题考查了约分的定义及方法.约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.15.函数y=中自变量x的取值范围是x>2 .考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.16.用科学记数法表示:﹣0.000000038= ﹣3.8×10﹣8.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:﹣0.000000038=﹣3.8×10﹣8,故答案是﹣3.8×10﹣8.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.若方程=+2有增根,则m= ﹣2 .考点:分式方程的增根.专题:计算题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x ﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出m的值.解答:解:方程两边都乘(x﹣1),得x﹣3=m+2(x﹣1),∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=﹣2.点评:解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.18.函数y=﹣2x﹣4的图象与x轴的交点A坐标为(﹣2,0),与y轴的交点B坐标为(0,﹣4),直线与坐标轴围成的△AOB的面积为 4 .考点:一次函数图象上点的坐标特征.分析:先令y=0求出x的值,再令x=0求出y的值即可得出A、B两点的坐标,再根据三角形的面积公式求解即可.解答:解:令y=0,则x=﹣2;令x=0,则y=﹣4,∴A(﹣2,0)、B(0,﹣4),∴OA=2,OB=4,∴S△AOB=OA•OB=×2×4=4.故答案为:(﹣2,0)、(0,﹣4),4点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.已知点A(﹣3,a),B(﹣1,b),C(3,c)都在反比例函数y=(m为常数,m<0)上,则a,b,c的大小关系为c<a<b .考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数中m<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解答:解:∵反比例函数y=中m<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣2<﹣1<0,∴A(﹣3,a),B(﹣1,b)位于第二象限,且0<a<b.∵3>0,∴点C(3,c)位于第四象限,∴c<0,∴c<a<b.故答案为:c<a<b.点评:本题考查的是反比例函数图象上点的坐标特征,解题时,利用了反比例函数图象的增减性,减少了繁琐的计算过程.20.反比例函数y=在第一象限内的图象如图,点M是图象上一点,MP垂直x轴于点P,如果△MOP的面积为3,那么k的值是 6 .考点:反比例函数系数k的几何意义.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.解答:解:由题意得:S△MOP=|k|=3,k=±6,又∵函数图象在一象限,∴k=6.故答案是:6.点评:主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、计算题(共7题,共60分)21.(12分)(2015春•衡阳县期中)计算:(1)()0+(﹣)﹣1+(﹣2)2(2)+(3)﹣x.考点:分式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;(2)原式变形后,利用同分母分式的减法法则计算即可得到结果;(3)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果.解答:解:(1)原式=1﹣2+4=3;(2)原式=﹣==;(3)原式=•﹣x=x﹣x=0.点评:此题考查了分式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.22.解方程:(1)(2).考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:3x﹣9=2x﹣4,解得:x=5,经检验x=5是分式方程的解;(2)去分母得:4x﹣4﹣2x+x2=x2﹣x,解得:x=,经检验x=是分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.已知y是x的正比例函数,且函数图象经过点A(﹣3,6).(1)求y与x的函数关系式;(2)当x=﹣6时,求对应的函数值y;(3)当x取何值时,y=.考点:待定系数法求正比例函数解析式.分析:(1)设正比例函数解析式为y=kx,把点的坐标代入计算即可得解;(2)把x=﹣6代入解析式解答即可;(3)把y=代入解析式解答即可.解答:解:(1)设正比例函数解析式为y=kx,∵图象经过点(﹣3,6),∴﹣3k=6,解得k=﹣2,所以,此函数的关系式是y=﹣2x;(2)把x=﹣6代入解析式可得:y=12;(3)把y=代入解析式可得:x=﹣.点评:本题考查了待定系数法求正比例函数解析式,是求函数解析式常用的方法,一定要熟练掌握.24.列方程解应用题:从A地到B地的路程是450千米,C地到B地的路程为400千米,甲、乙两汽车分别从A,C两地沿同一条高速公路到达B地,乙车的速度比甲车慢10千米/小时,结果两车同时到达B地,求两车的速度.考点:分式方程的应用.分析:设甲车的速度为x千米/小时,乙车的速度为(x﹣10)千米/小时,根据题意可得,甲行驶4 50千米所用的时间等于乙行驶400千米所用的时间,据此列方程求解.解答:解:设甲车的速度为x千米/小时,乙车的速度为(x﹣10)千米/小时,由题意得,=,解得:x=90,经检验:x=90是原分式方程的解,且符合题意,则x﹣10=80.答:甲车的速度为90千米/小时,乙车的速度为80千米/小时.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.先化简代数式:,然后选取一个使原式有意义的x的值代入求值.考点:分式的化简求值.专题:开放型.分析:先算小括号里的,小括号里面的先对第二项的分母分解因式,然后找出两项分母的最简公因式(x﹣1)(x+1),对小括号里的第一项的分子分母都乘以x﹣1,第二项不变,然后根据同分母相加减的法则,分母不变.只把分子相加减,再把除法统一成乘法,约分化为最简.注意化简后,代入的数不能使分母的值为0.解答:解:=(2分)=(4分)=x2+1;(15分)当x=0时,原式的值为1.(6分)说明:只要x≠±1,且代入求值正确,均可记满分(6分).点评:分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.在计算时,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.注意化简后,代入的数不能使分母的值为0.26.(10分)(2008•安顺)如图,一次函数y=ax+b的图象与反比例函数的图象交于A(﹣4,2)、B(2,n)两点,且与x轴交于点C.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)根据图象写出一次函数的值<反比例函数的值x的取值范围.考点:反比例函数与一次函数的交点问题.专题:压轴题;数形结合;待定系数法.分析:(1)先根据点A的坐标求出反比例函数的解析式为y=,再求出B的坐标是(2,﹣4),利用待定系数法求一次函数的解析式;(2)把△AOB的面积分成两个部分求解S△AOB=×2×4+×2×2=6;(3)当一次函数的值<反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值<反比例函数的值x的取值范围﹣4<x<0或x>2.解答:解:(1)设反比例函数的解析式为y=,因为经过A(﹣4,2),∴k=﹣8,∴反比例函数的解析式为y=.因为B(2,n)在y=上,∴n==﹣4,∴B的坐标是(2,﹣4)把A(﹣4,2)、B(2,﹣4)代入y=ax+b,得,解得:,∴y=﹣x﹣2;(2)y=﹣x﹣2中,当y=0时,x=﹣2;∴直线y=﹣x﹣2和x轴交点是C(﹣2,0),∴OC=2∴S△AOB=×2×4+×2×2=6;(3)﹣4<x<0或x>2.点评:本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.27.(10分)(2015春•衡阳县期中)某商场计划购进A,B两种新型节能台灯共100盏,已知一盏A型台灯进价为30元,售价为45元,一盏B型台灯进价为50元,售价为70元,则:(1)若商场预计进货款为3500元,问:这两种台灯各购进了多少盏?(2)若商场规定B型台灯进货数量不超过A型台灯的3倍,应怎样进货才能使商场在销售完了这批台灯时获利最多?此时利润为多少元?考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设商场应购进A型台灯x盏,表示出B型台灯为y盏,然后根据“A,B两种新型节能台灯共100盏”、“进货款=A型台灯的进货款+B型台灯的进货款”列出方程组求解即可;(2)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值解答:解:(1)设商场应购进A型台灯x盏,则B型台灯为y盏,根据题意得,,解得,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(70﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,即y=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,y随x的增大而减小,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.点评:本题考查了一元一次方程的应用、二元一次方程组的应用以及一次函数的应用,主要利用了一次函数的增减性,(2)题中理清题目数量关系并列式求出x的取值范围是解题的关键.。
2015年湖南省衡阳市中考数学试卷(含详细答案)
数学试卷 第1页(共30页) 数学试卷 第2页(共30页)绝密★启用前湖南省衡阳市2015年初中毕业学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算0(1)2-+-的结果是( ) A .3-B .1C .1-D .3 2.下列计算正确的是( )A .2a a a +=B .3332b b b =C .33a a a ÷=D .527()a a =3.如图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是( )AB C D 4.若分式21x x -+的值为0,则x 的值为( ) A .2或B .0C .2D .1- 5.函数y =中自变量x 的取值范围为( ) A .0x ≥B .1x -≥C .1x ->D .1x ≥ 6.不等式组21x x ⎩-⎧⎨≥<,的解集在数轴上表示为( )ABCD7.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为( ) A .11B .16C .17D .1617或 8.若关于x 的方程230x x a ++=有一个根为1-,则另一个根为( )A .2-B .2C .4D .3- 9.下列命题是真命题的是( )A .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形10.在2015年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ) A .50元,30元 B .50元,40元 C .50元,50元D .55元,50元11.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿 地,并且长比宽多10米,设绿地的宽为x 米,根据题意,可列方程为( )A .(10)900x x -=B .(10)900x x +=C .10(10)900x +=D .[]2(10)900x x +-=12.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测 角仪CD ,测得电视塔顶端A的仰角为30,再向电视塔方向前进100米达到F 处,又测得电视塔顶端A 的仰角为60,则这个电视塔的高度AB (单位:米)为( )毕业学校_____________ 姓名________________ 考生号________________ _____________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共30页) 数学试卷 第4页(共30页)A. B .51 C.1D .101第Ⅱ卷(非选择题 共84分)二、填空题(本大题共8小题,每小题3分,共24分.把答案填写在题中的横线上) 13.在1-,0,2-这三个数中,最小的数是 .14.如图,已知直线a b ∥,1120=∠,则2∠的度数是 .15..16.方程13=2x x -的解为 .17.圆心角为120的扇形的半径为3,则这个扇形的面积为 (结果保留π). 18.如图,小明为了测量学校里一池塘的宽度AB ,选取可以直达A ,B 两点的点O 处,再分别取OA ,OB 的中点M ,N ,量得20m MN =,则池塘的宽度AB 为 m .19.已知3a b +=,1a b -=-,则22a b -的值为 .20.如图,112A B A △,223A B A △,334A B A △,…,1n n n A B A +△都是等腰直角三角形,其中点1A 2A ,…,n A 在x 轴上,点1B ,2B ,…,n B 在直线y x =上.已知11OA =,则2015OA 的长为 .三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分6分)先化简,再求值:2(2)()a a b a b -++,其中1,a b =-.22.(本小题满分6分)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为 ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人. 23.(本小题满分6分)如图,在平面直角坐标系中,ABC △的三个顶点坐标分别为(3,2),B(3,5),C(1,2)A . (1)在平面直角坐标系中画出ABC △关于x 轴对称的111A B C △;(2)把ABC △绕点A 顺时针旋转一定的角度,得图中的22AB C △,点2C 在AB 上.①旋转角为多少度?数学试卷 第5页(共30页) 数学试卷 第6页(共30页)②写出点2B 的坐标.24.(本小题满分6分)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.25.(本小题满分8分)某药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当410x ≤≤时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式; (2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?26.(本小题满分8分)如图,AB 是O 的直径,点,C D 为半圆O 的三等分点,过点C 作CE AD ⊥,交AD 的延长线于点E .(1)求证:CE 是O 的切线;(2)判断四边形AOCD 是否为菱形?并说明理由.27.(本小题满分10分)如图,顶点M 在y 轴上的抛物线与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连结,AM BM . (1)求抛物线的函数关系式;(2)判断ABM △的形状,并说明理由;(3)把抛物线与直线y x =的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为,2m m (),当m 满足什么条件时,平移后的抛物线总有不动点.28.(本小题满分10分)如图,四边形OABC 是边长为4的正方形,点P 为OA 边上任意一点(与点,O A 不重合),连接CP ,过点P 作PM CP ⊥交AB 于点D ,且PM CP =,过点M 作MN OA ∥,交BO 于点N ,连接,ND BM ,设OP t =. (1)求点M 的坐标(用含t 的代数式表示);(2)试判断线段MN 的长度是否随点P 的位置的变化而改变?并说明理由; (3)当t 为何值时,四边形BNDM 的面积最小.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共30页)数学试卷 第8页(共30页)湖南省衡阳市2015年初中毕业学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】原式123=+=。
2015年湖南省衡阳市中考数学一模试卷及参考答案
2015年湖南省衡阳市中考数学模拟试卷(一)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(3分)下列四个数中最小的是()A.0 B.﹣2 C.πD.﹣12.(3分)下列计算正确的是()A.2x﹣x=x B.a3•a2=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)(a﹣b)=a2+b23.(3分)我国第六次人口普查公布全国人口约为137054万,用科学记数法表示是()A.1.37054×108B.1.37054×109C.1.37054×1010D.0.137054×10104.(3分)若二次根式有意义,则x的取值范围是()A.x≠0 B.x>3 C.x≠3 D.x≥35.(3分)某几何体的三视图如图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥6.(3分)如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140° D.170°7.(3分)若+(y+2)2=0,则(x+y)2015等于()A.﹣1 B.1 C.32014 D.﹣320148.(3分)用数轴表示不等式x﹣2<0的解集正确的是()A. B.C. D.9.(3分)已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.610.(3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm11.(3分)正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.对角线平分一组对角D.四条边相等12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.3二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)|﹣|=.14.(3分)分解因式:x3﹣2x2y+xy2=.15.(3分)已知反比例函数y=(k≠0)的图象经过(﹣1,2),则k=.16.(3分)已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为cm2.17.(3分)如图所示,A、B、C、D是圆上的点,∠1=68°,∠A=40°.则∠D=度.18.(3分)计算:=.19.(3分)已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b 的图象不经过第四象限的概率是.20.(3分)观察下列顺序排列的等式:a1=1﹣,a2=﹣,a3=﹣,a4=﹣,….试猜想第n个等式(n为正整数):a n=.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.(6分)计算:(﹣2)2+|﹣|﹣3tan30°+(2015﹣π)0.22.(6分)化简并求值(其中a=﹣1)÷(1+)23.(6分)如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.24.(6分)以“光盘”为主题的公益活动越来越受到社会的关注.某校为培养学生勤俭节约的习惯,随机抽查了部分学生(态度分为:赞成、无所谓、反对),并将抽查结果绘制成图1和图2(统计图不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共抽查了多少名学生?(2)将图1补充完整;(3)根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度?25.(8分)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)26.(8分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?27.(10分)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED的长.28.(10分)如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C (0,﹣3),与x轴交于A,B两点(点A在点B的左侧).(1)求抛物线的解析式;(2)连接AC,CD,AD,试证明△ACD为直角三角形;(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.2015年湖南省衡阳市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.(3分)下列四个数中最小的是()A.0 B.﹣2 C.πD.﹣1【分析】根据有理数的大小比较法则比较即可.【解答】解:﹣2<﹣1<0<π,即最小的数是﹣2,故选:B.2.(3分)下列计算正确的是()A.2x﹣x=x B.a3•a2=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)(a﹣b)=a2+b2【分析】A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用完全平方公式展开得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.【解答】解:A、原式=x,正确;B、原式=x5,错误;C、原式=a2﹣2ab+b2,错误;D、原式=a2﹣b2,错误;故选:A.3.(3分)我国第六次人口普查公布全国人口约为137054万,用科学记数法表示是()A.1.37054×108B.1.37054×109C.1.37054×1010D.0.137054×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:137 054万=1 370 540 000人.将1 370 540 000用科学记数法表示为:1.370 54×109.故选:B.4.(3分)若二次根式有意义,则x的取值范围是()A.x≠0 B.x>3 C.x≠3 D.x≥3【分析】根据二次根式有意义的条件,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故选:D.5.(3分)某几何体的三视图如图,则该几何体是()A.三棱柱B.长方体C.圆柱D.圆锥【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选:D.6.(3分)如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140° D.170°【分析】延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,延长∠1的边与直线b相交,∵a∥b,∴∠4=180°﹣∠1=180°﹣130°=50°,由三角形的外角性质,∠3=∠2+∠4=90°+50°=140°.故选:C.7.(3分)若+(y+2)2=0,则(x+y)2015等于()A.﹣1 B.1 C.32014 D.﹣32014【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵+(y+2)2=0,∴x=1,y=﹣2,∴(x+y)2015=(1﹣2)2015=﹣1,故选:A.8.(3分)用数轴表示不等式x﹣2<0的解集正确的是()A. B.C. D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:移项得,x<2.在数轴上表示为:.故选:A.9.(3分)已知一组数据3,a,4,5的众数为4,则这组数据的平均数为()A.3 B.4 C.5 D.6【分析】要求平均数只要求出数据之和再除以总个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a,再求这组数据的平均数.【解答】解:数据3,a,4,5的众数为4,即4次数最多;即a=4.则其平均数为(3+4+4+5)÷4=4.故选:B.10.(3分)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm【分析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC 的长,利用等量代换可得BC的长.【解答】解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.11.(3分)正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.对角线平分一组对角D.四条边相等【分析】根据正方形与菱形的性质即可求得答案,注意排除法在解选择题中的应用.【解答】解:正方形的性质有:四条边都相等,四个角都是直角,对角线互相平分垂直且相等,而且平分一组对角;菱形的性质有:四条边都相等,对角线互相垂直平分.∴正方形具有而菱形不一定具有的性质是:对角线相等.故选:A.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1 C.2 D.3【分析】由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.【解答】解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)|﹣|=.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣|=.故答案为:.14.(3分)分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.15.(3分)已知反比例函数y=(k≠0)的图象经过(﹣1,2),则k=﹣2.【分析】直接把点(﹣1,2)代入反比例函数y=(k≠0)即可得出结论.【解答】解:∵反比例函数y=(k≠0)的图象经过(﹣1,2),∴2=,解得k=﹣2.故答案为:﹣2.16.(3分)已知圆锥的底面半径为4cm,高为3cm,则这个圆锥的侧面积为20πcm2.【分析】利用勾股定理易求得圆锥的母线长,那么圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:∵圆锥的底面半径为4cm,高为3cm,∴母线长为5cm,∴圆锥的侧面积为2π×4×5÷2=20πcm2.17.(3分)如图所示,A、B、C、D是圆上的点,∠1=68°,∠A=40°.则∠D=28度.【分析】由于∠B、∠D是同弧所对的圆周角,欲求∠D需先求出∠B的度数;已知了∠1、∠A的度数,根据三角形外角的性质即可求出∠B的度数,由此得解.【解答】解:∵∠A+∠B=∠1,且∠1=68°,∠A=40°,∴∠B=∠1﹣∠A=28°;∴∠D=∠B=28°.18.(3分)计算:=2.【分析】分母不变,直接把分子相加即可.【解答】解:原式===2.故答案为:2.19.(3分)已知a、b可以取﹣2、﹣1、1、2中任意一个值(a≠b),则直线y=ax+b的图象不经过第四象限的概率是.【分析】列表得出所有等可能的结果数,找出a与b都为正数,即为直线y=ax+b 不经过第四象限的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况数有12种,其中直线y=ax+b不经过第四象限情况数有2种,则P==.故答案为:.20.(3分)观察下列顺序排列的等式:a1=1﹣,a2=﹣,a3=﹣,a4=﹣,….试猜想第n个等式(n为正整数):a n=.【分析】根据题意可知a1=1﹣,a2=﹣,a3=﹣,…故a n=﹣.【解答】解:通过分析数据可知第n个等式a n=﹣.三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤)21.(6分)计算:(﹣2)2+|﹣|﹣3tan30°+(2015﹣π)0.【分析】本题涉及乘方、特殊角的三角函数值、二次根式化简、零指数幂四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:(﹣2)2+|﹣|﹣3tan30°+(2015﹣π)0=4+﹣3×+1=4+﹣+1=5.22.(6分)化简并求值(其中a=﹣1)÷(1+)【分析】原式括号中两边通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=当a=﹣1时,原式=﹣.23.(6分)如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【分析】根据等腰三角形的性质可得到几组相等的角,再根据三角形外角的性质可推出∠BAD=∠CAE,从而可利用SAS判定△ABD≌△ACE,根据全等三角形的性质即可证得结论.【解答】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴BD=CE.24.(6分)以“光盘”为主题的公益活动越来越受到社会的关注.某校为培养学生勤俭节约的习惯,随机抽查了部分学生(态度分为:赞成、无所谓、反对),并将抽查结果绘制成图1和图2(统计图不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共抽查了多少名学生?(2)将图1补充完整;(3)根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度?【分析】(1)根据赞成是130人,占65%即可求得总人数;(2)利用总人数减去另外两项的人数,求得反对的人数,从而作出统计图;(3)利用3000乘以持反对态度的比例即可.【解答】解:(1)130÷65%=200名;(2)200﹣130﹣50=20名;(3)3000×=300名.25.(8分)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB 的高.【解答】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.26.(8分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?【分析】(1)设y与x满足的函数关系式为:y=kx+b.,由题意可列出k和b的二元一次方程组,解出k和b的值即可;(2)根据题意:每天获得的利润为:P=(﹣3x+108)(x﹣20),转换为P=﹣3(x ﹣28)2+192,于是求出每天获得的利润P最大时的销售价格.【解答】解:(1)设y与x满足的函数关系式为:y=kx+b.由题意可得:解得答:y与x的函数关系式为:y=﹣3x+108.(2)每天获得的利润为:P=(﹣3x+108)(x﹣20)=﹣3x2+168x﹣2160=﹣3(x ﹣28)2+192.∵a=﹣3<0,∴当x=28时,利润最大,答:当销售价定为28元时,每天获得的利润最大.27.(10分)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED的长.【分析】(1)连结OC,根据切线的性质得OC⊥PC,则∠OCG+∠PCG=90°,由ED ⊥AB得∠B+∠BGF=90°,而∠B=∠OCG,所以∠PCG=∠BGF,根据对顶角相等得∠BGF=∠PGC,于是∠PGC=∠PCG,所以PC=PG;(2)连结OG,由点G是BC的中点,根据垂径定理的推论得OG⊥BC,BG=CG,易证得Rt△BOG∽Rt△BGF,则BG:BF=BO:BG,即BG2=BO•BF,把BG用CG 代换得到CG2=BO•BF;(3)解:连结OE,OG=OG=,在Rt△OBG中,利用勾股定理计算出BG=2,再利用BG2=BO•BF可计算出BF,从而得到OF=1,在Rt△OEF中,根据勾股定理计算出EF=2,由于AB⊥ED,根据垂径定理可得EF=DF,于是有DE=2EF=4.【解答】(1)证明:连结OC,如图,∵PC为⊙O的切线,∴OC⊥PC,∴∠OCG+∠PCG=90°,∵ED⊥AB,∴∠B+∠BGF=90°,∵OB=OC,∴∠B=∠OCG,∴∠PCG=∠BGF,而∠BGF=∠PGC,∴∠PGC=∠PCG,∴PC=PG;(2)解:CG、BF、BO三者之间的数量关系为CG2=BO•BF.理由如下:连结OG,如图,∵点G是BC的中点,∴OG⊥BC,BG=CG,∴∠OGB=90°,∵∠OBG=∠GBF,∴Rt△BOG∽Rt△BGF,∴BG:BF=BO:BG,∴BG2=BO•BF,∴CG2=BO•BF;(3)解:连结OE,如图,由(2)得OG⊥BC,∴OG=,在Rt△OBG中,OB=5,∴BG==2,由(2)得BG2=BO•BF,∴BF==4,∴OF=1,在Rt△OEF中,EF==2,∵AB⊥ED,∴EF=DF,∴DE=2EF=4.28.(10分)如图,抛物线y=x2+bx+c的顶点为D(﹣1,﹣4),与y轴交于点C (0,﹣3),与x轴交于A,B两点(点A在点B的左侧).(1)求抛物线的解析式;(2)连接AC,CD,AD,试证明△ACD为直角三角形;(3)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的四边形为平行四边形?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.【分析】(1)由定点列式计算,从而得到b,c的值而得解析式;(2)由解析式求解得到点A,得到AC,CD,AD的长度,而求证;(3)由(2)得到的结论,进行代入,要使以A,B,E,F为顶点的四边形是平行四边形,必须满足的条件是AB平行且等于EF,那么只需将E点的坐标向左或向右平移AB长个单位即可得出F点的坐标,然后将得出的F点坐标代入抛物线的解析式中,即可判断出是否存在符合条件的F点.【解答】解:(1)由题意得,解得:b=2,c=﹣3,则解析式为:y=x2+2x﹣3;(2)由题意结合图形则解析式为:y=x2+2x﹣3,解得x=1或x=﹣3,由题意点A(﹣3,0),∴AC=,CD=,AD=,由AC2+CD2=AD2,所以△ACD为直角三角形;(3)∵A (﹣3,0),B (1,0), ∴AB=4,∵点E 在抛物线的对称轴上, ∴点E 的横坐标为﹣1,当AB 为平行四边形的一边时,EF=AB=4, ∴F 的横坐标为3或﹣5,把x=3或﹣5分别代入y=x 2+2x ﹣3,得到F 的坐标为(3,12)或(﹣5,12); 当AB 为平行四边形的对角线时,由平行四边形的对角线互相平分, ∴F 点必在对称轴上,即F 点与D 点重合, ∴F (﹣1,﹣4).∴所有满足条件的点F 的坐标为(3,12),(﹣5,12),(﹣1,﹣4).赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +b-aa45°ABE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
2015湖南衡阳市中考数学试卷(含答案)
2015年湖南省衡阳市中考数学试卷(满分120分,考试时间120分钟)一、选择题(本大题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015年湖南衡阳,1,3分)计算0(1)-+|-2|的结果是A.-3B.1C.-1D.3【答案】D【解析】解:原式=1+2=3.故选D2. (2015年湖南衡阳,2,3分)下列计算正确的是A.a +a =2aB. 33b b ⋅=23bC. 3a ÷a =3aD. 52()a =7a 【答案】A【解析】解:A 正确;B 应为33b b ⋅=6b ;C 应为3a ÷a =2a ;D 应为52()a =10a .故选A .3. (2015年湖南衡阳,3,3分)如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是【答案】C【解析】解:A 三个视图都不是;B 主视图;C 俯视图;D 左视图.故选C .4. (2015年湖南衡阳,4,3分)若分式21x x -+的值为0,则x 的值为 A.2或-1 B.0 C.2 D.-1【答案】C【解析】解:当21x x -+=0时,x -2=0,x +1≠0,所以x =2.故选C .5. (2015年湖南衡阳,5,3分)函数y 1x +x 的取值范围为A.x ≥0B.x ≥-1C.x >-1D.x ≥1【答案】B【解析】解:根据二次根式的被开方数须大于或等于0,得x +1≥0,x ≥-1.故选B .6. (2015年湖南衡阳,6,3分)不等式组21xx≥-⎧⎨<⎩的解集在数轴上表示为【答案】B【解析】解:x≥2,x的值包括2,在数轴表示方向向右;x<1,x的值不包括1,在数轴表示方向向左.故选B.7.(2015年湖南衡阳,7,3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为A.11B.16C.17D.16或17【答案】D【解析】解:分两种情况:当三边长为5,5,6时,周长为16;当三边长为5,6,6时,周长为17.故选D.8. (2015年湖南衡阳,8,3分)若关于x的方程2x+3x+a=0有一个根为-1,则另一个根为A.-2B.2C.4D.-3【答案】A【解析】解:设另一个根为x,根据根与系数关系,得-1+x=-3,x=-2.故选A.9. (2015年湖南衡阳,9,3分)下列命题是真命题的是A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形【答案】A【解析】解:A正确;B应为对角线相等的平行四边形是矩形;C应为对角线互相垂直的平行四边形是菱形;D应为对角线互相垂直平分的矩形是正方形.故选A.10.(2015年湖南衡阳,10,3分)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自已的零花钱,奉献自己的爱心,他们捐款的数量分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是A.50元,30元B.50元,40元C.50元,50元D.55元,50元【答案】C【解析】解:因为50出现3次,出现次数最多,所以众数是50元;这组数据按从大到小排列为55、50、50、50、30、25、20,最中间一个数是50,所以中位数是50元.故选C.11.(2015年湖南衡阳,11,3分)绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为A. x(x-10)=900B. x(x+10)=900C. 10(x+10)=900D.2[x+(x+10)]=900 【答案】B【解析】解:根据矩形面积=长×宽,得x(x+10)=900.故选B.12. (2015年湖南衡阳,12,3分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为A.503B.51C.503+1D.101【答案】C【解析】解:由矩形CDFE,得DF=CE=100米,由矩形EFBC,得CD=GB=1米,因为∠ACE=30°, ∠AEG=60°,所以∠CAE=30°,所以CE=AE=100米.在RT△AEG中,AG=sin60°·AE=32×100=50米,所以AB=503+1.故选C.二、填空题(本大题共8个小题,每小题3分,满分24分)13. (2015年湖南衡阳,13,3分)在-1,0,-2这三个数中,最小的数是. 【答案】-2【解析】解:因为-2<-1<0,所以最小的数是-2.故答案为-2.14.(2015年湖南衡阳,14,3分)如图,已知直线a∥b,∠1=120°,则∠2的度数是.【答案】60° 【解析】解:因为a ∥b ,所以∠1+∠2=180°.因为∠1=120°,所以∠2=60°.故答案为60°.15. (2015年湖南衡阳,15,3分)计算8-2= . 【答案】2【解析】解:原式=22-2=2.故答案为2.16. (2015年湖南衡阳,16,3分)方程1x =32x -的解为 . 【答案】x =-1【解析】解:方程两边同乘以x (x -2),得x -2=3x ,-2x =2,x =-1.故答案为x =-1.17. (2015年湖南衡阳,17,3分)圆心角为120°的扇形的半径为3,则这个扇形的面积为 (结果保留π).【答案】3π【解析】解:21203360S π⋅⋅=扇形=3π.故答案为3π.18. (2015年湖南衡阳,18,3分)如图所示,小明为了测量学校里一池塘的宽度AB ,选取可以直达A 、B 两点的点O 处,再分别取OA 、OB 的中点M 、N ,量得MN =20m ,则池塘的宽度AB 为 m .【答案】40【解析】解:根据题意,得MN 是△AOB 的中位线,所以AB =2MN =40m .故答案为40.19. (2015年湖南衡阳,19,3分)已知a +b =3,a -b =-1,则22a b -的值为 .【答案】-3【解析】解:22a b -=(a +b )(a -b )=3×(-1)=-3.故答案为-3.20. (2015年湖南衡阳,20,3分)如图,△112A B A ,△223A B A ,△334A B A ,…,△1n n n A B A +都是等腰直角三角形,其中点1A ,2A ,…,n A 在x 轴上,点1B ,2B ,…,n B 在直线y =x 上,已知O 1A =1,则2015OA 的长为 .【答案】20142【解析】解:因为点B 在直线y =x 上,所以∠11B OA =45°.因为△112A B A 是等腰直角三角形,所以∠11OA B =90°. 11A B =12A A ,所以O 1A =11A B =12A A =1,所以2OA =2,同理2OA =22A B =23A A =2,所以3OA =4,同理4OA =8=32,…,所以2015OA =20142.故答案为20142.三.解答题(本大题共8个小题,满分60分,解答应写出文字说明,证明过程或演算步骤)21. (2015年湖南衡阳,21,6分)先化简,再求值a (a +2b )+2()a b +,其中a =-1,b 2.【答案】4【解析】解:a (a +2b )+2()a b +=22222a ab a ab b -+++=222a b +当a =-1,b =2时,原式=222(1)(2)⨯-+=2+2=4.22. (2015年湖南衡阳,22,6分)为了进一步了解义务教育阶段学生体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分别为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为 ;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有 人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人.【答案】(1)40%;(2)16;(3)128【解析】解:(1)总人数=8÷16%=50人,合格百分比:20100%50⨯=40%; (2)不合格的人数=50×32%=16人;(3)九年级不合格为数=400×32%=128人.23.(2015年湖南衡阳,23,6分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (3,2)、B (3,5)、C (1,2).x yO A B C B 2C 212345-1-2-3-4-5321(1)在平面直角坐标系中画出△ABC 关于x 轴对称的△111A B C ;(2)把△ABC 绕点A 顺时针旋转一定的角度,得图中的△22AB C ,点2C 在AB 上 ①旋转角为多少度?②写出点2B 的坐标.【答案】(1)答案略;(2)①90°,②(6,2).【解析】解:(1)如图:123-5-4-3-2-154321C 2B 2C 1B 1A 1CB A O yx(2)①因为∠2BAB =90°,所以旋转角为90°,②由题意得,2CB =2+3=5,所以点2B 到y 轴距离为5+1=6,因为2CB ∥x 轴,所以点2B 到x 轴距离为2,所以点2B 的坐标为(6,2).24. (2015年湖南衡阳,24,6分)某校学生会正筹备一个“庆毕业”文艺汇演活动,再准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两各主持人“恰好为一男一女”的概率. 【答案】23男1男2 女1 女2 男1 ——(男2,男1) (女1,男1) (女2,男1) 男2(男1,男2) —— (女1,男2) (女2,男2) 女1(男1,女1) (男2,女1) —— (女2,女1) 女2 (男1,女2) (男2,女2) (女1,女2)—— 共有12种情况,()P 恰好为一男一女=12=3.25.(2015年湖南衡阳,25,8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?【答案】(1)上升时,y=2x,下降时y=32x;(2)6小时.【解析】解:(1)当0≤x≤4时,y与x的函数关系为y=kx,把点(4,8)代入,得:8=4k,k=2,所以此时y=2x.当4≤x≤10时,y与x的函数关系为y=kx,把(4,8)代入,得,k=32,所以此时y=32 x.(2)把y=4分别代入y=2x,y=32x得,x=2,x=8所以浓度上升时的持续时间为4-2=2小时,浓度下降时的持续时间为8-4=4小时,所以持续时间为6小时.26. (2015年湖南衡阳,26,8分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.O ED CBA(1)求证:CE 为⊙O 的切线;(2)判断四边形AOCD 是否为菱形?并说明理由.【答案】(1)答案略;(2)四边形AOCD 为菱形.【解析】解:(1)连结OD ,∵点C 、D 为半圆O 的三等分点,∴∠AOD =∠COD =∠COB =60°.∵OA =OD ,∴△AOD 为等边三角形,∴∠DAO =60°,∴AE ∥OC .∵CE ⊥AD ,∴CE ⊥OC∴CE 为⊙O 的切线A BCD EO(2)四边形AOCD 为菱形.理由:∵OD =OC ,∠COD =60°∴△OCD 为等边三角形,∴CD =CO .同理:AD =AO .∵AO =CO ,∴AD =AO =CO =DC∴四边形AOCD 为菱形.27. (2015年湖南衡阳,27,10分)如图,顶点M 在y 轴上的抛物线与直线y =x +1相交于A 、B 两点,且点A 在x 轴上,点B 的橫坐标为2,连结AM 、BM .(1)求抛物线的函数关系式;(2)判断△ABM 的形状,并说明理由;(3)把抛物线与直线y =x 的交点称为抛物线的不动点,若将(1)中抛物线平移,使其顶点为(m ,2m ),当m 满足什么条件时,平移后的抛物线总有不动点.【答案】(1) 21y x =-;(2)直角三角形;(3)m ≤14【解析】解:(1)∵抛物线的顶点在y 轴上,∴设抛物线解析式为2y ax k =+.∵直线y =x +1交x 轴于点A ,∴点A 坐标(-1,0).把x =2代入y =x +1,得y =3.∴点B 坐标为(2,3). 把点A (-1,0),B (2,3)代入2y ax k =+,得043a k a k +=⎧⎨+=⎩,解得11a k =⎧⎨=-⎩. ∴抛物线解析式为21y x =-.(2)△ABM 为直角三角形.理由:∵点A (-1,0),B (2,3),M (0,-1)∴AB 22(12)(03)--+-32AM 22(10)(01)--++2,BM 22(20)(31)-++25∵22AB AM +=20,2BM =20∴22AB AM +=2BM ,∴△ABM 为直角三角形,且∠BAM =90°.(3)∵将抛物线21y x =-平移,使顶点为(m ,2m ),∴设平移后抛物线解析式为2()2y x m m =-+∵抛物线与直线y =x 的交点为不动点, ∴2()2y x y x m m=⎧⎨=-+⎩ ∴22(21)20x m x m m -+++=.要使抛物线总有不动点,必使△≥0即22(21)4(2)m m m +-+≥0,m ≤14. ∴当m ≤14时,平移后的抛物线总有不动点. 28. (2015年湖南衡阳,28,10分)如图,四边形OABC 是边长为4的正方形,点P 为OA 边上任意一点(与点O 、A 不重合),连结CP ,过点P 作PM ⊥CP 交AB 于点D ,且PM =CP ,过点M 作MN ∥OA ,交BO 于点N ,连结ND 、BM ,设OP =t .P yxO N FDC BA(1)求点M 的坐标(用含t 的代数式表示);(2)试判断线段MN 的长度是否随点P 的位置的变化而改变?并说明理由;(3)当t 为何值时,四边形BNDM 的面积最小.【答案】(1)4+t ,t );(2)不改变;(3)t =2时,四边形BNDM 的面积最小.【解析】解:(1)如图,过点M 作ME ⊥Ox 于点E ,∵∠CPM =90°,∴∠CPO +∠MPE =90°.∵∠CPO +∠OCP =90°,∴∠MPE =∠OCP .∵∠COP =∠PEM =90°,CP =PM∴△OCP ≌△EPM (AAS ),∴OE =PE =4,OP =ME =t ,∴OE =4+t ,∴点M 的坐标为(4+t ,t ).A BC D EFMN O xyP(2)MN 的长度恒为4. 理由:设MN 交AB 于点F , ∵∠F AE =∠MEA =∠MF A =90°, ∴四边形F AEM 为矩形. ∴ME =F A =t ,∴BF =4-t .∵OE =t +4,OA =4, ∴AE =t ,∴FM =AE =t ,∵MN ∥OA ,∠BOA =45°, ∴∠BNF =45°,∴△BNF 为等腰直角三角形, ∴NF =FB =4-t∴MN =NF +FM =4.(3) ∵DA ∥ME ∴PA DA PE ME=, ∴44t DA t-=, DA =214t t - ∴BD =2144t t -+∵BD ⊥MN ∴BNDM 12S BD MN =四边形 =12(2144t t -+)×4=21822t t -+ ∴当t =2时,四边形BNDM 的面积最小.。
湖南省衡阳市江山中学2015届中考数学模拟试题含解析
湖南省衡阳市江山中学2015届中考数学模拟试题一、选择题(共10小题,每小题3分,满分30分)1.﹣的倒数是( )A.7 B.﹣7 C.﹣D.2.下列运算中,正确的是( )A.x2+x2=x4B.x2÷x=x2C.x3﹣x2=x D.x•x2=x33.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( )A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字4.若分式的值为0,则x的值为( )A.4 B.﹣4 C.±4D.35.如图是某一几何体的三视图,则这个几何体是( )A.圆柱体B.圆锥体C.正方体D.球体6.下列说法中,错误的是( )A.菱形的对角线互相平分B.正方形的对角线互相垂直平分C.矩形的对角线相等且平分D.等腰梯形的对角线相等且平分7.若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB为( )A.10cm B.6cmC.10cm或6cm D.以上答案均不对8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是( ) A.B.C.D.9.已知△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为( )A.6 B.9 C.12 D.1810.小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路程s(m)与他行走的时间t(min)之间的函数关系用图象表示正确的是( )A.B.C.D.二、填空题:(每小题3分,共24分)11.因式分解:x3﹣xy2=__________.12.反比例函数在第三象限的图象如图所示,则k=__________.13.阅读材料,若一元二次方程ax2+bx+c=0的两实根为x1,x2,则两根的系数之间有如下关系:,根据上述材料填空:若方程x2﹣3x﹣5=0的两实根为x1,x2,则=__________.14.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y 随x的增大而增大的概率是__________.15.如图,已知AB是⊙O的直径,BC为弦,∠ABC=30度.过圆心O作OD⊥BC交BC于点D,连接DC,则∠DCB=__________度.16.如图,方格图中小正方形的边长为1,将方格图中阴影部分剪下来,再把剪下的阴影部分重新拼成一个正方形,则所拼成的面积最大的正方形的边长为__________.17.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长10m,且tan∠BAE=,则河堤的高BE为__________.18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…以此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3),则a6=__________,当时,则n=__________.三、解答题:(19-23每小题6分,24-25分每小题6分,26-27每小题6分)19.计算:(﹣2)2﹣0+(+2)(﹣2)﹣sin45°.20.化简求值:,其中a=.21.解方程:22.如图,AB是半圆O上的直径,E是的中点,OE交弦BC于点D,过点C作⊙O的切线交OE的延长线于点F,已知BC=8,DE=2.(1)求⊙O的半径;(2)求CF的长.23.如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处.求此时渔船所在的B处与海洋观测站P的距离(结果保留根号).24.在金融危机的影响下,国家采取扩大内需的政策,基建投资成为拉动内需最强有力的引擎,金强公司中标一项工程,在甲、乙两地施工,其中甲地需推土机30台,乙地需推土机26台,公司在A、B两地分别库存推土机32台和24台,现从A地运一台到甲、乙两地的费用分别是400元和300元.从B地运一台到甲、乙两地的费用分别为200元和500元,设从A地运往甲地x台推土机,运这批推土机的总费用为y元.(1)求y与x的函数关系式;(2)公司应设计怎样的方案,能使运送这批推土机的总费用最少?25.小兵和小宁玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张.小宁说:“若抽出的两张牌上的数都是偶数,你获胜;否则,我获胜.”(1)请用树状图表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由.26.已知,如图,四边形ABCD是矩形,AB=1,AD=2,M是CD边上一点(不与C、D重合),以BM为直径画半圆交AD于E、F,连接BE,ME.(1)求证:AE=DF;(2)求证:△AEB∽△DME;(3)设AE=x,四边形ABMD的面积为y,求y关于x的函数关系式和自变量的取值范围.27.如图,△ABC的三个顶点坐标分别为A(﹣2,0)、B(6,0)、C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求直线AC的解析式;(2)求抛物线的解析式;(3)若抛物线的顶点为D,在直线AC上是否存一点P,使得△BDP的周长最小?若存在,求出P点的坐标;若不存在,请说明理由.2015年湖南省衡阳市江山中学中考数学模拟试卷一、选择题(共10小题,每小题3分,满分30分)1.﹣的倒数是( )A.7 B.﹣7 C.﹣D.【考点】倒数.【专题】计算题.【分析】根据倒数的定义求解.【解答】解:﹣的倒数为﹣7.故选B.【点评】本题考查了倒数:a(a≠0)的倒数为.2.下列运算中,正确的是( )A.x2+x2=x4B.x2÷x=x2C.x3﹣x2=x D.x•x2=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据合并同类项的法则,同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断后利用排除法求解.【解答】解:A、应为x2+x2=2x2,故本选项错误;B、应为x2÷x=x2﹣1=x,故本选项错误;C、x3与x2不是同类项,不能合并,故本选项错误;D、x•x2=x3正确.故选D.【点评】本题考查了合并同类项法则,同底数幂的乘法,同底数幂的除法,熟练掌握运算性质是解题的关键.3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( )A.精确到十分位,有2个有效数字B.精确到个位,有2个有效数字C.精确到百位,有2个有效数字D.精确到千位,有4个有效数字【考点】科学记数法与有效数字.【专题】常规题型.【分析】103代表1千,那是乘号前面个位的单位,那么小数点后一位是百.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字,用科学记数法表示的数a×10n 的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:个位代表千,那么十分位就代表百,乘号前面从左面第一个不是0的数字有2个数字,那么有效数字就是2个.故选:C.【点评】较大的数用a×10n表示,看精确到哪一位,需看个位代表什么;有效数字需看乘号前面的有效数字.4.若分式的值为0,则x的值为( )A.4 B.﹣4 C.±4 D.3【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0,分母不为0,分子为0,从而求得x的值.【解答】解:∵的值为0,∴|x|﹣4=0且x+4≠0,∴|x|=±4且x≠﹣4,∴x=4,故选A.【点评】本题考查了分式值为0的条件,分子为0且分母不为0,要熟练掌握.5.如图是某一几何体的三视图,则这个几何体是( )A.圆柱体B.圆锥体C.正方体D.球体【考点】由三视图判断几何体.【专题】数形结合.【分析】三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的具体形状.【解答】解:∵三视图中有两个视图为矩形,∴这个几何体为柱体,∵第3个视图的形状为圆,∴这个几何体为圆柱体,故选A.【点评】考查由三视图判断几何体;用到的知识点为:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的形状.6.下列说法中,错误的是( )A.菱形的对角线互相平分B.正方形的对角线互相垂直平分C.矩形的对角线相等且平分D.等腰梯形的对角线相等且平分【考点】多边形.【专题】多边形与平行四边形.【分析】利用菱形,正方形,矩形,以及等腰梯形的性质判断即可.【解答】解:A、菱形的对角线互相平分,正确;B、正方形的对角线互相垂直平分,正确;C、矩形的对角线相等且平分,正确;D、等腰梯形的对角线相等,错误.故选D.【点评】此题考查了多边形,熟练掌握菱形、正方形、矩形,以及等腰梯形的性质是解本题的关键.7.若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB为( )A.10cm B.6cmC.10cm或6cm D.以上答案均不对【考点】圆与圆的位置关系.【分析】本题应分内切和外切两种情况讨论.【解答】解:∵⊙A和⊙B相切,∴①当外切时圆心距AB=8+2=10cm,②当内切时圆心距AB=8﹣2=6cm.故选C.【点评】本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.外切时P=R+r;内切时P=R﹣r;注意分情况讨论.8.在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是( )A.B.C.D.【考点】点的坐标.【专题】计算题;压轴题.【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得﹣2m+3<0,求不等式的解即可.【解答】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即﹣2m+3<0,解得m>.故选D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.已知△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C的位置,使B′和C重合,连接AC′交A′C于D,则△C′DC的面积为( )A.6 B.9 C.12 D.18【考点】平行四边形的判定与性质;平移的性质.【分析】连接AA′,根据平移的性质可知,AC∥A′C′,AC=A′C′,即可解答.【解答】解:连接AA′,由平移的性质知,AC∥A′C′,AC=A′C′,所以四边形AA′CC′是平行四边形,所以点D是AC,A′C的中点,所以A′D=CD,所以S△C′DC=S△ABC=18.故选:D.【点评】本题利用了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.10.小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路程s(m)与他行走的时间t(min)之间的函数关系用图象表示正确的是( )A.B.C.D.【考点】函数的图象.【分析】根据行程,按照路程的一半分段,先慢后快,图象先平后陡.【解答】解:小强离学校的路程S(米)应随他行走的时间t(分)的增大而减小,因而选项A、B一定错误;他从家去上学时以每分30米的速度行走了450米,所用时间应是15分钟,因而选项C错误;行走了450米,为了不迟到,他加快了速度,后面一段图象陡一些,选项D正确.故选:D.【点评】此题主要考查了函数图象,解决问题的关键理解以下两点:①理解图象是反映的是哪两个变量的关系.②理解函数变量是随自变量的增大是如何变化的.理解一些转折点的实际意义.二、填空题:(每小题3分,共24分)11.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.反比例函数在第三象限的图象如图所示,则k=2.【考点】待定系数法求反比例函数解析式.【专题】计算题.【分析】根据题意可知点(﹣1,﹣2)是函数y=上的点,代入即可求k.【解答】解:如右图所示,点(﹣1,﹣2)在反比例函数的图象上,∴把(﹣1,﹣2)的值代入函数解析式得﹣2=,∴k=2.故答案为:2.【点评】本题考查了反比例函数图象上点的坐标特征、待定系数法求反比例函数解析式.经过函数的某点一定在函数的图象上.13.阅读材料,若一元二次方程ax2+bx+c=0的两实根为x1,x2,则两根的系数之间有如下关系:,根据上述材料填空:若方程x2﹣3x﹣5=0的两实根为x1,x2,则=.【考点】根与系数的关系.【专题】阅读型.【分析】根据根与系数的关系得到x1+x2=3,x1x2=﹣5,再变形==,然后代值计算即可.【解答】解:∵x1+x2=3,x1x2=﹣5,∴====﹣.故答案为:﹣.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:设它的两实根为x1,x2,则有如下关系:;也考查了代数式的变形能力,即有两根之和与两根之积表示所求的代数式.14.从﹣1,1,2三个数中任取一个,作为一次函数y=kx+3的k值,则所得一次函数中y随x的增大而增大的概率是.【考点】概率公式;一次函数图象与系数的关系.【分析】从﹣1,1,2三个数中任取一个,共有三种取法,其中函数y=﹣1•x+3是y随x增大而减小的,函数y=1•x+3和y=2•x+3都是y随x增大而增大的,所以符合题意的概率为.【解答】解:P(y随x增大而增大)=.故本题答案为:.【点评】用到的知识点为:概率=所求情况数与总情况数之比;一次函数未知数的比例系数大于0,y随x的增大而增大.15.如图,已知AB是⊙O的直径,BC为弦,∠ABC=30度.过圆心O作OD⊥BC交BC于点D,连接DC,则∠DC B=30度.【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】先根据直角三角形两锐角互余求出∠BOD,再根据圆周角定理∠DCB=∠BOD.【解答】解:∵OD⊥BC交弧BC于点D,∠ABC=30°,∴∠BOD=90°﹣∠ABC=90°﹣30°=60°,∴∠DCB=∠BOD=30°.【点评】本题的关键是利用直角三角形两锐角互余和圆周角定理.16.如图,方格图中小正方形的边长为1,将方格图中阴影部分剪下来,再把剪下的阴影部分重新拼成一个正方形,则所拼成的面积最大的正方形的边长为.【考点】勾股定理.【分析】根据已知条件可知所拼成的面积最大的正方形的边长只需求出阴影部分面积即可得出边长.【解答】解:∵方格图中小正方形的边长为1,将方格图中阴影部分剪下来,再把剪下的阴影部分重新拼成一个正方形,∴只需求出阴影部分面积即可,∴梯形ABCD面积为:×2×(1+3)=4,∴阴影部分面积为:4+1=5,∴所拼成的面积最大的正方形的边长为:.故答案为:.【点评】此题主要考查了利用方格图形求面积以及二次根式开方,求出阴影部分面积即是正方形面积是解决问题的关键.17.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长10m,且tan∠BAE=,则河堤的高BE为8.【考点】解直角三角形的应用-坡度坡角问题.【分析】根据tan∠BAE=得出BE,AE的关系,根据勾股定理表示出AB,再根据AB=10,从而得出BE的长.【解答】解;∵tan∠BAE==,∴假设BE=4x,AE=3x,∴AB=5x,∵迎水坡AB长10m,∴5x=10,解得:x=2,∴BE=8.故答案为:8.【点评】此题主要考查了坡角的定义以及解直角三角形,根据坡角定义表示出AB的长度是解决问题的关键.18.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…以此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3),则a6=42,当时,则n=100.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】首先分析题意及观察图形得到规律,一个正多边形“扩展”,即在原来正多变形的基础上,每个边再加上一个正多边形,由此可求出a6,又可表示出a n,再由已知求出n.【解答】解:由已知和图形,可知,正三角形“扩展”,即在原来正三角形的基础上,每边再加上一个正三角形,由此,a6即由正六边形扩展而来,即在原来正六边形的基础上,每边再加上一个六边形,即a6的值为:6×(5+2)=42.所以a n=n(n+1),所以++…+=++…+=﹣+﹣+…+﹣=﹣=,所以n=100.故答案分别为:42,100.【点评】此题考查的知识点是图形数字变化类问题,解题的关键是通过分析观察得出规律求出答案.三、解答题:(19-23每小题6分,24-25分每小题6分,26-27每小题6分)19.计算:(﹣2)2﹣0+(+2)(﹣2)﹣sin45°.【考点】特殊角的三角函数值;有理数的乘方;负整数指数幂.【专题】计算题.【分析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式==2﹣1=1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.化简求值:,其中a=.【考点】分式的化简求值;分母有理化.【分析】先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分,最后加减运算,把式子化到最简代值计算.【解答】解:原式====;当a=时,原式==.【点评】分式的混合运算,要特别注意运算顺序,能因式分解的先分解,然后约分.21.解方程:【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x﹣3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解【解答】解:去分母得:x(x﹣1)=(x+1)(x﹣3),解之得:x=﹣3.经检验知:x=﹣3是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.22.如图,AB是半圆O上的直径,E是的中点,OE交弦BC于点D,过点C作⊙O的切线交OE的延长线于点F,已知BC=8,DE=2.(1)求⊙O的半径;(2)求CF的长.【考点】垂径定理的应用;勾股定理;切线的性质;射影定理.【专题】计算题.【分析】(1)设⊙O的半径为x,由E点是的中点,O点是圆心,根据垂径定理的推论得到OD⊥BC,DC==4,然后在Rt△ODC中,根据勾股定理可计算出x.(2)根据切线的性质得到OD⊥BC,再根据射影定理得到OC2=OD•OF,计算出OF,然后根据勾股定理可计算出CF的长.【解答】解:(1)设⊙O的半径为x,∵E点是的中点,O点是圆心,∴OD⊥BC,DC==4,在Rt△ODC中,OD=x﹣2,∴OD2+DC2=OC2∴(x﹣2)2+42=x2∴x=5,即⊙O的半径为5;(2)∵FC是⊙O的切线,∴OC⊥CF又∵E是的中点.∴OD⊥BC,∴OC2=OD•OF,即52=3•OF∴在Rt△OCF中,OC2+CF2=OF2∴【点评】本题考查了垂径定理的推论:过圆心平分弧的直径垂直平分弦.也考查了切线的性质、勾股定理以及射影定理.23.如图,一艘渔船位于海洋观测站P的北偏东60°方向,渔船在A处与海洋观测站P的距离为60海里,它沿正南方向航行一段时间后,到达位于海洋观测站P的南偏东45°方向上的B处.求此时渔船所在的B处与海洋观测站P的距离(结果保留根号).【考点】解直角三角形的应用-方向角问题.【专题】应用题;压轴题.【分析】过点P作PC⊥AB,垂足为C,根据题意可得∠APC=30°,∠BPC=45°,AP=60,然后在Rt△APC中可表示出PC,在Rt△PCB中可表示出PB,进而可得出答案.【解答】解:过点P作PC⊥AB,垂足为C,根据题意可得出:∠APC=30°,∠BPC=45°,AP=60,在Rt△APC中,∵cos∠APC=,∴PC=PA•cos∠APC=30,在Rt△PCB中,∵,∴.答:当渔船位于P南偏东45°方向时,渔船与P的距离是30海里.【点评】本题考查解直角三角形的应用,有一定的难度,解答本题的关键是理解方向角含义,正确记忆三角函数的定义.24.在金融危机的影响下,国家采取扩大内需的政策,基建投资成为拉动内需最强有力的引擎,金强公司中标一项工程,在甲、乙两地施工,其中甲地需推土机30台,乙地需推土机26台,公司在A、B两地分别库存推土机32台和24台,现从A地运一台到甲、乙两地的费用分别是400元和300元.从B地运一台到甲、乙两地的费用分别为200元和500元,设从A地运往甲地x台推土机,运这批推土机的总费用为y元.(1)求y与x的函数关系式;(2)公司应设计怎样的方案,能使运送这批推土机的总费用最少?【考点】一次函数的应用.【专题】函数思想.【分析】(1)设从A地运往甲地x台,从A地运往乙地的推土机(32﹣x)台,从B地运往甲地的推土机(30﹣x),运往乙地的推土机(x﹣6)台,再根据现从A地运一台到甲、乙两地的费用分别是400元和300元.从B地运一台到甲、乙两地的费用分别为200元和500元,可求出运这批推土机的总费用.(2)根据函数的性质可判断费用何时最少.【解答】解:(1)由题意知:从A地运往乙地的推土机(32﹣x)台,从B地运往甲地的推土机(30﹣x),运往乙地的推土机(x﹣6)台,则y=400x+300(32﹣x)+200(30﹣x)+500(x﹣6)=400x+12600;(2)∵x﹣6≥0,30﹣x≥0,∴6≤x≤30,又∵y随x的增大而增大,∴当x=6时,能使总运费最少.运送方案是:A地的推土机运往甲地6台,运往乙地26台;B地的推土机运往甲地24台,运往乙地0台.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.25.小兵和小宁玩纸牌游戏.如图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,小兵先从中抽出一张,小宁从剩余的3张牌中也抽出一张.小宁说:“若抽出的两张牌上的数都是偶数,你获胜;否则,我获胜.”(1)请用树状图表示出抽牌可能出现的所有结果;(2)若按小宁说的规则进行游戏,这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【专题】压轴题.【分析】(1)根据题意画出树状图,有树状图即可求得抽牌可能出现的所有结果;(2)根据树状图,先求得两张牌的数字都是偶数的情况,然后利用概率公式即可求得小兵和小宁获胜的概率,由概率相等,即可判定这个游戏公平.【解答】解:(1)树状图为:∴共有12种等可能的结果.(2)游戏公平.∵两张牌的数字都是偶数有6种结果:(6,8),(6,10),(8,6),(8,10),(10,6),(10,8).∴小兵获胜的概率P==,∴小宁获胜的概率也为.∴游戏公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.26.已知,如图,四边形ABCD是矩形,AB=1,AD=2,M是CD边上一点(不与C、D重合),以BM为直径画半圆交AD于E、F,连接BE,ME.(1)求证:AE=DF;(2)求证:△AEB∽△DME;(3)设AE=x,四边形ABMD的面积为y,求y关于x的函数关系式和自变量的取值范围.【考点】垂径定理;根据实际问题列二次函数关系式;平行线的性质;相似三角形的判定与性质.【专题】代数几何综合题;压轴题;数形结合.【分析】(1)设BM的中点为O,过O作OH⊥EF,垂足为H.利用平行线的性质和垂径定理可求出;(2)要求证△AEB∽△DME,就要利用三角形相似的判定证明,从题中互余的关系可知三角相等,利用AAA定理可证明;(3)要求四边形ABMD的面积为y与边的关系,就要利用面积公式列出式子,再分析看成变量x的最值范围.【解答】(1)证明:设BM的中点为O,过O作OH⊥EF,垂足为H,∵OB=OM,∴AH=DH.根据垂径定理可知EH=FH,∴AE=DF;(2)证明:∵BM是圆O的直径,∴∠BEM=90°,∴∠AEB+∠DEM=90°,∴∠AEB=∠DME,∴△AEB∽△DME;(3)解:∵△AEB∽△DME,∴,∵AB=1,AE=x,∴DE=2﹣x,∴DM=x(2﹣x),y=(AB+DM)•AD=﹣x2+2x+1.自变量的取值范围是0<x<1.【点评】本题综合考查了平行线,垂径定理和相似三角形的判定及矩形的面积公式等计算能力.27.如图,△ABC的三个顶点坐标分别为A(﹣2,0)、B(6,0)、C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求直线AC的解析式;(2)求抛物线的解析式;(3)若抛物线的顶点为D,在直线AC上是否存一点P,使得△BDP的周长最小?若存在,求出P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)设出一次函数解析式,代入A、C两点的坐标即可解决问题;(2)把A、B、C三点代入抛物线y=ax2+bx+c,列出三元一次方程组解答即可;(3)利用轴对称图形的性质,找出点B关于直线AC的对称点,进一步利用直角三角形的性质以及待定系数法与两直线的相交的关系求得答案.【解答】解:(1)设直线AC的解析式为y=kx+b,把A(﹣2,0),C(0,﹣2)代入解析式得,,解得,∴;(2)把A(﹣2,0),B(6,0),C(0,﹣2)三点代入抛物线y=ax2+bx+c得,,解得:,∴所求抛物线方程为;(3)存在满足条件的点P.∵抛物线方程为,∴顶点D的坐标为要使△BDP的周长最小,只需DP+PB最小,延长BC到点B′,使B′C=BC,连接B′D交直线AC于点P,∵AC2=16,BC2=48,AB2=64,∴AB2=AC2+BC2,∴BC⊥AC,∴B'P=BP,∴DP+BP=DP+B′P=B′D最小,则此时△BDP的周长最小,∴点P就是所求的点,过点B′作B′H⊥AB于点H,∵B(6,0),C(0,),∴在Rt△BOC中,BC=4,∵OC∥B′H,B′C=BC,∴OH=BO=6,,∴,设直线B′D的解析式为y=mx+n,∵D,在直线B′D上,∴,∴,∴,∵,∴,∴,∴在直线AC上存在点P,使得△BDP的周长最小,此时.【点评】此题综合考查了待定系数法求函数解析式,轴对称图形的性质,两直线的位置关系,是一道综合性很强的题目.。
湖南省衡阳市中考数学试卷(含答案和解析)
湖南省衡阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的倒数是()A.B.C.2D.﹣2﹣2.下列图案中,不是轴对称图形的是()A.B.C.D.3.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×1064.若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.85.小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟6.下列运算结果准确的是()A.x2+x3=x5B.x3•x2=x6C.x5÷x=x5D.x3•(3x)2=9x57.不等式组的解集在数轴上表示为()A.B.C.D.8.下列因式分解中,准确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个9.如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A.B.C.D.10.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD 的长度为()A.26米B.28米C.30米D.46米11.圆心角为120°,弧长为12π的扇形半径为()A.6B.9C.18 D.3612.下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形二、填空题(本大题共8小题,每小题3分,共24分)13.函数中,自变量x的取值范围是_________ .14.化简:(﹣)= _________ .15.如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为_________ .16.甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:=10.5,=10.5,=0.61,=0.50,则成绩较稳定的是_________ (填“甲”或“乙”).17.如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为_________ .18.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m= _________ n(填“>”“<”或“=”号).19.分式方程=的解为x= _________ .20.如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为_________ .三、解答题(本大题共8小题,满分60分)21.先化简,再求值.(a+b)(a﹣b)+b(a+2b)﹣b2,其中a=1,b=﹣2.22.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本实行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这个年(365天)达到优和良的总天数.23.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.24.学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.25.某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.26.将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.27.(10分)(2014•衡阳)如图,已知直线AB分别交x轴、y轴于点A(﹣4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线y=x以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0<t<5).(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由.28.(10分)(2014•衡阳)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y 轴交于点C(0,﹣3m)(其中m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△BOC相似?2014年湖南省衡阳市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2014•衡阳)﹣2的倒数是()C.2D.﹣2A.B.﹣考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选:B.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2014•衡阳)下列图案中,不是轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念对各选项分析判断利用排除法求解.解答:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(3分)(2014•衡阳)环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为()A.2.5×10﹣5B.2.5×105C.2.5×10﹣6D.2.5×106考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6;故选:C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)(2014•衡阳)若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.8考点:多边形内角与外角.分析:根据多边形的内角和公式(n﹣2)•180°,列式求解即可.解答:解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选C.点评:本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.(3分)(2014•衡阳)小明从家出发,外出散步,到一个公共阅报栏前看了一会报后,继续散步了一段时间,然后回家,如图描述了小明在散步过程汇总离家的距离s(米)与散步所用时间t(分)之间的函数关系,根据图象,下列信息错误的是()A.小明看报用时8分钟B.公共阅报栏距小明家200米C.小明离家最远的距离为400米D.小明从出发到回家共用时16分钟考点:函数的图象.分析:A.从4分钟到8分钟时间增加而离家的距离没变,所以这段时间在看报;B.4分钟时散步到了报栏,据此知公共阅报栏距小明家200米;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米;D.据图知小明从出发到回家共用时16分钟.解答:解:A.小明看报用时8﹣4=4分钟,本项错误;B.公共阅报栏距小明家200米,本项正确;C.据图形知,12分钟时离家最远,小明离家最远的距离为400米,本项正确;D.据图知小明从出发到回家共用时16分钟,本项正确.故选:A.点评:本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.6.(3分)(2014•衡阳)下列运算结果正确的是()A.x2+x3=x5B.x3•x2=x6C.x5÷x=x5D.x3•(3x)2=9x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;单项式乘单项式.分析:根据合并同类项,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据单项式乘单项式,可判断D.解答:解:A、指数不能相加,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相减,故C错误;D、x3(3x)2=9x5,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.7.(3分)(2014•衡阳)不等式组的解集在数轴上表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:本题应该先对不等式组进行化简,然后在数轴上分别表示出x的取值范围.解答:解:不等式组由①得,x>1,由②得,x≥2,故不等式组的解集为:x≥2,在数轴上可表示为:故选:A.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.8.(3分)(2014•衡阳)下列因式分解中,正确的个数为()①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(x﹣y)A.3个B.2个C.1个D.0个考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用提取公因式法以及公式法分别分解因式进而判断得出即可.解答:解:①x3+2xy+x=x(x2+2y+1),故原题错误;②x2+4x+4=(x+2)2;正确;③﹣x2+y2=(x+y)(y﹣x),故原题错误;故正确的有1个.故选:C.点评:此题主要考查了运用公式法以及提取公因式法分解因式,熟练掌握公式法分解因式是解题关键.9.(3分)(2014•衡阳)如图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()A.B.C.D.考点:简单组合体的三视图.分析:根据几何体组成,结合三视图的观察角度,进而得出答案.解答:解:根据立方体的组成可得出:A、是几何体的左视图,故此选项错误;B、是几何体的三视图,故此选项正确;C、是几何体的主视图,故此选项错误;D、是几何体的俯视图,故此选项错误;故选:B.点评:此题主要考查了简单组合体的三视图,准确把握观察角度是解题关键.10.(3分)(2014•衡阳)如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()A.26米B.28米C.30米D.46米考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡比求得AE的长,已知CB=10m,即可求得AD.解答:解:∵坝高12米,斜坡AB的坡度i=1:1.5,∴AE=1.5BE=18米,∵BC=10米,∴AD=2AE+BC=2×18+10=46米,故选D.点评:此题考查了解直角三角形的应用中的坡度坡角的问题及等腰梯形的性质的掌握情况,将相关的知识点相结合更利于解题.11.(3分)(2014•衡阳)圆心角为120°,弧长为12π的扇形半径为()A.6B.9C.18 D.36考点:弧长的计算.分析:根据弧长的公式l=进行计算.解答:解:设该扇形的半径是r.根据弧长的公式l=,得到:12π=,解得r=18,故选:C.点评:本题考查了弧长的计算.熟记公式是解题的关键.12.(3分)(2014•衡阳)下列命题是真命题的是()A.四边形都相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的梯形是等腰梯形考点:命题与定理.分析:利用特殊的四边形的判定和性质定理逐一判断后即可确定正确的选项.解答:解:A、四条边都相等的是菱形,故错误,是假命题;B、菱形的对角线互相垂直但不相等,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形但不一定是正方形,故错误,是假命题;D、正确,是真命题.故选D.点评:本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2014•攀枝花)函数中,自变量x的取值范围是x≥2.考点:函数自变量的取值范围.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.14.(3分)(2014•衡阳)化简:(﹣)=2.考点:二次根式的混合运算.分析:首先将括号里面化简,进而合并,即可运用二次根式乘法运算法则得出即可.解答:解:(﹣)=×(2﹣)=×=2.故答案为:2.点评:此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15.(3分)(2014•衡阳)如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为10.考点:矩形的性质.分析:根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.解答:解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=5,∴BD=2BO=10,故答案为:10.点评:本题考查了等边三角形的性质和判定,矩形性质的应用,注意:矩形的对角线相等且互相平分.16.(3分)(2014•衡阳)甲、乙两同学参加学校运动员铅球项目选拔赛,各投掷6次,记录成绩,计算平均数和方差的结果为:=10.5,=10.5,=0.61,=0.50,则成绩较稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的定义,方差越小数据越稳定.解答:解:因为S甲2=0.61>S乙2=0.50,方差小的为乙,所以本题中成绩比较稳定的是乙.故答案为:乙.点评:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(3分)(2014•衡阳)如图,AB为⊙O直径,CD为⊙O的弦,∠ACD=25°,∠BAD的度数为65°.考点:圆周角定理.分析:根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.解答:解:∵AB为⊙O直径∴∠ADB=90°∵∠B=∠ACD=25°∴∠BAD=90°﹣∠B=65°.故答案为:65°.点评:考查了圆周角定理的推论.构造直径所对的圆周角是圆中常见的辅助线之一.18.(3分)(2014•衡阳)若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,则m=<n (填“>”“<”或“=”号).考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征得到﹣1•m=k,﹣2•n=k,解得m=﹣k,n=﹣,然后利用k>0比较m、n的大小.解答:解:∵P1(﹣1,m),P2(﹣2,n)在反比例函数y=(k>0)的图象上,∴﹣1•m=k,﹣2•n=k,∴m=﹣k,n=﹣,而k>0,∴m<n.故答案为:<.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.19.(3分)(2014•衡阳)分式方程=的解为x=2.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2=x2﹣x+2x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(3分)(2014•衡阳)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O 逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为21007.考点:规律型:点的坐标.专题:规律型.分析:根据点M0的坐标求出OM0,然后判断出△OM0M1是等腰直角三角形,然后根据等腰直角三角形的性质求出OM1,同理求出OM2,OM3,然后根据规律写出OM2014即可.解答:解:∵点M0的坐标为(1,0),∴OM0=1,∵线段OM0绕原点O逆时针方向旋转45°,M1M0⊥OM0,∴△OM0M1是等腰直角三角形,∴OM1=OM0=,同理,OM2=OM1=()2,OM3=OM2=()3,…,OM2014=OM2013=()2014=21007.故答案为:21007.点评:本题是对点的坐标变化规律的考查,主要利用了等腰直角三角形的判定与性质,读懂题目信息,判断出等腰直角三角形是解题的关键.三、解答题(本大题共8小题,满分60分)21.(6分)(2014•衡阳)先化简,再求值.(a+b)(a﹣b)+b(a+2b)﹣b2,其中a=1,b=﹣2.考点:整式的混合运算—化简求值.分析:先利用平方差公式和整式的乘法计算,再合并化简,最后代入求得数值即可.解答:解:原式=a2﹣b2+ab+2b2﹣b2=a2+ab,当a=1,b=﹣2时原式=1+(﹣2)=﹣1.点评:此题考查代数式求值,注意先利用整式的乘法化简,再代入求得数值.22.(6分)(2014•衡阳)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,即可得出被抽取的总天数;(2)利用轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5天;表示优的圆心角度数是360°=57.6°,即可得出答案;(3)利用样本中优和良的天数所占比例得出一年(365天)达到优和良的总天数即可.解答:解:(1)∵扇形图中空气为良所占比例为64%,条形图中空气为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2)轻微污染天数是50﹣32﹣8﹣3﹣1﹣1=5天;表示优的圆心角度数是360°=57.6°,如图所示:;(3)∵样本中优和良的天数分别为:8,32,∴一年(365天)达到优和良的总天数为:×365=292(天).∴估计该市一年达到优和良的总天数为292天.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(6分)(2014•衡阳)如图,在△ABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E、F.求证:△BED≌△CFD.考点:全等三角形的判定.专题:证明题.分析:首先根据AB=AC可得∠B=∠C,再由DE⊥AB,DF⊥AC,可得∠BED=∠CFD=90°,然后再利用AAS定理可判定△BED≌△CFD.解答:证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C,在△BED和△CFD中,,∴△BED≌△CFD(AAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.(6分)(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.考点:一元二次方程的应用.专题:增长率问题.分析:设这两年的年平均增长率为x,根据题意列出方程,求出方程的解即可得到结果.解答:解:设这两年的年平均增长率为x,根据题意得:5000(1+x)2=7200,即(1+x)2=1.44,开方得:1+x=1.2或x+1=﹣1.2,解得:x=0.2=20%,或x=﹣2.2(舍去).答:这两年的年平均增长率为20%.点评:考查了一元二次方程的应用,本题为增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.25.(8分)(2014•衡阳)某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.考点:列表法与树状图法;二元一次方程的应用.分析:(1)首先由题意可得:2x+y=15,继而求得y与x之间的关系式;(2)根据每种奖品至少买1件,即可求得所有可能的结果;(3)由买到的中性笔与笔记本数量相等的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:(1)根据题意得:2x+y=15,∴y=15﹣2x;(2)购买方案:x=1,y=13;x=2,y=11,x=3,y=9;x=4,y=7;x=5,y=5;x=6,y=3,x=7,y=1;∴共有7种购买方案;(3)∵买到的中性笔与笔记本数量相等的只有1种情况,∴买到的中性笔与笔记本数量相等的概率为:.点评:本题考查了列举法求概率的知识.注意用到的知识点为:概率=所求情况数与总情况数之比.26.(8分)(2014•衡阳)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)如图①摆放,点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,试判断的值是否随着α的变化而变化?如果不变,请求出的值;反之,请说明理由.考点:旋转的性质;相似三角形的判定与性质.分析:(1)根据直角三角形斜边上的中线等于斜边的一半可得CD=AD=BD=AB,根据等边对等角求出∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC﹣∠EDF计算即可得解;(2)根据同角的余角相等求出∠PDM=∠CDN,再根据然后求出△BCD是等边三角形,根据等边三角形的性质求出∠BCD=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CPD=60°,从而得到∠CPD=∠BCD,再根据两组角对应相等,两三角形相似判断出△DPM和△DCN相似,再根据相似三角形对应边成比例可得=为定值.解答:解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=,∵=tan∠ACD=tan30°,∴的值不随着α的变化而变化,是定值.点评:本题考查了旋转的性质,相似三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并判断出相似三角形是解题的关键,也是本题的难点.27.(10分)(2014•衡阳)如图,已知直线AB分别交x轴、y轴于点A(﹣4,0)、B(0,3),点P从点A出发,以每秒1个单位的速度沿直线AB向点B移动,同时,将直线y=x以每秒0.6个单位的速度向上平移,分别交AO、BO于点C、D,设运动时间为t秒(0<t<5).(1)证明:在运动过程中,四边形ACDP总是平行四边形;(2)当t取何值时,四边形ACDP为菱形?且指出此时以点D为圆心,以DO长为半径的圆与直线AB的位置关系,并说明理由.考点:一次函数综合题.分析:(1)设直线AB的解析式为y=kx+b,由待定系数法就可以求出直线AB的解析式,再由点的坐标求出AO,BO的值,由勾股定理就可以得出AB的值,求出sin∠BAO的值,作PE⊥AO,表示出PE的值,得出PE=DO,就可以得出结论;(2)由三角函数值表示CO的值,由菱形的性质可以求出菱形的边长,作DF⊥AB于F由三角函数值就可以求出DO,DF的值,进而得出结论.解答:解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得:,∴y=x+3.∴直线AB∥直线y=x.∵A(﹣4,0)、B(0,3),∴OA=4,OB=3,在Rt△AOB中,由勾股定理,得AB=5.∴sin∠BAO=,tan∠DCO=.作PE⊥AO,∴∠PEA=∠PEO=90°∵AP=t,∴PE=0.6t.∵OD=0.6t,∴PE=OD.∵∠BOC=90°,∴∠PEA=∠BOC,∴PE∥DO.∴四边形PEOD是平行四边形,∴PD∥AO.∵AB∥CD,∴四边形ACDP总是平行四边形;(2)∵AB∥CD,∴∠BAO=∠DCO,∴tan∠DCO=tan∠BAO=.∵DO=0.6t,∴CO=0.8t,∴AC=4﹣0.8t.∵四边形ACDP为菱形,∴AP=AC,∴t=4﹣0.8t,∴t=.∴DO=,AC=.∵PD∥AC,∴∠BPD=∠BAO,∴sin∠BPD=sin∠BAO=.作DF⊥AB于F.∴∠DFP=90°,∴DF=.∴DF=DO.∴以点D为圆心,以DO长为半径的圆与直线AB相切.点评:本题考查了待定系数法求函数的将诶相似的运用,勾股定理的运用,三角函数值的运用,平行四边形的判定及性质的运用,菱形的性质的运用,解答时灵活运用平行四边形的性质是关键.28.(10分)(2014•衡阳)二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0)、B(1,0)两点,与y 轴交于点C(0,﹣3m)(其中m>0),顶点为D.(1)求该二次函数的解析式(系数用含m的代数式表示);(2)如图①,当m=2时,点P为第三象限内的抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)如图②,当m取何值时,以A、D、C为顶点的三角形与△BOC相似?考点:二次函数综合题.分析:(1)利用交点式求出抛物线的解析式;(2)如答图2,求出S的表达式,再根据二次函数的性质求出最值;(3)△ACD与△BOC相似,且△BOC为直角三角形,所以△ACD必为直角三角形.本问分多种情形,需要分类讨论,避免漏解.解答:解:(1)∵抛物线与x轴交点为A(﹣3,0)、B(1,0),∴抛物线解析式为:y=a(x+3)(x﹣1).将点C(0,﹣3m)代入上式,得a×3×(﹣1)=﹣3m,∴m=a,∴抛物线的解析式为:y=m(x+3)(x﹣1)=mx2+2mx﹣3m.(2)当m=2时,C(0,﹣6),抛物线解析式为y=2x2+4x﹣6,则P(x,2x2+4x﹣6).设直线AC的解析式为y=kx+b,则有,解得,∴y=﹣2x﹣6.如答图①,过点P作PE⊥x轴于点E,交AC于点F,则F(x,﹣2x﹣6).∴PF=yF﹣yP=(﹣2x﹣6)﹣(2x2+4x﹣6)=﹣2x2﹣6x.S=S△PFA+S△PFC=PF•AE+PF•OE=PF•OA=(﹣2x2﹣6x)×3∴S=﹣3x2﹣9x=﹣3(x+)2+∴S与x之间的关系式为S=﹣3x2﹣9x,当x=﹣时,S有最大值为.(3)∵y=mx2+2mx﹣3m=m(x+1)2﹣4m,∴顶点D坐标为(﹣1,﹣4m).如答图②,过点D作DE⊥x轴于点E,则DE=4m,OE=1,AE=OA﹣OE=2;过点D作DF⊥y轴于点F,则DF=1,CF=OF﹣OC=4m﹣3m=m.由勾股定理得:AC2=OC2+OA2=9m2+9;CD2=CF2+DF2=m2+1;AD2=DE2+AE2=16m2+4.。
湖南衡阳数学解析-2015初中毕业学业考试试卷
2015年衡阳市初中毕业学业水平考试试卷数学考生注意:1、本试卷共三道大题,满分120分,考试时量120分钟。
2、本试卷的作答一律答在答题卡上,选择题用2B铅笔按涂写要求将你认为正确的选项涂黑;非选择题用黑色墨水签字笔作答,作答不能超出黑色矩形边框。
直接在试卷上作答无效。
一、选择题(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算的结果是().A.-3 B.1 C.-1 D.3【答案】D【解析】根据非零实数的0次幂,得(-1)0=1,而|-2|=2,结果为1+2=3。
【考点】零指数幂;绝对值;有理数加法。
2.下列计算正确的是().A.B.C.D.【答案】A【解析】a+a=2a,故选项A正确;【考点】合并同类项;同底数幂的乘除法;幂的乘方。
3.如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是().【答案】C【解析】根据俯视图是从几何体上面看到的视图发现,A选项不正确,B选项是从正面看到的视图为主视图,C选项为从上面看到的是俯视图,D选项为从侧面看到的左视图,故正确答案为C。
【考点】简单组合体的三视图。
4.若分式的值为0,则的值为().A.2或-1 B.0 C.2 D.-15.函数中自变量的取值范围为().A.B.C.D.6.不等式组的解集在数轴上表示为().A.B.C.D.7.已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为().A.11 B.16 C.17 D.16或178.若关于的方程有一个根为﹣1,则另一个根为().A.-2 B.2 C.4 D.-39.下列命题是真命题的是().A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是正方形10.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是().A.50元,30元B.50元,40元C.50元,50元D.55元,50元11.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为米,根据题意,可列方程为().A.B.C.D.12.如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为().A.B.51 C.D.101二、填空题(本大题共8个小题,每小题3分,满分24分.)13.在-1,0,-2这三个数中,最小的数是.14.如图,已知直线∥,∠1=120°,则∠2的度数是.15.计算:.16.方程的解为.17.圆心角为120°的扇形的半径为3,则这个扇形的面积为(结果保留).18.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为m.19.已知,,则的值为.20.如图,△,△,△,…,△,都是等腰直角三角形.其中点,,…,在轴上,点,,…,,在直线上.已知,则的长为.三、解答题(本大题共8个小题,满分60分.解答应写出文字说明、证明过程或演算步骤.)21.(本小题满分6分)先化简,再求值,其中,.22.(本小题满分6分)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质揣测.体质揣测的结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整...的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格“的百分比为.(2)本次体质抽测中,抽测结果为“不合格“等级的学生有人.(3)若该校九年级有400名学生,估计该校九年级体质为“不合格“等级的学生约有人.23.(本小题满分6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.24.(本小题满分6分)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.25.(本小题满分8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度(微克/毫升)与服药时间小时之间的函数关系如图所示(当时,与成反比).(1)根据图象分别求出血液中药物浓度上升和下降阶段与之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?26.(本小题满分8分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.(1)求证:CE为⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.【答案】(1)证明见试题解析;(2)四边形AOCD是菱形;理由见试题解析27.(本小题满分10分)如图,顶点M在轴上的抛物线与直线相交于A、B两点,且点A在轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(,),当满足什么条件时,平移后的抛物线总有不动点?28.(本小题满分10分)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连结CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连结ND、BM,设OP =.(1)求点M的坐标(用含的代数式表示);(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由;(3)当为何值时,四边形BNDM的面积最小.(3)由(1)知:∠MPE=∠PCO,又∠DAP=∠POC=90°∴△DAP∽△POC,∴,∵OP=,OC=4,∴AP=4-∴,∴AD=,∴BD==∵MN∥OA,AB⊥OA;∴MN⊥BD∵S四边形BNDM=∴S=。
2015年全国中考数学试卷解析分类汇编专题28
2015年全国中考数学试卷解析分类汇编专题28+解直角三角形一.选择题1.(2015•衡阳,第12题3分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1 D.1012.(2015•聊城,第10题3分)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为()A. 34米B. 38米C. 45米D. 50米3. (2015•温州第8题4分)如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C 作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是()A.y=B. y=C. y=2D. y=34.(2015•甘肃天水,第8题,4分)如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=2,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为()A. 2 B.3 C. 4 D.55.(2015•山东泰安,第14题3分)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里D.海里6.(2015•长沙,第11题3分)如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()A.米B.30sinα米C.30tanα米D.30cosα米二.填空题1.(3分)(2015•宁夏)(第16题)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为.2.(2015•青海西宁第18题2分)某校数学兴趣小组要测量西山植物园蒲宁之珠的高度.如图,他们在点A 处测得蒲宁之珠最高点C 的仰角为45°,再往蒲宁之珠方向前进至点B 处测得最高点C 的仰角为56°,AB=62m ,根据这个兴趣小组测得的数据,则蒲宁之珠的高度CD 约为 ______ m .(sin56°≈0.83,tan56°≈1.49,结果保留整数)3.(2015•宁夏第16题3分)如图,港口A 在观测站O 的正东方向,OA=4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为_______.4.(2015年重庆B 第18题4分)如图,AC 是矩形ABCD 的对角线,AB=2,BC=,点E 、F 分别是线段AB ,AD 上的点,连接CE ,CF ,当∠BCE=∠ACF ,且CE=CF 时,AE+AF=______.5.(2015•营口,第14题3分)圆内接正六边形的边心距为2,则这个正六边形的面积为 cm 2.2318题图E6.(2015•营口,第17题3分)定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径,即损矩形外接圆的直径.如图,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,点D是菱形ACEF对角线的交点,连接BD.若∠DBC=60°,∠ACB=15°,BD=2,则菱形ACEF的面积为.7.(2015•山东德州,第16题4分)如图,某建筑物BC上有一旗杆AB,从与BC相距38m的D处观测旗杆顶部A的仰角为50°,观测旗杆底部B的仰角为45°,则旗杆的高度均为m.(结果精确到0.1m,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)9.(2015•滨州,第14题4分)如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.10.(2015•东营,第14题3分)4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为30°,B处的俯角为45°.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是200+200米.11. (2015年陕西省,13,3分)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).12.(2015江苏常州第16题2分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是_______________.三.解答题1.(2015•湖北,第22题6分)如图,AD是△ABC的中线,tanB=,cosC=,AC=.求:(1)BC的长;(2)sin∠ADC的值.2.(2015•安徽,第18题8分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).m)3.(2015•鄂州,第21题9分)如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).(1)求小敏到旗杆的距离DF.(结果保留根号)(2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7)4.(2015•海南,第22题9分)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)5.(2015•湘潭,第19题6分)“东方之星”客船失事之后,本着“关爱生命,救人第一”的宗旨.搜救部门紧急派遣直升机到失事地点进行搜救,搜救过程中,假设直升机飞到A处时,发现前方江面上B处有一漂浮物,从A测得B处的俯角为30°,已知该直升机一直保持在距江面100米高度飞行搜索,飞行速度为10米每秒,求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮物的正上方?(结果精确到0.1,≈1.73)6.(2015•聊城,第24题10分)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点D ,过点B 作BE 垂直于PD ,交PD 的延长线于点C ,连接AD 并延长,交BE 于点E .(1)求证:AB=BE ;(2)若PA=2,cosB=,求⊙O 半径的长.7. (2015江苏常州第25题8分)如图,在四边形ABCD 中,∠A =∠C =45°,∠ADB =∠ABC =105°.⑴若AD =2,求AB ;⑵若AB +CD =23+2,求AB .8.(2015年四川省达州市中考,21,7分)学习“利用三角函数测高”后,某综合实践活动小组实地测量了凤凰山与中心广场的相对高度AB ,其测量步骤如下:(1)在中心广场测点C 处安置测倾器,测得此时山顶A 的仰角∠AFH=30°;C(2)在测点C 与山脚B 之间的D 处安置测倾器(C 、D 与B 在同一直线上,且C 、D 之间的距离可以直接测得),测得此时山顶上红军亭顶部E 的仰角∠EGH=45°;(3)测得测倾器的高度CF=DG=1.5米,并测得CD 之间的距离为288米;已知红军亭高度为12米,请根据测量数据求出凤凰山与中心广场的相对高度AB .(取1.732,结果保留整数)9.(2015年四川省广元市中考,20,8分)某学校体育看台的侧面如图中阴影部分所示,看台有四级高度相等的小台阶,已知看台高为1.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长度均为0.8米的不锈钢架杆AD 和BC (杆子的低端分别为D 、C ),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC 的长).10.(2015年浙江省义乌市中考,20,8分)如图,从地面上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰角是45°,向前走6m 到达B 点,测得杆顶端点P 和杆底端点Q 的仰角分别是60°和30°。
2015年衡阳市初中毕业学业水平考试数学试卷
2015年衡阳市初中毕业学业水平考试试卷数 学考生注意:1.本学科试卷共三道大题,满分120分,考试时量120分钟。
2.本试卷的作答一律答在答题卡上,选择题用2B 铅笔按涂写要求将你认为正确的选项涂黑;非选择题用黑色墨水签字笔作答,作答不能超出黑色矩形边框。
直接在试题卷上作答无效。
一、选择题(本大题共12个小题,每小题3分,满分36分。
在每小题给出的四个选项中只有一项是符合题目要求的。
)01.计算()012-+-的结果是【 D 】A .3-B .1C .1-D .3 02.下列计算正确的是【 A 】A .2a a a +=B .3332b b b =gC .33a a a ÷=D .()257a a = 03.如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是【 C 】A .B .C .D . 04.若分式21x x -+的值为0,则x 的值为【 C 】 A .2或1- B .0 C .2 D .1- 05.函数1y x =+x 的取值范围为【 B 】A .0x ≥B .1x -≥C .1x ->D .1x ≥06.不等式组21x x -⎧⎨⎩≥<的解集在数轴上表示为【 B 】A .B .C .D . 07.若等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为【 D 】A .11B .16C .17D .16或17 08.若关于x 的方程230x x a ++=有一个根为1-,则另一个根为【 A 】A .2-B .2C .4D .3-09.下列命题是真命题的是【 A 】A .对角线互相平分的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形10.在今年全国助残日捐款活动中,某班级第一小组七名同学积极捐出自己的零花钱,奉献自己的爱心。
他们捐款的数额分别是50205030255055、、、、、、(单位:元),这组数据的众数和中位数分别是A .50元,30元B .50元,40元C .50元,50元D .55元,50元【 C 】 11.绿苑小区在规划设计时准备在两栋楼房之间设置一块面积为900平方米的矩形绿地且长比宽多10米,设绿地的宽为x 米,根据题意,可列方程为【 B 】A .()10900x x -=B .()10900x x +=C .()1010900x +=D .()210900x x ++=⎡⎤⎣⎦12.如图,为了测得电视塔的高度AB ,在D 处用高为1米的测角仪CD 测得电视塔顶端A 的仰角为30o ,再向电视塔方向前进100米到达F 处又测得电视塔顶端A 的仰角为60o ,则这个电视塔的高度AB 为【 C 】A .3B .51米C .()5031米D .101米二、填空题(本大题共8个小题,每小题3分,满分24分。
湖南省衡阳市
湖南省衡阳市衡阳县2015届中考数学一模试卷一、选择题(本大题共11小题,每小题3分,满分33分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣2.(3分)下列物体的主视图是圆的是()A.圆柱B.圆锥C.球D.正方体3.(3分)下列各数:,sin30°,﹣,,其中无理数的个数是()A.1个B.2个C.3个D.4个4.(3分)下列计算正确的是()A.2x﹣x=x B.a3•a2=a6C.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2+b25.(3分)一组数据4,3,6,9,6,5的中位数和众数分别是()A.5和5.5 B.5.5和6 C.5和6 D.6和66.(3分)已知,则的值是()A.B.C.D.7.(3分)△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是()A.27 B.12 C.18 D.208.(3分)有一个底面半径为3cm,母线长10cm的圆锥,则其侧面积是()A.30cm2B.30πcm2C.15πcm2D.15cm29.(3分)分式方程的解为()A.3B.﹣3 C.无解D.3或﹣310.(3分)如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°11.(3分)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,满分24分.)12.(3分)掷一枚硬币,正面朝上的概率是.13.(3分)使式子有意义的最小整数m是.14.(3分)不等式3x﹣9>0的解集是.15.(3分)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=.16.(3分)甲、乙、丙三个芭蕾舞团各有10名女演员,她们的平均身高都是165cm,其方差分别为=1.5,=2.5,=0.8,则团女演员身高更整齐(填甲、乙、丙中一个).17.(3分)已知一个圆的半径为5cm,则它的内接正六边形的边长为.18.(3分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是.19.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.三、解答题(本大题共8个小题,满分60分,解答应写出文字说明、证明过程或演算步骤)20.(6分)先化简,再求值:,其中a=.21.(6分)某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米)(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)22.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.23.(6分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?24.(8分)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x(t)频数(户)频率0<x≤5 6 0.125<x≤10 0.2410<x≤15 16 0.3215<x≤20 10 0.2020<x≤25 425<x≤30 2 0.04(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?25.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.26.(10分)OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B′点.求B′点的坐标;(2)求折痕CM所在直线的解析式.27.(10分)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?湖南省衡阳市衡阳县2015届中考数学一模试卷参考答案与试题解析一、选择题(本大题共11小题,每小题3分,满分33分.在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)﹣2015的绝对值是()A.﹣2015 B.2015 C.D.﹣考点:绝对值.分析:根据相反数的意义,求解即可.注意正数的绝对值是本身,0的绝对值为0,负数的绝对值是其相反数.解答:解:∵﹣2015的绝对值等于其相反数,∴﹣2015的绝对值是2015;故答案为:2015.点评:此题考查了绝对值的知识,掌握绝对值的意义是本题的关键,解题时要细心.2.(3分)下列物体的主视图是圆的是()A.圆柱B.圆锥C.球D.正方体考点:简单几何体的三视图.分析:主视图是从物体的正面看所得到的图形.解答:解:A、圆柱的主视图是长方形,不合题意,故此选项错误;B、圆锥的主视图是三角形,不合题意,故此选项错误;C、球的主视图是圆形,符合题意,故此选项正确;D、正方体的主视图是正方形,不合题意,故此选项错误;故选:C.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)下列各数:,sin30°,﹣,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.专题:计算题.分析:先把sin30°化为,化为2的形式,再根据无理数的定义进行解答即可.解答:解:∵sin30°=,=2,,2是有理数,∴这一组数中的无理数有:,﹣共2个.故选B.点评:本题考查的是无理数的概念,解答此题的关键是熟知π是无理数这一关键.4.(3分)下列计算正确的是()A.2x﹣x=x B.a3•a2=a6C.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2+b2考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.专题:计算题.分析:A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用完全平方公式展开得到结果,即可作出判断;D、原式利用平方差公式计算得到结果,即可作出判断.解答:解:A、原式=x,正确;B、原式=x5,错误;C、原式=a2﹣2ab+b2,错误;D、原式=a2﹣b2,错误;故选:A点评:此题考查了完全平方公式,合并同类项,同底数幂的乘法,以及平方差公式,熟练掌握公式是解本题的关键.5.(3分)一组数据4,3,6,9,6,5的中位数和众数分别是()A.5和5.5 B.5.5和6 C.5和6 D.6和6考点:众数;中位数.分析:中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.解答:解:在这一组数据中6是出现次数最多的,故众数是6;将这组数据已从小到大的顺序排列,处于中间位置的两个数是5、6,那么由中位数的定义可知,这组数据的中位数是(5+6)÷2=5.5;故选B.点评:本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.(3分)已知,则的值是()A.B.C.D.考点:比例的性质.分析:先设出b=5k,得出a=13k,再把a,b的值代入即可求出答案.解答:解:令a,b分别等于13和5,∵,∴a=13,b=5∴==;故选D.点评:此题考查了比例的性质.此题比较简单,解题的关键是注意掌握比例的性质与比例变形.7.(3分)△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,则最短的一边是()A.27 B.12 C.18 D.20考点:相似三角形的性质.分析:设另一个三角形最短的一边是x,根据相似三角形对应边成比例即可得出结论.解答:解:设另一个三角形最短的一边是x,∵△ABC中,AB=12,BC=18,CA=24,另一个和它相似的三角形最长的一边是36,∴=,解得x=18.故选C.点评:本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.8.(3分)有一个底面半径为3cm,母线长10cm的圆锥,则其侧面积是()A.30cm2B.30πcm2C.15πcm2D.15cm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式进行计算.解答:解:圆锥的侧面积=•2π•3•10=30π(cm2).故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.(3分)分式方程的解为()A.3B.﹣3 C.无解D.3或﹣3考点:解分式方程.分析:观察可得最简公分母是(x+3)(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,注意要检验.解答:解:方程的两边同乘(x+3)(x﹣3),得12﹣2(x+3)=x﹣3,解得:x=3.检验:把x=3代入(x+3)(x﹣3)=0,即x=3不是原分式方程的解.故原方程无解.故选C.点评:此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分式方程一定要验根.10.(3分)如图,已知a∥b,∠1=130°,∠2=90°,则∠3=()A.70°B.100°C.140°D.170°考点:平行线的性质.分析:延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:如图,延长∠1的边与直线b相交,∵a∥b,∴∠4=180°﹣∠1=180°﹣130°=50°,由三角形的外角性质,∠3=∠2+∠4=90°+50°=140°.故选:C.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.11.(3分)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y (单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.解答:解:因为小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.故选:C.点评:本题考查函数值随时间的变化问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.二、填空题(本大题共8个小题,每小题3分,满分24分.)12.(3分)掷一枚硬币,正面朝上的概率是.考点:概率公式.分析:掷一枚硬币有2种情况,满足条件的有一种,用1除以2即可得出概率的值.解答:解:∵掷一枚硬币的情况有2种,满足条件的为:正面一种,∴正面朝上的概率是P=;故本题答案为:.点评:此题考查了概率公式,考查等可能条件下的概率计算.用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)使式子有意义的最小整数m是2.考点:二次根式有意义的条件.专题:常规题型.分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,m﹣2≥0,解得m≥2,所以最小整数m是2.故答案为:2.点评:本题考查二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.14.(3分)不等式3x﹣9>0的解集是x>3.考点:解一元一次不等式.分析:先移项,再将x的系数化为1即可.解答:解:移项得,3x>9,系数化为1得,x>3.故答案为:x>3.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.15.(3分)如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=240°.考点:多边形内角与外角;三角形内角和定理.分析:三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.解答:解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.点评:主要考查了三角形及四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.16.(3分)甲、乙、丙三个芭蕾舞团各有10名女演员,她们的平均身高都是165cm,其方差分别为=1.5,=2.5,=0.8,则丙团女演员身高更整齐(填甲、乙、丙中一个).考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵=1.5,=2.5,=0.8∴丙的方差最小,∴丙芭蕾舞团参加演出的女演员身高更整齐.故答案为:丙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.(3分)已知一个圆的半径为5cm,则它的内接正六边形的边长为5cm.考点:正多边形和圆.分析:首先根据题意画出图形,六边形ABCDEF是正六边形,易得△OAB是等边三角形,又由圆的半径为5cm,即可求得它的内接六边形的边长.解答:解:如图,连接OA,OB,∵六边形ABCDEF是正六边形,∴∠AOB=×360°=60°,∴△OAB是等边三角形,∴AB=OA=OB=5cm,即它的内接六边形的边长为:5cm.故答案为:5cm.点评:此题考查了正多边形与圆的性质.此题难度不大,注意根据题意得到△OAB是等边三角形是解此题的关键,注意数形结合思想的应用.18.(3分)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是50°.考点:圆周角定理.专题:计算题.分析:根据同弧所对的圆心角等于所对圆周角的2倍,由已知圆周角的度数,即可求出所求圆心角的度数.解答:解:∵圆心角∠AOC与圆周角∠ABC都对,∴∠AOC=2∠ABC,又∠ABC=25°,则∠AOC=50°.故答案为:50°.点评:此题考查了圆周角定理的运用,熟练掌握圆周角定理是解本题的关键.19.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为32.考点:等边三角形的性质;等腰三角形的判定与性质.专题:规律型.分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.解答:解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故答案是:32.点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.三、解答题(本大题共8个小题,满分60分,解答应写出文字说明、证明过程或演算步骤)20.(6分)先化简,再求值:,其中a=.考点:分式的化简求值.专题:计算题.分析:首先运用提取公因式及完全平方公式和平方差公式对分式进行化简,然后代入求值.解答:解:原式=﹣×=﹣==,当a=﹣2时,原式==.点评:此题考查的知识点是分式的化简求值,关键是先对分式运用提取公因式及完全平方公式和平方差公式对分式进行化简.21.(6分)某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D处.用仪器测得主塔顶部A的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE的高度(结果精确到0.1米)(参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)考点:解直角三角形的应用-仰角俯角问题.分析:由题意即可得:在Rt△ABC中,AB=BC•tan68°,又由BE=CD=1.3米,即可求得主塔AE的高度.解答:解:根据题意得:在Rt△ABC中,AB=BC•tan68°≈60×2.48=148.8(米),∵CD=1.3米,∴BE=1.3米,∴AE=AB+BE=148.8+1.3=150.1(米).∴主塔AE的高度为150.1米.点评:本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.22.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.解答:证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.23.(6分)小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?考点:二元一次方程组的应用;一元一次不等式的应用.专题:应用题.分析:(1)设彩色地砖采购x块,单色地砖采购y块,根据彩色地砖和单色地砖的总价为5600及地砖总数为100建立二元一次方程组求出其解即可;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,根据采购地砖的费用不超过3200元建立不等式,求出其解即可.解答:解:(1)设彩色地砖采购x块,单色地砖采购y块,由题意,得,解得:.答:彩色地砖采购40块,单色地砖采购60块;(2)设购进彩色地砖a块,则单色地砖购进(60﹣a)块,由题意,得80a+40(60﹣a)≤3200,解得:a≤20.故彩色地砖最多能采购20块.点评:本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答时认真分析单价×数量=总价的关系建立方程及不等式是关键.24.(8分)九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x(t)频数(户)频率0<x≤5 6 0.125<x≤10 0.2410<x≤15 16 0.3215<x≤20 10 0.2020<x≤25 425<x≤30 2 0.04(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t的家庭总数即可求出,不超过15t的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过20t的家庭数,即可得出1000户家庭超过20t的家庭数.解答:解:(1)如图所示:根据0<x≤5中频数为6,频率为0.12,则6÷0.12=50,50×0.24=12户,4÷50=0.08,故表格从上往下依次是:12户和0.08;(2)×100%=68%;(3)1000×(0.08+0.04)=120户,答:该小区月均用水量超过20t的家庭大约有120户.点评:此题主要考查了利用样本估计总体以及频数分布直方图与条形图综合应用,根据已知得出样本数据总数是解题关键.25.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.考点:切线的判定;圆周角定理;弧长的计算.分析:(1)由圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠ABC的度数;(2)由AB是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可得∠ACB=90°,又由∠BAC=30°,易求得∠BAE=90°,则可得AE是⊙O的切线;(3)首先连接OC,易得△OBC是等边三角形,则可得∠AOC=120°,由弧长公式,即可求得劣弧AC的长.解答:解:(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵∠ABC=60°,∴∠AOC=120°,∴劣弧AC的长为.点评:此题考查了切线的判定、圆周角定理以及弧长公式等知识.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.26.(10分)OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6.(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B′点.求B′点的坐标;(2)求折痕CM所在直线的解析式.考点:一次函数综合题;翻折变换(折叠问题).专题:综合题.分析:(1)折叠的性质得到CB′=CB=10,B′M=BM,在Rt△OCB′中,利用勾股定理易得OB′=8,即可得到B′点的坐标;(2)设AM=t,则BM=B′M=6﹣t,而AB′=OA﹣OB′=2,在Rt△AB′M中,利用勾股定理求出t的值,确定M点的坐标,然后利用待定系数法求直线CM的解析式即可.解答:解:(1)∵四边形ABCD为矩形,∴CB=OA=10,AB=OC=6,∵△CBM沿CM翻折后,点B落在x轴上,记作B′点,∴CB′=CB=10,B′M=BM,在Rt△OCB′中,OC=6,CB′=10,∴OB′=8,∴B′点的坐标为(8,0);(2)设AM=t,则BM=B′M=6﹣t,而AB′=OA﹣OB′=2,在Rt△AB′M中,B′M2=B′A2+AM2,即(6﹣t)2=22+t2,解得t=,∴M点的坐标为(10,),设直线CM的解析式为y=kx+b,把C(0,6)和M(10,)代入得,b=6,10k+b=,解得k=﹣,b=6,∴直线CM的解析式为y=﹣x+6.点评:本题考查了利用待定系数法求直线的解析式的方法:先设直线的解析式为y=kx+b,然后把已知两点的坐标代入求出k,b即可.也考查了折叠的性质以及勾股定理.27.(10分)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?考点:二次函数综合题.专题:压轴题;动点型;分类讨论.分析:(1)根据A、B的坐标,可得到OA=6、OB=8、AB=10;当t=3时,AN=5,即N 是AB的中点,由此得到点N的坐标.然后利用待定系数法求出抛物线的解析式.(2)△MNA中,过N作MA边上的高NC,先由∠BAO的正弦值求出NC的表达式,而AM=OA﹣OM,由三角形的面积公式可得到关于S△MNA、t的函数关系式,利用所得函数的性质即可求出△MNA的最大面积.(3)首先求出N点的坐标,然后表示出AM、MN、AN三边的长;由于△MNA的腰和底不确定,若该三角形是等腰三角形,可分三种情况讨论:①MN=NA、②MN=MA、③NA=MA;直接根据等量关系列方程求解即可.解答:解:(1)由题意,A(6,0)、B(0,8),则OA=6,OB=8,AB=10;当t=3时,AN=t=5=AB,即N是线段AB的中点;∴N(3,4).设抛物线的解析式为:y=ax(x﹣6),则:4=3a(3﹣6),a=﹣;∴抛物线的解析式:y=﹣x(x﹣6)=﹣x2+x.(2)过点N作NC⊥OA于C;由题意,AN=t,AM=OA﹣OM=6﹣t,NC=NA•sin∠BAO=t•=t;则:S△MNA=AM•NC=×(6﹣t)×t=﹣(t﹣3)2+6.∴△MNA的面积有最大值,且最大值为6.(3)∵Rt△NCA中,AN=t,NC=AN•sin∠BAO=t,AC=AN•cos∠BAO=t;∴OC=OA﹣AC=6﹣t,∴N(6﹣t,t).∴NM==;又:AM=6﹣t,AN=t(0<t≤6);①当MN=AN时,=t,即:t2﹣8t+12=0,t1=2,t2=6(舍去);②当MN=MA时,=6﹣t,即:t2﹣12t=0,t1=0(舍去),t2=;③当AM=AN时,6﹣t=t,即t=;综上,当t的值取2或或时,△MAN是等腰三角形.点评:该动点函数综合题涉及了二次函数的性质、图形面积的求法、等腰三角形的判定等知识.应注意的是,当等腰三角形的腰和底不明确时,要分情况进行讨论,以免漏解.。
湖南省衡阳市中考数学试题及解析
湖南省衡阳市中考数学试题及解析————————————————————————————————作者:————————————————————————————————日期:2015年湖南省衡阳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(2015•衡阳)计算(﹣1)0+|﹣2|的结果是()A.﹣3 B.1C.﹣1 D.32.(3分)(2015•衡阳)下列计算正确的是()A.a +a=2a B.b3•b3=2b3C.a3÷a=a3D.(a5)2=a73.(3分)(2015•衡阳)如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()A.B.C.D .4.(3分)(2015•衡阳)若分式的值为0,则x的值为()A.2或﹣1 B.0C.2D.﹣15.(3分)(2015•衡阳)函数y=中自变量x的取值范围为()A.x≥0 B.x≥﹣1 C.x>﹣1 D.x≥16.(3分)(2015•衡阳)不等式组的解集在数轴上表示为()A.B.C.D.7.(3分)(2015•衡阳)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或178.(3分)(2015•衡阳)若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2C.4D.﹣39.(3分)(2015•衡阳)下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形10.(3分)(2015•衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、25、50、55,这组数据的众数和中位数分别是()A.50元,30元B.50元,40元C.50元,50元D.55元,50元11.(3分)(2015•衡阳)绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=90012.(3分)(2015•衡阳)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()A.50B.51 C.50+1 D.101二、填空题:本大题共8个小题,每小题3分,共24分。
2015年湖南省衡阳市中考数学试卷-答案
湖南省衡阳市2015年初中毕业学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】原式123=+=。
故选D 。
【提示】原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果。
熟练掌握运算法则是解本题的关键。
【考点】实数的运算;零指数幂 2.【答案】A【解析】A 、2a a a +=,故本选项正确;B 、33336b b b b +==,故本选项错误;C 、3312a a a a -÷==,故本选项错误;D 、525210()a aa ⨯==,故本选项错误。
故选A 。
【提示】根据合并同类项法则:同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解。
熟练掌握运算性质和法则是解题的关键。
【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方 3.【答案】C【解析】从上面看外边是一个矩形,里面是一个圆,故选:C 。
【提示】根据俯视图是从上面看得到的图形,可得答案。
【考点】简单组合体的三视图 4.【答案】C【解析】由题意可得:20x -=且10x +≠,解得2x =。
故选:C 。
【提示】分式的值为0的条件是:(1)分子为0;(2)分母不为0。
两个条件需同时具备,缺一不可。
据此可以解答本题。
关键是掌握分式值为零的条件是分子等于零且分母不等于零。
注意:“分母不为零”这个条件不能少。
【考点】分式的值为零的条件 5.【答案】B【解析】根据题意得:10x +≥,解得:1x -≥。
故选:B 。
【提示】根据二次根式的性质,被开方数大于或等于0,可以求出x 的范围。
函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负。
【考点】函数自变量的取值范围 6.【答案】B【解析】不等式组的解集为:-21x ≤≤,其数轴表示为:,故选B 。
2015届湖南省衡阳市高中毕业班第二次联考理科数学(有答案及解析)
2015届高中毕业班联考(二)理科数学参考答案一.选择题:1. B A=[-1,3],B=(0,4), A B ⋃=[)1,4-2. C3. B 此函数为奇函数,图像关于原点对称,排除A 、C ,当x>0时,y=lnX,排除D4. A sin sin )cos sin()sin )cos C A A B A B A A B =+⇔+=+cos sin cos 23A B A B A B ππ⇔=⇔==或; 角,,A B C 成等差数列3B π⇔=.5. C6. C 有两种情形:(1)直角由x y 2=与01=+-y kx 形成,则21-=k ,三角形的三个顶点为(0,0),(0,1),(54,52),面积为51;(2)直角由0=x 与01=+-y kx 形成,则0=k ,三角形的三个顶点为(0,0),(0,1),(),面积为。
7. B.把y=k(x-2)+b 代入x2-y2=1得x2-[k(x-2)+b]2=1, Δ=4k2(2k-b)2+4(1-k2)[(2k-b)2+1] =4(1-k2)+4(2k-b)2=4(3k2-4bk+b2+1)222222224b 4b b 2b 4[3(k k )1]4[3(k b)1],39333b k ,0,10,3b 1,b 3,b 3=-+-+=--+∆≥-≥≤≤-≤≤不论取何值则所以所以则8. D 设底面边长为X,球半径为r,则42r π=163π,得r 2=34,又由题意得r 2=x 2+(33x)2,解得x=1,故三棱柱的侧面积为6.9. A 试题分析: ()1cos 0f x x '=+≥,所以f(x)单调递增,且为奇函数. 由题意得22(23)(41)f y y f x x -+≤-+-即:22222341(2)(1)1y y x x x y -+≤-+-⇒-+-≤.作出221(2)(1)1y x y ≥⎧⎨-+-≤⎩表示的区域如图所示:1=得123,04k k ==.结合图形可知,10. C 的通项T r+1=(x 2)5-r(x -3)r=x10-5r,令10-5r=0得r=2,则常数项为×=2,f(x)是以2为周期的偶函数.因为区间[-1,3]是两个周期,所以在区间[-1,3]内函数g(x)=f(x)-kx-2k 有4个零点可转化为f(x)与r(x)=kx+2k 有四个交点.当k=0时,两函数图象只有两个交点,不合题意,当k ≠0时,因为函数r(x)的图象恒过点(-2,0),则若使两函数图象有四个交点,必有0<r(3)≤1,解得0<k ≤二.填空题:11. 2 由题意得,1C 的普通方程:y x a =+,2C 的普通方程:y x b =+,因为曲线3C 的极坐标方程是1ρ=,化为直角坐标方程为221x y +=,因为1C 与2C 分曲线3C 所成长度相等的四段弧,所以直线y x a y x b =+=+、与圆221x y +=,相交截得的弦长所对的圆心角是90°,则圆心到直线的距离,即2d =,即12a =⇒=±,即不妨令11a b ==-、,所以222a b +=,故答案为:2.12. 15 由题意得,△ACQ ∽△APC ∴=AQ .AP.设AQ=x,75=3x2,故x=5,AP=3x=15 13.利用均值不等式可求得:3 14. 2 i 15. ①②③16. (1) (0,2) 2分(2)0ln x < 3分+mx+1是区间[-1+mx+1=在(+mx+1=⇒三、解答题17. 解:(1)由已知条件,得2,A =又∵23,12,46T T ππωω===∴=又∵当1x =-时,有22sin()263y ππφφ=-+=∴=∴曲线段FBC 的解析式为22sin(),[4,0]63y x x ππ=+∈-. (2)如图,,1,2,6OC CD OD COD π==∴=∠=……………………………………1分作x PP ⊥1轴于1P 点,在1OPP Rt ∆中,θθsin 2sin 1==OP PP …在OMP ∆中,)60sin(120sin 00θ-=OMOP ∴θθθθsin 332cos 2)60sin(34120sin )60sin(00-=-⋅=-⋅=OP OM θθθsin 2)sin 332cos 2(1⋅-=⋅=PP OM S OMPQ 平行四边形 θθθ2sin 334cos sin 4-=3322cos 3322sin 2-+=θθ 332)62sin(334-+=πθ )3,0(πθ∈ …当262ππθ=+时,即6πθ=时:平行四边形面积最大值为33218. 解:(I )设谋节目的投票结果是最终获一等奖这一事件为A ,则事件A 包括:该节目可以获2张“获奖”票,或者获3张“获奖”票。
【中考数学试题汇编】2013-2018年湖南省衡阳市(含参考答案与解析)
【中考数学试题汇编】2013—2018年湖南省衡阳市(含参考答案与解析)1、2013年湖南省衡阳市中考数学试题及参考答案与解析 (2)2、2014年湖南省衡阳市中考数学试题及参考答案与解析 (20)3、2015年湖南省衡阳市中考数学试题及参考答案与解析 (39)4、2016年湖南省衡阳市中考数学试题及参考答案与解析 (57)5、2017年湖南省衡阳市中考数学试题及参考答案与解析 (75)6、2018年湖南省衡阳市中考数学试题及参考答案与解析 (94)2013湖南省衡阳市中考数学试题及参考答案一、选择题(本大题共12个小题,每小题3分,满分36分)1.﹣3的相反数是()A.3 B.﹣3 C.13D.13-2.如图,AB平行CD,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°3.“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件4.如图,∠1=100°,∠C=70°,则∠A的大小是()A.10°B.20°C.30°D.80°50的结果为()A.2+B1C.3 D.56.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D.100°7.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③8.下列几何体中,同一个几何体的主视图与俯视图不同的是()A .B .C .D .9.下列运算正确的是( )A .3a+2b=5abB .a 3•a 2=a 5C .a 8•a 2=a 4D .(2a 2)3=﹣6a 6 10.下列命题中,真命题是( )A .位似图形一定是相似图形B .等腰梯形既是轴对称图形又是中心对称图形C .四条边相等的四边形是正方形D .垂直于同一直线的两条直线互相垂直11.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得( )A .168(1+x )2=128B .168(1﹣x )2=128C .168(1﹣2x )=128D .168(1﹣x 2)=128 12.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t ,正方形除去圆部分的面积为S (阴影部分),则S 与t 的大致图象为( )A .B .C .D .二、填空题(本大题共8个小题,每小题3分,满分24分)13.计算()142⎛⎫-⨯-= ⎪⎝⎭.14.反比例函数ky x=的图象经过点(2,﹣1),则k 的值为 . 15.如图,在直角△OAB 中,∠AOB=30°,将△OAB 绕点O 逆时针旋转100°得到△OA 1B 1,则∠A 1OB= .16.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九(三)班的演唱打分情况为:89、92、92、95、95、96、97、,从中去掉一个最高分和一个最低分,余下的分数的平均数是最后得分,则该班的得分为 .17.计算:2111a a a -=++ . 18.已知a+b=2,ab=1,则a 2b+ab 2的值为 .19.如图,要制作一个母线长为8cm ,底面圆周长是12πcm 的圆锥形小漏斗,若不计损耗,则所需纸板的面积是 .20.观察下列按顺序排列的等式:11 13a=-,211 24a=-,311 35a=-,411 46a=-,…,试猜想第n个等式(n为正整数):a n=.三、解答题(本大题共8个小题,满分60分)21.(6分)先化简,再求值:(1+a)(1﹣a)+a(a﹣2),其中12a=.22.(6分)解不等式组:1022xx x-⎧⎨+⎩≥<;并把解集在数轴上表示出来.23.(6分)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)24.(6分)目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.25.(8分)为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;(1)档用地阿亮是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3)“基本电价”是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?26.(8分)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.27.(10分)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=﹣1.(1)求抛物线对应的函数关系式;(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从M从O 点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPQ为矩形;②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.28.(10分)如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)过点B作⊙M的切线l,求直线l的解析式;(3)∠BOA的平分线交AB于点N,交⊙M于点E,求点N的坐标和线段OE的长.四、附加题(本小题满分0分,不计入总分)29.一种电讯信号转发装置的发射直径为31km.现要求:在一边长为30km的正方形城区选择若干个安装点,每个点安装一个这种转发装置,使这些装置转发的信号能完全覆盖这个城市.问:(1)能否找到这样的4个安装点,使得这些点安装了这种转发装置后能达到预设的要求?在图1中画出安装点的示意图,并用大写字母M、N、P、Q表示安装点;(2)能否找到这样的3个安装点,使得在这些点安装了这种转发装置后能达到预设的要求?在图2中画出示意图说明,并用大写字母M、N、P表示安装点,用计算、推理和文字来说明你的理由.参考答案与解析一、选择题(本大题共12个小题,每小题3分,满分36分)1.﹣3的相反数是()A.3 B.﹣3 C.13D.13【知识考点】相反数【思路分析】根据相反数的概念解答即可.【解答过程】解:﹣3的相反数是3,故选A.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.如图,AB平行CD,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°【知识考点】平行线的性质.【思路分析】根据平行线性质得出∠C=∠B,代入求出即可.【解答过程】解:∵AB∥CD,∠B=20°,∴∠C=∠B=20°,故选B.【总结归纳】本题考查了平行线性质的应用,注意:两直线平行,内错角相等.3.“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件【知识考点】随机事件.【思路分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.【解答过程】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选A.【总结归纳】用到的知识点为:必然事件指在一定条件下一定发生的事件.4.如图,∠1=100°,∠C=70°,则∠A的大小是()A.10°B.20°C.30°D.80°【知识考点】三角形的外角性质.【思路分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.【解答过程】解:∵∠1=100°,∠C=70°,∴∠A=∠1﹣∠C=100°﹣70°=30°.故选C.【总结归纳】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.50的结果为()A.2+B1C.3 D.5【知识考点】二次根式的乘除法;零指数幂.【思路分析】原式第一项利用二次根式的乘法法则计算,第二项利用零指数幂法则计算,即可得到结果.【解答过程】解:原式=2+1=3.故选C【总结归纳】此题考查了二次根式的乘除法,以及零指数幂,熟练掌握运算法则是解本题的关键.6.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D.100°【知识考点】圆周角定理.【思路分析】因为同弧所对圆心角是圆周角的2倍,即∠AOC=2∠ABC=100°.【解答过程】解:∵∠ABC=50°,∴∠AOC=2∠ABC=100°.故选D.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.要调查下列问题,你认为哪些适合抽样调查()①市场上某种食品的某种添加剂的含量是否符合国家标准②检测某地区空气质量③调查全市中学生一天的学习时间.A.①②B.①③C.②③D.①②③【知识考点】全面调查与抽样调查【思路分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答过程】解:①食品数量较大,不易普查,故适合抽查;②不能进行普查,必须进行抽查;③人数较多,不易普查,故适合抽查.故选D.【总结归纳】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.下列几何体中,同一个几何体的主视图与俯视图不同的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形.【解答过程】解:A、圆柱的主视图与俯视图都是矩形,错误;B、正方体的主视图与俯视图都是正方形,错误;C、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D、球体主视图与俯视图都是圆,错误;故选C.【总结归纳】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.9.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5C.a8•a2=a4D.(2a2)3=﹣6a6【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答过程】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.【总结归纳】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.10.下列命题中,真命题是()A.位似图形一定是相似图形B.等腰梯形既是轴对称图形又是中心对称图形C.四条边相等的四边形是正方形D.垂直于同一直线的两条直线互相垂直【知识考点】命题与定理【思路分析】根据位似图形的定义、等腰梯形的性质、正方形的判定、两直线的位置关系分别对每一项进行分析即可.【解答过程】解:A、位似图形一定是相似图形是真命题,故本选项正确;B、等腰梯形既是轴对称图形,不是中心对称图形,原命题是假命题;C、四条边相等的四边形是菱形,原命题是假命题;D、同一平面内垂直于同一直线的两条直线互相垂直,原命题是假命题;故选A.【总结归纳】此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程得()A.168(1+x)2=128 B.168(1﹣x)2=128 C.168(1﹣2x)=128 D.168(1﹣x2)=128 【知识考点】由实际问题抽象出一元二次方程.【思路分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是168(1﹣x),第二次后的价格是168(1﹣x)2,据此即可列方程求解.【解答过程】解:根据题意得:168(1﹣x)2=128,故选B.【总结归纳】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.12.如图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为t,正方形除去圆部分的面积为S(阴影部分),则S与t的大致图象为()A.B.C.D.【知识考点】动点问题的函数图象.【思路分析】本题考查动点函数图象的问题.。
【解析版】衡阳市逸夫中学2015届九年级上期中数学试卷
C. 200(1+2x)2=288
D.200[1+(1+x)+(1+x)2]
8.(3 分)如图,AB∥CD,AD 交 BC 于点 O,OA:OD=1:2,则下列结论:
(1)
(2)CD=2 AB(3)S△OCD=2S△OAB
其中正确的结论是()
A.(1)(2)
B.(1)(3)
C.(2)(3)
9.(3 分)下列四条线段为成比例线段的是()
18.(3 分)若 l 是关于 x 的方程 x2+nx+m=0 的一个根,则 m+n 的值是.
19.(3 分)若最简二次根式
与 是同类二次根式,则 a=.
20.(3 分)如图,O 是△ABC 的重心,AN,CM 相交于点 O,那么△MON 与△AOC 的面 积的比是.
三、解答题(共 8 小题,满分 60 分)
26.(8 分)已知关于 x 的一元二次方程(a+1)x2﹣ x+a2﹣ 3a﹣ 3=0 有一根是 1. (1)求 a 的值; (2)求方程的另一根. 27.(10 分)如图所示,在等腰三角形 ABC 中,底边 BC=60cm,高 AD=40cm,四边形 PQRS 是正方形. (1)△ASR 与△ABC 相似吗?为什么? (2)求正方形 PQRS 的边长.销中获利 2000 元,则第二个月销售定价每套多少元?
(3)若要使利润达到最大,定价为多少?最大利润为多少?
湖南省衡阳市逸夫中学 2015 届九年级上学期期中数学 试卷
参考答案与试题解析
一、选择题(共 12 小题,每小题 3 分,满分 36 分) 1.(3 分)下列计算正确的是()
解答: 解:∵二次根式
有意义,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年湖南省衡阳市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
3.(3分)(2015•衡阳)如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是( )B4.(3分)(2015•衡阳)若分式的值为0,则x 的值为( )6.(3分)(2015•衡阳)不等式组的解集在数轴上表示为( ) .B ...7.(3分)(2015•衡阳)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长29.(3分)(2015•衡阳)下列命题是真命题的是( )10.(3分)(2015•衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、11.(3分)(2015•衡阳)绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为12.(3分)(2015•衡阳)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()0+1二、填空题:本大题共8个小题,每小题3分,共24分。
13.(3分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是.14.(3分)(2015•衡阳)如图,已知直线a∥b,∠1=120°,则∠2的度数是.15.(3分)(2015•衡阳)计算:﹣=.16.(3分)(2015•衡阳)方程的解为.17.(3分)(2015•衡阳)圆心角为120°的扇形的半径为3,则这个扇形的面积为(结果保留π).18.(3分)(2015•衡阳)如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB 为m.19.(3分)(2015•衡阳)已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为.20.(3分)(2015•衡阳)如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2015的长为.三、解答题:本大题共8个小题,满分60分。
解答应写出文字说明、证明过程或演算步骤。
21.(6分)(2015•衡阳)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.22.(6分)(2015•衡阳)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有人.23.(6分)(2015•衡阳)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.24.(6分)(2015•衡阳)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.25.(8分)(2015•衡阳)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?26.(8分)(2015•衡阳)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C 作CE⊥AD,交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.27.(10分)(2015•衡阳)如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.28.(10分)(2015•衡阳)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.2015年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
3.(3分)(2015•衡阳)如图所示的几何体是由一个圆柱体和一个长方形组成的,则这个几何体的俯视图是()B4.(3分)(2015•衡阳)若分式的值为0,则x的值为()6.(3分)(2015•衡阳)不等式组的解集在数轴上表示为().B...,其数轴表示为:7.(3分)(2015•衡阳)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长2,.10.(3分)(2015•衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心,他们捐款的数额分别是(单位:元)50、20、50、30、11.(3分)(2015•衡阳)绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为12.(3分)(2015•衡阳)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为()0+1AEG==ACG==﹣x=50AH=50二、填空题:本大题共8个小题,每小题3分,共24分。
13.(3分)(2015•衡阳)在﹣1,0,﹣2这三个数中,最小的数是﹣2.14.(3分)(2015•衡阳)如图,已知直线a∥b,∠1=120°,则∠2的度数是60°.15.(3分)(2015•衡阳)计算:﹣=.﹣.故答案为:16.(3分)(2015•衡阳)方程的解为x=﹣1.17.(3分)(2015•衡阳)圆心角为120°的扇形的半径为3,则这个扇形的面积为3π(结果保留π).=18.(3分)(2015•衡阳)如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB 为40m.19.(3分)(2015•衡阳)已知a+b=3,a﹣b=﹣1,则a2﹣b2的值为﹣3.20.(3分)(2015•衡阳)如图,△A1B1A2,△A2B2A3,△A3B3A4,…,△A n B n A n+1都是等腰直角三角形,其中点A1、A2、…、A n在x轴上,点B1、B2、…、B n在直线y=x上,已知OA2=1,则OA2015的长为22013.=,三、解答题:本大题共8个小题,满分60分。
解答应写出文字说明、证明过程或演算步骤。
21.(6分)(2015•衡阳)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.时,原式22.(6分)(2015•衡阳)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:(1)在扇形统计图中,“合格”的百分比为40%;(2)本次体质抽测中,抽测结果为“不合格”等级的学生有16人;(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有128人.23.(6分)(2015•衡阳)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.,24.(6分)(2015•衡阳)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.=.25.(8分)(2015•衡阳)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?y=,y=,解得:26.(8分)(2015•衡阳)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C 作CE⊥AD,交AD的延长线于点E.(1)求证:CE是⊙O的切线;(2)判断四边形AOCD是否为菱形?并说明理由.,由题意得=,∠为菱形.由====27.(10分)(2015•衡阳)如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.两点坐标代入可得,解得AM=AB==,BM==2,消去,时,平移后的抛物线总有不动点.28.(10分)(2015•衡阳)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.,得出比例式,﹣﹣(﹣tS=MN BD=(=>。